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This paper is based on findings resulting from ASHRAE Research Project RP-1322.

ABSTRACT 

The goal of this study was to investigate the effects of noise 

from building mechanical systems with time-varying fluctua-

tions on human task performance and perception, and to deter-

mine how well current indoor noise rating methods account for 

this performance and perception. Six different noise conditions 

with varying degrees of time-varying fluctuations, many 

focused in the low frequency rumble region, were reproduced 

in an office-like setting. Thirty participants were asked to 

complete typing, grammatical reasoning, and math tasks plus 

subjective questionnaires, while being exposed for approxi-

mately one hour to each noise condition. Results show that the 

noise conditions with higher sound levels (greater than 50 

dBA) combined with excessive low frequency rumble as well as 

those with larger timescale fluctuations (i.e., a heat pump 

cycling on and off every 30 seconds) were generally perceived 

to be more annoying than the other signals tested, although 

statistically significant negative relationships to task perfor-

mance were not found. Other findings are (1) that the noise 

characteristics most closely correlated to higher annoyance/

distraction responses in this study were higher ratings of loud-

ness followed by roar, rumble, and changes in time; and (2) that 

perception of more low frequency rumble in particular was 

significantly linked to reduced performance on cognitively 

demanding tasks. As for the ability of current indoor noise 

rating systems to match human performance or perception, 

none of the indoor noise rating methods evaluated were signif-

icantly correlated to task performance, but aspects of subjec-

tive perception such as loudness ratings were statistically 

related. Spectral quality ratings included with some noise 

rating methodologies were inconsistent with subjective 

perception, but other metrics such as RNC, L1 – L99 [LF ave], 

and LCeq – LAeq, were strongly correlated to rumble perception. 

The authors use the results to suggest a framework for an 

‘ideal’ indoor noise rating method, but further research is 

required towards quantifying specific guidelines for accept-

able degrees of time-varying fluctuations and tonalness.

INTRODUCTION

Mechanical systems responsible for heating, ventilation 

and air-conditioning are sources of background noise in build-

ings. Acceptable noise level guidelines have been suggested 

using a number of indoor noise rating methodologies proposed 

over the past 60 years, such as Noise Criteria (NC), Room 

Criteria (RC) and Room Criteria Mark II (RC-Mark II) 

(ASHRAE 2007). There is some debate about which noise 

rating system should be advocated by ASHRAE, as the vari-

ous methodologies do not always give the same assessment. 

Furthermore, experience in the field suggests that these noise 

rating systems do not account well for time-varying fluctua-

tions that can occur with modern mechanical systems. The 

fluctuations may be due to ill-designed systems that demon-

strate surging and excessive low frequency rumble, or may be 

on a larger timescale where the system’s settings change over 

time, such as variable air volume systems or systems switch-

ing on and off. This research project investigates the effects of 

noise with time-varying fluctuations on human performance 

and perception, and correlates these findings with current 

indoor noise rating methods. An earlier phase of the work 

focused on the effects of noise with varying degrees of tones, 

Human Performance and Perception-Based
Evaluations of Indoor Noise Criteria for
Rating Mechanical System Noise with
Time-Varying Fluctuations
Lily M. Wang, PhD, PE Cathleen C. Novak
Member ASHRAE

Lily M. Wang is an associate professor in the Durham School of Architectural Engineering and Construction, University of Nebraska–Lincoln, 

Omaha, NE. Cathleen C. Novak is a consultant with PMK Consultants, Dallas, TX.

AB-10-019 (RP-1322)

©2010, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www.ashrae.org). Published in ASHRAE Transactions (2010, Vol. 116, Part 2). 

For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.



554 ASHRAE Transactions

another problem produced by modern mechanical systems 

(Ryherd and Wang 2010). The results have collectively been 

used to outline a framework that an ‘ideal’ indoor noise rating 

method should follow, as described later in this paper.

Much research has been conducted regarding the effects 

of noise on human perception and performance; reviews of 

such work may be found in Kryter (1985), Jones and Broad-

bent (1998), and the accompanying paper by Ryherd and 

Wang (2010). One consistent finding from the previous work 

is that while sound level is certainly an important factor, spec-

tral characteristics of the noise also affect human perception 

and performance. In particular, noise with excessive low 

frequency energy or rumble has been shown in the lab and in 

the field to result in greater annoyance than equivalently loud 

signals without rumble (Berglund et al. 1996, Leventhall 

2003, Persson et al. 1985, Persson and Björkman 1988, Pers-

son Waye et al. 2001, Persson Waye and Rylander 2001). 

Bradley (1994) reported an investigation in which subjects 

adjusted the level of an amplitude-modulated signal (simulat-

ing rumble) to be equivalently annoying to a reference signal 

with a neutral spectrum. He found that both level and the 

modulation frequency of the stimulus could negatively impact 

the perceived annoyance. Noise conditions with rumble can 

also result in degradation in task performance, as shown by a 

number of researchers, although many of these studies 

compared only a few signals at a time (Kyriakides and Leven-

thall 1977, Landström et al. 1991, Holmberg et al. 1993, Pers-

son Waye et al. 1997, 2001). 

To quantify the degree of low frequency content and 

possibly predict the resulting annoyance, Broner and Leven-

thall (1983) proposed using the difference between the C-

weighted equivalent sound pressure level and the A-weighted 

equivalent sound pressure level, LCeq – LAeq (often referred to 

as dBC – dBA), since the A-weighting curve corrects more 

severely for low frequency components than the C-weighting 

curve. They suggested that values of LCeq – LAeq greater than 

20 dB would signify a low frequency noise problem. Holm-

berg et al. (1996) correlated a number of metrics that were 

easily calculated by a sound level meter to the perception of 

annoyance from low frequency noise, including LCeq – LAeq, 

and found that this particular metric did differentiate between 

annoying and non-annoying cases. Holmberg et al. (1997) 

later suggested that a value of 15 dB or greater could indicate 

the potential for low frequency noise problems. Kjellberg et al. 

(1997) conducted office surveys and suggested that LCeq – 

LAeq may be limited as a predictor of annoyance, particularly 

at lower overall noise levels when the low frequency content 

was not as perceptible. 

A metric that has been proposed for quantifying more 

specifically the degree of time-varying fluctuations in a signal 

is the difference between two statistical sound level measures, 

such as L10 – L90, where L10 is the sound level exceeded 10% 

of the time and L90 is the sound level exceeded 90% of the 

time (Blazier and Ebbing 1992). More recently, Mann et al. 

(2007) utilized another variation, L1 – L99, to quantify time-

varying fluctuations during their ASHRAE 1219-RP project 

which sought to quantify duct rumble noise resulting from 

various aerodynamic system effects at the discharge of a 

centrifugal fan.

The most recent version of ANSI Standard S12.2 “Crite-

ria for Evaluating Room Noise” (2008) includes a methodol-

ogy known as Room Noise Criteria (RNC), originally 

proposed by Schomer (2000), that explicitly attempts to coun-

ter the indoor noise rating methods NC and RC’s deficiencies 

in dealing with low frequency fluctuations. RNC requires 

calculations of Lmax – Leq, energy averaged for the octave 

bands from 16 Hz to 63 Hz, as well as at the 125 Hz octave 

band, to provide an indication of whether low frequency fluc-

tuations are a problem. In cases where surging or low 

frequency fluctuations are indicated, the RNC method essen-

tially calculates a penalty to add to the levels in the lowest 

frequency bands, and then a tangency method is applied to 

determine the final rating; otherwise, it defaults to the NC 

method described in the standard. The octave band in which 

the tangency is met is to be reported with the RNC value. 

Schomer and Bradley (2000) applied the RNC ratings to the 

findings from Bradley’s previous study on annoyance due to 

amplitude-modulated signals (1994) and found that the RNC 

methodology was validated by those results.

There has been some work on other random (or aperi-

odic) time-varying fluctuations, such as those that may occur 

on longer timescales than low frequency rumble (e.g. 

systems switching on and off) or involving different content 

(e.g. office noise including speech, equipment noise, etc.). 

Eschenbrenner (1971) compared the effects of continuous 

periodic and aperiodic noise, and found that the aperiodic 

noise reduced the performance times on a visual tracking 

task, although exposure times were brief in this study. In 

Weinstein’s 1977 study, subjects completed a proofreading 

task while listening either to a recording of radio news or in 

quiet, and the results were mixed; detection of grammatical 

errors decreased in noise, but speed and detection of spelling 

errors were not significantly affected. Recently, Witterseh et 

al. (2004) investigated human perception and performance 

over a three-hour period in an open-office type environment 

due to various combinations of three thermal and two acous-

tic conditions. They found that the office noise condition (55 

dBA) which included a great deal of aperiodic content 

resulted in increased fatigue and decreased performance in 

comparison to a quiet noise condition (35 dBA). 

The current investigation is focused on how both human 

perception and performance are affected by noise produced 

from mechanical systems in buildings that feature time-vary-

ing fluctuations, primarily in the low frequency region or on a 

larger timescale. The project involved systematically expos-

ing participants to six different noise signals over a period of 

one hour each and gauging their performance on three types of 

tasks (typing, grammatical reasoning and math tests) and their 

perception via subjective questionnaires. The results have then 

been related to commonly used indoor noise rating systems, 
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suggested within the ASHRAE Applications Handbook, in an 

effort to improve those methods. 

METHODOLOGY

The protocol described in this section for this phase of 

research is similar to one used for an earlier phase of testing, 

presented in an accompanying paper (Ryherd and Wang 

2010). As the authors believe that readers may not necessarily 

access both papers, some of the same methodology is 

discussed in both manuscripts.

Thirty test subjects (15 males and 15 females) from the 

University of Nebraska community were recruited to partici-

pate in this study, ranging in age from 19 to 61 with a mean of 

22.6 years. All participants first underwent a series of pre-test 

screens to gauge the subject’s vision, hearing, and typing 

skills. The minimum requirements to participate in the study 

were as follows: normal vision as verified by a Keystone 

Opthalmic Telebinocular, hearing thresholds below 25 dB 

hearing level in octave bands from 125 Hz to 8 kHz, and a 

minimum typing speed of 20 wpm. None of these participants 

had participated in the earlier phase of the ASHRAE 1322-RP 

project regarding tonal noise conditions (Ryherd and Wang 

2010).

Testing was conducted in a 906 ft³ (25.7 m³) indoor envi-

ronmental test chamber at the University of Nebraska, outfit-

ted as a typical office with two desks, carpet, gypsum board 

walls, and acoustical ceiling tile. The test chamber’s envelope 

has a high sound transmission class of STC 47, and its interior 

acoustic condition demonstrates low background noise level 

of RC 26(H) (or an equivalent A-weighted sound level of 35 

dBA) and a low reverberation time of 0.25 sec at 500 Hz. 

During all tests, the test chamber was thermally controlled to 

maintain a temperature of 72°F (22°C). Overhead fluorescent 

lighting provided an constant average illuminance of 71 foot-

candles (764 lux) at the work plane. The sound in the test 

chamber was the only environmental characteristic that 

changed between test sessions, with the signals being 

presented in an inconspicuous manner over two loudspeakers: 

(i) an Armstrong i-ceiling loudspeaker which has the same 

appearance as the other ceiling tiles in the room, and (ii) a JBL 

Northridge E250P subwoofer, disguised to resemble an endta-

ble in the corner of the room. The test administrator and vari-

ous equipment (e.g. the hard drive to the test computers and 

other audio gear) were located in a control room, adjacent to 

the chamber. 

A repeated measures test design was used in which each 

subject was exposed to the same six noise conditions, each for 

a period of 55 minutes at a time. This length of exposure time 

was selected due to the results from a previous phase of the 

ASHRAE 1322-RP project (Ryherd and Wang 2007). Partic-

ipants were asked to come for their six listening sessions at 

approximately the same timeslot on different days. For each 

session, the test subjects spent the first 25 minutes adapting to 

the noise condition and completing a test on paper, developed 

from material taken from the verbal portion of the Graduate 

Record Examination (GRE). Unbeknownst to the subject, this 

material was not to be marked but was simply to keep the 

subject mentally alert during the adaptation period. 

The next 15 minutes consisted first of three skill tests, 

administered on a computer using SkillCheck software: 

typing, grammatical reasoning, and math. The typing test was 

allotted five minutes, and involved typing a passage from a 

piece of paper with the mouse disabled. The reasoning task 

was allotted two minutes, and included 20 questions in which 

subjects indicated whether a statement regarding a presented 

sequence of letters was true or false. The math test was allotted 

seven minutes, and included 11 problems involving the four 

basic functions with integers, fractions, and decimals, 

presented either mathematically or as a word problem. Partic-

ipants were provided with pencil and paper but no calculator. 

Results for the typing test were output as an adjusted typing 

speed, accounting not only for the subject’s typing speed but 

also the number of errors made. Results for the reasoning and 

math tasks were output as a percent correct, with questions that 

were not answered within the time limit considered incorrect. 

Further details on the development of the test material may be 

found in Ryherd and Wang (2007). 

The skill tests were followed by a subjective question-

naire that asked the participant to rate his/her perception on 

discrete seven-point scales of various indoor environmental 

qualities of the space, where 1 generally represented a low 

rating and 7 represented a high rating. Eight questions focused 

on perceptions related to the acoustic condition: loudness, 

rumble, roar, hiss, tones, changes over time, annoyance, and 

distraction. The remaining five focused on other conditions of 

the working environment, including lighting, thermal comfort 

and indoor air quality; as these conditions were kept constant 

and were not the focus of this investigation, the data are not 

presented further in this paper. The last 15 minutes repeated 

this sequence once more: typing, reasoning, and math tests, 

followed by the questionnaire. In total then there were 360 

observations (= 30 subjects x 6 noise conditions x 2 test/ques-

tionnaire sequences).

Six versions of the paper-based task and 12 versions of 

the typing, reasoning, and math tasks were utilized. Each 

subject completed all versions of the tasks with the order of 

presentation randomized for each subject. Only one subject 

was in the test room at a time in this study, so the order in 

which each subject experienced the noise conditions was 

also randomized. 

Prior to testing, the subjects completed a Powerpoint tuto-

rial on a computer that described the test procedures and intro-

duced them to the subjective terms “rumbly”, “roaring”, 

“hissy”, and “tonal”. The “rumbly” noise characteristic was 

described as containing excessive low frequencies, and a 

corresponding audio sample of broadband white noise band-

limited from 16 Hz to 63 Hz octave bands at a level of 54 dBA 

was presented over headphones. The “roaring” noise charac-

teristic was described as being excessive in mid-frequencies, 

and a corresponding audio sample band-limited from 125 Hz 
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to 500 Hz at 59 dBA was presented. The “hissy” noise char-

acteristic was described as containing excessive high frequen-

cies, and a corresponding broadband audio sample band-

limited from 1 kHz to 8 kHz at 63 dBA was presented. The 

“tonal” training signal consisted of broadband noise at an 

overall LAeq level of 60 dBA with a tone at 500 Hz of PR = 16. 

No other training was provided concerning the remaining 

descriptors on the questionnaire. 

Noise Conditions

The six different noise conditions used had different 

degrees of time-varying fluctuations, much of which occurred 

in the low frequency region. Signal F1 was a neutral broad-

band signal generated in Cool Edit 2000 software with a -5 dB/

octave band slope, intersecting 45 dB (re 20 μPa) at the 1000 

Hz octave band (Figure 1(a)). Signal F2 was created in the 

same manner as F1, except its low frequency content was 

increased by ten dB in the 31.5 Hz and 63 Hz octave bands 

(Figure 1(a)). Signals F3 and F4 were based on more realistic 

noise recordings from a ducted centrifugal fan system, 

acquired from an ASHRAE-sponsored research project, 1219-

RP (Mann et al. 2007). Signal F3 was representative of the 

system at 35% on the fan load curve and 2.5” of water static 

pressure, while signal F4 was representative of the system at 

80% on the fan load curve and 1” of water static pressure. 

These two cases were selected from those recorded in 1219-

RP because of a clear audible difference in the spectral char-

acter of the two. As seen in Figure 1(b), F3 had slightly higher 

levels in portions of the low and high frequency ranges.

Signal F5 was recorded in a university dormitory room, 

with a heat pump that was turned on and off at a rate of once 

every 30 seconds. The time fluctuation in this signal is on a 

larger timescale than the other signals in this study, as the 

authors wished to include one sample that simulated the 

cycling on and off of mechanical systems in buildings. 

Cycling on and off every 30 seconds is an extreme case, not 

often found in built environments, but since this is the first time 

that such a signal had been tested to the authors’ knowledge, 

an extreme case was selected. Figure 1(c) plots the equivalent 

sound pressure level spectra of this signal in octave bands, 

measured during its on period, its off period, and over the 

entire on and off cycle. Signal F6 was a broadband noise signal 

with excessive low frequency components (Figure 1(b)), 

generated during another ASHRAE-sponsored research proj-

ect, 879-RP (Broner 2004). 

Each signal’s .wav file was carefully edited to a length of 

30 seconds, except for signal F5 which was 1 minute long, and 

these were played in a continuous loop over the 55 minute test 

session. Both octave and one-third octave band data of each of 

these signals were measured at the participant’s seated posi-

tion, 4 ft (1.2 m) off of the floor, using a Larson Davis 824B 

sound level meter sampling every 125 ms at a fast detection 

setting over a two minute period. Figures 1(a-c) show the 

resulting octave band spectra for all six signals. 

Table 1 lists the six noise conditions along with their 

corresponding indoor noise criteria ratings. The loudness in 

sones was calculated per ANSI Standard S3.4 (2005b). Proce-

dures for calculating the other criteria are described in the 

ASHRAE Applications Handbook (2007).

Table 2 lists the six noise conditions along with metrics 

that have been suggested for quantifying the degree of low 

frequency fluctuations: RNC (along with the required Lmax – 

Leq calculations), and L1 – L99 [LF ave]. The L1 – L99 [LF 

ave] values were calculated by taking an energy average of the 

L1 – L99 quantities across the low frequency one-third octave 

bands from 12.5 Hz to 160 Hz. The metric LCeq – LAeq is also 

included in Table 2; recall that it does not explicitly quantify the 

degree of low frequency fluctuations, but is rather a measure of 

low frequency content. Figure 2 shows a comparison of RNC, 

L1 – L99 [LF ave], and LCeq – LAeq for the six signals used in 

this study, and demonstrates that all of these metrics seem to 

give roughly similar rankings to the signals regarding their low 

frequency fluctuation or content, with signals F2 and F6 having 

the highest values and signal F5 having the lowest. It is worth 

noting that the RNC method gives signal F2 a high rating 

because of excessive low frequency content in the 63 Hz octave 

band, and not resulting from any applied penalty for excessive 

low frequency fluctuation. The high RNC value for signal F6 

is due to excessive low frequency fluctuation, though, with a 

severe penalty applied to the 31.5 Hz octave band that raises the 

RNC value to 60.

RESULTS

Various statistical analyses have been used to evaluate the 

results. The independent variables were the six different noise 

conditions. The dependent variables were the task perfor-

mance scores for three types of tasks (verbal, grammatical 

reasoning, and math) and the subjective ratings for the eight 

questions regarding acoustics. The statistical results from 

applying Pearson’s Product Moment Correlations and 

repeated measures analysis of variance (ANOVA) with 

Bonferroni post hoc tests on the task performance scores and 

the subjective questionnaire responses are first presented. 

Then these two groups of dependent variables are related 

through a further statistical method, linear mixed models, to 

investigate significant correlations between performance and 

perception. All of the statistical analyses were conducted in 

SPSS software. For more details on the statistical methods 

used, refer to Field and Hole (2003).

Task Performance Results 

The descriptive statistics for the task performance results 

across all the test subjects and noise conditions are presented 

in Table 3. The reasoning test suffered from a restricted range; 

that is, the subjects scored quite high on that task, indicating 

that the task was not sufficiently difficult. Consequently, while 

valid, the reasoning test results should be carefully interpreted 

in subsequent analysis.
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(a)

(b)

(c)

Figure 1 Octave band spectra measured in the test chamber for (a) signals F1 and F2, (b) signals F3, F4, and F6, and (c) 

signal F5 during its ON period only, OFF period only, and over a two-minute cycle of OFF and ON.
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A repeated measures analysis of variance (ANOVA) was 

conducted to determine if there was any significant effect of 

noise condition on task performance. Results indicate that 

noise conditions did not have a significant main effect on any 

of the three tasks. Figure 3 shows sample results of the math 

task for each noise condition, averaged across all subjects; stan-

dard error of the mean bars are shown. The plot shows that, 

although not found to be statistically significant, there does 

appear to be a trend that the signals with the most low frequency 

content (F2 and F6) and the one with the on/off fluctuation (F5) 

resulted in lower math scores than the other conditions tested. 

The reasoning task results were similar, whereas the typing 

results did not indicate any apparent trends. The results suggest 

that a large degree of low frequency fluctuations or large time-

scale fluctuations may impact tasks that are more cognitively 

difficult, but not more routine tasks like typing. Additional 

research is required to confirm this hypothesis.

Subjective Perception Results 

The descriptive statistics for the subjective questionnaire 

responses to questions on acoustic conditions are presented in 

Figure 4 averaged across all the test subjects and noise condi-

tions. Six of these questions are linked to subjective ratings of 

the noise signal characteristics (loudness, rumble, roar, hiss, 

tones, and changes in time), while the remaining two are 

linked to subjective responses due to the noise (annoyance and 

distraction). Comparison of the descriptive statistics shows 

that the ratings for loudness and roar have similar means and 

standard deviations, as do the responses on annoyance and 

distraction. In comparing these results to those from a similar 

Table 1.  Noise Conditions and Their Corresponding Indoor Noise Criteria Ratings

(N = Neutral, R = Rumbly, H = Hissy, V = Vibrational, LF = Excessive Low Frequency,

MF = Excessive Mid Frequency (Roaring in Character), and HF = Excessive High Frequency)

Noise Condition Label and 

Description
NC NCB RC RC-Mark II

LAeq,

dBA

Loudness, 

sones

F1: Mid-level neutral 45 41 (RV) 44 (V) 44 (V), marginal 51 10.7

F2: Mid-level rumbly 56 41 (RV) 44 (RV) 44 (LF,V), marginal 53 11.4

F3: RP-1219 recording 

(35% fan load curve, 2.5 in. sp)
42 38 (RV) 41 (V) 41 (V), marginal 48 9.1

F4: RP-1219 recording 

(80% fan load curve, 1 in. sp)
42 38 (R) 41 (N) 41 (N), acceptable 48 8.5

F5: Heat pump recording, cycling 

ON and OFF
39 37 (H) 38 (N) 38 (N), acceptable 44 7.2

F6: RP-879 recording

(low frequency fluctuating) 
46 29 (RV) 30 (RHV) 30 (LF, V) Objectionable 45 5.3

Table 2.  Noise Conditions and Their Corresponding Quantifiers for Degree of

Low-Frequency Fluctuations or Content

Noise Condition Label and 

Description
RNC

Lmax – Leq ,

16–63 Hz (dB)

Lmax – Leq,

125 Hz (dB)

L1 – L99, 

LF ave (dB)

LCeq – LAeq,

dB

F1: Mid-level neutral 45 (250 Hz) 6.4 4.7 48.8 18.9

F2: Mid-level rumbly 56 (63 Hz) 6.3 5.0 57.7 26.2

F3: RP-1219 recording 

(35% fan load curve, 2.5 in. sp)
41 (500 Hz) 5.9 7.0 44.3 16.9

F4: RP-1219 recording 

(80% fan load curve, 1 in. sp)
42 (125 Hz) 7.2 7.4 43.9 15.6

F5: Heat pump recording, cycling ON 

and OFF
38 (1000 Hz) 5.7 6.4 33.4 9.5

F6: RP-879 recording

(low frequency fluctuating) 
60 (31.5 Hz) 7.5 5.6 52.4 27.4
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earlier phase involving tonal signals (Ryherd and Wang 2010), 

the average subjective rating of tonalness has decreased, as 

expected, while those of rumble and fluctuations have 

increased, since the current study utilized signals with no 

prominent tones but emphasized low frequency rumble and 

fluctuations.

Pearson Product Moment Correlation analysis was run 

among these dependent variables on subjective perception, 

resulting in correlation coefficients as listed in Table 4. Many 

of the variables were found to be significantly correlated at the 

p<0.01 or p<0.05 level. 

The two subjective responses on annoyance and distrac-

tion had the highest correlation coefficient of 0.91. This indi-

cates that when participants gave high responses on annoyance, 

they commonly gave higher responses on distraction as well. 

The next highest correlations were found between the rating of 

loudness and both responses of annoyance (0.77) and distrac-

tion (0.74). Similar to the results in the earlier phase with tonal 

signals (Ryherd and Wang 2010), loudness perception is the 

most highly linked to annoyance and distraction responses of 

the noise characteristics evaluated.

The noise characteristic ratings that were next highly 

correlated to annoyance in terms of correlation coefficients 

were roar (0.42), rumble (0.41), and changes in time ratings 

(0.40). These characteristics were also correlated to distrac-

tion responses, but in a different order: changes in time (0.43), 

roar (0.41), and rumble (0.34). The rating for tonalness 

showed the lowest correlation coefficients to annoyance (0.25) 

and distraction (0.22), as might be expected, since the signals 

in this phase of the ASHRAE 1322-RP research did not 

evidence any prominent tones. These results confirm that 

loudness perception is often the noise characteristic most 

significantly linked to annoyance/distraction, but also show 

that the next characteristics connected to annoyance/distrac-

tion perception in this study are the perceived amount of roar, 

rumble, and time-varying fluctuations in the noise. 

Next a repeated measures ANOVA was conducted to 

determine if there was any significant effect of noise condition 

on the questionnaire responses. Results show that there was a 

main effect of noise condition on loudness ratings (F=8.83, 

p<0.01); participants did give different responses on loudness 

perception between the six signals (Figure 5). Bonferroni post 

hoc tests were run to highlight statistically significant differ-

ences between the six noise conditions. The tests show that 

Table 3.  Descriptive Statistics for Task Performance 

Results, Averaged Across All Subjects and Noise 

Conditions

Mean Standard Deviation

Typing 52.8 wpm 14.0 wpm

Grammatical 

Reasoning
91.5% correct 13.7%

Math 80.5% correct 16.4%

Figure 2 Comparison of three metrics that quantify the degree of low-frequency fluctuation (RNC and L1 –L99 [LF ave]) or 

low-frequency content (LCeq – LAeq) across the six signals used in this study.
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signal F2 was significantly rated as louder than all other 

signals except F5, and that signal F5 was rated as louder than 

all others except F1 and F2. The perceptual loudness ratings 

match well with the actual sone values for each signal, listed 

previously in Table 1, except for signal F5. F5 was rated to 

have the second highest loudness rating, but actually had the 

second lowest sone value. This appears to indicate that the 

larger timescale fluctuation from having the heat pump cycle 

on and off causes participants to rate the signal’s perceived 

loudness to be higher than it is, even in its loudest mode (refer 

to Figure 1(c)). 

The ANOVA analysis also finds that there was a main 

effect of noise condition on the changes in time ratings 

(F=47.2, p<0.01); that is, participants did perceive different 

degrees of time-varying fluctuations in the six signals (Figure 

6). Bonferroni post hoc tests show that signal F5 was rated to 

Figure 3 The math task performance scores in percent correct for each noise condition, averaged across all subjects. The bars 

represent the standard error of the means.

Figure 4 The descriptive statistics for the subjective questionnaire responses to questions on acoustic conditions, averaged 

across all test subjects and noise conditions. The bars represent standard deviation.
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have significantly more changes in time than all other signals. 

Although not found to be statistically significant, Figure 6 also 

indicates a trend that noise conditions F2 and F6, which have 

the most low frequency fluctuations or content, were rated as 

demonstrating more changes in time than the other three 

signals. 

The ANOVA results discussed in the previous two para-

graphs confirm that subjects perceived differences in loudness 

and changes in time between the six test signals. ANOVA main 

effects of noise condition on annoyance (F=10.9, p<0.01) and 

distraction (F=10.6, p<0.01) responses were also found, indi-

cating that the participants did respond with different degrees 

of annoyance and distraction to the six noise conditions. 

Figure 7 plots the annoyance results; the distraction results 

look very similar. The Bonferroni post hoc tests show that 

signals F2 and F5 were found to be significantly more annoy-

ing and distracting than all other signals. F2 has large low 

frequency content with an overall loudness of 11.4 sones, 

while F5 has the large timescale fluctuation. The other signal 

with excessive low frequency energy (F6), though, did not 

produce high ratings of annoyance and distraction. The 

authors conclude that loud signals with large amounts of low 

frequency energy correlate to greater annoyance/distraction 

responses, but quieter signals that have large amounts of low 

Table 4.  Correlations between the Subjective Perception Dependent Variables 
(** Indicates Significance at p < 0.01 Level, * Indicates Significance at p < 0.05 Level)

Loudness Rumble Roar Hiss Tones
Changes 

in Time
Annoyance Distraction

Loudness – 0.48** 0.54** 0.40** 0.25** 0.35** 0.77** 0.74**

Rumble – 0.44** 0.12* 0.14** –0.04 0.41** 0.34**

Roar – 0.09 0.08 0.20** 0.42** 0.41**

Hiss – 0.20** 0.13* 0.29** 0.26**

Tones – 0.03 0.25** 0.22**

Changes in 

Time
– 0.40** 0.43**

Annoyance – 0.91**

Figure 5 Subjective loudness ratings of the various noise conditions, averaged across all subjects. The bars represent the 

standard error of the means.
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frequency fluctuation do not. This supports Kjellberg et al.’s 

(1997) earlier suggestion that the overall level of the signal 

needs to be high enough so that excessive low frequency 

energy is perceptible. Further research is recommended to 

confirm this finding. 

Relationships between Task Performance and 

Subjective Perception

Previous research by the authors has indicated that task 

performance scores are often significantly linked to subjective 

perception ratings, even if they do not change in a statistically 

significant fashion with regards to noise conditions (Bowden 

and Wang 2005, Ryherd and Wang 2007). Such a relationship 

was statistically tested using a linear mixed model in SPSS. 

Results show that there are very few significant relationships 

between performance and perception in this investigation. 

Typing scores did not significantly decrease with any subjec-

tive rating or response, unlike in previous phases of this 

research (Ryherd and Wang 2010). Figure 8 shows an example 

of the typing scores in relation to distraction responses. (Note 

that the number above each standard error of the mean bar in 

Figures 8-10 indicates the number out of 360 observations that 

some participant assigned that rating.)  

Figure 6 Subjective changes-in-time ratings of the various noise conditions, averaged across all subjects. The bars represent 

the standard error of the means.

Figure 7 Subjective annoyance responses to the various noise conditions, averaged across all subjects. The bars represent 

the standard error of the means.
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Math and reasoning task performances appear to decrease 

with greater rumble ratings, as found in the previous phase 

with tonal signals (Ryherd and Wang 2010) and in previous 

research (Leventhall et al. 2003). Figure 9 shows the average 

reasoning scores decreasing from 94% to a low of 88% with 

higher rumble ratings (F=4.81, p<0.05); the average math 

scores also seemed to drop, although this was not found to 

occur at a statistically significant level. 

There was furthermore no statistically significant 

decrease in task performance correlated to the changes in time 

Figure 8 The average adjusted typing speed in words per minute at each subjective distraction response value. The bars 

represent standard error of the means. Numbers above the bars represent the number of observations out of 360 in 

which a participant gave this response to a noise condition.

Figure 9 The average reasoning score in percent correct at each subjective rumble rating value. The bars represent standard 

error of the means. Numbers above the bars represent the number of observations out of 360 in which a participant 

gave this rating to a noise condition.
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ratings. Instead, a possible increase in math task performance 

was found (F=6.53, p<0.05) (Figure 10). This suggests that 

participants may have been increasingly aroused by the higher 

degrees of changes over time in the noise used in this study and 

subsequently focused and performed better on the task at 

hand, in accordance with arousal theory (Yerkes and Dodson 

1908). However, as other research has indicated, being 

exposed to even longer periods of fluctuating noise than the 

one hour used in the current investigation may have further 

detrimental effects, including increased feelings of fatigue and 

stress (Witterseh et al. 2004).

Relationships between Indoor Noise Criteria Ratings 

and Task Performance or Subjective Perception

One research question that this project sought to answer is: 

how well do existing indoor noise criteria ratings relate to task 

performance or subjective perception results, particularly under 

noise conditions that include time-varying fluctuations? Linear 

mixed models were used to investigate these relationships.

None of the indoor noise criteria levels in Table 1 were 

found to be significantly related to task performance scores in 

this investigation. However, some of the subjective perception 

ratings were captured by the objective indoor noise criteria. 

All of the criteria levels listed in Table 1 were confirmed to be 

significantly related to loudness ratings at a statistically signif-

icant level of p<0.01, as one might expect. NCB, RC/RC Mark 

II, and loudness in sones were the only ones, though, to corre-

late significantly with annoyance and/or distraction responses 

[NCB to annoyance (F=10.5, p<0.01); NCB to distraction 

(F=8.29, p<0.01); RC/RC Mark II to annoyance (F=5.76, 

p<0.05); loudness in sones to annoyance (F=4.89; p<0.05)]. 

This result stems from the generally high numbers these crite-

ria associated with signals F2 and F5 and low numbers asso-

ciated with signal F6, which matches the annoyance/

distraction responses shown previously in Figure 7. In terms of 

correlating the criteria levels to the subjective ratings given to 

the signals regarding changes in time, the results show a statis-

tically significant trend that the higher the criteria level, the 

smaller the perceived changes in time ratings were. Again, this 

finding may be particular to the set of stimuli used in this study, 

in that signal F5 which received the largest changes in time 

ratings (Figure 7) was typically one of the two lowest-valued 

signals, according to most of the criteria systems.

Regarding the perception of low frequency content in the 

noise signals, the primary metrics listed in Table 2 (RNC, L1 

– L99[LF ave], LCeq – LAeq) all correlated significantly to the 

subjective ratings for rumble [RNC to rumble (F=73.1, 

p<0.01); L1 – L99[LF ave] to rumble (F=92.1, p<0.01); LCeq

– LAeq to rumble (F=78.8, p<0.01)]. The conclusion is that any 

of these three could be used confidently as a quantifier for the 

perceived degree of low frequency content in a signal, which 

may result from a large degree of low frequency fluctuation. 

No significant relationships were found between the spec-

tral ratings provided by certain criteria (NCB, RC, and RC Mark 

II) and the subjective ratings of rumble, roar or hiss, however. 

Figures 11 and 12 show plots of the six noise conditions and 

their average subjective rumble and hiss ratings, respectively, 

averaged across all subjects. In comparing Figure 11 to Table 1, 

Figure 10 The average math score in percent correct at each subjective changes-in-time rating value. The bars represent 

standard error of the means. Numbers above the bars represent the number of observations out of 360 in which a 

participant gave this rating to a noise condition.
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note that NCB rated all signals except F5 as rumbly, which does 

not match the subjective responses to the signals. Meanwhile, 

RC and RC Mark II rated signals F2 and F6 as rumbly, which 

does match subjective responses. In comparing Figure 12 to 

Table 1, NCB rated signal F5 as being hissy, RC rated F6 as 

being hissy, and RC Mark-II rated none as hissy. The NCB and 

RC ratings do not seem to match the subjective responses very 

well, while it remains unclear if RC Mark-II does, since hiss was 

not a variable that was systematically changed for this study. 

From this analysis, it appears that the spectral rating systems 

used by NCB and RC are generally not consistent with 

perceived spectral qualities, while that of RC Mark-II may 

perform reasonably well. Previous phases of this research, 

though, have indicated the opposite; NCB and RC spectral 

ratings were more consistent with spectral perception than RC 

Mark-II (Ryherd and Wang 2010). The authors surmise that 

none of these spectral rating systems can match subjective 

perception for all possible cases.

Figure 11 Subjective rumble ratings of the various noise conditions, averaged across all subjects. The bars represent the 

standard error of the means.

Figure 12 Subjective hiss ratings of the various noise conditions, averaged across all subjects. The bars represent the standard 

error of the means.
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DISCUSSION AND SUMMARY

The results of this project can help to answer two central 

questions, regarding noise characteristics of building mechan-

ical systems, subjective perception, and task performance. The 

first is: which noise characteristics are linked to higher annoy-

ance and distraction responses? Among the noise characteris-

tics surveyed, it was found that loudness perception is most 

closely linked to annoyance/distraction, followed by the 

perception of roar, rumble and time-varying fluctuations in the 

noise. (Recall that annoyance and distraction responses were 

highly correlated to each other in this study.) Consequently, in 

designing commercial office buildings, the degree of loud-

ness, roar, rumble and time-varying fluctuations in the back-

ground noise should be minimized to optimize worker 

comfort. Particularly with regards to changes in time, signals 

louder than 50 dBA with excessive low frequency content and 

signals with larger timescale variations, such as the heat pump 

cycling on and off every 30 seconds, were generally perceived 

in this project as more annoying that the others tested, but more 

research is suggested to investigate a wider range of timescale 

variations. 

The second question is: which noise characteristics are 

linked to lower task performance scores? While none of the 

typing or math/reasoning scores were found in this study to be 

negatively correlated to the degree of time-varying fluctua-

tions in the noise conditions, there was indication that signals 

perceived to be more rumbly generally produced lower perfor-

mance on math/reasoning tasks. In the previous phase of 

ASHRAE 1322-RP research involving noise signals with 

varying degrees of tonalness (Ryherd and Wang 2010), similar 

findings were found: the perceived degree of loudness, roar, 

rumble and tones in the background noise were most closely 

linked to annoyance/distraction, and signals perceived to be 

more rumbly generally produced lower performance on typing 

and math/reasoning tasks. Consequently, the authors conclude 

that the degree of low frequency rumble should be minimized 

in background noise conditions of offices, not only for occu-

pant comfort but also for improved performance. 

In general, the currently used indoor noise criteria listed in 

Table 1 do not significantly relate to task performance scores. 

Subjectively, they all do well in rating loudness perception 

when level differences are obvious, but spectral quality ratings 

of rumble, roar, hiss are sometimes inconsistent with subjective 

perception. Similar results were found in the previous phase of 

ASHRAE 1322-RP research (Ryherd and Wang 2010).

Based on the findings from the multiple phases of the 

ASHRAE 1322-RP project, the authors conclude by summa-

rizing how the results influence what may be considered an 

‘ideal’ indoor noise criteria method, particularly for noise 

from building mechanical systems – ‘ideal’ in that the method 

matches human perception and links to human task perfor-

mance. An ‘ideal’ methodology for rating indoor noise should 

do well in assessing (1) loudness (linked to roar perception), 

(2) rumble, and the presence of (3) time-varying fluctuations 

and (4) tones. This research has found that, while all the crite-

ria listed in Table 1 differentiate well between obvious sound 

level differences, the most sensitive ratings of level are 

provided by the A-weighted equivalent sound level (LAeq) or 

a sones rating. Consequently, an ‘ideal’ criteria should start 

with such a value. Spectral characteristics are next in impor-

tance, particularly that of excessive low frequency rumble 

when the level of the noise signal is greater than 50 dBA, 

according to this project (although more research is suggested 

to confirm this). Exceedances from some mid-frequency aver-

age curve, as used in the RC methodology, may be reasonably 

(but not consistently) linked to the perception of this spectral 

imbalance. Since the three other metrics studied in this 

research (RNC, L1 – L99[LF ave], and LCeq – LAeq) all corre-

lated highly to the perceived degree of low frequency rumble 

in a signal, though, the authors suggest that they would provide 

more consistent information regarding low frequency content. 

For a ‘survey’ method, LCeq – LAeq would be suitable, as 

these values are easily gathered from sound level meters at the 

same time as an A-weighted equivalent sound pressure level. 

Based on the signals used in this study, signals whose 

measured LAeq is greater than 50 dBA and whose measured 

LCeq – LAeq value is greater than 20 dB are of great concern; 

the cutoff of 20 dB for LCeq – LAeq is in line with Broner and 

Leventhall’s original suggestion (1983). For a more precise 

‘engineering’ method, L1 – L99 should be calculated in one-

third octave bands from samples taken at least every 125 ms 

over a specified time period (two minutes in this study), and a 

low frequency energy average across the 12.5 Hz to 160 Hz 

one-third octave bands of 50 dB or lower would be required to 

minimize annoyance and influence on task performance. L1 – 

L99 may even be a more broadly useful quantity, as it could 

also be used to quantify the degree of fluctuations in other 

frequency ranges; for example, signal F5 which had a larger 

timescale fluctuation from cycling the heat pump on and off 

would demonstrate a high L1 – L99 value in the mid frequen-

cies. So acquiring L1 – L99 data across the audible frequency 

range could give a clearer idea of not only low frequency fluc-

tuations, but also fluctuations in the signal at larger timescales. 

More research is needed to quantify further guidelines for 

time-varying fluctuations to minimize their negative effects on 

human perception and task performance.

As for detection of tones, the signals tested by Ryherd and 

Wang included those with prominence ratios (PR) of 5 or 9 at 

one of three different frequencies found in building mechani-

cal systems (2010), and those with the higher PR were found 

to be more annoying/distracting than the others. Updates to 

Annex A of ANSI S1.13 (2005a) have been made now, though, 

which state that the prominence ratios for tones at lower 

frequency ranges (under 1000 Hz) are even higher than those 

tested in this research, in the 9 to 19 dB range. To calculate 

tonalness metrics such as prominence ratio requires narrow-

band data, but a significant tonal problem could perhaps be 

diagnosed from one-third octave band data. For example, if the 

level in any one-third octave band exceeds both of its neigh-

bors by some set amount (at least 12 dB for the PR=9 signals 
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tested in 1322-RP), then that band could be highlighted as 

possibly having a problematic tone. Again, further research is 

recommended towards defining more specific levels of tonal-

ness metrics to ensure that they correlate with perception and 

possibly task performance.
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