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Abstract
There is increasing evidence that deficient clearance of A-amyloid

(AA) contributes to its accumulation in late-onset Alzheimer disease
(AD). Several AA-degrading enzymes, including neprilysin (NEP),
insulin-degrading enzyme, and endothelin-converting enzyme reduce
AA levels and protect against cognitive impairment in mouse models
of AD. The activity of several AA-degrading enzymes rises with age
and increases still further in AD, perhaps as a physiological response
to minimize the buildup of AA. The age- and disease-related changes
in expression of more recently recognized AA-degrading enzymes
(e.g. NEP-2 and cathepsin B) remain to be investigated, and there is
strong evidence that reduced NEP activity contributes to the devel-
opment of cerebral amyloid angiopathy. Regardless of the role of
AA-degrading enzymes in the development of AD, experimental
data indicate that increasing the activity of these enzymes (NEP in
particular) has therapeutic potential in AD, although targeting their
delivery to the brain remains a major challenge. The most promising
current approaches include the peripheral administration of agents
that enhance the activity of AA-degrading enzymes and the direct
intracerebral delivery of NEP by convection-enhanced delivery. In the
longer term, genetic approaches to increasing the intracerebral expres-
sion of NEP or other AA-degrading enzymes may offer advantages.

Key Words: AA-degrading enzymes, Alzheimer disease treatment,
Cathepsin B, Convection-enhanced delivery, Mouse models, Neprilysin.

INTRODUCTION
The accumulation of the A-amyloid (AA) peptide in the

brain is thought to be central to the pathogenesis of Alzheimer
disease (AD), at least in its early stages. Rare familial auto-
somal dominant forms of AD, which account for fewer than
5% of all AD cases, occur as a result of gene mutations in the
amyloid precursor protein (APP) and presenilin genes (PSEN1,
PSEN2) that increase AA1Y42 or the ratio of AA1Y42 and AA1Y40

(1Y4). In all forms of AD, the accumulation of AA must reflect

an imbalance between its production and clearance, but for
most of all AD cases (È95%Y99%), which are of late-onset
and sporadic in nature, the cause of that imbalance is unclear.
In healthy individuals, the production and turnover of AA are
rapid (estimated at È7.6% and È8.3%, respectively, of the
total volume of AA per hour [5]), suggesting that small changes
in AA production or clearance can cause abnormal accumu-
lation of AA. To date, there is little evidence to suggest that an
increase in the overall production of AA is responsible for the
development of sporadic AD in most cases (6). Recent research
suggests strongly that clearance rather than production of AA is
impaired in late-onset sporadic AD (7).

Clearance of AA from the brain is mediated by multiple
diverse processes. These include drainage along perivascular
basement membranes, possibly to cervical lymph nodes and
into the cerebrospinal fluid (CSF) (8Y10); transport across
vessel walls into the circulation, mediated by low-density lip-
oprotein receptor-related protein 1 (11) or the P-glycoprotein
(PgP/MDR1/ABCB1) efflux pump (12Y14); the sequestration
of AA by soluble low-density lipoprotein receptor-related pro-
tein 1 receptor in the circulation to promote the efflux of sol-
uble AA out of the CNS (15); microglial phagocytosis (16); and
enzyme-mediated degradation of AA (17Y19) (Fig. 1).

Enzyme-mediated degradation of AA has received a
great deal of attention during the past decade. Many enzymes
are capable of cleaving full-length AA in vitro, producing
fragments that are generally less neurotoxic and more easily
cleared. The biologic relevance of several but not all of these
enzymes to AA clearance has been established in vivo in mouse
models of AD. As described below, overexpression of genes
encoding the relevant enzymes in mice transgenic for mutant
forms of human APP (hAPP) that cause familial ADwas shown
to reduce AA accumulation and, in many cases, to ameliorate
cognitive and motor deficits. Interventions that can selectively
increase AA-degrading protease activity constitute a potential
strategy for treatment of AD. However, these interventions
may have unwanted adverse events, as discussed below.

Recent studies on postmortem human brain tissue revealed
elevation of the activities of several candidate AA-degrading
enzymes in both late-onset AD and Down syndrome (25, 26).
The activities of these enzymes tended to increase with disease
progression, as indicated by Braak tangle stage. AA-degrading
enzyme activities were also reported to increase in hAPP mice
at about the time of AA deposition (27Y29). Lastly, in vitro
exposure to AA upregulated several of these enzymes in human
neuronal, glial, and vascular cell lines (29Y36). Together, these
data led to the hypothesis that AA-degrading enzymes protect
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against the development of AD through upregulation in response
to AA.

This review focuses on lessons learned from in vitro and
animal models about the contribution of enzymatic degra-
dation to the clearance of AA and discusses the practical im-
plementation and potential pitfalls of AA degradation therapies
in AD.

CLEAVAGE OF AA IN VITRO
Amyloidogenic processing of APP through sequential

cleavage by A- and F-secretases (37Y39) releases AA from
APP. The predominant species of AA thereby produced are
AA1Y40 and, in lesser amounts, AA1Y42. Cleavage of APP by
>-secretase within the AA segment (nonamyloidogenic pro-
cessing) prevents the formation of AA (40Y42). When present
in excess, extracellular AA1Y42, which is more prone to ag-
gregate than AA1Y40 (43), tends to precipitate within the brain
parenchyma, forming plaques, whereas AA1Y40 is more likely
to reach the cerebral blood vessels and to accumulate within
the vascular and perivascular extracellular matrix, leading to
cerebral amyloid angiopathy (CAA), present in more than
90% of patients with AD (44).

A large number of enzymes have now been identified,
which cleave either at a single site or at multiple sites within
AA (Fig. 2). Enzymes that have AA-degrading activity in vitro
include members of the zinc metalloendopeptidase family,
which are constitutively expressed, and include neprilysin
(NEP), NEP-2, endothelin-converting enzymes (ECE-1 and
ECE-2), angiotensin-converting enzyme (ACE), and the
closely related thiol-dependent metalloendopeptidase insulin-
degrading enzyme (IDE). A number of serine proteases, released

as inactive zymogens, also have AA-degrading activity on ac-
tivation, that is, metalloendopeptidase matrix proteins MMP-2
and MMP-9, as well as plasmin, myelin basic protein, and acyl
peptide hydrolase (APEH), so too do some cysteine proteases,
including cathepsin B, D, and S (Table 1) (19, 74, 127Y129).
These enzymes all cleave peptide bonds; some also have car-
boxypeptidase activity and sequentially cleave single amino
acids from the carboxyl terminus. The nature of AA cleavage,
involving many enzymes acting at multiple cleavage sites,
some shared, results in a multitude of different peptide frag-
ments, some of which have yet to be characterized for their
pathogenicity, tendency to aggregate, and ease of clearance.

AA exists in a dynamic equilibrium of soluble mono-
meric, oligomeric, protofibrillar, and fibrillar states (130). Evi-
dence from in vivo and in vitro studies suggests that soluble
oligomeric forms of AA are the major toxic species in AD
(130Y133), although in postmortem brains, there is consid-
erable overlap in the level of soluble oligomeric AA in the
cerebral cortex between AD patients and controls (134Y136).
The cellular location and relative ability of many AA-degrading
enzymes to cleave monomeric, oligomeric, and fibrillar AA
have been reasonably well characterized (Table 1). These data
suggest that enzymes acting at specific locations within the cell
are preferentially active against specific assemblies of AA. For
example, intracellular enzymes such as IDE (112, 137), which
is predominantly cytosolic, and the lysosomal-endosomal pro-
teases cathepsin B (CTSB) (138), ECE-1, and ECE-2 (92, 96)
preferentially degrade soluble monomeric or oligomeric AA
(138) that is internalized within neurons and microglia. Plasma
membraneYbound enzymes and their membrane-cleaved solu-
ble forms such as NEP, ACE, and APEH act mainly on soluble
and oligomeric AA, probably released at the synapse, whereas
serine proteases that can degrade fibrillar AA, such as plasmin,
MMP-2, and MMP-9, are secreted by activated astrocytes,
microglia, and neurons and likely participate in the digestion of
amyloid within plaques. Understanding how each protease
functions within the CNS and how its function is affected in
AD are key to delineating opportunities for therapeutic en-
hancement of enzyme-mediated degradation in this disease.

All known AA-degrading enzymes are capable of cleav-
ing monomeric AA, but many have restricted ability to cleave
oligomeric and fibrillar AA. Modeling the 3-dimensional struc-
ture of full-length AA1Y42 has given insights into the proteolytic
degradation of AA (73) (Fig. 2B). On fibrillization of AA, amino
acid residues 18 to 42 form a A-strandYturn-A-strand motif
containing 2 intermolecular parallel in-register A sheets. Most
cleavage sites that are accessible when AA is in an unstructured
aqueous soluble monomeric state likely become inaccessible
to proteolytic cleavage on oligomerization and fibrillization.
Crouch et al (61) suggested that the accumulation of fibrillar
AA may result from this decrease in susceptibility to proteolytic
cleavage.

In general, enzyme-mediated degradation of AA dimin-
ishes its neurotoxicity. The products of AA proteolytic cleav-
age by ACE (cleavage between Asp7-Ser8) are less neurotoxic,
less likely to aggregate, and are more easily cleared than full-
length AA (56). Insulin-degrading enzymeYmediated cleavage
of AA1Y40 and AA1Y42 eliminates the toxic effects of these
proteins on rat cortical cells (52) and CTSB cleavage of AA1Y42

FIGURE 1. A-Amyloid (AA) clearance from the brain. The clear-
ance of neuronally produced AA from the brain involves several
processes. The best characterized of these are illustrated in this
diagram: enzymatic degradation within the brain parenchyma
(17Y19); perivascular drainage of AA along basement mem-
branes to cervical lymph nodes and into the cerebrospinal fluid
(9, 10, 20); transport across vessel walls into the circulation,
mediated by binding of AA to lipoprotein receptorYrelated pro-
tein 1 (11, 21, 22) or P-glycoprotein (PgP/MDR1/ABCB1) efflux
pump (12Y14); enzymatic degradation at the vessel wall (23);
and microglial phagocytosis (16, 24).
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yields C-terminally truncated peptides (AA1Y40, AA1Y38, and
AA1Y33), which all show less toxicity and less fibrillogenic
capacity than full-length AA1Y42 (32). However, a recent study
revealed that the morphology of AA degradation products
influences their neurotoxicity and that a linking region between
the 2 A-pleated sheets is a key morphologic determinant (73).
Degradation products resulting from proteolytic cleavage at
Lys 28 by protease XIV were more neurotoxic than products of
cleavage by >-chymotrypsin, which did not cleave at Lys 28.
The cleavage products were also morphologically distinct,
protease XIV cleavage products resembling oligomers (mor-
phologically distinct from AA fibrils) (139), and those from
>-chymotrypsin degradation having fibrillar characteristics. AA

peptide fragments AA25Y35 (140) and AA22Y35 (141) also have
similar in vitro neurotoxicity and aggregation profiles to their
full-length AA counterparts (142) and AA17Y20 and AA30Y35

peptide fragments, which themselves do not self-aggregate
spontaneously promote the aggregation and neurotoxicity of
full-length AA1Y40 (143). The direct toxicity of not only AA1Y40

and AA1Y42 but also their degradation products, therefore,
likely depends on how they combine to form assemblies in
vivo because conversion from oligomers to protofibrils to
fibrils is associated with a reduction in directly mediated
damage to synapses and neurons (77). The general assumption
that cleavage of AA is beneficial is probably overly simplistic
inasmuch as the neurotoxic profiles and aggregating potential

FIGURE 2. Sequence and structure of A-amyloid (AA) and known cleavage sites. (A) The primary sequence of AA and the putative
AA-degrading enzymes and their cleavage sites. N, neprilysin (45Y49); E, endothelin-converting enzyme (49Y51); I, insulin-
degrading enzyme (47, 48, 52Y55); A, angiotensin-converting enzyme (56Y60); M2, matrix metalloproteinase 2 (61Y63); M9,
matrix metalloproteinase 9 (64, 65); P, plasmin (28, 45, 51, 66, 67); C, CTSB (66); Mt1, membrane-type metalloproteinase 1 (68);
MB, myelin basic protein (69); AP, acyl peptide hydrolase (70, 71); N2, neprilysin 2 (72); P14, protease XIV (73); >C, >-chymotrypsin
(73). These data are summarized from Carson and Turner (74), Wang et al (75), and Eckman and Eckman (76). (B) Schematic
representation of molecular models of the monomeric units (i), fibrillary (ii), and oligomeric (pentameric) AA42 (reprinted with per-
mission from Macmillan Publishers Ltd: Nature Structural & Molecular Biology [77], copyright 2010). All known AA-degrading en-
zymes are capable of cleaving monomeric AA. In fibrillar AA, amino acids (aa) 1 to 17 (black line) are unstructured; aa 18 to 42 form a
A-turn-A fold containing hydrophobic regions B1 (aa 17Y27) and B2 (aa 32Y42) (green) that are inaccessible to enzyme-mediated
cleavage. The Lys 28 loop region (red) between the 2 A-sheets is an accessible cleavage site and is a key determinant of the cyto-
toxicity of degradation products (73). (iii) In pentameric AA, the link region is probably inaccessible to enzyme-mediated cleavage.
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of most of the common degradation products have not been
fully explored.

CLEAVAGE OF AA IN VIVO
Neprilysin, the prototypic AA-degrading metalloendo-

peptidase, has been shown to be the most efficient of a range of
thiorphan- and phosphoramidon-sensitive endopeptidases in
degrading AA in vitro (144). Neprilysin has also been exten-
sively studied in vivo (17, 19). Neprilysin was initially identi-
fied as a regulator of AA level when infusion of thiorphan, a
NEP inhibitor, into rat striatum elevated the level of exoge-
nously administered radiolabeled AA (45). Genetic ablation of
the NEP gene (NEP) in hAPP mice confirmed the importance
of NEP in preventing AA accumulation; endogenous AA
increased, and clearance of exogenously administered AA was
impaired, although not completely inhibited (46).

Mice with inactivation ofNEP (46), NEP-2 (145), ECE-1,
ECE-2 (92), or IDE genes (114, 146) all showed a moderate
(1.5- to 2-fold) increase in endogenous AA, thereby confirm-
ing that these enzymes contribute to the regulation of AA
level in vivo. However, these effects were much more modest
than those observed after infusion of the metalloendopep-
tidase inhibitors, thiorphan and phosphoramidon, which pro-
duced a È30- to 50-fold increase in AA (45, 147), suggesting
the existence of unidentified NEP-like endopeptidases (145).
Genetic knockout of plasmin, urokinase plasminogen activa-
tor, or tissue plasminogen activator, other candidate proteases
that cleave AA in vitro, did not result in alterations in endo-
genous AA (148), nor did the absence of ACE alter steady-
state levels of AA (149, 150). The possible roles of more
recently identified AA-degrading proteases, including myelin
basic protein (69), APEH (70), MT1-MMP (68), and CTSB
(32), in regulating AA in vivo remain unknown.

Inactivation of NEP in hAPP mice not only increased
AA, including oligomeric AA (82), causing plaque-like depo-
sits in the brain, but also impaired synaptic plasticity, caused
behavioral and cognitive abnormalities (82, 151) and CAA
(152). Moreover, the severity of CAA was greater in NEPj/j

than NEP+/j mice (152). Infusion of the NEP inhibitor thior-
phan in rats was also associated with impairment of cognitive
performance (153, 154).

Overexpression of human NEP (È8-fold increase) in
hAPP (Swe/Ind) transgenic mice markedly reduced cerebral
AA, largely preventing plaque formation, and significantly
improved life expectancy (47, 155). Overexpression of human
NEP (È30-fold increase in NEP activity) in hAPP (Swe/Ind)
transgenic mice also substantially (È70%) reduced both triton-
soluble and SDS-soluble AA1Y40 and AA1Y42 and improved
performance in the Morris water maze (155). However, not all
groups have demonstrated benefit. Meilandt et al (156) did not
show improvement in spatial learning and memory in NEP/
hAPP double transgenic mice (È11-fold increase in NEP) de-
spite a 50% reduction in soluble AA and prevention in plaque
formation; the authors suggested that the lack of improvement
reflected an inability of NEP to cleave trimers and AA*56.
Other authors have reported that NEP is able to cleave dimers,
trimers, tetramers, and other oligomeric species of AA (82, 83).

Several other experimental strategies have provided
indirect or direct evidence of the pathologic and clinical

benefit of increasing intracerebral NEP in mouse models of
AD. The reduction in AA and improvements in behavior and
memory noted in hAPP mice treated with somatostatin (SST)
(157) or environmental enrichment (158) correlated closely
with upregulation of NEP. Unilateral injection of viral vectors
encoding human NEP into the hippocampus of hAPP mice
reduced AA level and plaque pathology (159, 160). Long-
term gene transfer of human NEP in hAPP mice (producing a
moderate [È3-fold] but sustained increase in NEP) reduced
intracellular and extracellular AA and improved behavior and
memory (161, 162). These mice also had evidence of reduced
oxidative stress and inflammation (162) and less synaptic and
dendritic damage (161).

AA-DEGRADING ENZYMES IN HEALTH
AND DISEASE

When the role of AA-degrading proteases in preventing
AA accumulation was first established in vivo, it was hypothe-
sized that an age-associated decline in AA-degrading protease
activity would contribute to AA accumulation, particularly in
patients with late-onset AD, in whom the decline might be
steeper. Earlier studies supported such a relationship and re-
vealed reduced NEP and IDE mRNA and protein immuno-
labeling in AD compared with control brains (80, 163Y165).
Furthermore, the reduction in both NEP and IDE in AD was
more pronounced in brain tissue from APOE ?4-positive
patients (80, 106, 166, 167), whereas Hellstrom-Lindahl et al
(168) reported decreased NEP protein (measured by immu-
noblot analysis) in AD and with age.

However, in several studies, the correlation between the
immunohistochemical assessment of NEP (usually involving
limited numbers of subjects) and its measurement in brain tissue
homogenates (usually by densitometry of Western blots) was
poor (80, 164, 168). Furthermore, studies on AD were based
on the examination of relatively small series of brains with
severe, late-stage disease, and most did not address the ques-
tion of whether any observed reduction was simply secondary
to late-stage neuronal damage and loss rather than a primary
mediator of the pathology. Another consideration is the valid-
ity of mRNA and protein concentrations as surrogate markers
of enzyme activity. Many AA-degrading enzymes are highly
glycosylated and contain sites of potential posttranslational
modification that may influence enzyme activity and become
modified during disease (Table 2). The measurement of enzyme
activity in biological tissues poses several challenges not least
because some AA enzymes have both membrane-bound and
soluble isoforms, but nonetheless provides the most relevant
measurement of AA-degrading enzyme capacity with respect to
their contribution to AA homeostasis. We have optimized sev-
eral immunocapture-based fluorogenic assays of AA-degrading
enzyme activity for use on postmortem brain tissue and CSF
(169, 170). To avoid the problems of overlapping substrate
specificity, overlapping pH optima, and nonspecific inhibition,
we introduced an immunocapture step to isolate the enzyme
of interest (e.g. NEP or IDE) from the biological samples. We
showed that the assays have high sensitivity and greatly im-
proved specificity to allow high-throughput analysis in multi-
well plates.
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We used these immunocapture-based assays to examine
a large number of brains from normal controls across a wide
age spectrum (16Y95 y) and from AD patients with inter-
mediate as well as late-stage disease and found that NEP and
IDE activities rose with age in the normal brain (171) but were
higher still in AD (26), rising progressively with increasing
AD severity, according to Braak tangle stage. The activity of
ACE was similarly increased in AD (33, 99, 100). Interest-
ingly, NEP and IDE levels decreased with age specifically
within the AD cohort (26). The levels and activities of NEP,
ACE, and IDE were unaffected by postmortem delay (26, 33).

The levels and activities of NEP and ACE were also
elevated in Down syndrome (which is associated with the
development of AD-type neuropathologic changes in midlife)
and correlated positively with the level of insoluble AA (25).
Disease progression was also associated with increased NEP
level (172) and a trend toward increasing ACE level in human
CSF (33). The activity of IDE was elevated in AD, although
the protein level did not differ significantly between AD and
controls (26). Together, these findings argue strongly against
a deficit in the activity of any of these AA-degrading enzymes
in AD.

The levels of several other candidate AA-degrading pro-
teases, namely, ECE-2 (31), MMP-2 and MMP-9 (64, 173),
CTSB (32, 174, 175), and APEH (70), were reported to be
elevated in AD; however, in other studies, the concentrations
and activities of MMP-2, MMP-3, MMP-9, and plasmin were
not increased (120, 124).

Increases in AA-degrading protease activity in AD are,
therefore, more likely to be a protective response to the
accumulation of AA (18). This hypothesis is supported by a
large number of reports of induction of proteases, including
NEP (176), ECE (30), ACE (33), ECE-2 (31), IDE (29),
MMP-2, -3, and -9 (34Y36), and CTSB (32), after exposure to
AA, particularly fibrillar forms. Further support comes from
the rise in IDE level (29), tissue plasminogen activator and
urokinase plasminogen activator activity (28), and MMP-2
and -9 activity (27) in aged hAPP mice and the dose-
dependent induction of neuronal NEP in hAPP mice given
intracerebral injections of synthetic fibrillar AA (177, 178).
Vepsalainen et al (179) reported that the earliest disparity in
NEP and IDE levels between hAPP and wild-type control
mice coincided with the onset of AA1Y40 and AA1Y42 deposi-
tion. Interestingly, Leal et al (29) found that the increases in
IDE protein level and activity were not mirrored by the
mRNA level, which remained unchanged, suggesting that the
increases were mediated by posttranslational modification.

NEP AND CEREBRAL AMYLOID ANGIOPATHY
The most common form of CAA is caused by the

accumulation of AA in the walls of leptomeningeal and cer-
ebrocortical blood vessels, particularly arterioles (180, 181).
The AA accumulates initially in the basement membranes but
eventually causes the death of cerebrovascular smooth muscle
cells (CVSMCs), replacement of the tunica media, and, par-
ticularly in larger leptomeningeal vessels, patchy replacement
of the adventitia (8). The prevalence and severity of sporadic
CAA increases with age and in AD (44, 182, 183). The AAS
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that accumulates in CAA is thought to be predominantly, if
not exclusively, of neuronal origin (184Y186). The isoform
that is most abundant in vessel walls in CAA is AA1Y40 (187),
but it is unclear whether this is also the isoform of AA that is
most toxic to CVSMCs.

Cerebrovascular accumulation of AA may be caused by
increased production of this peptide in familial forms of AD
and CAA. However, in most cases, decreased removal, par-
ticularly as a result of the effects of age on vessel walls, is
likely to be the major cause of CAA. Arteriosclerosis and age-
related changes to the composition of the arterial basement
membranes may impede the perivascular drainage of AA, as
does preexisting CAA (188, 189). Yet another consideration
is the effect of age on the degradation of AA within the vessel
wall itself. Neprilysin is expressed by CVSMCs within larger
arterioles in the cerebral cortex and leptomeninges (80, 81),
and ECE-1 (89) and IDE (116, 117) are expressed by endo-
thelial cells. Neprilysin immunolabeling of CVSMCs is
reduced in AD, particularly in patients who have moderate to
severe CAA (80).

We recently showed that NEP activity is reduced in
CAA, in both the leptomeninges (within which the only
source of NEP is the CVSMCs in meningeal blood vessels)
and vessel-enriched preparations of cerebral cortex (23). The
observed reduction was still present after adjustment for the
smooth muscle actin content of the samples, that is, it was not
simply a consequence of death of CVSMCs, although loss of
CVSMCs, whether from arteriosclerosis or as a consequence
of CAA, would be expected to exacerbate any preexisting
deficiency in vessel-associated NEP. Neprilysin immunolab-
eling and enzyme activity in CVSMCs varied according to
APOE genotype, being significantly higher in the absence of
the APOE ?4 allele (23, 80). Indeed, in our recent study, the
relationship between APOE genotype and vessel-associated
NEP activity mirrored that between APOE genotype and risk
of AD; after adjustment for smooth muscle actin, NEP activity
was highest in blood vessels from patients with a APOE ?2/?3

genotype and decreased stepwise through the APOE ?3/?3,
?3/?4, and ?4/?4 genotype groups.

Cerebrovascular smooth muscle cells are sensitive to
the cytotoxic effects of AA, particularly AA1Y42 (190, 191).
The activity of NEP seems to be important in preventing AA-
mediated death of CVSMCs. We demonstrated that the death
of CVSMCs on exposure to AA1Y42 was increased by siRNA-
mediated knockdown or thiorphan-mediated inhibition of
NEP activity. Conversely, death of CVSMCs was reduced
(i.e. the cells were protected) when NEP activity was increased
by either the addition of SST or the transfection with NEP
complementary DNA. Our findings provide strong evidence
that NEP protects CVSMCs from AA toxicity and protects
cerebral blood vessels from the development and complications
of CAA. A reduction in NEP activity within the cerebral vas-
culature, either with age or as a consequence of APOE geno-
type, may predispose to the development of CAA.

THE ROLE OF MICROGLIA IN THE
REMOVAL OF AA

The accumulation of AA in sporadic AD is likely to be
multifactorial in etiology, reflecting the impairment of sev-
eral processes, the contributions of each of which may vary
between individuals. One means of AA clearance that has not
received much attention is the uptake and removal of AA by
microglia, the intrinsic phagocytic cells of the CNS. Microglia
are activated by fibrillar AA (fAA) in vitro and are found in
large numbers near AA plaques (190, 191). Activated micro-
glia express receptors that promote the uptake and clearance
of fAA (e.g. CD36 and the receptor for advanced glycation
end products [192]) and may restrict plaque formation by
phagocytosis of AA (193). Levels of these receptors on
microglia are significantly reduced in aged mice (194), sug-
gesting that the ability of microglia to clear fAA may decline
with age.

TABLE 2. Predicted Posttranslation Modification Sites Within A-Amyloid-Degrading Enzymes

Potential
Phosphorylation*

Potential N-Linked
N-Glycosylation+ Sites†

Potential O-Linked
O-Glycosylation
Sites (S or T)‡

Potential Sumoylation
Sites (Contain

AKXE/D Sequence)§

Neprilysin (NEP) 15 S 12 T 12 Y 5 predicted N sites
(145N +, 311N +,
325 N ++, 335N + 628N+)

None 3 high-probability sumoylation
sites (K708, K289, K3)

Angiotensin-converting
enzyme

17 S 11T 10 Y 4 predicted N residues
(31N ++, 96N +,
260N ++, 369N ++)

8 predicted T residues
(T38, T41, T46, T47,
T51, T52, T53, T57)

2 high-probability sumoylation
sites (K125, K338)

Insulin-degrading
enzyme

18 S T 8 Y 15 2 predicted N
(732 N+++, 994 N+)

None 4 high-probability sumoylation
sites (K562, K523, K999, K488)

Full-length NEP (accession number NP009220.2), angiotensin-converting enzyme (accession number AAH36375.1), and insulin-degrading enzyme (accession number
AAH96336).

*NetPhos 2.0 prediction of phosphorylation sites (http://www.cbs.dtu.dk/services/NetPhos/).
†NETNGly 1.0 prediction of N-glycosylation sites (http://www.cbs.dtu.dk/services/NetNGlyc/).
‡NETOGlc 3.1 prediction of O-glycosylation sites (http://www.cbs.dtu.dk/services/NetOGlyc/).
§SUMOplot prediction (http://www.abgent.com/doc/sumoplot) software was used to assess the likelihood of posttranslational modification: +, low probability; ++, medium

probability; +++, high probability.
K, lysine; N, asparagines; S, serine; T, threonine; Y, tyrosine.
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Microglial uptake of AA, initiated by binding of anti-
AA antibody to Fc receptors (195, 196) or by Fc-independent
mechanisms (197, 198), is thought to be a major route of
plaque removal after AA immunization in mouse models of
AD (196, 199) and in humans (200). However, activated
microglia produce a range of proinflammatory cytokines and
neurotoxic factors that can themselves cause neuronal damage
and death (201Y204). Recent studies indicate that environmental
stimuli largely determine whether microglia adopt a phagocytic
‘‘protective’’ response or a damaging ‘‘neurotoxic’’ response
(205, 206) and that a proinflammatory response is associated
with reduced microglial phagocytosis (207).

Modulation of the microglial response by either sup-
pressing the proinflammatory response or boosting the anti-
inflammatory response has potential therapeutic potential.
Administration of rosiglitazone (a peroxisome proliferator-
activated receptor agonist) facilitates AA removal in hAPP
mice by switching on the phagocytic phenotype of microglia,
a process that is mediated by the suppression of proin-
flammatory mediators (208). Heneka et al (209) reported that
the addition of noradrenaline to cultures of microglia exposed
to fibrillar AA1Y42 suppressed cytokine and chemokine pro-
duction and promoted cell migration and phagocytosis of AA.
In contrast, ablation of the noradrenergic locus coeruleus in
hAPP mice, a procedure that suppresses neuroinflammation,
reduced microglial migration and phagocytosis of AA. In
vitro, the anti-inflammatory cytokines transforming growth
factor A (TGF-A) and interleukin (IL)-4 increased microglial
clearance of AA, including oligomeric AA (210, 211), and
overexpression of TGF-A in hAPP mice resulted in a 70%
reduction in parenchymal AA load (210).

On receptor-mediated phagocytosis, fAA is transported
within the endosomal-lysomal pathway (212Y215). Because
fAA has shown considerable resistance to proteolytic cleavage,
the extent to which internalized fAA is efficiently degraded
remains unclear (216, 217). Degradation of internalized AA
in primary mouse microglia was mediated by acidification of
lysosomes (to pH È5Y6) after activation by the proinflam-
matory mediators, macrophage-stimulating colony factor and
IL-6 (218). This suggests that AA-degrading proteases such
as cathepsins B and D (219, 220) and ECE-2 (98), which
work optimally within a mildly acidic pH of 5.5 rather than
neutral endopeptidases (NEP, IDE, ECE-1) may be more
important in microglial clearance of AA. Cathepsins S, D, and
B were reported to participate in the intracellular degradation
of AA peptides in human and rat brains (32, 221, 222).

In contrast, uptake and clearance of soluble AA is rapid
and involves macropinocytosis and rapid delivery to lyso-
somes (223). Soluble AA is sensitive to many proteases in-
cluding NEP and IDE, although whether NEP and IDE are
involved in the intracellular degradation of soluble AA has
yet to be established (192).

Microglia probably also participate in the extracellular
degradation of AA. Microglia express IDE, which gets incor-
porated within exosomes, and these are then secreted (111).
Tamboli et al (224) reported that statins promote microglial
removal of AA by inducing the release of exosomal IDE.
Norepinephrine (noradrenaline), which suppresses neuroinflam-
mation (see previous paragraphs), was also found to promote

uptake of AA by induction of mouse AA formyl peptide
receptor but also to clear AA through production of IDE (225).
Both NEP and IDE expression were increased in rat microglia
by treatment with IL-4 (211).

THERAPEUTIC POTENTIAL OF AA-DEGRADING
ENZYMES IN AD

Although it remains unproven that a decline in AA-
degrading enzyme activity contributes to the accumulation of
AA in AD (25, 26, 171), it is clear that overexpression of
AA-degrading enzymes, neprilysin in particular, can reduce
amyloid deposition and ameliorate cognitive decline in AD
animal models (155, 161, 162). There are several ways in
which these findings could be translated into therapeutic
strategies that might be suitable for use in humans. These
include the administration of agents that upregulate AA-
degrading enzyme activity, various forms of gene therapy
that increase the expression of AA-degrading enzymes in the
periphery or within the brain, direct delivery of the enzymes
into the brain, and, lastly, approaches based on the delivery of
stem cells.

Administration of Agents That Increase NEP
Expression and Activity

The peripheral administration of agents that enhance the
activity of AA-degrading enzymes has the appeal of ease of
administration. A number of agents that increase the expres-
sion of NEP in vitro have been identified, but there is a
paucity of evidence of their ability to do so in vivo. The neu-
ropeptide SST upregulates NEP activity in vitro (157) through
activation of the SST receptors, SSTR2 and SSTR4, suggesting
that AA levels might be controlled by SST receptor agonists
(226). Reduction in SST (227) and SST receptor levels (228)
may contribute to AA pathology in AD (229). Infusion of AA
resulted in impaired SST signaling (230) and reduction in NEP
(231). These abnormalities were prevented by administration
of minocycline (231) and insulin-like growth factor 1 (232),
suggesting that enhancement of SST signaling might be used to
increase NEP activity.

Several agents are known to increase transcription of
NEP. The APP intracellular domain binds to the NEP pro-
moter and upregulates NEP transcription in human neuro-
blastoma cell lines (NB7 and SH-SY-5Y) and is associated
with enhanced AA degradation (233, 234). The tyrosine kin-
ase inhibitor, imatinib mesilate (Gleevec), increases APP
intracellular domain and NEP and lowers cellular AA (235).
Transcriptional regulation of NEP is regulated by histone
acetylation; histone deacetylase inhibitors valproate and tri-
chostatin A raised NEP enzyme activity in SH-SY-5Y cells,
which normally express NEP only at low levels (234). Several
findings highlight the potential therapeutic use of valproate
in AD (236): not only does it upregulate NEP, it also upre-
gulates plasmin (237), and its safety and efficacy have been
extensively documented in the treatment of epilepsy and
psychosisYrelated behavioral problems (238).

Postmenopausal estrogen deficiency is thought to be a
risk factor for AD (239), and estrogen use in postmenopausal
women was found to delay the onset and reduced the risk of
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AD (240). Estrogen was reported to promote AA degrada-
tion of SH-SY-5Y human neuroblastoma cells by increasing
NEP expression (241). Reduced AA levels associated with a
2.9-fold increase in NEP gene transcription were observed
in SK-N-SH cells transfected with hAPP (Swe) after incu-
bation by gensenoside Rg3, a major component of ginseng
(242). Other substances reported to increase NEP activity
include green tea extracts (243) and red wine (244).

Gene Therapy
Genetic approaches to reducing AA accumulation in

hAPP mice have mostly used viral vectorYmediated trans-
fection to increase the expression of NEP or other AA-
degrading enzymes either peripherally or within the brain.
The potential of gene therapy for treatment of AD was the
subject of an extensive recent review by Nilsson et al (245).

Adenoassociated virus-mediated transfection of mouse
NEP into the hind limb of 3�Tg-AD mice (harboring
PS1M146V, hAPP(Swe), and tauP301L transgenes) produced
a 60% reduction in soluble AA and 50% reduction in plaque
deposits within the brain at 6 months (246). Peripherally
expressed NEP did not affect levels of physiological sub-
strates of NEP within the CNS, including substance P, Leu-
Enk, and bradykinin. Lebson et al (247) used peripheral bone
marrow cells (CD11b+ monocytes) to deliver NEP in the
brain. CD11b+ monocytes transfected with human soluble
NEP tracked toward compact AA plaques within the brain and
completely arrested plaque development in hAPP transgenic
mice. The shorter-than-expected half-life of these cells in the
circulation (È90 minutes) and within the tissue (È3 days)
may limit their practical use for long-term chronic conditions
such as AD. Intraperitoneal injection of a lentivirus vector-
expressing NEP fused with the ApoB transport domain
(allowing active transport across the blood-brain barrier) was
associated with lower AA levels and a reversal of memory
deficits in mThy1-hAPP751 mice (248).

Unilateral injection of lentivirus or adenovirus encoding
human NEP into the hippocampus of hAPP mice reduced AA
load and significantly improved performance in memory tasks
(159, 160). However, this approach is associated with sys-
temic and local immune responses that can neutralize the
therapeutic effects (249). Overexpression of NEP by neurons
in a Drosophila model of AD decreased AA1Y42 accumulation
and neuronal loss but also led to an age-dependent axonal
degeneration and shortened the lifespan of the flies (250),
probably caused by the effects on physiological neuropep-
tide substrates of NEP, including enkephalin, substance P,
glucagon-like peptide 1, and galanin (246, 251, 252).

Long-term gene transfer of human NEP in hAPP mice,
producing a moderate (È3-fold) but sustained increase in
NEP, reduced intracellular and extracellular AA and improved
behavior and memory (161, 162). The mice also had evidence
of reduced oxidative stress and inflammation (162) and less
synaptic and dendritic damage (161). Hippocampal trans-
plantation of fibroblasts transfected with complementary
DNA encoding soluble NEP reduced plaque burden in hAPP
mice (253). So too did transplantation of NEP-expressing
leukocytes into 3�Tg AD mice, which had lower levels of
soluble (30%) and plaque-associated AA (50%Y60%) and

improved cognitive performance (254). This therapeutic
strategy was applied to AD in a phase 1 clinical trial of ex
vivo NGF gene therapy, in which autologous fibroblasts
genetically modified to express NGF were neurosurgically
implanted into the basal forebrains of 8 patients (255).

Convection-Enhanced Delivery of NEP as a
Potential Treatment for AD

Although viral vector-mediated NEP gene delivery has
proven effective in transgenic mouse models, there are sig-
nificant barriers to the translation of this approach to the
treatment of patients (256Y258). Many of the limitations of
viral vectors might be overcome by delivery of NEP directly
to the brain. This approach also has advantages in patient
safety, in that the delivery of NEP could rapidly and reliably
be adjusted or discontinued in the event of adverse effects.

Convection-enhanced delivery (CED) is a relatively
novel neurosurgical method of direct drug delivery to the
brain through ultrafine microcatheters. Historically, intracere-
bral drug injection has relied on diffusion of a therapeutic
agent along a concentration gradient resulting in limited dis-
tribution and is associated with tissue damage and reflux of
infusate along the outer surface of the needle or catheter.
Convection-enhanced delivery relies on a pressure gradient
established at the tip of a very fine infusion catheter resulting
in bulk flow of the infused fluid through the extracellular and
perivascular spaces (259).

Convection-enhanced delivery has been used in clinical
trials for a number of neurodegenerative and neuro-oncological
diseases such as CED of glial cellYderived neurotrophic factor
for Parkinson disease (260Y265). It was also used for enzyme
replacement in preclinical models of Gaucher disease in which
preservation of enzyme function after CED was later demon-
strated (266, 267).

The challenges of applying CED to CNS disorders in
which the pathology is predominantly focal, such as brain
tumors or Parkinson disease, differ from those presented by
AD, in which the pathology is more widespread. Early in vivo
studies of CED attributed the distribution of macromole-
cules to interstitial flow and neuronal transport (267Y269).
However, as research progressed to include the delivery of
liposomes and viral vectors, it became clear that agents
delivered by CED tended often to accumulate in close asso-
ciation with blood vessels and perivascular spaces (270, 271).
Convection-enhanced delivery of AA-degrading proteases may
therefore be particularly effective for the clearance of AA
in perivascular drainage pathways and treatment of CAA
(9, 10, 272Y274).

Stem Cell Therapy
Stem cells are a potential vehicle for delivery of AA-

proteases into the CNS. One in vitro study reported significant
upregulation of NEP (692 T 226-fold increase of mRNA
levels) after neuroectodermal conversion of adult mesen-
chymal stem cells (275). However, clinical translation of stem
cell therapies faces many obstacles, including those of cell
delivery in adequate numbers, prediction and control of cell
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migration, and, in the case of nonautologous transplants, a
lifelong requirement for immunosuppression (276, 277).

CONCLUSIONS
Deficient clearance of AA from the brain probably

contributes to late-onset AD. The routes of AA clearance are
diverse and numerous and include its enzyme-mediated
cleavage, resulting in fragments that are generally less toxic,
less likely to aggregate, and more easily cleared. It remains
unclear whether deficiencies in these enzymes contribute to
AA accumulation in AD. In cell culture systems, most AA-
degrading enzymes are upregulated by fibrillar AA, and their
expression tends to increase in transgenic mouse models of
AD once AA plaques start to form. The activity of several AA-
degrading enzymes also rises with age in the human brain and
in AD and correlates with the level of fibrillar AA. Together,
these findings suggest that upregulation of AA-degrading
enzymes is a physiological response to AA, perhaps serving to
minimize further buildup of this peptide.

In animal models of AD, by increasing the activity of
some of the AA-degrading enzymes, NEP in particular, AA
accumulation can be reduced or prevented and cognitive
performance improved. The early initiation of therapy is
likely to be critical. Strategies directed at the removal of AA in
advanced disease, particularly AA immunotherapy in human
clinical trials, have resulted in the clearance of AA plaques
without improvement in cognitive performance (278), sug-
gesting that downstream pathogenic processes eventually
become independent of the continued accumulation of AA
(136). Of the various potential approaches to translating these
findings into a treatment of AD in man, we suggest that the
most promising, at least in the short to medium term, are the
peripheral administration of drugs that increase NEP activity
and the direct CED of NEP into the brain.
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