
Ab Initio Calculation of the Gilbert Damping Parameter via the Linear Response Formalism

H. Ebert, S. Mankovsky, and D. Ködderitzsch

University of Munich, Department of Chemistry, Butenandtstrasse 5-13, D-81377 Munich, Germany

P. J. Kelly

Faculty of Science and Technology and MESAþ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

(Received 1 March 2011; published 2 August 2011)

A Kubo-Greenwood-like equation for the Gilbert damping parameter � is presented that is based on the

linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker band

structure method in combination with coherent potential approximation alloy theory allows it to be

applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system

Fe1�xCox as well as for a series of alloys of Permalloy with 5d transition metals. To account for the

thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The

corresponding calculations for Ni correctly describe the rapid change of � when small amounts of

substitutional Cu are introduced.
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The magnetization dynamics that is relevant for the
performance of any type of magnetic device is in general
governed by damping. In most cases the magnetization
dynamics can be modeled successfully by means of the
Landau-Lifshitz-Gilbert (LLG) equation [1] that accounts
for damping in a phenomenological way. The possibility to
calculate the corresponding damping parameter from first
principles would open the perspective of optimizing mate-
rials for devices and has therefore motivated extensive
theoretical work in the past. This led among others to
Kambersky’s breathing Fermi surface (BFS) [2] and
torque-correlation models (TCM) [3], that in principle
provide a firm basis for numerical investigations based
on electronic structure calculations [4,5]. The spin-orbit
coupling that is seen as a key factor in transferring energy
from the magnetization to the electronic degrees of free-
dom is explicitly included in these models. Most ab initio
results have been obtained for the BFS model though the
torque-correlation model makes fewer approximations
[4,6]. In particular, it in principle describes the physical
processes responsible for Gilbert damping over a wide
range of temperatures as well as chemical (alloy) disorder.
However, in practice, like many other models it depends on
a relaxation time parameter � that describes the rate of
transfer due to the various types of possible scattering
mechanisms. This weak point could be removed recently
by Brataas et al. [7] who described the Gilbert damping by
means of scattering theory. This development supplied
the formal basis for the first parameter-free investigations
on disordered alloys for which the dominant scattering
mechanism is potential scattering caused by chemical dis-
order [8] or temperature induced structure disorder [9].

As pointed out by Brataas et al. [7], their approach is
completely equivalent to a formulation in terms of the

linear response or Kubo formalism. The latter route is
taken in this communication that presents a Kubo-
Greenwood-like expression for the Gilbert damping pa-
rameter. Application of the scheme to disordered alloys
demonstrates that this approach is indeed fully equivalent
to the scattering theory formulation of Brataas et al. [7]. In
addition a scheme is introduced to deal with the tempera-
ture dependence of the Gilbert damping parameter.
Following Brataas et al. [7], the starting point of our

scheme is the Landau-Lifshitz-Gilbert (LLG) equation for

the time derivative of the magnetization ~M:
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where Ms is the saturation magnetization, � the gyromag-

netic ratio, and ~G the Gilbert damping tensor. Accordingly,
the time derivative of the magnetic energy is given by

_Emag ¼ ~Heff � d
~M

d�
¼ 1

�2
_~m½ ~Gð ~mÞ _~m� (2)

in terms of the normalized magnetization ~m ¼ ~M=Ms. On
the other hand, the energy dissipation of the electronic

system _Edis ¼ hdĤd� i is determined by the underlying

Hamiltonian Ĥð�Þ. Expanding the normalized magnetiza-

tion ~mð�Þ, that determines the time dependence of Ĥð�Þ
about its equilibrium value, ~mð�Þ ¼ ~m0 þ ~uð�Þ, one has

Ĥ ¼ Ĥ0ð ~m0Þ þ
X
�

~u�
@

@ ~u�
Ĥð ~m0Þ: (3)

Using the linear response formalism, _Edis can be written
as [7]
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where EF is the Fermi energy and the sums run over all
eigenstates � of the system. Identifying _Emag ¼ _Edis, one

gets an explicit expression for the Gilbert damping tensor
~G or equivalently for the damping parameter � ¼
~G=ð�MsÞ [7]. In full analogy to electric transport [10],
the sum over eigenstates jc ii may be expressed in terms
of the retarded single-particle Green’s function
ImGþðEFÞ ¼ ��

P
ijc iihc ij�ðEF � EiÞ. This leads for

the parameter � to a Kubo-Greenwood-like equation
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ImGþðEFÞ @Ĥ@u� ImGþðEFÞ

�
c

(5)

with h. . .ic indicating a configurational average in case of a
disordered system (see below). Identifying T� ¼ @Ĥ=@u�

with the component of the magnetic torque operator ~̂I

along the direction ~n, such that Î ~n ¼ @Ĥ=@ ~uð ~n� ~uÞ ¼
@Ĥ=@u�ð ~n� ~uÞ� this expression obviously gives the pa-

rameter � in terms of a torque-torque correlation function.
However, in contrast to the conventional TCM the elec-
tronic structure is not represented in terms of Bloch states
but using the retarded electronic Green’s function giving
the present approach much more flexibility.

The most reliable way to account for spin-orbit coupling
as the source of Gilbert damping is to evaluate Eq. (5)
using a fully relativistic Hamiltonian within the framework
of local spin density formalism (LSDA) [11]:

Ĥ ¼ c ~� ~pþ�mc2 þ Vð~rÞ þ � ~	 ~mBð~rÞ: (6)

Here �i and � are the standard Dirac matrices and ~p is the
relativistic momentum operator [12]. The functions V and
B are the spin-averaged and spin-dependent parts, respec-
tively, of the LSDA potential. Equation (6) implies for the
T� operator occurring in Eq. (5) the expression

T� ¼ @

@u�
Ĥ ¼ �B	�: (7)

The Green’s function Gþ in Eq. (5) can be obtained in a
very efficient way by using the spin-polarized relativistic
version of multiple scattering theory [11] that allows us to
treat magnetic solids:

Gþð ~rn; ~r0m; EÞ ¼
X
��0

Zn
�ð ~rn; EÞ�nm��0 ðEÞZm�

�0 ð~r0m; EÞ

�X
�

Zn
�ð~r<; EÞJn��0 ð~r>; EÞ�nm: (8)

Here coordinates ~rn referred to the center of cell n
have been used with j~r<j ¼ minðj~rnj; j~r0njÞ and j~r>j ¼
maxðj~rnj; j~r0njÞ. The four-component wave functions

Zn
�ð ~r; EÞ ðJn�ð ~r; EÞÞ are regular (irregular) solutions to the

single-site Dirac equation for site n and �nm��0 ðEÞ is the so-
called scattering path operator that transfers an electronic
wave coming in at site m into a wave going out from site n
with all possible intermediate scattering events accounted
for coherently.
Using matrix notation, this leads to the following ex-

pression for the damping parameter:

��� ¼ g

��tot

X
n

TracehT0�~�0nTn�~�n0ic (9)

with the g factor 2ð1þ�orb=�spinÞ in terms of the spin

and orbital moments, �spin and �orb, respectively, the

total magnetic moment �tot ¼ �spin þ�orb, and ~�0n
��0 ¼

1
2i ð�0n��0 � �0n�0�Þ and with the energy argument EF omitted.

The matrix elements of the torque operator, Tn�, are
identical to those occurring in the context of exchange
coupling [13] and can be expressed in terms of the spin-
dependent part B of the electronic potential with matrix
elements:

T
n�
�0� ¼

Z
d3rZn�

�0 ð ~rÞ½�	�Bxcð~rÞ�Zn
�ð ~rÞ: (10)

As indicated above, the expressions in Eqs. (5)–(10) can
be applied straightforwardly to disordered alloys. In this
case the brackets h. . .ic indicate the necessary configura-
tional average. This can be done by describing in a first step
the underlying electronic structure (for T ¼ 0 K) on the
basis of the coherent potential approximation (CPA) alloy
theory. In the next step the configurational average in
Eq. (5) is taken following the scheme worked out by
Butler [10] when dealing with the electrical conductivity
at T ¼ 0 K or residual resistivity, respectively, of disor-
dered alloys. This implies, in particular, that so-called
vertex corrections of the type hT�ImGþT�ImGþic �
hT�ImGþichT�ImGþic that account for scattering-in

processes in the language of the Boltzmann transport
formalism are properly accounted for.
Thermal vibrations as a source of electron scattering

can in principle be accounted for by a generalization of
Eqs. (5)–(10) to finite temperatures and by including the
electron-phonon self-energy �el-ph when calculating the

Green’s function Gþ. Here we restrict ourselves to elastic
scattering processes by using a quasistatic representation
of the thermal displacements of the atoms from their
equilibrium positions. We introduce an alloy-analogy
model to average over a discrete set of displacements
that is chosen to reproduce the thermal root mean square

average displacement
ffiffiffiffiffiffiffiffiffiffiffihu2iT

p
for a given temperature T.

This was chosen according to hu2iT ¼ 1
4

3h2

�2mk�D
½�ð�D=TÞ

�D=T
þ 1

4�
with �ð�D=TÞ the Debye function, h the Planck constant,
k the Boltzmann constant, and �D the Debye temperature
[14]. Ignoring the zero temperature term 1=4 and assuming
a frozen potential for the atoms, the situation can be dealt
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with in full analogy to the treatment of disordered alloys
described above.

The approach described above has been applied to the
ferromagnetic 3d-transition metal alloy systems bcc
Fe1�xCox, fcc Fe1�xNix, and fcc Co1�xNix. Figure 1 shows
as an example results for bcc Fe1�xCox for x � 0:7. The
calculated damping parameter �ðxÞ for T ¼ 0 K is found
to be in very good agreement with the results based on the
scattering theory approach [8] demonstrating numerically
the equivalence of the two approaches. An indispensable
requirement to achieving this agreement is to include the
vertex corrections mentioned above. In fact, ignoring them
leads in some cases to completely unphysical results. To
check the reliability of the standard CPA, that implies a
single-site approximation when performing the configura-
tional average, we performed calculations on the basis of
the nonlocal CPA [15]. Using a four-atom cluster led to
practically the same results as the CPA except for the very
dilute case. As found before for fcc Fe1�xNix [8] the
theoretical results for � reproduce the concentration de-
pendence of the experimental data quite well but are found
to be too low (see below). As suggested by Eq. (9) the
variation of �ðxÞ with concentration x may reflect to some
extent the variation of the average magnetic moment of the
alloy, �tot. Because the moments and spin-orbit coupling
strength do not differ very much for Fe and Co, the
variation of �ðxÞ should be determined in the concentrated
regime primarily by the electronic structure at the Fermi
energy EF. As Fig. 1 shows, there is indeed a close corre-
lation with the density of states nðEFÞ that may be seen as a
measure for the number of available relaxation channels.

While the scattering and linear response approach are
completely equivalent when dealing with bulk alloys the
latter allows us to perform the necessary configuration
averaging in a much more efficient way. This allows us
to study with moderate effort the influence of varying
the alloy composition on the damping parameter �.

Corresponding work has been done, in particular, using
Permalloy as a starting material and adding transition
metals (TM) [16] or rare earth metals [17]. If we use the
present scheme to study the effect of substituting Fe and Ni
atoms in Permalloy with a 5d TM, we find an increase of �
nearly linear with the 5d TM content, just as in experiment
[16]. The total damping for 10% 5d TM content shown in
Fig. 2 (top) varies roughly parabolically over the 5d TM
series. In contrast to the Fe1�xCox alloys considered above,
there is now an S-like variation of the moments �5d

spin over

the series (Fig. 2, bottom), characteristic of 5d impurities
in the pure hosts Fe and Ni [18,19]. In spite of this behavior
of �5d

spin the variation of �ðxÞ seems again to be correlated

with the density of states n5dðEFÞ (Fig. 2 bottom). Again
the trend of the experimental data is well reproduced by the
calculated values that are, however, somewhat too low.
One possible reason for the discrepancy between the

theoretical and experimental results shown in Figs. 1 and
2 might be the neglect of the influence of finite tempera-
tures. This can be included as indicated above to account
for the thermal displacement of the atoms in a quasistate
way by performing a configurational average over the
displacements using the CPA. This leads even for pure
systems to a scattering mechanism and this way to a finite
value for �. Corresponding results for pure Ni are given in
Fig. 3 that show in full accordance with experiment a rapid
decrease of � with increasing temperature until a regime
with a weak variation of �with T is reached. This behavior
is commonly interpreted as a transition from conductivity-
like to resistivitylike behavior reflecting the dominance of
intra- and interband transition, respectively [4], that is
related to the increase of the broadening of electron energy
bands caused by the increase of scattering events with
temperature. Adding even less than 1 at.% Cu to Ni
strongly reduces the conductivitylike behavior at low tem-
peratures while leaving the high-temperature behavior es-
sentially unchanged. A further increase of the Cu content
leads to the impurity-scattering processes responsible for
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FIG. 1 (color online). Gilbert damping parameter for bcc
Fe1�xCox as a function of Co concentration: full circles—the
present results within CPA; empty circles—within nonlocal
CPA (NL CPA); and full diamonds—experimental data by
Oogane [20].
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band broadening dominating �. This effect completely
suppresses the conductivitylike behavior in the low-
temperature regime because of the increase of scattering
events due to chemical disorder. Again this is fully in line
with the experimental data, providing a straightforward
explanation for their peculiar variation with temperature
and composition.

From the results obtained for Ni one may conclude that
thermal lattice displacements are only partly responsible
for the finding that the damping parameters obtained for Py
doped with the 5d TM series, and Fe1�xCox are somewhat
low compared with experiment. This indicates that addi-
tional relaxation mechanisms like magnon scattering con-
tribute. Again, these can be included at least in a quasistatic
way by adopting the point of view of a disordered local
moment picture. This implies scattering due to random
temperature-dependent fluctuations of the spin moments
that can also be dealt with using the CPA.

In summary, a formulation for the Gilbert damping
parameter � in terms of a torque-torque-correlation func-
tion was derived that led to a Kubo-Greenwood-like
equation. The scheme was implemented using the fully
relativistic Korringa-Kohn- Rostoker band structure
method in combination with the CPA alloy theory. This
allows us to account for various types of scattering mecha-
nisms in a parameter-free way. Corresponding applications
to disordered transition metal alloys led to very good
agreement with results based on the scattering theory
approach of Brataas et al. demonstrating the equivalence
of both approaches. The flexibility and numerical
efficiency of the present scheme was demonstrated by a

study on a series of Permalloy-5d TM systems. To inves-
tigate the influence of finite temperatures on �, a so-called
alloy-analogy model was introduced that deals with the
thermal displacement of atoms in a quasistatic manner.
Applications to pure Ni gave results in very good agree-
ment with experiment and, in particular, reproduced the
dramatic change of � when Cu is added to Ni.
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