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1.  INTRODUCTION 

The use of density functional theory (DFT) in the ab initio calculation of molecular properties has 

recently increased dramatically (Ziegler 1991; Labanowski and Andzelm [editors] 1991). This can be 

attributed to the following: (1) the development of new and more accurate density functionals; (2) the 

increasing versatility, efficiency, and availability of DFT codes; and, most importantly, (3) the superior 

ratio of accuracy to effort exhibited by DFT computations relative to other ab initio methodologies. 

We focus here on the application of DFT to the prediction of vibrational spectra. With the most 

accurate density functionals currently in use, DFT predicts harmonic vibrational frequencies of 

substantially higher accuracy than obtained via SCF calculations and of similar accuracy to the predictions 

of MP2 calculations (Johnson, Gill, and Pople 1993; Handy, Murray, and Amos 1993). Since DFT 

calculations are substantially less demanding computationally than MP2 calculations, it is clear that DFT 

offers significant advantages in predicting harmonic vibrational force fields, frequencies, and spectra. 

In particular, DFT promises to greatly facilitate the calculation of Vibrational Circular Dichroism 

(VCD) spectra (Stephens and Lowe 1985). Experience has shown that (with the exception of small, 

symmetrical molecules) the SCF harmonic force fields are generally of insufficient accuracy to provide 

useful predictions of VCD spectra (Kawiecki 1988; Jalkanen 1989; Bursi 1991). Calculations using MP2 

harmonic force fields are substantially more successful (Bursi 1991; Amos, Handy, and Palmieri 1990; 

Stephens et al. 1993, Stephens et al., to be published; Devlin and Stephens 1994), but also much more 

demanding. The lower computational demands of DFT suggest that DFT may become preferred over the 

MP2 methodology in the future ab initio predictions of VCD spectra. 

We report here calculations of the unpolarized absorption and circular dichroism spectra arising from 

the fundamental vibrational excitations of the chiral molecule 4-methyl-2-oxetanone, 1, previously studied 

(both experimentally and theoretically) in our laboratories (Jalkanen 1989; Devlin et al., to be published). 

We compare the accuracies of spectra predicted using DFT, MP2, and SCF harmonic force fields. The 

accuracy of DFT calculations is dependent on the density functional employed. In this work, we compare 

three significantly different density functionals: Local Spin Density Approximation (LSDA), BLYP, and 

Becke3LYP. The LSDA and BLYP functionals have been widely used (Ziegler 1991; Labanowski and 

Andzelm [editors] 1991; Johnson, Gill, and Pople 1993; Handy, Murray, and Amos 1993). The 

Becke3LYP functional is a hybrid of several components, whose relative weights are chosen by reference 
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to experimental thermochemical data. The accuracies of such hybrid functionals in predicting molecular 

geometries and vibrational frequencies have not yet been thoroughly characterized. 

Our calculations take advantage of recent developments in the computation of DFT and MP2 harmonic 

force fields via analytical derivative techniques (Trucks et al., unpublished; Johnson and Frisch 1993, 

1994). 

2. METHODS 

Harmonic force fields for 1 were calculated ab initio at SCF and MP2 levels and using DFT via 

GAUSSIAN 92 and GAUSSIAN 92/DFT (Frisch et al. 1992,1993). All force fields were calculated using 

analytical derivative methods (Trucks et al., unpublished; Johnson and Frisch 1993, 1994). DFT 

calculations were carried out using three density functionals: 

(1) LSDA (Local Spin Density Approximation). This uses the standard local exchange functional 
(Becke 1989) and the local correlation functional of Vosko, Wilk, and Nusair (VWN) (1980). 

(2) BLYP. This combines the standard local exchange functional with the gradient correction of 
Becke (1989) and uses the Lee-Yang-Parr (1988) correlation functional (which also includes 
density gradient terms). 

(3) Becke3LYP. This functional is a hybrid of exact (Hartree-Fock) exchange with local and 
gradient-corrected exchange and correlation terms, as first suggested by Becke (1993). The 
exchange-correlation functional proposed and tested by Becke was: 

c n MJLSDA      n _HF AT?B88      _LSDA AT-PW91 
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Here AEX is Becke's gradient correction to the exchange functional and AE^W91 is the Perdew-Wang 

gradient correction to the correlation functional (Perdew 1991). Becke suggested coefficients ao = 0.2, 

\ = 0.72, and ac = 0.81, based on fitting to heats of formation of small molecules. Only single-point 

energies were involved in the fit; no molecular geometries or frequencies were used. The Becke3LYP 

functional in Gaussian 92/DFT uses the values of a^ a^ and ac suggested by Becke, but uses LYP for the 

correlation functional. Since LYP does not have an easily separable local component, the VWN local 

correlation expression has been used to provide the different coefficients of local and gradient corrected 

correlation functionals: 
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The standard fine grid in Gaussian 92/DFT (Trucks and Frisch, to be published) was used in all DFT 

calculations. This grid was produced from a basic grid having 75 radial shells and 302 angular points per 

radial shell, leaving about 7,000 points per atom while retaining similar accuracy to the original (75,302) 

grid. Becke's (1988) numerical integration techniques were employed. 

Atomic Polar Tensors (APTs) (Stephens et al. 1990) were calculated at the same time as harmonic 

force fields. Atomic Axial Tensors (AATs) were calculated using the Distributed Origin gauge (Stephens 

et al. 1990; Stephens 1987), in which the AAT of nucleus X, (M^)0, with respect to origin O is given 

by 

(M„V° - (^ + 4^ 2 %8 Ky Pi (3> 

where R^ is the equilibrium position of nucleus X relative to origin O, P^ is the APT of nucleus X, and(Iao) 

is the electronic AAT of nucleus A. calculated with the origin at R^. "Local" AATs, (Iaß) . are calculated 

using CADPAC (version 5) (Amos 1993) at the SCF level. (At the present time, neither MP2 nor DFT 

codes for AATs are available). 

Vibrational frequencies, dipole strengths, and rotational strengths were calculated from the harmonic 

force fields, APTs, and AATs (Stephens 1985; Jalkanen et al. 1990; Kawiecki et al. 1991). Unpolarized 

absorption and circular dichroism spectra were synthesized thence using Lorentzian band shapes (Kawiecki 

et al. 1988). Calculations used 3-21G, 6-31G* (Hehre et al. 1986) and [5s4p2d/3s2p], TZ2P (Stephens 

et al. 1990) basis sets (66, 102, and 228 basis functions, respectively). SCF and MP2 calculations were 

carried out using the San Diego Supercomputer Center CRAY-YMP and C90 machines. DFT calculations 

were carried out at Lorentzian Inc. using IBM RS/6000-590 and Silicon Graphics Incorporated (SGI) 

Challenge machines. 



3. RESULTS AND DISCUSSION 

Unpolarized absorption and circular dichroism spectra of 1, measured in CSj and CC14 solutions 

(Devlin et al., to be published), are reproduced in Figures 1 and 2 over the spectral range 650-1,500 cm-1. 

Frequencies, dipole strengths, and rotational strengths of transitions assigned to fundamental excitations, 

obtained by Lorentzian fitting of the experimental spectra (Devlin et al., to be published), are given in 

Table 1. The spectra attributable to these transitions alone are also shown in Figures 1 and 2. 

Table 1. Frequencies, Dipole Strengths, and Rotational Strengths of la 

MP2 DFT/B3LYP EXPT* 

V D R V D R V D R 

1,528 14 -5 1,500 13 -5 1,453 25 -2 

1,516 8 4 1,489 8 5 1,441 3 3 

1,479 47 -11 1,462 43 -11 1,419 35 -9 

1,438 52 11 1,422 51 11 1,387 58 13 

1,394 52 27 1,389 50 28 1,350 40 42 

1,320 97 9 1,316 112 3 1,284 161 26 

1,230 47 -11 1,229 14 -4 1,198 47 -21 

1,216 14 0 1,204 19 -5 1,178 35 -17 

1,146 191 82 1,137 327 99 1,118 483 178 

1,125 219 -40 1,113 87 -58 1,099 51 -83 

1,077 10 -12 1,076 11 -6 1,055 40 -23 

1,056 271 -50 1,041 268 -50 1,022 251 -102 

973 126 10 966 91 7 959 70 12 

914 9 -29 914 8 -27 896 10 -54 

873 221 33 850 310 46 836 371 78 

829 97 26 817 34 10 812 55 29 

714 3 -3 712 2 2 711 13 15 

Frequencies, v, in cm
-1

; dipole strengths D in 10~
4O

esu
2
cm

2
; rotational strengths R in KT^esiAan

2
. 

R values are for R-(+)-l. 

Devlin et al., to be published. 
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Figure 1. (a) Experimental unpolarized absorption spectrum of 1 (in CCl^ and CS2 solutions, from 
Devlin et al. fto be published!); 

(b) Fundamental unpolarized absorption spectrum of 1 (obtained from (a) by Lorentzian fitting 
TDevlin et al.. to be published]); 

fcWe) Calculated unpolarized absorption spectrum of 1 (In (c), (d), and (e), force fields and 
APTs are calculated using DFT and B3LYP. BLYP. and LSDA density functionals, 
respectively. In (f) and (g). force fields and APTs are calculated using MP2 and SCF 
methodologies. All calculations use the TZ2P basis set. Lorentzian band half-widths, 
7, are 4.0 cm"1.). 
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Figure 2. (a) Experimental VCD spectrum of R-l (in CQ1 and CS2 solutions, from Devlin et al. fto be 
published]); 

(b) Fundamental VCD spectrum of R-l (obtained from (a) by Lorentzian fitting [Devlin et al.. 
to be published!): 

(cHg) Calculated VCD spectrum of R-l (These originate as in Figure 1. All calculations use 
SCF TZ2P local AATs. Lorentzian band half-widths, y. are 4.0 cm"1.). 



Haimonic frequencies, dipole strengths, and rotational strengths have been calculated for 1 using DFT 

at the TZ2P basis set level and utilizing the LSDA, BLYP, and B3LYP density functionals. Unpolarized 

absorption spectra and VCD spectra derived thence are displayed in Figures 1 and 2. The absorption and 

VCD spectra predicted using the LSDA, BLYP, and B3LYP functionals are substantially different, 

demonstrating that the choice of functional is of importance. Comparison to the fundamental absorption 

and VCD spectra shows that the B3LYP functional provides spectra in best agreement with experiment 

when judged on the basis of the qualitative pattern of frequencies and intensities. The BLYP and LSDA 

functionals yield spectra in significantly worse agreement. The variations among predicted spectra 

originate predominantly in the variations in the harmonic force fields (variations in the APTs are of minor 

consequence in comparison). We therefore conclude that the B3LYP, BLYP, and LSDA force fields are 

of significantly different accuracy, the B3LYP force field being the most accurate. 

The qualitative agreement of the absorption and VCD spectra calculated using the B3LYP functional 

with the experimental spectra is impressive. The quantitative agreement of theory and experiment can be 

assessed from the calculated and experimental frequencies, dipole strengths, and rotational throughout, the 

average and maximum deviations being 25 cm_1/2.0% and 48 cm~1/3.3%. Some fraction of the 

differences in calculated and experimental frequencies can, of course, be attributed to anharmonicity and 

solvent effects. The calculated dipole strengths are in excellent qualitative agreement with experimental 

values; quantitative differences are attributable to a combination of residual errors in the 

DFT/B3LYP/TZ2P calculation, anharmonicity and solvent effects, and to experimental error. Calculated 

rotational strengths are also in excellent qualitative agreement with experimental values. The quantitative 

agreement is somewhat poorer than in the case of dipole strengths. This is undoubtedly attributable to 

the lower accuracy of the AATs, compared to the APTs, due to the absence of correlation in the 

calculation of local AATs. 

The results of TZ2P MP2 calculations (Chabalowski, Devlin, and Stephens to be submitted) are also 

given in Table 1 and in Figures 1 and 2. The agreement with experiment of the spectra calculated using 

the MP2 force field is slightly worse than obtained from the B3LYP force field. The most prominent 

difference is in the relative absorption intensities of the bands calculated between 1,100 and 1,150 cm"1. 

On the other hand, the agreement is significantly better than obtained from the BLYP and LSDA force 

fields. We conclude that the MP2 force field is respectively lower, higher, and higher in accuracy than 

the B3LYP, BLYP, and LSDA force fields. 



The quantitative agreement of frequencies, dipole strengths, and rotational strengths calculated from 

the MP2 force field with experimental values can be assessed from Table 1. Calculated frequencies are 

in all cases greater than experimental frequencies, the average and maximum deviations being 

36 cm_1/3.0% and 75 cm-1/5.2%. The differences are in all cases greater than for the B3LYP force field, 

and, consequently, so are the average and maximum deviations. Calculated dipole strengths are, in most 

cases, further from experimental values than those obtained from the B3LYP force field. Comparison of 

both frequencies and dipole strengths thus support the conclusion that the harmonic force field is less 

accurately calculated by the MP2 methodology. Rotational strengths calculated from the MP2 force field 

are in good qualitative agreement with both experimental values and the predictions of the B3LYP force 

field. Neither of the calculations exhibits clear-cut quantitative superiority. 

Absorption and VCD spectra obtained from the SCF harmonic force field are also shown in Figures 1 

and 2. Both absorption and VCD spectra are qualitatively different from the experimental spectra, the 

differences being sufficiently large that a one-to-one correspondence between calculated and observed 

bands cannot be arrived at; i.e., the predictions are insufficiently accurate to yield a convincing assignment 

of the experimental spectra. It is obvious that the SCF force field is drastically lower in accuracy than 

the DFT and MP2 force fields. 

The calculations presented in Figures 1 and 2 and in Table 1 use a large basis set—TZ2P—in order 

to reduce basis set errors to the maximum extent. Having established the superiority of the B3LYP 

functional over the LSDA and BLYP functionals, it is of interest to examine the basis set dependence of 

the spectra predicted using the B3LYP functional. Figures 3 and 4 compare absorption and VCD spectra 

calculated using the 3-2IG and 6-3IG* basis sets to those obtained at the TZ2P level and to experiment. 

Local AATs are calculated at the TZ2P basis set level throughout, and the variations in spectra are due 

entirely to variations in the DFT force fields and APTs with basis sets. The absorption and VCD spectra 

predicted using the 6-3IG* and TZ2P basis sets are identical qualitatively and very little different 

quantitatively. The agreement with the experimental spectra is almost equally good. The 3-21G basis set 

yields spectra substantially different from those obtained using the 6-3IG* and TZ2P basis sets and in 

much worse agreement with experiment. 



4.  CONCLUSION 

In the case of 1, and the TZ2P basis set level, the DFT force field calculated using the B3LYP density 

functional yields mid-infrared (IR) absorption and VCD spectra in impressive agreement with experiment. 

DFT force fields calculated using the LSD A and BLYP density functionals yield spectra of significantly 

lower accuracy. The MP2 and SCF force fields yield spectra slightly less and much less accurate, 

respectively, than the DFT/B3LYP force field. Calculations on a wide variety of molecules are clearly 

required to define the generality of these results. Such calculations are under way. 

While the LSDA and BLYP functionals have been widely used in DFT calculations of vibrational 

frequencies (Johnson, Gill, and Pople 1993; Handy, Murray, and Amos 1993), this is not the case for the 

hybrid functionals recently introduced by Becke (1993). Since these functionals incorporate parameters 

determined by fitting to experimental thermochemical data, their accuracy in predicting molecular 

geometries and vibrational force fields was not obvious. Our results for 1 using the B3LYP functional 

support the conclusion that the methodology of Becke leads to molecular force fields, as well as 

thermochemical properties, of improved accuracy. Our results also show that B3LYP calculations 

converge rapidly with increasing basis set size and that the cost-to-benefit ratio is optimal at the 6-3IG* 

basis set level. 6-3IG* will be the basis set of choice in B3LYP calculations on much larger molecules. 

Our calculations clearly demonstrate the sensitivity of predictions of vibrational spectra to the accuracy 

of the force field, and, in the case of DFT calculations, to the choice of density functional. The 

comparison to experimental spectra of vibrational spectra predicted from future generations of density 

functionals should be of significant utility in defining their relative accuracies. In the case of chiral 

molecules, the information content of vibrational spectroscopy is considerably enhanced when absorption 

and VCD spectra are utilized in combination. 

VCD spectroscopy is potentially a powerful tool in elucidating the stereochemistry of chiral molecules. 

The work reported here clearly supports the expectation that DFT now provides a basis for calculations 

of VCD spectra at a useful level of accuracy for molecules much larger than 1. This capability will be 

documented in forthcoming publications. 
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Figure 3. (a) Fundamental unpolarized absorption spectrum of 1 (as in Figure lb): 

(b)-(d) Calculated unpolarized absorption spectrum of 1 (In (b). (c), and (d). force fields and 
APTs are calculated using DFT, the B3LYP density functional, and, respectively, the 
TZ2P, 6-31G*. and 3-21G Basis sets. Lorentzian band half-widths, v. are 4.0 cm M. 
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Figure 4. (a) Fundamental VCD spectrum of R-l (as in Figure 2b); 

(by-id) Calculated VCD spectrum of R-l (These originate as in Figure 3. All calculations use 
SCF TZ2P local AATs. Lorentzian band half-widths, y, are 4.0 cm"1.). 
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