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Abstract—We have reported ab-initio calculations of the 

electronic, structural and linear optical properties of 

Cd1–xMnxTe compounds. Ab-initio calculations are performed 

in the framework of full potential linearized-augmented 

plane-wave plus local orbitals (FP-LAPW+l0) method based on 

the density functional theory (DFT) within the generalized 

gradient approximation (GGA). Murnaghan’s equation of state 

(EOS) is used for volume optimization by minimizing the total 

energy with respect to the unit cell. The linear optical properties 

such as dielectric function, reflectivity, and refractive index are 

obtained. In the plots of the imaginary part of the complex 

dielectric function, the absorption threshold shifts toward 

higher energy with the increase in Mn contents. 

 
Index Terms—Ab initio calculations, density-functional 

theory, equations of state, optical properties, dielectric function. 

 

I. INTRODUCTION 

A great deal of attention has been attributed to the study of 
diluted magnetic semiconductor due of their potential 
applications in a wide spectrum of optoelectronic devices, 
photovoltaic solar cells, laser screen materials and various 
luminescence devices, etc. [1]. Cd1-xMnxTe is one of them, 
especially important due to variation of its electronic and 
optical properties by changing the Cd:Mn doping. In this 
paper we have reported the ab-initio calculations for the 
investigation of electronic, structural, and optical properties 
of Cd1-xMnxTe alloys using full potential 
linearized-augmented plane-wave plus local orbitals 
(FP-LAPW+l0) method based on the density functional 
theory (DFT) within the generalized gradient approximation 
(GGA) [2]. 

 

II. COMPUTATIONAL DETAILS 

FP-LAPW+lo method as implemented in the Wien2k code 
[3] with GGA parameterized by Perdew, Burke and 
Ernzerhof (PBE) [4] is employed to deal with the exchange 
and correlation effects. The equilibrium structural parameters 
are carried out by optimizing total energy with respect to the 
unit cell volume using Murnaghan’s equation of state [5]. 
The calculations were done with RMTkmax = 7, to achieve 
energy eigen value convergence. RMT is the smallest radius of 
the muffin-tin (MT) spheres and kmax is the maximum value 
of the wave vector. The wave function has been expanded 
inside the atomic spheres with the maximum value of the 
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angular momentum lmax as 10. The irreducible Brillouin zone 
(BZ) has been decomposed into a matrix of 10×10×10 
Monkhorst–Pack k-points [6]. The iteration procedure is 
continued with total energy and charge convergence to 
0.0001Ry and 0.001e, respectively [7], [8]. 

 

III. RESULTS AND DISCUSSIONS 

The Cd1-xMnxTe has a cubic symmetry with space group 
F-43M. The total energy is optimized with respect to the 
unit-cell volume by fitting Murnaghan’s equation of state [5]: 
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For x = 0, 0.25, 0.5, 0.75, 1, Table I shows the energy 
minimization occuring for a0 = 6.617, 6.548, 6.487, 6.422 
and 6.371 Å, which agree well with the experimental values 
[9]-[11]. 

 

TABLE I: EEQUILIBRIUM LATTICE CONSTANT A0 (Å), BULK MODULUS B0 

(GPA) AND ITS PRESSURE DERIVATIVE B0 OF CD1-XMNXTE 

x 

a0 (Å)  B0(GPa)      B0  

Present Others Present Others Present Others 

0.0 6.617 6.56 [9] 37.02     – 3.58    – 

0.25 6.548 6.481[11] 34.92 44.50[11] 4.54 6.40[11] 

0.5 6.487 6.354[10] 35.61 47.10[10] 4.64 4.58[10] 

0.75 6.422 6.32 [8] 
6.39 [11] 

37.78 49.94[8] 
 

4.99 7.46[8] 
 

1.0 6.371 6.26 [9] 36.12     – 3.58     – 

 
Hence well-defined structural properties are sufficient for 

further study of electronic and optical properties. The 
equilibrium lattice constants are used to calculate 
the density of states (DOS) and electronic band 
structures for Cd1-xMnxTe (shown in Fig. 1 and Fig. 2). 
The zero of the energy scale is set at the Fermi level (EF). The 
energy band structures are calculated along the directions 
containing high symmetry points of the first Brillouin zone, 
namely W L  X WK. Each member of 
Cd1–xMnxTe demonstrates the existence of the valence band 
maximum and conduction band minimum at the same 
symmetry point. This confirms the direct energy gap between 
the top of the valence band and the bottom of conduction 
band at  point. These plots provide a qualitative explanation 
of the atomic and orbital origins of the different band states. 
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From the DOS plots we observe that near the Fermi level, the 
upper part of the valence band possesses Mn-3d and Te-5p 
characteristics. 
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Fig. 1. Electron density of states for Cd1-xMnxTe. 

 

 
Fig. 2. Electronic band structure for Cd0.75Mn0.25Te. 

 
The first structure in the total DOS is small and centered at 

around -11.19 eV, -11.28 eV, -11.58 eV and -11.87 eV for 
x=1.0, 0.75, 0.5 and 0.25 respectively. This structure arises 
from the Te s states and it corresponds to the lowest lying 
band with the dispersion in the region around the  point in 
the Brillouin zone. The next structure appears at -8.20 eV, 
-8.18 eV, -8.11 eV and -8.01 eV for x=0.75, 0.5, 0.25 and 0.0 
respectively. It is an attribute of Cd d states with some p 
states of the Te atoms and occupies largest number of states 
with flat bands clustered between -9.0 eV and -8.2 eV. Less 
dispersion of these bands results in sharp peaks. There is a 
wide spread in DOS in the energy range of -5.0 eV and zero 
energy for these compounds. The peaks in this energy 
interval arise from the Te p states partially mixed with Cd s 
states and they contribute to the upper Valence Band. Above 
the Fermi level, the feature in the DOS originate mainly from 
the s and p states of Cd partially mixed with little of Te d 
states. Band width of valence band as determined from the 
width of the peaks in DOS dispersion below Fermi level 

equal to 12.42 eV, 12.13 eV, 12.17 eV for x=0.75, 0.5, 0.25, 
respectively. The results showing valence band width 
minimum for Cd0.75Mn0.25Te, clearly indicate that the 
wave function for Cd0.75Mn0.25Te is more localized than 
that for others. This is in consistence with the fact that when 
the atomic number of the anion increases, a material becomes 
non-polar covalent with valence band states being more 
localized. The dielectric function (ω) can describe the 
interaction of photons with electrons in the form of linear 
response of the system to electromagnetic radiation [12]. 
Dielectric function comprises of the imaginary part 2(ω) and 
the real part 1(ω). The momentum matrix elements between 
the occupied and unoccupied wave functions within the 
selection rules play the main role for the determination of 
ε2(ω). The expression for 2 is given by 
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where ħω is the energy of the incident photon, p is the 
momentum operator, |kn〉 is the eigenfunction with 
eigenvalue Ekn and f(kn) is the Fermi distribution function. 

The real part ε1(ω) of the dielectric function follows the 
Kramer–Kroning relations and can be expressed in terms of 
2(ω) as follows 
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                 (3) 

The variation of the dielectric functions, ε2(ω) and ε1(ω) of 
Cd1-xMnxTe as function of photon energy is displayed in 
Fig. 3 and Fig. 4 respectively, in the range of 0–14 eV. 
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Fig. 3. The variation of the dielectric functions, ε2 of Cd1-xMnxTe as 

function of photon energy. 
 

It is observed that the imaginary part of the complex 
dielectric function, the absorption threshold shifts toward 
higher energy with the increase in Mn contents. With the 
knowledge of the imaginary part 2(ω) and the real part 1(ω) 
of the dielectric function, one can calculate different optical 
properties. The following equations are used for the 
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calculation of refractive index n and reflectivity R [13]–[15]: 

     2 2
1 2 1

1
=

2
n       

              (4) 
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1
R





 


 
                               (5) 

 

0

6

12

0

20

40

0

50

100

0

75

150

0 2 4 6 8 10 12 14

0

50

100

CdTe

Cd
0.75

Mn
0.25

Te

Cd
0.5

Mn
0.5

Te 1

Cd
0.25

Mn
0.75

Te

MnTe

Energy (eV)  
Fig. 4. The variation of the dielectric functions, ε1 of Cd1-xMnxTe as 

function of photon energy. 
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Fig. 5. The variation of the refractive index, (n) of Cd1-xMnxTe as function 

of photon energy. 
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Fig. 6. The variation of the reflectivity (R) of Cd1-xMnxTe as function of 

photon energy. 

The calculated optical parameters, viz., refractive index 
n() and reflectivity R() are shown in Fig. 5 and Fig. 6 
respectively. It is clear from the reflectivity spectrum that 
CdTe possesses more transmitting nature than Mn doped 
compounds. 

 

IV. CONCLUSION 

The structural, electronic, and optical properties of 
Cd1-xMnxTe have been studied with FP-LAPW + lo 
method in the framework of density functional theory. The 
quantities such as band structure, dielectric constants, and 
refractive index were obtained. The generalized gradient 
approximation (GGA) was considered for the exchange and 
correlation effects calculations. The band structure of all 
compounds confirms the direct energy gap between the top of 
the valence band and the bottom of conduction band at  
point. In the linear optical response, the absorption threshold 
shifts toward higher energy with the increase in Mn contents. 
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