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Abstract. I propose a simple and manageable method that allows for deriving

coupling constants of model energy density functionals (EDFs) directly from ab initio

calculations performed for finite fermion systems. A proof-of-principle application

allows for linking properties of finite nuclei, determined by using the nuclear nonlocal

Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The

method does not rely on properties of infinite fermion systems but on the ab initio

calculations in finite systems. It also allows for quantifying merits of different model

EDFs in describing the ab initio results.

PACS numbers: 21.60.Jz,21.60.De,21.10.Dr

Submitted to: J. Phys. G: Nucl. Phys.

Computing large molecules or heavy nuclei from first principles is not only great

fun but also one of the biggest challenges in the contemporary science. Such mesoscopic

systems are too large for direct solutions and too small for statistical approaches. They

exhibit fascinating emergent phenomena: the whole is always more than the sum of

its constituents. The underlying basic physical theories, quantum electrodynamics and

quantum chromodynamics, are well established by now. However, their applications

to molecules and nuclei, respectively, must first pass through reductions to non-

relativistic interactions between their constituents. This is much easier for electrons,

which interact with Coulomb forces, than for nucleons interacting with strong forces.

Only fairly recently, families of nuclear interactions based on chiral effective field

theory [1, 2, 3, 4, 5, 6, 7] have become a gold standard for ab initio calculations of

nuclear properties [8, 9, 10, 11, 12, 13, 14, 15, 16].

Approaches based on the density functional theory (DFT) [17, 18, 19, 20, 21, 22]

provide us with very efficient and useful tools to describe properties of many-fermion

systems like molecules, solids, or nuclei. The range of possible various applications
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and implementations is extremely wide. In electronic systems, there exist numerous

methods and techniques of linking the density functionals to the underlying Coulomb

interaction [23], but in nuclei such links are much more difficult to explore. Nevertheless,

there have already been several attempts to link the nuclear DFT to ab initio

approaches [24, 25, 26, 27, 28, 29, 30, 31]. Up to now, most of them referred directly

[or indirectly, through the so-called density-matrix expansion (DME) [32]] to infinite-

nuclear-matter properties. In this paper, I propose a generic method that directly links

the ab initio approaches to the DFT in finite fermion systems.

A classic formulation of the DFT relies on a variational approach to the many-

body problem, whereby it assumed that we are able to perform an exact variation of

the average energy δE = δ⟨Ψ|Ĥ|Ψ⟩ = 0, where Ĥ is the Hamiltonian and |Ψ⟩ is the

correlated A-body state. Such a variation gives us the exact ground-state energy E0

and the exact ground-state wave-function |Ψ0⟩. By replacing the full variation with a

two-stage variation, the DFT then appears in a very natural way.

The first-stage variation is performed under the constraint that the one-body local

density of the system, ρ(r) = ⟨Ψ|a+
r
ar|Ψ⟩, is fixed to a given density profile. Performing

such a variation for all density profiles, one obtains the exact energy density functional

(EDF) E [ρ]. In principle, such a constrained variation can be realized by placing the

system in an external auxiliary one-body local potential −U(r), that is,

δE ′ = δ⟨Ψ|Ĥ − Û |Ψ⟩ = δ

[

⟨Ψ|Ĥ|Ψ⟩ −

∫

drU(r)ρ(r)

]

= 0, (1)

whereupon U(r) acquires a role of the Lagrange multiplier, see the classic Levy and

Lieb construction presented, e.g., in chapter 3.4 of Ref. [17]. In a sense, the first-stage

constrained variation corresponds to probing the system with an external one-body field.

By inverting the obtained relation ρ [U ] and inserting it into the functional E [U ], one

can, again in principle, obtain the final exact EDF E [ρ]. These classic arguments have

the same structure as the effective-action approach, see, e.g., Refs. [25, 33, 34].

The second-stage variation, with respect to the density, δρ(r)E [ρ] = 0, obviously

then gives the exact ground-state energy E0 and the exact ground-state local one-

body density ρ0(r) = ⟨Ψ0|a
+
r
ar|Ψ0⟩. It is also obvious that the above argumentation

can be repeated mutatis mutandis for a functional of a one-body non-local density

ρ(r, r′) = ⟨Ψ|a+
r
′ar|Ψ⟩, which is the formulation we are concerned with below.

Certainly, such an idealistic derivation of the exact EDF would defy its purpose: had

we been able to perform the exact variational calculations for all one-body potentials

−U(r), we would have probably not need DFT at all. The strength and beauty of

DFT is somewhere else: general considerations about the exact DFT provide us with

a motivation to search for a suitable and physically justified modelisation Ẽ [ρ] of the

exact EDF E [ρ]. In this way, one is only left with an easy task of performing the

second-stage variation over the density ρ(r). Unfortunately, the rigorous link between

the exact many-body Hamiltonian Ĥ and the model EDF Ẽ [ρ] is then lost. In this

paper, I propose a method of recovering it.
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The goal is thus not to derive the exact EDF E [ρ], but to provide an ab initio

derivation valid within a certain class of model EDFs Ẽ [ρ]. Such models should be

specific to a given range of energies or distances, at which low-energy description of

ground states of given physical systems is relevant.

The class I am going to employ is motivated by 60-odd years of modelling EDFs in

nuclei [35], and can be formulated as

Ẽ [ρ] = T [ρ] +
m
∑

i=1

CiVi [ρ] , (2)

where Ci are the coupling constants, T [ρ] and Vi [ρ] are the Hartree-Fock (or first-

order many-body-perturbation-theory) averages of the kinetic-energy operator T̂ and

certain two-body, three-body, etc., operators V̂i, and m denotes the number of terms

included in a given model. For example, the EDF generated by a two-body local

potential V (r1 − r2) (with spins neglected for simplicity) reads V [ρ] =
∫

dr1dr2V (r1 −

r2) [ρ(r1)ρ(r2)− ρ(r1, r2)ρ(r2, r1)], with the first and second term that depend on the

products of two local and two non-local one-body densities, respectively, and which are

the standard direct and exchange terms. At the early stages of developing the nuclear

EDFs, operators V̂i were called interactions, but in fact, their sole role was to generate

specific terms in the EDF, so here I call them EDF generators.

For the construction presented below, it is essential that the model EDFs (2) are

built in terms of true operators acting in the many-body space, because one must be able

to use them not only for defining the EDFs, but also within the true ab initio many-body

context. On the one hand, some constructs typical in nuclear EDFs, like the explicit

density-dependent terms [35], are thus excluded. On the other hand, functionals based

on EDF generators seem to be the only ones that allow for using EDFs in the multi-

reference context, see, e.g., recent Ref. [36]. Therefore, constructions based on EDF

generators are very much called for. Moreover, such constructions lead, by construction,

to self-interaction-free functionals [37]. We also note here that the proposed scheme

would work for EDFs generated by operators depending on additional parameters too,

so the specific linear dependence on the coupling constants although convenient, is not

really essential.

Before considering specific EDF generators V̂i that were used and/or proposed in

nuclear physics, let us discuss the main consequences of using the model EDF in the

form of Eq. (2). First of all, one should keep in mind that the EDF is always meant to be

minimized with respect to the density, and thus its detailed form beyond the minimum

is not essential. By the same token, there is always one-to-one correspondence between

the coupling constants of the functional C i and densities that minimize it. Therefore,

the manifold of meaningful ground-state densitiesM [ρ] is not really infinite dimensional,

but it can be parametrized by the coupling constants Ci, and eventually by conserved

quantum numbers, so it has a finite number of dimensions m. Consequently, the model

EDF (2) does not have to properly describe the exact energies of states having all

possible densities, but only those that have densities on this restricted m-dimensional
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manifold M [ρ].

This important observation has far reaching consequences. Indeed, instead of

probing the system with all possible one-body potentials −U(r) of an arbitrary shape,

as in Eq. (1), it is enough to probe it within the finite set of the EDF generators −V̂j,

that is, to solve the constrained variational equation,

δE ′ = δ⟨Ψ|Ĥ −

m
∑

j=1

λjV̂j|Ψ⟩ = 0, (3)

for a suitable set of values of a finite number of Lagrange multipliers λi, which is perfectly

manageable a task. In Eq. (3), there appear the same EDF generators, which in Eq. (2)

were used to define the model EDF in the first place, but here they are used in the full

many-body context and evaluated without any approximation. This is perfectly logical:

to meaningfully include a term in the model EDF we must first test its properties in

the real world of the ab initio phase space and Hamiltonian.

Solution of Eq. (3) gives us the exact ground-state energies Eexact(λj) and exact

one-body non-local densities ρexact
λj (r1, r2), both as functions (not functionals!) of the

Lagrange multipliers λj. Now it is enough to ensure that, on the manifold generated

by the Lagrange multipliers λj, the model EDF (2) best reproduces the exact energies,

that is, it is enough to adjust the EDF coupling constants Ci so as to have,

Eexact(λj) = T
[

ρexactλj

]

+
m
∑

i=1

C iVi

[

ρexactλj

]

, (4)

where the right-hand side equals to the model EDF of Eq. (2) evaluated for exact

densities ρexact
λj . We note here, that Eq. (4) stipulates that the exact energies are

functionals of one-body densities only. This is perfectly in line with the basic principles

of the DFT, whereupon the one-body densities acquire the role of fundamental degrees

of freedom. Then the two-body densities, and also the exact wave functions appearing in

Eq. (3), become functionals of the one-body densities too. The adjustment of coupling

constants C i is performed for a finite set of values of the finite set of Lagrange multipliers,

so Eq. (4) constitutes, in fact, a basic standard linear-regression problem.

After the adjustment, that is, after determining the best coupling constants Ci,

one obtains a true ab initio-equivalent model EDF (2). On the manifold of the exact

one-body densities, the model EDF then gives the closest possible approximation to

the exact energies. After the minimization in the space of all one-body densities (the

second-stage variation), the resulting approximate energies may deviate from the exact

ones, and this may inform us about the quality of the proposed model EDF.

The ab initio derivation of the model EDFs, proposed in this work, may become

a basis for future studies that can bridge the ab initio methods with those related to

deriving and improving the phenomenological EDFs. The proposed research program

will probably take some time, especially in view of the fact that present-day successful

nuclear ab initio implementations are at the forefront of what is currently possible within

the high performance computing. The first applications, which are now under way, will
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exploit the ab initio calculations for doubly magic nuclei, where the particle-number- and

rotational-symmetry-conserving functionals can be derived. In this work, I only present

a simple proof-of-principle application of the proposed scheme to a task of relating one

class of the EDF to another.

To this end, I used the EDF generators corresponding to the central and tensor

parts of the nuclear Skyrme interaction [38, 39, 40, 35, 41], which is composed of eight

terms (m=8), that is,
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where T̂0 = δ̂, T̂1 = 1
2
(k′∗2 + k

2)δ̂, T̂2 = (k′∗ · k)δ̂, and δ̂ is a two-body local zero-

range potential, δ̂ = δ(r1 − r2)δ(r1 − r
′

1)δ(r2 − r
′

2). The standard relative-momentum

operators are defined as k = (∇1 − ∇2)/2i and k
′ = (∇′

1 − ∇
′

2)/2i, T̂
σ
i = T̂iP̂σ for

P̂σ = 1
2
(1 + σ1 · σ2), and T̂e = 1

2
(k′∗ · Ŝ · k′∗ + k · Ŝ · k) and T̂o = k

′∗ · Ŝ · k for

Ŝab = 3
2
(σa

1σ
b
2 + σb

1σ
a
2)− δabσ1 · σ2.

Numerical coefficients appearing in Eq. (5) were chosen in such a way that

each of the eight EDF generators gives (in spherical nuclei) one specific term of the

EDF [42, 43, 41], namely,

V ρ
t [ρ] = ρt(r)ρt(r) , V ∆ρ

t [ρ] = ρt(r)∆ρt(r),

V τ
t [ρ] = ρt(r)τt(r) , V J

t [ρ] = Jt(r) · Jt(r),
(6)

where index t refers to the isoscalar (t=0) or isovector (t=1) densities, ∆ρt(r) stands

for the Laplacian of the density, and τt(r) = [(∇ · ∇′)ρt(r, r
′)]

r=r
′ and Jabt (r) =

1
2i
[(∇a−∇′

a)s
b
t(r, r

′)]
r=r

′ are the standard quasilocal kinetic and spin-current densities,

respectively.

For the proof-of-principle application presented in this work, instead of the average

value of the true many-body Hamiltonian, I used the Gogny EDF [44] in the D1S

parametrization [45], that is, ⟨Ψ|Ĥ|Ψ⟩ → EGogny [ρ]. In this way, I aimed at obtaining

a Gogny-equivalent quasilocal Skyrme EDF. That both types of EDFs can be linked

to one another is already known from findings of Refs. [46, 47], where this fact was

demonstrated within the DME and effective theory; here I aim at testing this equivalence

in terms of the ab initio-like methodology proposed in this work. Since both functionals

contain terms generated by the zero-range spin-orbit and density-dependent operators,

these are left untouched, and thus E(λj) in Eq. (4) is equal to the average value of the

finite-range part of the Gogny interaction [44].

Numerical results presented below were obtained using the code hfodd

(v2.75c) [48], which is the only existing code capable of treating the Gogny and
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Table 1. The Skyrme EDF S1Sd and S1Se coupling constants obtained in this work

as the ab initio-equivalent Gogny EDF D1S [45].

S1Sd S1Se

t = 0 t = 1 t = 0 t = 1

Cρ
t (MeV fm3) −603.82(22) 484(4) −605.41(16) 509(3)

C∆ρ
t (MeV fm5) −73.25(14) 48(3) −74.82(12) 41(2)

Cτ
t (MeV fm5) 77.95(23) −78(3) 79.73(16) −98(2)

CJ
t (MeV fm5) 24.9(1.2) 71(3) 0 0

Skyrme functionals simultaneously and within the same numerical infrastructure, see

the Supplemental Material [49] for details. Calculations were performed for eight doubly

magic nuclei, 16O, 40,48Ca, 56,78Ni, 100,132Sn, and 208Pb. For each nucleus, I used either

of the eight Lagrange multipliers, λρ
t , λ

∆ρ
t , λτ

t , or λ
J
t (for t=0,1) equal to one of the 21

integer values between −10 and +10MeV fmn, where n=3 for λρ
t and n=5 for the other

ones. Altogether, this gave me 1344 values of the Gogny energies E(λj), to which the

eight coupling constants of the Skyrme EDF, Cρ
t , C

∆ρ
t , Cτ

t , and CJ
t (for t=0,1) were

adjusted in Eq. (4).

The coupling constants S1Sd obtained by such an adjustment are shown in Table 1.

Their standard uncertainties were obtained within the standard regression analysis

presented, e.g., in Refs. [50, 51]. The adjusted coupling constants reproduced the Gogny

energies in Eq. (4) with a very high accuracy: the relative rms deviation between left-

and right-hand sides of Eq. (4) is only 0.014%. This is also illustrated in Fig. 1, where

differences between symbols and lines cannot be seen at all, while the inset shows that

the relative residuals of the adjustment do not exceed 0.050%. Analogous plots for other

nuclei are collected in the Supplemental Material [49].

Table 2 compares the ground-state energies EG calculated using the original Gogny

EDF D1S with energies E obtained by the minimization of the Gogny-equivalent Skyrme

EDF S1Sd. Propagated uncertainties ∆E of E were calculated using the covariance

matrix related to the adjustment of coupling constants [50, 51], see the Supplemental

Material [49]. We see that the Skyrme EDF S1Sd again reproduces the Gogny-EDF

results with a very high accuracy: the relative rms deviations between these two

functionals is only 0.28%. This is much better than the accuracy obtained within

the DME [52], see the comparison presented in the Supplemental Material [49]. One

can conclude that the simple eight-dimensional Gogny-equivalent Skyrme EDF with ab

initio-derived coupling constants of Eq. (2) very well describes the full Gogny energies.

In the Supplemental Material [49], I also show the analogous very good agreement

obtained for the proton rms radii. This points to a well-built EDF, which along with

the total energies properly describes one-body observables.

On the absolute scale, the corresponding rms deviation of energies is 1.99MeV,

which is 29 times higher than the rms average of the propagated uncertainties, see
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Figure 1. (Color online) Gogny energies [lines, left-hand side of Eq. (4)] compared

with the EDF estimates [symbols, right-hand side of Eq. (4)] obtained for the Skyrme

EDF S1Sd coupling constants given in Table 1. Calculations were performed in 208Pb

in function of the eight Lagrange multipliers λ
ρ
t , λ∆ρ

t , λτ
t , and λ

J
t for t=0,1. The inset

shows residuals of the adjustment in per cent.

Table 2. Gogny EDF D1S ground-state energies EG (b) of eight doubly magic nuclei

(a) compared to energies E (c) calculated using the Skyrme EDF S1Sd, Table 1,

and shown together with their propagated uncertainties ∆E. Column (d) shows the

residuals δE = E−EG and columns (e) and (f) give ratios of residuals with respect to

energies E and propagated uncertainties ∆E, respectively. All energies are in MeV.

EG E δE δE/|E| δE/∆E

(a) (b) (c) (d) (e) (f)
16O −129.626 −129.56(4) 0.07 0.05% 2
40Ca −344.663 −346.01(6) −1.35 −0.39% −23
48Ca −416.829 −418.10(6) −1.27 −0.30% −20
56Ni −483.820 −485.31(6) −1.49 −0.31% −27
78Ni −640.598 −642.37(6) −1.78 −0.28% −28
100Sn −830.896 −833.19(6) −2.29 −0.28% −39
132Sn −1103.246 −1106.51(8) −3.26 −0.30% −42
208Pb −1638.330 −1640.96(8) −2.63 −0.16% −32

rms n.a. n.a. 1.99 0.28% 29
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Table 2. This means that the differences between the Gogny results and Gogny-

equivalent Skyrme-EDF results are still significantly larger than the uncertainties of

the adjustment, which gives a clear signal for missing terms in the eight-dimensional

model EDF of Eq. (4).

The method also allows for testing the impact of removing terms from the model

EDF. For example, setting the two spin-current coupling constants to zero, CJ
0 =

CJ
1 = 0, one obtains a six-dimensional model that gives another Gogny-equivalent

Skyrme EDF S1Se, with coupling constants shown in Tables 1. Such model is only

marginally worse, with the absolute and relative rms deviations of energies now increased

to 2.34MeV and 0.40%, respectively, see the Supplemental Material [49] for detailed

results.

In conclusion, I proposed a novel method of obtaining ab initio-equivalent model

EDFs. The main idea is in replacing the standard-DFT use of an external one-body

potential by the use of two-body, three-body, etc., EDF generators. This probes the

reaction of the system with respect to the same operators that are used to construct

the model EDFs. The new method amounts to performing ab initio calculations with

simple constraints on a finite set of well-defined operators added to the many-body

Hamiltonian, and thus is perfectly manageable.

The method is also able to give us a quantitative information on whether a given

model EDF is adequate for the proper description of the physical system being studied.

Indeed, if the adjustment of the coupling constants fails to be accurate enough, we obtain

a clear signal that the set of proposed EDF generators is inadequate. Then, another or

extended model EDF should be tried. In this way, through ab initio derivations in nuclei,

one may be able to evaluate relative merits of using the zero-range higher-order [53],

finite-range regularized [54], three-body or four-body [55], or gradient-dependent three-

body [56] pseudopotentials, which are currently being developed and implemented in

nuclear EDF approaches.

It is also essential that the ab initio derivations of functionals proposed here extend

the set of real experimental observables, to which the model functionals are usually

adjusted, to a much larger set of metadata, which are calculated by the ab initio

methods. Provided that these ab initio technology is well under control and precise,

we may thus obtain grips on terms of the functionals that are otherwise difficult to pin

down directly from experiment.

It is noteworthy that the proposed method is based on studying specific finite

systems and does not rely on assumptions valid only in infinite or semi-infinite systems.

The proposed ab initio derivations can be performed in few systems, for which the ab

initio calculations are possible, e.g., in light closed-shell nuclei, and then the derived

EDFs can be applied to more complicated, open-shell or heavy nuclei, so as to test

the overall predictive power of the method. Note that the ab initio-equivalent EDFs are

specific to particular physical systems, and when applied to systems at different energies

or densities will yield parametrically energy- or density-dependent running coupling

constants. Needless to say that the proposed method can easily be extended to deriving
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time-odd or pairing terms of the EDFs. Another fascinating extension would be to use

the same method not only to match energies, like in Eq. (4), but also ab initio-derived

kernels [57, 58].
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