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Ab initio effective interactions for sd-shell valence nucleons
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We perform ab initio no-core shell-model calculations for A = 18 and 19 nuclei in a 4��, or Nmax = 4,
model space by using the effective JISP16 and chiral N3LO nucleon-nucleon potentials and transform the
many-body effective Hamiltonians into the 0�� model space to construct the A-body effective Hamiltonians in
the sd shell. We separate the A-body effective Hamiltonians with A = 18 and A = 19 into inert core, one-, and
two-body components. Then we use these core, one-, and two-body components to perform standard shell-model
calculations for the A = 18 and A = 19 systems with valence nucleons restricted to the sd shell. Finally, we
compare the standard shell-model results in the 0�� model space with the exact no-core shell-model results in
the 4�� model space for the A = 18 and A = 19 systems and find good agreement.
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I. INTRODUCTION

In recent years remarkable progress in ab initio microscopic
nuclear structure studies has been made in calculating nuclear
properties, e.g., low-lying spectra, transition strengths, etc.,
in light nuclei. Large-basis ab initio no-core shell-model
(NCSM) calculations, which provide the foundation for this in-
vestigation, have been successful in reproducing the low-lying
spectra and other properties of nuclei with A � 16 [1–19].

In NCSM calculations all nucleons in the nucleus are active
and are treated equivalently in the chosen model space. When
we increase the model space to obtain more precise results,
we encounter the problem that the size of the calculations
can easily exceed currently available computational resources.
This is especially true as one proceeds towards the upper end
of p-shell nuclei and beyond. The problem may be cast as a
challenge to reproduce the many-body correlations present in
the large space in a tractable, smaller model space. Success in
this endeavor will open up the prospects for ab initio solutions
for a wider range of nuclei than are currently accessible.

The NCSM has proven to be an ab initio microscopic
nuclear structure approach that has been able to reproduce
experimental results and to make reliable predictions for
nuclei with A � 16. These successes motivate us to develop
approaches for heavier-mass nuclei. In one approach, a small
model space effective interaction has been constructed by
modifying the one-body piece of the effective two-body
Hamiltonian and employing a unitary transformation in order
to account for many-body correlations for the A-body system
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in a large space [20]. In another approach [21], the effective
two- and three-body Hamiltonians for p-shell nuclei have
been constructed by performing 12�� ab initio [i.e., Nmax =
12 harmonic oscillator (HO) quanta above the minimum
required] NCSM calculations for A = 6 and A = 7 systems
and explicitly projecting the many-body Hamiltonians onto the
0�� space. These A-dependent effective Hamiltonians can be
separated into core, one-body, and two-body (and three-body)
components, all of which are also A-dependent [21].

Recently, two more ab initio methods for valence nucleon
effective interactions have been introduced with the same
goals; one is based on the in-medium similarity renormal-
ization group approach [22] and the other is based on the
coupled-cluster method [23].

In this work, following the original idea of Refs. [11,21],
we derive two-body effective interactions for the sd shell by
using 4�� NCSM wave functions at the two-body cluster
level, which contain all the many-body correlations of the 4��
no-core model space. The goal of this work is to demonstrate
feasibility of this approach in the sd shell, where we do
not require calculations at the limit of currently accessible
computers. Such a major extension will be addressed in a
future effort.

At the first step, we construct a “primary” effective
Hamiltonian following the Okubo–Lee–Suzuki (OLS) unitary
transformation method [24–26]. We indicate this first step
schematically by the progression shown with the two large
squares in the lower section of Fig. 1. We elect to perform
this first step at the two-body-cluster level for 18F in the
4�� model space (the “P -space”) following the NCSM pre-
scription [12,13,16]. For our initial interactions we select the
JISP16 [27] and chiral N3LO [28] potentials. Our formalism
may be directly adapted to include the three-nucleon force
(3NF) but the computational effort increases dramatically.
Thus, we do not include the 3NF in this initial work.

For the second step, we begin by performing a NCSM
calculation for 18F with the primary effective Hamiltonian in
the 4�� model space to generate the low-lying eigenvalues
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FIG. 1. (Color online) Flow of renormalizations adopted to de-
rive an effective interaction for valence nucleons. The OLS procedure
is first applied to derive a NCSM effective interaction for the full
A-nucleon system resulting in the “primary” effective Hamiltonian
PHeffP for the chosen no-core basis space (the “P -space”) indicated
on the large square on the right of the figure in its upper-left corner.
The many-body truncation is indicated by Nmax, the total number of
HO quanta above the minimum for that system. The OLS procedure
is applied again by using the results of the NCSM calculation to
derive the “secondary” effective Hamiltonian P ′H ′

effP
′ for the chosen

valence space (the P ′-space with the smaller many-body cutoff N ′
max)

indicated on the square in the upper right of the figure.

and eigenvectors needed for a second OLS transformation,
as indicated by the flow to the upper right in Fig. 1. These
18F eigenvectors are dominated by configurations with an 16O
system in the lowest available HO orbits and two nucleons in
the sd shell. All additional many-body correlations are also
present. With these 18F eigenvectors and eigenvalues we then
solve for the “secondary” effective Hamiltonian, again using
an OLS transformation, that acts only in the N ′

max = 0 space
of 18F but produces the same low-lying eigenvalues. Here
we are following the scheme initially introduced in Ref. [11].
The matrix elements of this secondary effective Hamiltonian
have the property that all configurations are defined with two
nucleons in the sd space and an 16O subsystem restricted to
the lowest available HO single-particle states. This second
step therefore produces a secondary effective Hamiltonian
that is equivalent to what we would call the 18-body cluster
Hamiltonian in the NCSM acting in the N ′

max = 0 space.
At the third step, we carry out NCSM calculations for

the 16O, 17O, and 17F systems with the primary effective
interaction in the 4�� basis space. The results of these
calculations produce, respectively, the core and one-body
components included in the secondary effective Hamiltonian.

At the fourth step, we subtract the core and one-body terms
from the secondary effective Hamiltonians of step 2 to obtain
the effective valence interaction two–body matrix elements
(TBMEs) in the sd-shell space.

Following the completion of these four steps, we then use
the effective valence interaction matrix elements along with
the extracted single-particle energies (for both the proton and

the neutron) for standard shell-model (SSM) calculations in
the sd-shell space.

For any system with A > 18, we can obtain its 18-body
cluster Hamiltonian by repeating the entire procedure utilizing
the primary effective Hamiltonian for that value of A. The
second and subsequent steps remain the same. That is, we
perform NCSM calculations with the primary (A-dependent)
effective NN potential for 16O, 17O, 17F, and 18F in order to
obtain the (A-dependent) core energy, single-particle energies,
and TBMEs, which can then be used in a SSM calculation for
that value of A. We provide details for applications to A > 18
systems below using 19F as an example.

We employ the Coulomb interaction between the protons
in the NCSM calculations which gives rise to the major
shift between the derived neutron and proton single-particle
energies. Exploration of full charge-dependence in the derived
two-body valence interactions will be addressed in a future
effort. In particular, our current A = 18 and 19 applications
will have at most one valence proton so we do not require a
residual Coulomb interaction between valence protons in this
work.

For the chiral N3LO we retain full charge dependence in
the first step—that is, when deriving the primary effective
Hamiltonian. Thus, the A-body, core, and valence system cal-
culations are performed with full charge dependence retained.
Since we currently solve only for 18F in step 2, we derive
only the isospin-dependent but charge-independent secondary
effective Hamiltonian. To retain full charge dependence in the
secondary effective Hamiltonian, which would constitute pre-
dictions beyond conventional phenomenological interactions,
would require additional 18O and 18Ne calculations that are
intended in future efforts.

One may straightforwardly generalize these steps outlined
above to solve for effective three-body valence interactions
suitable for SSM calculations. Earlier efforts using an alterna-
tive implementation of step 3 [21] showed that effective three-
body valence interactions lead to significant improvements
over effective two-body valence interactions.

II. THEORETICAL DESCRIPTION

A. No-core shell model and effective interaction

The NCSM calculations start with the intrinsic Hamiltonian
of the A-nucleon system, omitting any 3NF in the present
effort:

H =
A∑

i<j=1

( �pi − �pj )2

2Am
+

A∑
i<j=1

V NN
ij

= Trel + V NN, (1)

where m is the nucleon mass, V NN
ij is the bare NN interaction,

Trel is the relative kinetic energy and V NN is the total two-
body interaction. We will add the Coulomb interaction between
the protons at a later stage since we treat it as a perturbative
correction to the derived primary effective Hamiltonian. In
order to facilitate convergence, we modify Eq. (1) by adding
(and later subtracting) the center-of-mass HO Hamiltonian
which introduces a dependence on the HO energy, ��, and this
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dependence is denoted by “�” in what follows. In addition,
we introduce a � A to define a new a-, A-, and �-dependent
Hamiltonian:

Ha =
a∑

i=1

[ �pi
2

2m
+ 1

2
m�2 �ri

2
]

+
a∑

i<j=1

Vij (�,A), (2)

where a = A corresponds to the full Hamiltonian of Eq. (1)
with the center-of-mass HO Hamiltonian added and Vij (�,A)
is the modified bare NN interaction which we define in-
dependent of the parameter a but including dependence
on A:

Vij (�,A) = V NN
ij − m�2

2A
(�ri − �rj )2. (3)

The exact solution of Eq. (1) for a subset of its eigensolutions
in a finite matrix diagonalization requires the derivation of an
A-body effective interaction for sufficiently heavy nuclei [16],
but such a derivation is not currently possible for A > 5 with
realistic interactions.

Here, we adopt the two-body cluster approximation (a = 2)
for the effective interaction [12,13]. This allows us to solve the
eigenvalue problem for a sufficiently large basis space that we
achieve convergence of a suitable set of low-lying eigenvalues
and eigenvectors needed to construct the primary effective
Hamiltonian. In the a = 2 approximation, the Hamiltonian (2)
becomes

H2 =
2∑

i=1

[ �pi
2

2m
+ 1

2
m�2 �ri

2
]

+ V12(�,A). (4)

For deriving an effective three-nucleon interaction one would
take a = 3. Note that the A dependence enters the Hamiltonian
H2 through the second term in Eq. (3). For example, this A
dependence makes the two-body cluster Hamiltonian H2 in
the T = 0 channel different from the deuteron Hamiltonian.
In order to preserve Galilean invariance in the primary effective
Hamiltonian, we obtain the solutions to Eq. (4) in the relative
HO basis where the the center-of-mass component of the first
term in Eq. (4) plays no role.

We now introduce our representation of the unitary transfor-
mation needed to construct the primary effective Hamiltonian
PHeffP := HP

2 in the P space (signified by a superscript “P ”)
of the first step. The P -space effective interactions have A
dependence, � dependence and Nmax dependence all implied
by the superscript P . We define Nmax as the maximum number
of HO quanta in the many-body HO basis space (the NCSM
basis space) above the minimum for the A-nucleon nucleus.
We select Nmax = 4 in the present work. The resulting finite
P space, of dimension dP , for the first step is indicated on the
left-hand side of Fig. 1. The diagonalization of the Hamiltonian
H2 in the relative HO basis provides the unitary transformation
U2 such that

H2;diag = U2H2U
†
2 , (5)

where H2;diag is the diagonal matrix containing the eigenvalues
E2;k:

H2;diag =

⎛
⎜⎜⎜⎝

E2;1 0 · · · 0

0 E2;2 · · · 0

· · · · · · · · · · · ·
0 0 0 E2;max

⎞
⎟⎟⎟⎠ , (6)

where the subscript “max” signifies the dimension of the a = 2
space sufficient to guarantee convergence of the dP low-lying
eigenvalues and eigenvectors. We typically employ max =
200 to 450 for a realistic NN interaction governed by the need
to converge the results for the chosen interaction at the selected
value of ��.

By introducing the model space P , one builds the matrix
HP

2;diag = PH2;diagP :

HP
2;diag =

⎛
⎜⎜⎜⎝

E2;1 0 · · · 0

0 E2;2 · · · 0

· · · · · · · · · · · ·
0 0 0 E2;dP

⎞
⎟⎟⎟⎠ . (7)

The unitary transformation matrix Ua in which a = 2 refers
to two-body cluster approximation and can be split into four
blocks corresponding to the blocks within the large squares of
Fig. 1:

Ua =
(

UP
a UPQ

a

UQP
a UQ

a

)
, (8)

where the matrix UP
a is the dP × dP square matrix correspond-

ing to the P space. One constructs the UP
2 matrix from the Ua

matrix by taking dP rows and columns of the eigenvectors
corresponding to the chosen dP eigenvalues:

UP
2 =

⎛
⎜⎜⎜⎝

b1,1 b1,2 · · · b1,dP

b2,1 b2,2 · · · b2,dP

· · · · · · · · · · · ·
bdP ,1 bdP ,2 · · · bdP ,dP

⎞
⎟⎟⎟⎠ . (9)

The primary effective Hamiltonian HP
2 , signified by the

box labeled “PHeffP ” in Fig. 1, can then be calculated by
using the following formula:

HP
2 = U

P †
2√

U
P †
2 UP

2

HP
2;diag

UP
2√

U
P †
2 UP

2

= Trel + V P
eff, (10)

where V P
eff is the resulting primary effective NN interaction

and we suppress the subscript “2.” The interaction V P
eff depends

on A and the chosen P space including the selected value of
�. Note that the unitary transformation (10) is identical to
OLS unitary transformation [24–26] which satisfies the de-
coupling condition QHeffP := H

QP
2 = 0 where the submatrix

QHeffP = 0 is one of two decoupling conditions depicted in
Fig. 1 for the primary Hamiltonian.

There are certain freedoms within the OLS renormalization
procedure as well as mathematical restrictions [29]. In this
context, we note that in, our application, we select the dP

064301-3



E. DIKMEN et al. PHYSICAL REVIEW C 91, 064301 (2015)

lowest eigenvalues and eigenvectors of H2 for input to our
primary effective Hamiltonian through Eq. (7) and obtain
numerically stable and accurate results.

B. Transformation of many-body Hamiltonian
into sd-shell space

After a unitary transformation of the bare Hamiltonian
in Eq. (4) to the 4�� (Nmax = 4) model space for the
case of 18F, we calculate the 18-body effective Hamiltonian
PHeffP := HP

18 in the 4�� space and solve for its low-lying
eigenvalues and eigenvectors in a NCSM calculation. This is
analogous to solving the a = 2 case above so we introduce the
corresponding subscript 18. We obtain a sufficient number
of these 18-body solutions to generate a second unitary
transformation to take HP

18 from the 4�� model space to a
smaller secondary subspace P ′, e.g., the sd-shell space, given
by N ′

max = 0. The secondary effective Hamiltonian is called
HP ′P

a′ with a′ = 18 and is represented by P ′H ′
effP

′ in Fig. 1.
This “second step” outlined above follows a similar path

to the “first step” and is indicated by the work flow at the
upper right in Fig. 1. Note that the P space in the first
unitary transformation is now split into parts related to the two
subspaces, P ′ and Q′, where P ′ + Q′ = P . Our secondary
effective Hamiltonian HP ′P

18 is designed to reproduce exactly
the lowest dP ′ eigenvalues of the primary effective Hamiltonian
HP

18 through

HP ′P
18 = U

P ′†
18√

U
P ′†
18 UP ′

18

HP ′
18;diag

UP ′
18√

U
P ′†
18 UP ′

18

= Trel + V P ′P
eff , (11)

where V P ′P
eff is the resulting secondary effective interaction and

we suppress the label for the a′ = 18 dependence.
This secondary effective Hamiltonian (11) is, in general,

an 18-body operator. However, in the N ′
max = 0 case, the

matrix dimension of the 18-body secondary effective Hamil-
tonian (11) is the same as the matrix dimension of a one-body
plus two-body effective Hamiltonian acting in the sd-shell
space. This means that HP ′P

18 can be taken to consist of only
one-body and two-body terms, even after the exact 18-body
cluster transformation. All the orbitals below the sd-shell
space are fully occupied by the other 16 nucleon spectators,
and the total 18-body wave function can be exactly factorized
into a 16-body 0+ and two-body sd-shell wave functions. This
considerably simplifies calculations with HP ′P

18 . Therefore, we
can write a′ as a′ = ac + av, where ac is the number of core
nucleons (16 in this case) and av is the size of the valence
cluster.

In the third step outlined above we solve for the eigenvalues
of 17F and 17O in the P space by using the effective interaction
V P

eff from Eq. (10) joined with the Trel for A = 17 to obtain the
proton and neutron one-body terms of the secondary effective
Hamiltonian in the sd-shell space. Then we subtract the one-
body terms from the secondary effective Hamiltonian of 18F,
and we obtain the effective “residual two-body interaction”
matrix elements (or simply the TBMEs) in the sd-shell space.
Additionally, in the third step, we evaluate the 16O core energy

by solving for its ground-state energy using the effective
interaction V P

eff from Eq. (10) joined with Trel for 16O.
Here, we adopt the A = 16 (17) relative-kinetic-energy

operators for NCSM evaluations of the core (single-particle)
energies in step three. In earlier papers [21,30], based on the
NCSM with a core first developed in Ref. [11], a much stronger
A dependence was obtained than in our present sd-shell
calculations. We now understand these earlier results in terms
of how the core and single-particle energies are calculated. In
these earlier studies, the A dependence of the kinetic-energy
operator in the many-nucleon Hamiltonian used for calculating
the core and single-particle energies was taken to be the total
A of the nucleus being studied. In our current calculations,
we use A(core) = 16 for the kinetic-energy operator when
calculating the core energy and A(core + 1) = 17 when
calculating the single-particle energies, independent of the
total A of the nucleus being studied. Because the A dependence
of the kinetic-energy operator goes as 1/A, using the total A
instead of A(core) or A(core + 1) produces a much larger A
dependence of the core and single-particle energies. Both these
choices are technically correct (i.e., they produce identical
results for the nucleus being studied, as we have verified) and
merely reflect that these effective valence-space interactions
are not uniquely defined. With our current choice, we achieve
weak A dependence of our resulting core, single-particle,
and valence effective interactions for sd-shell applications,
which is appealing since this is a characteristic that is
commonly found in phenomenological effective interactions.
Our weak A dependence is also consistent with other ab initio
investigations using either the IM-SRG technique [22] or the
coupled-cluster method [23].

We then proceed to the fourth step and subtract this core
energy from the energies of the single-particle states of 17F and
17O mentioned above to arrive at our valence single-particle
energies. At the completion of step four, we have our twobody
valence-core (2BVC) effective Hamiltonian that may be used
in standard shell-model (SSM) calculations.

By using these core plus valence space single-particle
energies along with the derived residual two-body effective
interactions, we can perform the SSM calculations for 18F,
as well as other nuclei, in the sd shell and compare with full
NCSM calculations in the 4�� space by using the primary
effective Hamiltonian. The SSM calculations for 18F will, by
construction, give the same results as the NCSM calculations
for 18F within numerical precision. A corresponding approach
for A > 18 nuclei is exemplified below where we also provide
a direct comparison between NCSM and SSM results. One
may then proceed, in principle, with SSM calculations to cases
where full NCSM results are beyond current technical means.

We may summarize the results of steps 2–4 by arranging
the results for the secondary effective Hamiltonian HP ′P

a′ into
separate terms:

HP ′P
a′ = HP ′P

ac
+ HP ′P

sp + V P ′P
av

, (12)

where we have allowed for the more general case of two
successive renormalization steps (signified by P ′P ) with
a′ = A in the present discussion. In Eq. (12) Hac

represents the
core Hamiltonian for ac nucleons; Hsp represents the valence
nucleon single-particle Hamiltonian and Vav

represents the
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av-body residual effective valence interaction. Note that Vav

may be used for systems with more than av valence nucleons,
as we demonstrate below. We also note that the core and the
valence single-particle Hamiltonians include their respective
kinetic-energy terms.

In line with our approximations mentioned above, we
use 18F alone to derive our isospin-dependent effective two-
body interaction V P ′P

2 for the sd shell. We then restrict our
applications, at present, to cases with at most one proton in the
sd shell.

In SSM calculations, one typically uses only the Hsp and
Vav

terms in Eq. (12). In phenomenological Hamiltonians Hsp

is often taken from experiment and av = 2 matrix elements are
obtained by fits to properties of a set of nuclei. We will present
detailed comparisons between our derived Hsp and Vav

terms
with phenomenological interactions in a future presentation.

There is an important distinction between our SSM calcula-
tions (with our Hamiltonian derived from the ab initio NCSM)
and conventional SSM calculations with phenomenological
interactions. We preserve the factorization of the CM motion
throughout our derivation for the primary and secondary
effective Hamiltonians. Therefore, the N ′

max = 0 secondary
effective Hamiltonian not only reproduces the appropriate
Nmax NCSM eigenvalues but also affords access to wave
functions for these N ′

max = 0 states which may be written with
a factorized CM wave function of the entire system.

III. EFFECTIVE TWO-BODY sd-SHELL INTERACTION

In NCSM calculations, the dimension of the primary
effective Hamiltonian increases very rapidly as we increase
Nmax and/or the number of nucleons. We restricted the model
space to Nmax = 4 in order to limit the computational effort,
since our main goal is to demonstrate the procedure to obtain
effective interactions in the sd shell for the shell model with
the 16O core using the ab initio NCSM and to test these derived
effective interactions with SSM calculations. In order to carry
out NCSM calculations, we used the MFDn code [31–33] with
the JISP16 and chiral N3LO NN interactions. For the SSM
calculations, we used a specialized version of the shell-model
code ANTOINE [34–36].

A. Core and valence effective interactions for A = 18 system

Following the methods presented in Sec. II for HP
2

in Eq. (10), we calculated the 18-body primary effective
Hamiltonians with Nmax = 4 and �� = 14 MeV by using the
bare JISP16 [27] and chiral N3LO [28] potentials for V NN

ij .
We chose �� = 14 MeV since it is near the minimum of the
ground-state energy of 16O at Nmax = 4 [27] and it represents
a typical choice for derived effective shell-model valence
interactions (see, for example, Ref. [37]). Future efforts with
primary effective Hamiltonians derived in larger-Nmax spaces
will be needed for meaningful analyses of the �� dependence
of our results.

We solve for the 18F spectra in NCSM calculations with
these primary effective Hamiltonians and present the lowest 28
eigenvalues in Table I. The corresponding NCSM eigenvectors
for these 28 states in the Nmax = 4 space are the eigenvectors

TABLE I. The NCSM energies (in MeV) of the lowest 28 states
J π

i of 18F calculated in 4�� model space by using JISP16 and chiral
N3LO NN interactions with �� = 14 MeV.

J π
i T JISP16 J π

i T N3LO

1+
1 0 −122.742 1+

1 0 −126.964

3+
1 0 −122.055 3+

1 0 −126.214

0+
1 1 −121.320 0+

1 1 −125.510

5+
1 0 −120.329 5+

1 0 −124.545

2+
1 1 −119.505 2+

1 1 −123.974

2+
2 0 −119.011 2+

2 0 −123.890

1+
2 0 −118.709 1+

2 0 −123.077

0+
2 1 −118.410 0+

2 1 −122.586

2+
3 1 −117.211 2+

3 1 −121.588

3+
2 1 −117.035 4+

1 1 −121.512

4+
1 1 −117.004 3+

2 1 −121.450

3+
3 0 −116.765 3+

3 0 −121.376

1+
3 0 −113.565 1+

3 0 −119.658

4+
2 0 −112.314 4+

2 0 −118.656

2+
4 0 −111.899 2+

4 0 −117.950

1+
4 0 −110.357 1+

4 0 −116.106

4+
3 1 −109.625 4+

3 1 −115.785

2+
5 1 −109.292 2+

5 1 −115.407

1+
5 1 −108.752 3+

4 0 −115.309

3+
4 0 −108.706 1+

5 1 −114.870

2+
6 0 −108.485 2+

6 0 −114.787

1+
6 1 −108.055 1+

6 1 −114.392

2+
7 1 −108.041 3+

5 1 −114.258

3+
5 1 −107.874 2+

7 1 −114.176

3+
6 0 −101.528 3+

6 0 −109.316

1+
7 0 −99.946 1+

7 0 −107.798

0+
3 1 −99.848 2+

8 1 −107.473

2+
8 1 −99.607 0+

3 1 −107.436

dominated by Nmax = 0 components. These 28 eigenstates
correspond with the complete set of Nmax = 0 states in the sd
shell.

For each of these primary effective Hamiltonians HP
2 we

then followed steps 2–4 above to calculate secondary effective
Hamiltonians HP ′P

18 as well as the resulting six valence
single-particle energies HP ′P

sp (three for neutrons and three for
protons) and 63 valence two-body effective interaction matrix
elements of V P ′P

2 in the coupled JT representation.
We now elaborate on the method of separating the sec-

ondary effective Hamiltonian HP ′P
18 into its components indi-

cated in Eq. (12). According to step 3 we first perform separate
NCSM calculations for 17F and 17O using the Hamiltonian
consisting of the same V P

eff from Eq. (10) combined with Trel for
A = 17. These two calculations provide total single-particle
energies for the valence protons and neutrons, respectively,
that are expressed as matrix elements of HP ′P

ac
+ HP ′P

sp .
We continue with the second part of step 3 to obtain the

core energy (Ecore) through a NCSM calculation for 16O by
using the Hamiltonian consisting of V P

eff from Eq. (10) in

064301-5



E. DIKMEN et al. PHYSICAL REVIEW C 91, 064301 (2015)

combination with Trel for 16O. The resulting 16O ground-state
energy defines the contribution of HP ′P

ac
to the matrix elements

of HP ′P
ac

+ HP ′P
sp obtained in the 17F and 17O calculations. The

valence single-particle energies, the eigenvalues of HP ′P
sp , are

then defined as the total single-particle energies less the core
energy.

To obtain the TBMEs of the valence effective interaction
V P ′P

2 , we execute step 4 and subtract the contributions of
the core and valence single-particle energies from the matrix
elements of HP ′P

18 to isolate V P ′P
2 in Eq. (12). To be specific,

we designate our valence single-particle states by their angular
momenta ji = 1

2 , 3
2 , 5

2 . Then, we define the contribution
to the doubly reduced coupled-JT TBMEs (signified by
the subscript JT on the TBME) arising from the core and
one-body terms as

〈jajb|
∣∣HP ′P

ac
+ HP ′P

sp

∣∣|jcjd〉JT

= [
Ecore + 1

2

(
εn
ja

+ ε
p
ja

+ εn
jb

+ ε
p
jb

)]
δja,jc

δjb,jd
, (13)

where εj represents the valence single-particle energy for the
orbital with angular momentum j and the superscript n (p),
designates neutron (proton) for the energy associated with the
17O ( 17F) calculation, respectively.

The resulting doubly reduced coupled-JT TBMEs of the
valence effective interaction V P ′P

2 are expressed as

〈jajb|
∣∣V P ′P

2

∣∣|jcjd〉JT

= 〈jajb|
∣∣HP ′P

a′ − HP ′P
ac

− HP ′P
sp

∣∣|jcjd〉JT . (14)

By using the symmetries of the coupled-JT representation,
there are 63 unique TBMEs for which ja � jb.

We confirm the accuracy of this subtraction procedure by
demonstrating that SSM calculations with the derived core,
one-body, and two-body terms of Eq. (12) in the sd-shell space
reproduce the absolute energies of the lowest 28 states of the
4�� NCSM calculations for 18F shown in Table I.

The results for the core energy (Ecore) and valence single-
particle energies (εn

j ,ε
p
j ) for the JISP16 interaction are pre-

sented on the left-hand side of Table II for our leading example
where the primary effective Hamiltonian is derived for A = 18.
The corresponding core energy and valence single-particle
energy results for the chiral N3LO interaction are presented
on the left-hand side of Table III. The valence single-particle
energies clearly reflect overall Coulomb energy shifts between
NCSM calculations for 17F and 17O.

The resulting TBMEs of the secondary effective Hamilto-
nian HP ′P

18 in Eq. (11) and of the valence effective interaction

TABLE II. Proton and neutron single-particle energies (in MeV)
for JISP16 effective interaction obtained for the mass of A = 18 and
A = 19.

ji A = 18 A = 19
Ecore = −115.529 Ecore = −115.319

1
2

5
2

3
2

1
2

5
2

3
2

εn
ji

−3.068 −2.270 6.262 −3.044 −2.248 6.289
ε

p
ji

0.603 1.398 9.748 0.627 1.419 9.774

TABLE III. Proton and neutron single-particle energies (in MeV)
for chiral N3LO effective interaction obtained for the mass of A = 18
and A = 19.

ji A = 18 A = 19
Ecore = −118.469 Ecore = −118.306

1
2

5
2

3
2

1
2

5
2

3
2

εn
ji

−3.638 −3.042 3.763 −3.625 −3.031 3.770
ε

p
ji

0.044 0.690 7.299 0.057 0.700 7.307

V P ′P
2 in Eq. (14) are given in the seventh and eighth columns

respectively of Tables IV and V in the Appendix. The results
of Table IV are obtained with the JISP16NN interaction while
those in Table V are obtained with the chiral N3LO NN
interaction.

These results for A = 18 with JISP16 presented in Tables II
and IV (as well as the corresponding results with chiral N3LO
in Tables III and V) show the dominant contribution of Ecore to
the diagonal TBMEs of the secondary effective Hamiltonian
HP ′P

18 , as may be expected. When these Ecore contributions
along with the one-body contributions subtracted following
Eq. (14), the resulting diagonal matrix elements of V P ′P

2 fall in
the range of conventional phenomenological valence nucleon
effective interactions. The nondiagonal TBMEs for A = 18
shown in columns seven and eight of Tables IV and V remain
unchanged by the subtraction process of Eq. (14) as required
by the Kronecker deltas in Eq. (13).

The resulting TBMEs of V P ′P
2 in column eight of Tables IV

and V (see tables in the Appendix) appear highly correlated,
as shown in Fig. 2, indicating significant independence of the
valence nucleon interactions from the underlying realistic NN
interaction. On the other hand, there is a noticeable dependence
on the NN interaction seen in the spin-orbit splitting of the
valence single-particle energies in Tables II and III. For both
the splitting of the d5/2 and d3/2 orbitals, and the splitting of
the s1/2 and the d3/2 orbitals, the JISP16 interaction produces
significantly larger results than the chiral N3LO interaction.
This is most noticeable in the approximately 30%, or 2 MeV,
larger splittings of the d5/2 and d3/2 orbitals obtained with
JISP16.

Note that both JISP16 and N3LO lead to splittings of the
d5/2 and d3/2 orbitals that are larger than the phenomenological
shell-model result which is based on experiment. In addition,
the order of the calculated s1/2 and d5/2 orbitals are inverted
compared with experiment. That is, 17F and 17O have a 5/2+
ground state, an excited 1/2+ at about 0.5 and 0.9 MeV
respectively, and an excited 3/2+ at about 5 MeV. Of course,
neither JISP16 nor the chiral N3LO interaction have been
fit to any observable in the sd shell. In addition, these
calculated splittings should be sensitive to the 3NF, which is
known to impact spin-orbit coupling effects in p-shell NCSM
investigations [8,15–17,19].

B. Two-body valence cluster approximation for A = 19 system

We now illustrate our approach for going to heavier nuclei
by adopting the specific example of 19F. In theory, we could
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JISP16A=18 (MeV)

N
3
L
O

A
=

1
8

(M
eV

)

-6
-6

-4

-4

-2

-2

0

0

2

2

4

4 T = 0
T = 1
y = x

y = 0.981x

FIG. 2. (Color online) Correlation between chiral N3LO and
JISP16 TBMEs plotted in units of MeV. The 63 TBMEs are derived
for A = 18 with the methods described in the text and are presented
in the eighth columns of Tables IV and V. Red circles (blue squares)
represent T = 0 (1) matrix elements. The diagonal dashed line
is the reference for equal matrix elements. The solid red line is
a linear fit to the correlation points with the result y = 0.981x.
The root-mean-square deviation between the two sets of TBMEs
is 0.203 MeV. A plot of the A = 19 results in the tenth columns of
Tables IV and V would be nearly indistinguishable from this plot.

proceed as with our application in the previous section; retain
ac = 16 and increase av in pace with the increase with A. Thus,
for A = 19 we would derive matrix elements of an effective
valence 3NF. However, this is not a practical path since there is
no net gain over performing full NCSM calculations for each
A en route to the secondary effective Hamiltonian. Instead, we
present an alternative approximate path to heavier nuclei.

Our procedure for going to heavier nuclei in the sd shell
is to specify the sd-shell nucleus of interest with its value of
A in the first step—the construction of the primary effective
interaction V P

eff of Eq. (10). Then we define the two-body
cluster Hamiltonian in Eq. (4) with this new value of A
(A = 19 in our specific example) which is subsequently
used to construct the primary effective interaction. Next,
we perform steps 2–4 as before with ac = 16, av = 2, and
neglecting effective many-valence-nucleon interactions: we
perform 18F, 17F, 17O, and 16O NCSM calculations with this
primary effective interaction V P

eff in order to extract the core
energy, proton and neutron valence single-particle energies,
and valence TBMEs. This is the 2BVC applied for general
A. The generalization to av = 3 (the 3BVC approximation)
is straightforward but computationally demanding. Note that
for A = 19 the 3BVC would correspond to a complete NCSM
calculation.

As an alternative, one may simply neglect any A depen-
dence of the core energy, valence single-particle energies, and
valence TBMEs and perform SSM calculations throughout the
sd shell with the effective shell-model interaction derived for
18F. We also illustrate this choice below with the example
of 19F.

We now investigate the consequences of neglecting the
induced 3NF and of neglecting the A dependence of V P

eff .
That is, we simply use the the derived core energy, valence
single-particle energies, and valence TBMEs from the previous
section in a SSM calculation of 19F. For comparison, we also
derive these quantities specifically for the 19F system in the
2BVC approximation, and we compare both with a complete
NCSM calculations for 19F, which corresponds to performing
the 3BVC approximation.

For the 2BVC approach to 19F, we perform step 1 beginning
with A = 19 instead of A = 18 in Eqs. (1)–(4). That is, we
calculate the primary effective Hamiltonian of Eq. (10) for
19F instead of 18F. Then we proceed through the remaining
equations, as we did for 18F, using V P

eff defined in Eq. (10).
For example, in the second step we solve for the secondary
effective Hamiltonian HP ′P

a′ with a′ = 18 at Nmax = 4 using
Eq. (11) as before. This establishes the foundation for
proceeding with steps 3 and 4 to obtain the core energy,
valence single-particle energies and valence TBMEs needed
for solving 19F in a SSM calculation.

The resulting core energies and valence single-particle
energies calculated by using JISP16 and chiral N3LO effective
interactions are given in the right-hand columns of Tables II
and III, respectively. The core energies for the A = 19 case
are less attractive than the A = 18 case by 210 keV (163 keV)
for JISP16 (chiral N3LO). The single-particle energies for
the A = 18 and A = 19 cases differ by less than 30 keV
(20 keV) for JISP16 (chiral N3LO). We observe, therefore, that
the core and single-particle energies exhibit similarly weak A
dependence for both interactions.

The resulting TBMEs of the secondary effective Hamilto-
nian HP ′P

18 in Eq. (11) and of the valence effective interaction
V P ′P

2 in Eq. (14) are given in the ninth and tenth columns,
respectively, of Table IV (for JISP16) and Table V (for chiral
N3LO) in the Appendix. One observes a good correlation
between the TBME results from the A = 18 case and the
A = 19 case by comparing column seven with column nine
and column eight with column ten in both Tables IV (for
JISP16) and V (for chiral N3LO). The TBME’s of V P ′P

2
exhibit particularly weak A dependence. The largest difference
between the TBMEs in columns eight and ten in Table IV (for
JISP16) is 9 keV and the corresponding largest difference in
Table V (for chiral N3LO) is 4 keV.

Our observed weak A dependence of the core energies,
valence single-particle energies, and TBMEs is consistent with
the view that the OLS transformation to the P space accounts
for the high-momentum components of the NN interaction
and the results are approximately independent of whether the
two-body cluster is treated as embedded in A = 18 or in A =
19. The similarity of the derived TBMEs is also suggestive of
a common, or universal, soft effective NN interaction.

We may elaborate on these points by noting that the first
OLS transformation can be viewed as reducing the ultraviolet
(UV) regulator of the JISP16 and N3LO interactions to the UV
scale of the HO basis space limit controlled by Nmax and by ��.
The HO basis space UV regulator imposed by our first OLS
transformation may be estimated by using N , the maximum
of 2n + l of the HO single-particle orbits included in the P
space. For 18F (or 19F) with Nmax = 4 and �� = 14 MeV
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this UV regulator is estimated to be either
√

(N + 3/2)m� =
1.59 fm−1 according to Ref. [38] or

√
2(N + 3/2 + 2)m� =

2.53 fm−1 according to Ref. [39]. In either case, the estimated
UV regulator is independent of A and is sufficiently low that
we may speculate that our chosen NN interactions are yielding
a common (or universal) UV-regulated primary effective NN
interaction with the UV-regulation scale fixed by our choice
of P space. Subsequent processing through the second OLS
transformation is the same for both primary effective NN
interactions so it retains that universality feature.

C. SSM and NCSM calculations for 18F and 19F
with A = 18 and A = 19 interactions

We performed SSM calculations for the ground state and
a few low-lying excited states of 18F and 19F by using the
secondary effective Hamiltonians HP ′P

18 of Eq. (12) developed
from the JISP16 and chiral N3LO potentials. We performed
these SSM calculations with the code ANTOINE [34–36] by
explicitly summing the one-body and two-body components
on the right-hand side of Eq. (12) whose matrix elements are
presented in Tables II and IV for JISP16 and in Tables III and V
for chiral N3LO. Next, we add the respective core energy to
the resulting spectra to yield total energies for comparison
with NCSM calculations performed with the primary effective
Hamiltonian.

We also carried out NCSM calculations for 18F and 19F
by using the primary effective Hamiltonians HP

2 of Eq. (10)
which are based on the selected NN interaction and on the

FIG. 3. (Color online) The ground-state energy (in MeV) and
low-lying excited-state energies of 18F and 19F obtained by the
NCSM and SSM calculations using the effective JISP16 interaction.
The tags A = 18 and A = 19 at the bottom of each column refer to the
effective JISP16 interaction obtained with the 2BVC approximation
for general A. That is, the tags A = 18 and A = 19 represent nucleus
A used for deriving the primary effective Hamiltonian. In addition,
we retain only effective core, one-body, and two-body terms for the
secondary effective Hamiltonian.

FIG. 4. (Color online) The ground-state energy (in MeV) and
low-lying excited-state energies of 18F and 19F obtained by the
NCSM and SSM calculations using the effective chiral N3LO
interaction. The tags A = 18 and A = 19 at the bottom of each
column refer to the effective JISP16 interaction obtained with the
2BVC approximation for general A. That is, the tags A = 18 and
A = 19 represent nucleus A used for deriving the primary effective
Hamiltonian. In addition, we retain only effective core, one-body, and
two-body terms for the secondary effective Hamiltonian.

selected A in Eqs. (1)–(4). The SSM and NCSM results for
the ground state and a few low-lying excited states of 18F
and 19F are shown in Fig. 3 for JISP16 and in Fig. 4 for
chiral N3LO. The nucleus for which the spectra are presented
(18F or 19F) is specified at the top of each column along
with the many-body method—either NCSM with the primary
effective Hamiltonian or SSM with the secondary effective
Hamiltonian. Below each column we specify the A used in
Eqs. (1)–(4). When the results of the NCSM and SSM are
the same with both many-body methods (as they should be
theoretically for 18F), they appear as a single column with
the label “NCSM/SSM.” This situation, a simple cross-check
of the manipulations and the codes, is presented in the
first column of Fig. 3 for JISP16 and of Fig. 4 for chiral
N3LO. Although these figures show only the lowest states, the
cross-check is verified for all 28 states of two nucleons in the
sd shell.

The remaining three columns of Figs. 3 and 4 display two
SSM calculations with the secondary effective Hamiltonians
and the exact NCSM calculation, all for 19F. The second
(third) column shows the results of using the primary effective
Hamiltonian for A = 18 (A = 19) in the 2BVC approximation
and solving the resulting SSM for 19F as outlined above. The
difference between the second and third columns is interesting
since it reflects two different 2BVC approximations. In the
second column, we see the effect of ignoring the contributions
(both two body and three body) that one additional neutron
makes by interacting with all nucleons in 18F. In the third
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column we see the effect of ignoring the contributions of
all interactions in 19F to the effective three-body valence
interaction in 19F. The differences between columns two,
three, and four (discussed further below) are almost entirely
due to the differences in the ground-state energies; the spectra
are nearly the same. The ground-state energies in columns two
and three in Figs. 3 and 4 differ over a range from 4 to 211 keV
compared with the exact results in column four.

The effects neglected in the two different approximations
represented in columns two and three of Figs. 3 and 4 led to
small differences in the spectroscopy and, therefore, suggest
that both are potentially fruitful paths for further investigation.
However, when performing 2BVC calculations for A > 19
nuclei (i.e., continuing to retain only core-, one-, and two-body
interaction terms) it is natural to expect that the difference
between the SSM and NCSM calculations would increase due
to the neglect of induced valence three-body, four-body, etc.,
interactions. The current results suggest that the dominant
effect of neglecting these higher-body induced interactions
may appear mainly as an overall shift in the spectrum. For
the case of 19F, the shift between columns three and four in
Fig. 3 (4) shows that the 2BVC approximation for A = 19 is
responsible for an overall net attraction (repulsion) of about
117 keV (4 keV) which is small on the scale of the overall
binding.

The overall shift between columns two and three in Fig. 3
(4) shows that the differences in our derived SSM Hamiltonians
produce about a 284 keV (207 keV) displacement in the
binding energy. By referring to the results shown in Tables II
and III, we find that this displacement in binding energies is
attributed approximately to the difference in the core energies
(about 80% of the displacement) and to the difference in the
sum of single-particle energies for the three valence nucleons
(about 20% of the displacement). These displacements may be
cast either as diagonal matrix elements of neglected induced
3NFs or as corrections to the core and valence single-particle
energies (or to a combination of both). The distribution of these
displacements will appear naturally when the 3BVC (i.e., full
av = 3) calculation is performed for 19F.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

We calculated A-dependent effective NCSM Hamiltonians,
called primary effective Hamiltonians [step 1 that leads to
Eq. (10)], in a 4�� model space with the realistic JISP16
and chiral N3LO NN interactions. Next, we have solved
the NCSM for low-lying eigenstates sufficient to derive a
secondary effective Hamiltonian that acts only in the 0��
model space for the sd shell yet retains information from the
full A-body correlations present in the NCSM solutions [step 2
that leads to Eq. (11)]. We then separate the TBMEs of the sec-
ondary effective Hamiltonians into core, one-body, and two-
body contributions [steps 3 and 4 that lead to Eq. (12)] which
defines to the 2BVC effective Hamiltonian suitable for SSM
calculations. Finally, we use these secondary effective Hamil-
tonians in SSM calculations and compare with exact NCSM
results based on the primary Hamiltonians for A = 18 and 19.

We estimate that the first OLS transformation on the JISP16
and chiral N3LO NN interactions produces primary effective
interactions down to a sufficiently low UV regulator scale that
we obtain a nearly common, or universal, primary effective
NN interaction. Subsequent processing through the second
OLS transformation retains universality features resulting
in TBMEs from JISP16 and chiral N3LO that are highly
correlated as visualized in Fig. 2.

The SSM spectra for A = 18 in the valence space are the
same as the low-lying NCSM spectra since our theory of the
secondary effective Hamiltonian is derived from the NCSM
solutions obtained with the primary effective Hamiltonian.
With the 2BVC approximation, for which we present two
approaches, there are small differences between the SSM and
NCSM spectra for the 19F system. These differences are due
to the omitted three-body effective interactions for the 19F
system and are observed primarily as overall shifts in the
spectra that are mainly due to shifts in the core energies. Close
examination of the core, one-body, and two-body components
of the secondary effective Hamiltonians shows weak A
dependence, which is encouraging for application to heavier
nuclei.

We will extend our investigations to obtain more complete
results in sd shell by proceeding to a higher Nmax model space
for NCSM solutions with the primary effective Hamiltonian.
We will extend the 2BVC approximation to the 3BVC
approximation by including the three-body components of
the secondary effective Hamiltonians. In addition, we plan
to incorporate initial 3NFs in the NCSM calculations that
complement the realistic NN interactions.
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APPENDIX: TABULATION OF DERIVED TWO-BODY
MATRIX ELEMENTS

In this Appendix, we present the tables of our derived 2-
body matrix elements (TBMEs).
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TABLE IV. The TBMEs (in MeV) of the secondary-sd-shell
effective Hamiltonian HP ′P

18 obtained from the NCSM calculation
with Nmax = 4, �� = 14 MeV, and the JISP16 potential for 18F
are shown as well as the TBMEs of its residual valence effective
interaction, V P ′P

2 . Pairs of columns are labeled by the A used in
Eqs. (1)–(4) to develop the primary effective NCSM Hamiltonian as
discussed in the text.

2ja 2jb 2jc 2jd J T A = 18 A = 19

HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

1 1 1 1 0 1 −120.176 −2.182 −119.917 −2.181
1 1 3 3 0 1 −0.924 −0.924 −0.924 −0.924
1 1 5 5 0 1 −1.274 −1.274 −1.274 −1.274
3 3 3 3 0 1 −100.477 −0.958 −100.214 −0.958
3 3 5 5 0 1 −3.397 −3.397 −3.396 −3.396
5 5 5 5 0 1 −118.926 −2.525 −118.673 −2.525
1 1 1 1 1 0 −121.296 −3.302 −121.032 −3.296
1 1 1 3 1 0 −0.378 −0.378 −0.383 −0.383
1 1 3 3 1 0 0.231 0.231 0.236 0.236
1 1 3 5 1 0 2.054 2.054 2.052 2.052
1 1 5 5 1 0 −0.936 −0.936 −0.939 −0.939
1 3 1 3 1 0 −112.168 −3.412 −111.902 −3.406
1 3 3 3 1 0 −1.380 −1.380 −1.384 −1.384
1 3 3 5 1 0 1.455 1.455 1.456 1.456
1 3 5 5 1 0 0.525 0.525 0.528 0.528
3 3 3 3 1 0 −100.450 −0.931 −100.181 −0.925
3 3 3 5 1 0 −0.172 −0.172 −0.173 −0.173
3 3 5 5 1 0 2.511 2.511 2.508 2.508
3 5 3 5 1 0 −113.957 −5.997 −113.698 −5.996
3 5 5 5 1 0 3.579 3.579 3.580 3.580
5 5 5 5 1 0 −117.448 −1.047 −117.191 −1.043
1 3 1 3 1 1 −108.749 0.007 −108.487 0.009
1 3 3 5 1 1 0.042 0.042 0.042 0.042
3 5 3 5 1 1 −108.057 −0.097 −107.798 −0.096
1 3 1 3 2 0 −110.023 −1.267 −109.760 −1.264
1 3 1 5 2 0 −2.969 −2.969 −2.968 −2.968
1 3 3 5 2 0 −1.873 −1.873 −1.873 −1.873
1 5 1 5 2 0 −117.279 −0.081 −117.021 −0.079
1 5 3 5 2 0 −1.597 −1.597 −1.597 −1.597
3 5 3 5 2 0 −112.093 −4.133 −111.826 −4.124
1 3 1 3 2 1 −109.374 −0.618 −109.113 −0.617
1 3 1 5 2 1 1.504 1.504 1.504 1.504
1 3 3 3 2 1 0.185 0.185 0.185 0.185
1 3 3 5 2 1 0.601 0.601 0.601 0.601
1 3 5 5 2 1 1.005 1.005 1.005 1.005
1 5 1 5 2 1 −118.667 −1.469 −118.411 −1.469
1 5 3 3 2 1 −0.840 −0.840 −0.840 −0.840
1 5 3 5 2 1 −0.374 −0.374 −0.374 −0.374
1 5 5 5 2 1 −0.780 −0.780 −0.780 −0.780
3 3 3 3 2 1 −99.766 −0.247 −99.503 −0.247
3 3 3 5 2 1 −0.933 −0.933 −0.933 −0.933
3 3 5 5 2 1 −0.730 −0.730 −0.730 −0.730
3 5 3 5 2 1 −108.232 −0.272 −107.973 −0.271
3 5 5 5 2 1 −0.352 −0.352 −0.352 −0.352
5 5 5 5 2 1 −117.617 −1.216 −117.364 −1.216
1 5 1 5 3 0 −121.030 −3.832 −120.770 −3.828
1 5 3 3 3 0 0.068 0.068 0.066 0.066
1 5 3 5 3 0 1.373 1.373 1.375 1.375
1 5 5 5 3 0 −1.766 −1.766 −1.768 −1.768

TABLE IV. (Continued.)

2ja 2jb 2jc 2jd J T A = 18 A = 19

HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

3 3 3 3 3 0 −102.271 −2.752 −102.006 −2.750
3 3 3 5 3 0 2.000 2.000 1.998 1.998
3 3 5 5 3 0 0.961 0.961 0.963 0.963
3 5 3 5 3 0 −108.629 −0.669 −108.367 −0.665
3 5 5 5 3 0 2.308 2.308 2.306 2.306
5 5 5 5 3 0 −117.125 −0.724 −116.870 −0.722
1 5 1 5 3 1 −117.022 0.176 −116.765 0.177
1 5 3 5 3 1 −0.356 −0.356 −0.356 −0.356
3 5 3 5 3 1 −107.888 0.072 −107.629 0.073
3 5 3 5 4 0 −112.314 −4.354 −112.049 −4.347
3 5 3 5 4 1 −109.863 −1.903 −109.605 −1.903
3 5 5 5 4 1 −1.303 −1.303 −1.303 −1.303
5 5 5 5 4 1 −116.766 −0.365 −116.513 −0.365
5 5 5 5 5 0 −120.329 −3.928 −120.075 −3.927

TABLE V. The TBMEs (in MeV) of the secondary sd-shell
effective Hamiltonian HP ′P

18 obtained from the NCSM calculation
with Nmax = 4, �� = 14 MeV, and chiral N3LO potential for 18F
are shown as well as the TBMEs of its residual valence effective
interaction, V P ′P

2 . Pairs of columns are labeled by the A used in
Eqs. (1)–(4) to develop the primary effective NCSM Hamiltonian as
discussed in the text.

2ja 2jb 2jc 2jd J T A = 18 A = 19

HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

1 1 1 1 0 1 −124.196 −2.106 −123.978 −2.104
1 1 3 3 0 1 −0.991 −0.991 −0.991 −0.991
1 1 5 5 0 1 −1.268 −1.268 −1.268 −1.268
3 3 3 3 0 1 −108.265 −0.858 −108.086 −0.857
3 3 5 5 0 1 −3.538 −3.538 −3.537 −3.537
5 5 5 5 0 1 −123.099 −2.278 −122.914 −2.277
1 1 1 1 1 0 −125.152 −3.089 −124.960 −3.086
1 1 1 3 1 0 −0.022 −0.022 −0.023 −0.023
1 1 3 3 1 0 −0.175 −0.175 −0.175 −0.175
1 1 3 5 1 0 2.315 2.315 2.314 2.314
1 1 5 5 1 0 −0.750 −0.750 −0.750 −0.750
1 3 1 3 1 0 −118.632 −3.870 −118.418 −3.866
1 3 3 3 1 0 −1.149 −1.149 −1.148 −1.148
1 3 3 5 1 0 1.568 1.568 1.568 1.568
1 3 5 5 1 0 0.355 0.355 0.355 0.355
3 3 3 3 1 0 −108.280 −0.873 −108.101 −0.872
3 3 3 5 1 0 −0.217 −0.217 −0.217 −0.217
3 3 5 5 1 0 2.265 2.265 2.264 2.264
3 5 3 5 1 0 −119.761 −5.620 −119.549 −5.616
3 5 5 5 1 0 3.377 3.377 3.375 3.375
5 5 5 5 1 0 −121.832 −1.011 −121.646 −1.009
1 3 1 3 1 1 −114.838 −0.076 −114.627 −0.075
1 3 3 5 1 1 −0.157 −0.157 −0.156 −0.156
3 5 3 5 1 1 −114.478 −0.337 −114.268 −0.335
1 3 1 3 2 0 −116.128 −1.576 −116.126 −1.574
1 3 1 5 2 0 −2.623 −2.623 −2.622 −2.622
1 3 3 5 2 0 −1.980 −1.980 −1.978 −1.978
1 5 1 5 2 0 −121.972 −0.503 −121.757 −0.501
1 5 3 5 2 0 −1.703 −1.703 −1.702 −1.702
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TABLE V. (Continued.)

2ja 2jb 2jc 2jd J T A = 18 A = 19

HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

3 5 3 5 2 0 −118.482 −4.341 −118.271 −4.338
1 3 1 3 2 1 −115.422 −0.660 −115.211 −0.659
1 3 1 5 2 1 1.569 1.569 1.569 1.569
1 3 3 3 2 1 0.188 0.188 0.188 0.188
1 3 3 5 2 1 0.695 0.695 0.695 0.695
1 3 5 5 2 1 0.883 0.883 0.883 0.883
1 5 1 5 2 1 −122.903 −1.434 −122.688 −1.432
1 5 3 3 2 1 −0.869 −0.869 −0.869 −0.869
1 5 3 5 2 1 −0.298 −0.298 −0.298 −0.298
1 5 5 5 2 1 −0.802 −0.802 −0.802 −0.802
3 3 3 3 2 1 −107.666 −0.259 −107.487 −0.258
3 3 3 5 2 1 −0.885 −0.885 −0.885 −0.885
3 3 5 5 2 1 −0.813 −0.813 −0.813 −0.813
3 5 3 5 2 1 −114.549 −0.408 −114.340 −0.407
3 5 5 5 2 1 −0.359 −0.359 −0.359 −0.359
5 5 5 5 2 1 −122.077 −1.256 −121.892 −1.255
1 5 1 5 3 0 −125.266 −3.797 −125.049 −3.793

TABLE V. (Continued.)

2ja 2jb 2jc 2jd J T A = 18 A = 19

HP ′P
18 V P ′P

2 HP ′P
18 V P ′P

2

1 5 3 3 3 0 0.155 0.155 0.154 0.154
1 5 3 5 3 0 1.206 1.206 1.205 1.205
1 5 5 5 3 0 −1.648 −1.648 −1.647 −1.647
3 3 3 3 3 0 −110.003 −2.596 −109.822 −2.593
3 3 3 5 3 0 1.819 1.819 1.818 1.818
3 3 5 5 3 0 0.564 0.564 0.563 0.563
3 5 3 5 3 0 −115.233 −1.092 −115.023 −1.090
3 5 5 5 3 0 1.940 1.940 1.939 1.939
5 5 5 5 3 0 −121.768 −0.947 −121.583 −0.946
1 5 1 5 3 1 −121.476 −0.007 −121.262 −0.006
1 5 3 5 3 1 −0.094 −0.094 −0.094 −0.094
3 5 3 5 3 1 −114.287 −0.146 −114.078 −0.145
3 5 3 5 4 0 −118.684 −4.543 −118.472 −4.539
3 5 3 5 4 1 −116.134 −1.993 −115.924 −1.991
3 5 5 5 4 1 −1.319 −1.319 −1.318 −1.318
5 5 5 5 4 1 −121.190 −0.369 −121.006 −0.369
5 5 5 5 5 0 −124.545 −3.724 −124.358 −3.721
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