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Ab initio elastic tensor of cubic Ti0.5Al0.5N alloys: Dependence of elastic constants on size and shape
of the supercell model and their convergence

Ferenc Tasnádi,* M. Odén, and Igor A. Abrikosov
Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

(Received 3 November 2011; revised manuscript received 13 March 2012; published 20 April 2012)

In this study we discuss the performance of the special quasirandom structure (SQS) method in predicting the
elastic properties of B1 (rocksalt) Ti0.5Al0.5N alloy. We use a symmetry-based projection technique, which gives
the closest cubic approximate of the elastic tensor and allows us to align the SQSs of different shapes and sizes
for a comparison in modeling elastic tensors. We show that the derived closest cubic approximate of the elastic
tensor converges faster with respect to SQS size than the elastic tensor itself. That establishes a less demanding
computational strategy to achieve convergence for the elastic constants. We determine the cubic elastic constants
(Cij ) and Zener’s type elastic anisotropy (A) of Ti0.5Al0.5N. Optimal supercells, which capture accurately both
the configurational disorder and cubic symmetry of elastic tensor, result in C11 = 447 GPa, C12 = 158 GPa,
and C44 = 203 GPa with 3% of error and A = 1.40 with 6% of error. In addition, we establish the general
importance of selecting proper SQS with symmetry arguments to reliably model elasticity of alloys. We suggest
the calculation of nine elastic tensor elements: C11, C22, C33, C12, C13, C23, C44, C55, and C66, to analyze the
performance of SQSs and predict elastic constants of cubic alloys. The described methodology is general enough
to be extended for alloys with other symmetry at arbitrary composition.

DOI: 10.1103/PhysRevB.85.144112 PACS number(s): 62.20.de, 61.43.Bn

I. INTRODUCTION

TiAlN coatings with their good oxidation resistance and
excellent mechanical properties have attracted high technolog-
ical and academic interest.1 Several studies have been devoted
to extend our understanding in maximizing functionality and
operational efficiency of these alloys. The thermodynamics,
phase stability, and spinodal decomposition in TiAlN have
been analyzed,2,3 as well as the influence of nitrogen off-
stoichiometry4 and pressure.5 Theoretical analysis of alloying
TiAlN with Cr has resulted in a general design route to improve
the thermal stability of hard coatings.6 The importance of the
significant elastic anisotropy in TiAlN on the isostructural
spinodal decomposition has been discussed.7,8 Though the
available theoretical tools and modern supercomputers allow
us to tackle complex physical phenomena in alloys,9 the
prediction of anisotropic tensorial properties of substitutional
alloys, like their elasticity and piezoelectricity, from first
principles remains a challenging and highly requested task
in computational materials science.10,11

Although ordinary scalar cluster expansion12 offers an
exact treatment of the thermodynamics of alloys with its
tensorial generalization11 giving an elegant description of
anisotropic tensorial materials quantities of alloys, in practice
the computationally less demanding special quasirandom
structure (SQS) approach13 is often used instead. For example
the giant piezoelectric response of ScAlN alloys14,15 or the
mechanical properties of TiAlN7 have been successfully
described with this approach. Using different superstructures,
Mayrhofer et al. have discussed the impact of the alloy
configuration on the structural, elastic properties, and phase
stability in TiAlN.16 In B-doped wurtzite AlN significant
configurational dependence of the piezoelectric constant has
been predicted17 and electronic properties and nonlinear
macroscopic polarization in III-V nitride alloys with wurtzite
symmetry have been discussed.18,19

In these studies the success of the SQS approach in
describing the energetics of alloys was presumed for predicting
tensorial materials properties. Most of the previous theoretical
works assumed the experimentally observed symmetry for
the SQS supercells and focused only on the corresponding
principal symmetry nonequivalent tensor elements. The SQS
in principle breaks the point group symmetry of the original
alloy. Thus, improperly chosen SQS supercells may result
in a large discrepancy between theory and experiment or in
erroneous theoretical findings.

The SQS approach does not aim to generate structures
that preserve the point group symmetry of an alloy and
thus to provide the proper description of tensorial properties
of the alloy. In fact, different SQS supercells break the
symmetry differently. The comparison of the SQSs in terms of
modeling the elasticity of cubic Ti0.5Al0.5N is a rather complex
task. Detailed systematic studies of the application of SQS
method in predicting elastic constants of alloys are required.
For example, von Pezold et al.20 recently evaluated the
performance of symmetrically shaped (A × A × A) supercells
for the description of elasticity in substitutional AlTi alloys.
Convergence and error bars were obtained for the cubic-
averaged principle cubic elastic constants C̄11,C̄12, and C̄44

within the supercell configuration space. However, a general
concept of predicting tensorial materials properties with SQS
technique is still lacking.

Here, we present a projection approach for ab initio
calculation of elastic constants using the SQS method to study
the elastic properties of B1 Ti0.5Al0.5N. The idea is to search
for SQS that results in an elastic tensor closest to the true
one while including only the nonvanishing elements. Our
results establish the importance of selecting proper supercells
with symmetry arguments to reliably model elasticity of
alloys. We show that supercells even with optimal short-range
order (SRO) parameters may result in large noncubic elastic
constants. Furthermore, we reveal that the derived closest
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cubic approximate of the elastic tensor converges faster with
respect to SQS size than the elastic tensor itself. In summary,
to evaluate the performance of SQS and predict the elastic
properties of cubic alloys we suggest the calculation of nine
elastic tensor elements, C11, C22, C33, C12, C13, C23, C44, C55,
and C66, instead of three, as would be the case when cubic
symmetry of the supercell is assumed or 21, as would be
required in a general case.

II. METHOD

The techniques we applied to calculate and analyze the SQS
modeled elastic constants of cubic B1 Ti0.5Al0.5N alloy are
described. We introduce a projection technique that allows the
comparison of the elastic tensors obtained with SQS structures
of different shapes and sizes. The described methodology is
general enough to be extended for substitutional alloys with
any symmetry and arbitrary composition.

A. Special quasirandom structure approach
and symmetry consideration

The special quasirandom structure (SQS) approach13

greatly reduces the computational difficulties of modeling
thermodynamic properties of random alloys. The basic struc-
tural element of the SQS model is a supercell, which is
aimed to capture the structural short-range order (SRO).18 The
degree of SRO is usually measured by the Warren-Cowley
parameter α.21 For a pseudobinary A1−xBxN alloy it is defined
as α = 1 − PB(R)/xB , where PB(R) is the probability of
finding a B atom at a distance R from an A atom and xB

stands for the concentration of B. A perfectly random alloy is
characterized by vanishing αs, while α > 0 and α < 0 define
clustering and ordering, respectively. In principle, approximate
SQS supercells with small or vanishing SROs can only be
compared if the interaction parameters are known.9 In this
work the atomic configurations of the supercells were obtained
by including the Warren-Cowley SRO parameters of the first
seven nearest-neighboring shells on the metal sublattice. A
Metropolis-type simulated annealing algorithm22 was applied

to achieve the closest possible model of the perfectly random
alloy in all chosen size and shape models, (A × B × C).

The SQS approach in general breaks the point group
symmetry at different stages. The configurational disorder
changes the microscopic local environments, which generally
results in a triclinic lattice for a finite supercell. Moreover, the
SQS approach allows one to use an arbitrary supercell shape
and size (A × B × C) in terms of lattice vectors. Although this
arbitrariness increases the variational freedom to obtain closely
vanishing SRO parameters, it also decreases the symmetry of
the model. For B1 Ti0.5Al0.5N alloy, the SQS approach results
in elastic tensors with 21 nonvanishing elements. In general,
the elastic tensor in the SQS approach has a symmetry class that
is lower than what the alloy shows experimentally. As different
SQS supercells break the symmetry somewhat differently, the
comparison of the results can only be done after alignment. On
the example of B1 Ti0.5Al0.5N alloy we show that a projection
technique can provide such an alignment.

B. Calculational technique to obtain the elastic tensors

To obtain total energies and extract the elastic con-
stants of the supercells, density functional theory (DFT)
calculations were performed using the plane-wave ultra-
soft pseudopotential-based23 QUANTUM ESPRESSO program
package.24 The exchange correlation energy was approximated
by the Perdew-Burke-Ernzerhof generalized gradient func-
tional (PBE-GGA).25 The plane-wave cutoff energy together
with the Monkhorst-Pack sampling26 of the Brillouin zone
were tested and sufficient convergence was achieved. The
pseudopotentials were downloaded from the library linked
to QUANTUM ESPRESSO and tested by calculating the elastic
constants of bulk B1 AlN and TiN, which found to be in
agreement with literature data.16,27 In obtaining the ground-
state structure of SQS supercells, both the lattice parameters
and the internal atomic coordinates were relaxed by using
the extended molecular dynamics method with variable cell
shape.28 Thus, we avoided all residual stresses, which is es-
sential in performing an accurate comparison of the calculated

TABLE I. The Warren-Cowley pair short-range order parameters (SROs) up to the seventh neighboring shell for each SQS supercell
considered in this work.

Structure/shell Number of atoms 1 2 3 4 5 6 7

L10
a 8 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0

(2×2×2) 16 − 0.16 0.0 − 0.16 1.0 − 0.16 0.0 − 0.16
(2×3×2) 24 − 0.11 0.0 − 0.08 0.33 − 0.06 − 0.08 0.03
(4×3×2) 48 0.0 0.0 0.0 0.0 − 0.06 0.0 0.0
(4×3×2)*b 48 − 0.14 0.28 − 0.10 0.14 0.0 − 0.17 − 0.01
C1-(2×2×2)a,c 64 − 0.33 1.0 − 0.33 1.0 − 0.33 1.0 − 0.33
C3-(2×2×2)a,c 64 0.0 − 1.0 0.0 − 1.0 0.0 − 1.0 0.0
B1-(2 × 2 × 2)a,d 64 0.0 0.0 0.0 − 0.33 0.0 0.0 0.0
(4×3×4) 96 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4×4×3) 96 0.0 0.0 − 0.01 − 0.01 − 0.01 0.0 0.0
(4×4×4) 128 0.0 0.0 0.0 0.0 0.0 0.0 0.0

aThe structure is based on the fcc Bravais cell.
bThe * marks a different atomic configuration in the supercell.
cThe supercell was obtained by Mayrhofer et al. in Ref. 16.
dThe supercell was obtained by von Pezold et al. in Ref. 20.
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elastic tensors. In this dynamics, a value of 0.02 kbar was taken
as convergence threshold for the pressure. The elastic constants
were calculated via the second-order Taylor expansion of the
total energy

Cij = 1

V0

∂2E(ε1, . . . ,ε6)

∂εi∂εj

∣∣∣∣
0

, (1)

where Voigt’s notation is used to describe the strain ε and
elastic tensor Cij .29,30 To obtain the entire elastic tensor, 21
different distortions were applied without volume conserva-
tion. The elastic constants were calculated by standard finite
difference technique from total energy data obtained with ±
1% and ±2% distortions.

C. Projection of the elastic tensor to the closest elastic tensor
of higher symmetry

In this section we describe the projection technique in-
troduced by Moakher et al.31 to derive the closest elastic
tensors with cubic symmetry in the modeling of Ti0.5Al0.5N

by supercell method. The 21 inequivalent elastic constants
of a triclinic system can be given as a vector with 21
components

C = (C11,C22,C33,
√

2C23,
√

2C13,
√

2C12,2C44,2C55,

2C66,2C14,2C25,2C36,2C34,2C15,2C26,2C24,

2C35,2C16,2
√

2C56,2
√

2C46,2
√

2C45), (2)

where the normalization factors (2,
√

2) ensure the invariance
of the Euclidean norm on the representation, whether it is
vector or matrix. For the corresponding basis vectors see
Ref. 32. In general, projector P sym gives the closest elastic
tensor with higher point group symmetry Csym as

Csym = P symC. (3)

The term closest is used here in the sense that the Euclidean
distance ||C − Csym|| is minimal. In modeling B1 Ti0.5Al0.5N

alloy one should apply the projector given as a 21×21
matrix,31,32

P cub =
(

pcub 09×12

012×9 012×12

)
,

(4)

pcub =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/3 1/3 1/3 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 1/3 1/3 1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the obtained closest cubic elastic tensor is written as

Ccub = (C̄11,C̄11,C̄11,
√

2C̄12,
√

2C̄12,
√

2C̄12,2C̄44,

2C̄44,2C̄44,0,0,0,0,0,0,0,0,0,0,0,0), (5)

where the projected cubic elastic constants C̄11,C̄12, and C̄44

are calculated via simple averaging,

C̄11 = C11 + C22 + C33

3
C̄12 = C12 + C13 + C23

3 (6)

C̄44 = C44 + C55 + C66

3
.

We may also call them cubic-averaged elastic constants,
as Eq. (6) is equivalent with averaging over the three
crystallographic directions, [100], [010], and [001]. This
directional averaging was also used by von Pezold et al.20 in
searching for optimized supercells in AlTi alloys. According
to Eq. (6) one needs the nine independent tensor elements
C11,C22,C33,C23,C13,C12,C44,C55, and C66 to obtain the
closest cubic projection of an elastic tensor with arbitrary
symmetry. In case of true cubic point symmetry Eq. (6) results
in the well-known cubic identities of the elastic constants. The

rigid mathematical derivation of the projectors for all symme-
try classes—monoclinic, orthorhombic, tetragonal, trigonal,
hexagonal, cubic, and isotropic—can be found in Refs. 31
and 32. We explicitly present the projector for hexagonal point
group symmetry in the supplemental material.33

III. RESULTS AND DISCUSSION

In this section we present and compare the elastic
tensors obtained for the cubic (B1) TiA0.5l0.5N alloy. The
SQS supercells with shape and size, (2 × 2 × 2), (2 × 3 × 2),
(4 × 3 × 2), (4 × 3 × 4), (4 × 4 × 3), and (4 × 4 × 4) were
generated as described previously. The SQS supercell sizes are
measured in terms of the face centered cubic (fcc) unit vectors.
The obtained internal atomic configurations of the supercells
are given in the supplemental material.33 We also present
results for the ordered L10 structure and three other structures,
denoted here by C1-(2 × 2 × 2), C3-(2 × 2 × 2), and B1-
(2 × 2 × 2). The latter structures are based on the fcc Bravais
cell. The C1-(2 × 2 × 2) and C3-(2 × 2 × 2) were created by
Mayrhofer et al.16 considering the number of bonds between
the host and doping atoms. The C3-(2 × 2 × 2) structure was
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TABLE III. The projected principal cubic elastic constants and
the derived Zener’s elastic anisotropy Ā = 2C̄44/(C̄11 − C̄12) of
Ti0.5Al0.5N obtained with the different structural models. The bold
written values are our most accurate results.

Structure/constant C̄11 C̄12 C̄44 Ā

L10
a 384 193 107 1.12

(2×2×2) 475 149 209 1.28
(2×3×2) 420 169 193 1.53
(4×3×2) 439 160 188 1.35
(4×3×2)*,b 465 149 208 1.32
C1-(2×2×2)a,c 459 155 196 1.29
C3-(2×2×2)a,c 462 156 182 1.19
B1-(2×2×2)a,d 479 144 215 1.29
(4×3×4) 460 150 202 1.30
(4×4×3) 447 158 203 1.40
(4×4×4) 454 154 202 1.34

aThe structure is based on the fcc Bravais cell.
bThe * marks a different atomic configuration in the supercell.
cThe supercell was obtained by Mayrhofer et al. in Ref. 16.
dThe supercell was obtained by von Pezold et al. in Ref. 20.

designed to preserve the cubic symmetry. The B1-(2 × 2 × 2)
structure has been obtained by von Pezold using a Monte
Carlo scheme and averaging over the three orthogonal main
crystallographic directions.20 The SRO parameters of all
structures are summarized in Table I. The star (∗) marks the
SQS structure that is less random. See supplemental material33

for a detailed structural comparison of the supercells. We note
that the larger structural deviations in the case of (4 × 3 × 4)
already indicate deviating behavior for the analysis of elastic
constants.

For each of these structures the full elastic tensors have been
calculated. They are summarized in Table II. All the obtained
tensors exhibit deviations from a strict cubic symmetry.
Table II also lists the elastic tensors of B1 TiN and AlN
obtained with the (4 × 4 × 3) supercell. Here one should find
the cubic symmetry of elastic constants, therefore deviations
give an estimate of the numerical error in the usual first-
principles calculation of the elastic constants. We note also that
the elastic constants of B1 TiN and AlN show good agreement
with the literature data.16,27 As the C3-(2 × 2 × 2) supercell
preserves the cubic symmetry, its elastic tensor fulfills the
cubic relationships. The other nonvanishing elements define
our numerical accuracy, which is estimated to be around
3% = (6/463 + 6/182 + 6/156)/3%. Since one gets the same
3% numerical error in the case of bulk B1 TiN and a negligible
one for B1 AlN, we assume that 3% is the characteristic
numerical error through the following analysis. One sees
from the data in Table II that some of the SQSs result in
large noncubic elements. The (4 × 3 × 4) SQS, for example,
gives relatively large values for C16, C15, and C25, which then
contribute to the value of ||C|| in accordance to Eq. (2).

Thereafter, we extract the closest cubic elastic tensors by
using the cubic projector from Eq. (4). The obtained projected
cubic elastic constants are summarized in Table III. In Fig. 1
we present an important characteristics of the cubic-averaged
elastic constants C̄11,C̄12, and C̄44. The figure shows the nine
calculated elastic constants together with the corresponding
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FIG. 1. (Color online) The calculated nine projected cubic elastic
constants of Ti0.5Al0.5N together with the derived cubic-averaged
elastic constants.

averaged values for each supercell. It presents clearly that the
cubic-averaged elastic constants converge faster with respect
to the number of atoms. Accordingly, this nine-dimensional
analysis provides a less demanding technique to achieve
convergence for the elastic constants.

To give more insight into the accuracy of SQS perfor-
mance, we calculate the distance variations ||C − Ccub||/||C||.
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FIG. 2. (Color online) Calculated euclidian distance deviations
||C − Ccub||/||C|| obtained in the 21-dimensional space, see Eqs. (2)
and (5).

The obtained deviations are shown in Fig. 2. Since the
C3-(2 × 2 × 2) supercell should have cubic symmetry, its
||C − Ccub||/||C|| value defines the numerical threshold in
Fig. 2. It is found to be around 4.3%. According to Fig. 2,
only the (2 × 2 × 2), C3-(2 × 2 × 2), B1-(2 × 2 × 2), and
(4 × 4 × 3) supercells give cubic elastic tensors within the
most general 21-dimensional vector space. The (4 × 3 × 2)∗
and (4 × 4 × 4) are the candidates that closely exhibit a cubic
symmetry of the elastic tensors. The ordered L10 structure
results in the largest deviation from cubic symmetry. While
the (2 × 2 × 2) supercell with relative large SRO parameters
fulfills the cubic symmetry requirement, the larger and per-
fectly random (4 × 3 × 4) supercell does not. This underlines
the importance of designing SQS supercells with the support of
the point group symmetry in dealing with tensorial properties
of alloys. From Fig. 2 and the SRO parameters we conclude
that among the tested structures our (4 × 4 × 3) model should
be taken as the best model to study the elasticity in cubic
Ti0.5Al0.5N. Accordingly, cubic B1 Ti0.5Al0.5N alloy has the
elastic constant of C11 = 447 GPa, C12 = 158 GPa, and
C44 = 203 GPa within 3% of numerical error. Note that the
elastic constants calculated by us for the largest (4 × 4 × 4)
supercell using the projection technique are also within this
3%, and therefore the results are converged (see Fig. 4). We
also see that when using ad hoc or inadequate structures, such
as the L10, one ends up with large 22–50% errors. It is worth
mentioning that in the case of the (4 × 3 × 2) and (4 × 3 × 4)
SQSs the large noncubic elastic constants can be related to the
large deviations in Fig. 2.

The projection technique allows us to evaluate the su-
percells in a smaller, only nine-dimensional vector space by
omitting the principal noncubic tensor elements. We deal only
with the following nine elastic constants: C11, C22, C33, C12,
C13, C23, C44, C55, and C66. The deviations of these constants
from the projected cubic elastic constants C̄11,C̄12, and C̄44

FIG. 3. (Color online) Comparison of the calculated elastic tensor
elements with the projected principal cubic elastic constants in
Ti0.5Al0.5N.

are shown in Fig. 3. In this figure, the three columns for each
supercell give the deviations along the three crystallographic
directions [100], [010], and [001]. One can see in the figure,
where the horizontal lines show our 3% error threshold, that
only three supercells, the (2 × 2 × 2), C3-(2 × 2 × 2), and
(4 × 4 × 4) result in cubic elastic constants. The comparison
of the SRO parameters of these structures makes (4 × 4 × 4)
ultimately the best model in this nine-dimensional analysis.
Similarly in Fig. 2, the (4 × 4 × 3) supercell performs very
well, while the totally random (4 × 3 × 4) SQS with better
SRO parameters does not. This fact might be related to the
observed large deviations in the relaxed lattice parameters (see
supplemental material).33 As the projection technique omits
the principal noncubic elastic constants, the values in Fig. 3
are free from these contributions.

In Fig. 4 the relative deviations of elastic constants are
plotted with respect to the values obtained for the (4 × 4 × 4)
SQS. One can see that the (4 × 3 × 4), (4 × 4 × 3), and
(4 × 4 × 4) supercells result in the same elastic constants
within the 3% numerical error confirming good convergence
of C̄ij seen in Fig. 1. Furthermore, Fig. 4 can be used to
distinguish the supercells that give good approximations of the
cubic elastic constants in Fig. 3. For example, the (4 × 3 × 2)
structure performs well in Fig. 3, but it results in the C̄ij

deviating more than the numerical error in Figs. 1 and 4. Thus,
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FIG. 4. (Color online) The calculated projected cubic elastic
constants of Ti0.5Al0.5N relative to the values obtained for the
(4 × 4 × 4) SQS model.

(4 × 3 × 2) does not give converged C̄ij , while the (4 × 4 × 3)
SQS does. We conclude that one can similarly analyze the
performance of the supercells in terms of predicting elastic
constants of alloys with cubic symmetry within this smaller
nine-dimensional subspace. Such analysis is highly relevant
for selecting SQSs to be used in more expensive simulations
[e.g., of temperature-dependent elastic constants using ab
initio molecular dynamics (AIMD)].

The large directional variation of the elastic constants
(see the length of the vertical lines in Fig. 1), indicate a
strong directional variation of the materials elastic anisotropy.
Elastic anisotropy in TiAlN alloys has a huge impact on the
material’s mechanical properties.7 Its accurate prediction is
very important. Using the projected cubic elastic constants,
we derive the averaged Zener’s elastic anisotropy

Ā = 2C̄44

C̄11 − C̄12
. (7)

The obtained values are listed in Table III and plotted in Fig. 5.
The numerical error accumulates in this expression in the
numerator. The (4 × 4 × 3) SQS gives the value of the Zener’s
elastic anisotropy in Ti0.5Al0.5N as Ā = 1.40 with around 6%
numerical error. For the two most optimal supercells, (4 ×
4 × 3) and (4 × 4 × 4), one obtains a 5% difference between
the elastic anisotropy values. Figure 5 shows not only Ā but
also its variation along the three orthogonal crystallographic
directions, [100], [010], and [001]. For example, in the [100]

FIG. 5. (Color online) Zener’s elastic anisotropy values in
Ti0.5Al0.5N for each structural model considered in this study. The
horizontal solid line shows the value of Ā obtained for the (4 × 4 × 3)
SQS.

direction one has A(x,y,z) = 2C44/(C11 − C12), in [010]
A(yzx) = 2C66/(C33 − C13). These orientational variations
should vanish in the case of true cubic symmetry. As the figure
shows one may get a large orientation dependence [≈ 55%,
see C1-(2 × 2 × 2)] for a supercell being far from fulfilling
cubic symmetry of elastic constants. The sizes of the variations
correlate with the deviations in Figs. 1 and 3. However, as seen
in Fig. 1, Ā also converges faster with the size of the SQSs. Ac-
cordingly, Fig. 5 gives a similar tool to analyze the performance
of the supercells in predicting the elastic constants of cubic
alloys. In the Reuss averaging method, with assumed uniform
stress distribution, the strain ratio ε[200]/ε[111] = E[111]/E[100]

can be used to extract elastic anisotropy from experiments.7

Here E[hkl] denotes the directional Young’s elastic moduli. Us-
ing our most accurate supercell model of (4 × 4 × 3) the strain
ratio ε[200]/ε[111] is 1.32 in Ti0.5Al0.5N (see Fig. 5). This value
deviates from Ā = 1.40 with less than 6% numerical error.

The elasticity of polycrystalline Ti0.5Al0.5N is usually
discussed in terms of the Reuss and Voigt bulk (BR , BV ),
the shear moduli (GR , GV ), the Young’s modulus (EV/G), and
the Poisson ratio (νV/G) (see Ref. 33 for the expressions). The
polycrystalline averaged quantities obtained for (4 × 4 × 3)
and (4 × 4 × 4) SQSs are summarized in Table IV. One can
see that the obtained values agree to each other. In particular,

TABLE IV. The polycrystalline bulk (B), shear (G), Young (E) moduli in units of GPa and the Poisson ratio of Ti0.5Al0.5N obtained with
the (4 × 4 × 3) and (4 × 4 × 4) supercells.

Structure BV BR GV GR EV ER νV νR

(4 × 4 × 3) 254 254 180 174 437 425 0.21 0.22
(4 × 4 × 4) 254 254 181 176 439 429 0.21 0.22
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BR = BV clearly shows fulfillment of the requirement of a
cubic crystal.

IV. CONCLUSION

In this study we discuss the performance of superstructures,
including approximate special quasirandom structure (SQS)
supercells in predicting the elasticity of cubic B1 Ti0.5Al0.5N
alloy. Though the SQS approach provides a successful scheme
to model and predict the thermodynamics of alloys, the
technique is not aimed directly for a description of tensorial
materials properties. Thus, its straightforward application
cannot provide an unambiguous description of elasticity in
random alloys.

Here, we applied a symmetry-based projection technique
to accurately predict the cubic elastic tensor of B1 Ti0.5Al0.5N
alloy within the SQS approach. We derived from ab initio
calculations the closest cubic elastic tensor of B1 Ti0.5Al0.5N
by using several supercells. With the help of these derived
cubic projected elastic constants we presented a detailed
comparison of the results obtained with SQSs of different
shape and size. The (4 × 4 × 3) and (4 × 4 × 4) supercells
provided us the optimal models of both configurational
disorder and symmetry of elastic tensor. They resulted in
C11 = 447 GPa, C12 = 158 GPa, and C44 = 203 GPa with
3% of numerical error. Furthermore, the derived Zener’s
type elastic anisotropy has a value of Ā = 1.40 with 6% of
error.

Through the discussion of the calculated full elastic tensors
with 21 constants, we established that supercells with good
SRO parameters may include large noncubic elements and
that supercells with somewhat worse SRO parameters can

approximate elastic tensors fairly accurately. We showed that
by using only nine elements, C11, C22, C33, C12, C13, C23,
C44, C55, and C66, from the tensors, one can evaluate the
SQS models in terms of predicting the elastic constants of
cubic Ti0.5Al0.5N. Moreover, we revealed that the derived
closest cubic approximation of the elastic tensor converges
faster with respect to SQS size than the elastic tensor itself.
This observation establishes a less demanding computational
strategy to achieve convergence for the elastic constants.
The obtained large directional (crystallographic) variation
of the results underlined the investigation of the Zener’s
type elastic anisotropy. We also showed that the deviations
between the three equivalent Zener-type anisotropy factors for
SQSs oriented along the [100], [010], and [001] directions,
might differ. This further underlined the uncertainty in the
straightforward application of the SQS approach in predicting
tensorial materials quantities.

In summary, we have accurately predicted the cubic elastic
constants of B1 Ti0.5Al0.5N alloy. We suggest the calculation
of nine elastic tensor elements—C11, C22, C33, C12, C13, C23,
C44, C55, and C66—to obtain faster convergence with respect
to the SQS size for the elastic constants of cubic alloys in
evaluating the performance of supercells.
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L. Hultman, and M. Odén, Materials 4, 1599 (2011).

9A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys. 71, 046501
(2008).

10J. Z. Liu, A. van de Walle, G. Ghosh, and M. Asta, Phys. Rev. B
72, 144109 (2005).

11A. van de Walle, Nature Mater. 7, 455 (2008).
12J. M. Sanchez, Phys. Rev. B 81, 224202 (2010).
13A. Zunger, S.-H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev.

Lett. 65, 353 (1990).
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