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We propose a self-consistent method for electronic structure calculations of correlated systems, which

combines the local spin-density approximation ~LSDA! and the dynamical mean field theory ~DMFT!. The

LSDA part is based on the exact muffin-tin orbital approach, meanwhile the DMFT uses a perturbation scheme

that includes the T matrix with fluctuation exchange approximation. The current LSDA1DMFT implementa-

tion fulfills both self-energy and charge self-consistency requirements. We present results on the electronic

structure calculations for bulk 3d transition metals ~Cr, Fe, and Ni! and for Fe/Cr magnetic multilayers. The

latter demonstrates the importance of the correlation effects for the properties of magnetic heterostructures.

DOI: 10.1103/PhysRevB.67.235106 PACS number~s!: 71.15.2m

I. INTRODUCTION

In the ab initio description of the electronic properties of

materials the most widely used methods are based on the

density-functional theory ~DFT! ~Ref. 1! implemented within
the local spin-density approximation ~LSDA! ~Refs. 2 and 3!
to the exchange and correlation energies. Ground-state prop-
erties of most metals, semiconductors, ionic compounds,
etc., are quantitatively well described by the DFT-LSDA ap-
proach. Attempts to apply these first-principles methods to
strongly correlated systems, however, encountered many
fundamental difficulties.4–6 Even for elemental transition
metals, such as Mn, Fe, or Ni, the impact of the correlation
effects on the electronic structure turns out to be essential.7

Therefore, one of the most challenging problems in the phys-
ics of transition metals, their alloys, and compounds is to
develop simple and efficient electronic structure methods
that go beyond the LSDA by including important many-body
effects.

It has proved to be an efficient approach to combine the
simple Hubbard model with the LSDA technique, providing
a DFT scheme ‘‘beyond LSDA.4–7’’ Unfortunately, the sim-
plest realization of such an approach, the LSDA1U

scheme,4 cannot describe the many-body effects beyond the
Hartree-Fock approximation. These effects are connected
with the frequency dependence of the electron self-energy. In
order to include dynamical effects, the LSDA1U scheme
was combined with the dynamical mean-field theory

~DMFT!.5,6 The DMFT maps lattice models onto quantum
impurity models subject to a self-consistent condition in such
a way that the many-body problem for the crystal splits into
a one-body impurity problem for the crystal and a many-
body problem for an effective atom. In fact, the DMFT, due
to numerical and analytical techniques developed to solve
the effective impurity problem,8 is a very efficient and exten-
sively used approximation for energy-dependent self-energy
S(v). The emerged LSDA1DMFT method can be used for
calculating a large number of systems with different

strengths of the electronic correlations.7,9,10 To stress on the
importance of the complete LSDA1DMFT self-consistency,
we mention that the first successful attempt to combine the
DMFT with the LSDA charge self-consistency provided an
important insight into a long-standing problem of phase dia-
gram and localization in f-electron systems.11

To incorporate the dynamical mean-field approach into
the band-structure calculation, we adopt the exact muffin-tin

orbital ~EMTO! density-functional method. The EMTO
theory can be considered as a screened Korringa-Kohn-
Rostoker ~KKR! muffin-tin method, where large overlapping
potential spheres are used for the accurate representation of
the LSDA one-electron potential. A comprehensive descrip-
tion of the EMTO theory and its implementation within the
LSDA may be found in Refs. 12–14, respectively.

The paper is organized as follows. Section II presents a
general formulation of the combined multiple-scattering and
dynamical mean-field approach. The calculation scheme in
Sec. III illustrates the multiple-scattering solution of the
LSDA problem via the EMTO method and the many-body
solution of the DMFT problem via the T-matrix fluctuation
exchange ~FLEX! approach. First-principles results obtained
from the EMTO-DMFT calculations are discussed in Sec. IV.
The paper is summarized in Sec. V.

II. FORMULATION OF THE PROBLEM

The density-functional theory reformulates the N-electron
problem into a one-electron problem by considering a non-
interacting system, where each electron ‘‘feels’’ an effective

potential ve f f
s (r) created by the rest of the electrons and the

external fields. Thus, within the DFT the solution of the
original inhomogeneous system is constructed from the one-
electron Kohn-Sham equations2

@2¹2
1ve f f

s ~r!#Cs~e ,r!5eCs~e ,r!, ~1!
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where s stands for spin. The many-body part of the effective

potential mxc
s (r) is an unknown functional of the spin densi-

ties ns(r)5(euC
s(e ,r)u2. The most commonly adopted ap-

proach for mxc
s (r) is the LSDA, where the effect of interac-

tions between electrons is taken into account by substituting
locally the real system by the uniform electron gas with the
density equal to the actual density at point r. In this paper,
we will not distinguish between the different specific forms
of the LSDA.

In order to include the many-body correlation effects be-
yond the LSDA we substitute the Kohn-Sham equation ~1!
by the quasiparticle equation

@2¹2
1ve f f

s ~r!#Fs~« ,r!1 (
Rlmm8

uRlms&SRlm ,Rlm8

s
~« !

3^Rlm8suFs~« !&5« Fs~« ,r!, ~2!

where R , l , and m denote the lattice sites, the orbital and
quantum numbers, the magnetic quantum number, respec-
tively. uRlms& are localized orthonormal basis functions,
e.g., the partial waves for the correlated l channels. In Eq.
~2!, the correlation effects are treated at the DMFT level,

where the essential many-body self-energy S
Rlm ,Rlm8

s
(«) is a

local, energy-dependent, and multiorbital potential.
Note that Eqs. ~1! and ~2! are formulated in terms of wave

functions. Consequently, the DMFT method has already been
implemented in several techniques based on wave-function
formalism, such as the linear muffin-tin orbital method.5,6,11

At the same time, accurate self-consistent methods for solv-
ing the local Kohn-Sham equation ~1! in terms of Green’s
function have been developed within the multiple-scattering
theory.15–18 The main aim of the present work is to include
the many-body correlation effects, approximated by means
of the DMFT, in the above-mentioned multiple-scattering ap-
proach. We note that for a general nonlocal energy-
dependent potential, the multiple-scattering theory offers a
solution known as the optical potential.19 However, the opti-
cal potential is far too complex to be used in realistic com-
putation. Nevertheless, it is proved that the nonlocal poten-
tial could be transformed into a one-particle energy-
dependent operator such that it satisfies a similar one-particle
equation with a local and energy-independent potential.

III. THE CALCULATION SCHEME

A. The one-electron Green’s function

Within the multiple-scattering formalism, the one-electron
Green’s function is defined for an arbitrary complex energy z

as

@z1¹r
2
2v

s
e f f~r!#Gs~r,r8,z !5d~r2r8!. ~3!

For most of the applications, e.g., the standard KKR or linear
MTO ~LMTO! methods, the LSDA effective potential from
Eq. ~3! is approximated by spherical muffin-tin ~MT! wells
centered at lattice site R. Within a particular basis set, the
one-electron Green’s function is expressed in terms of the

so-called scattering path operator g
RL ,R8L8

s ,LSDA
(z), as well as the

regular ZRL
s (z ,rR), and THE irregular JRL

s (z ,rR) solutions to

the single-site scattering problem for the cell potential at lat-
tice site R, viz.

Gs ,LSDA~rR1R,rR8
1R8,z !

5 (
L ,L8

ZRL
s ~z ,rR!g

RL ,R8L8

s ,LSDA
~z !Z

R8L8

s
~z ,rR8

!

2dRR8(
L

JRL
s ~z ,rR!ZRL

s ~z ,rR!, ~4!

where L[(l ,m) with l,lmax ~usually, lmax53) and rR[r

2R denotes a point around site R. The real-space represen-
tation for the scattering path operator for the muffin-tin po-
tential is given by

g
RL ,R8L8

s ,LSDA
~z !5@dRR8

dLL8
ts

RL
21~z !2BRL ,R8L8

~z !#21, ~5!

where tRL
s (z) stands for the single scattering t matrix and

BRL ,R8L8
(z) are the elements of the so-called structure con-

stant matrix.
Unfortunately, the MT based KKR or LMTO methods

have limited accuracy. The former method uses nonoverlap-
ping spherical muffin-tin potentials and constant potential in
the interstitial, while the latter method approximates the sys-
tem with overlapping atomic sphere and neglects completely
the interstitial and the overlap between individual spheres.
Recent progress in the field of muffin-tin orbital theory12

shows that the best possible representation of the full poten-
tial in terms of spherical wells may be obtained by using
large overlapping muffin-tin wells with exactly treated over-
laps. Within this so-called exact muffin-tin orbital method,12

the scattering path operator is calculated as the inverse of the
kink matrix defined by

K
RL ,R8L8

s
~z ![dRR8

dLL8
DRL

s ~z !2SRL ,R8L8
~z !, ~6!

where DRL
s (z) denotes the EMTO logarithmic derivative

function,13,14 and SRL ,R8L8
(z) is the slope matrix.12

Since the energy derivative of the kink matrix,

K̇
RL ,R8L8

s
(z), gives the overlap matrix for the EMTO basis

set,12 the matrix elements of the properly normalized LSDA
Green’s function become13,14

G
RL ,R8L8

s ,LSDA
~z !5 (

R9L9

g
RL ,R9L9

s ,LSDA
~z !K̇

R9L9,R8L8

s
~z !

2dRR8
dLL8

IRL
s ~z !, ~7!

where IRL
s (z) accounts for the unphysical poles of

K̇
RL ,R8L8

s
(z). In the case of translation invariance, Eqs. ~6!

and ~7! can be transformed into the reciprocal space, so that
the lattice index R runs over the atoms in the primitive cell
only, and the slope matrix, the kink matrix, and the path
operator depend on the Bloch wave vector k. In this case, the
total number of states at the Fermi level EF is obtained as
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N~EF!5

1

2pi (
RL ,R8L8

R E
BZ

G
RL ,R8L8

s ,LSDA
~k,z !dkdz , ~8!

where the energy integral includes the Fermi distribution.
The k integral is performed over the first Brillouin zone,
while the z integral is carried out on a complex contour that
cuts the real axis below the bottom of the valence band and
at EF .

B. DMFT Green’s function and effective medium

Green’s function

To incorporate the many-body effects into the Green’s
function technique we start with the LSDA Green’s function
matrix ~7! expressed in the EMTO basis set. The LSDA

1DMFT Green’s function G
RL ,R8L8

s
(k,z), defined for Bloch

vector k and energy z, is connected to the one-electron
LSDA Green’s function through the Dyson equation

@G
RL ,R8L8

s
~k,z !#21

5@G
RL ,R8L8

s ,LSDA
~k,z !#21

2dRR8
S̃

RL ,RL8

s
~z !.

~9!

The local self-energy S̃
RL ,RL8

s
(z) in Eq. ~9! depends on the

so-called effective medium or bath Green’s function

G
RL ,R8L8

s
(z). This, in turn, is calculated from the k-integrated

LSDA1DMFT Green’s function G
RL ,R8L8

s
(z)

5*BZG
RL ,R8L8

s
(k,z)dk, as

@GRL ,R8L8

s
~z !#21

5@G
RL ,R8L8

s
~z !#21

1dRR8
S̃

RL ,RL8

s
~z !.

~10!

To find the local self-energy we use a spin-polarized T matrix
plus fluctuation exchange ~SPTF! approximation.20 The
many-body problem is solved on the Matsubara contour, de-
fined by the fermionic frequencies vn5(2n11)pT , where
n50,61, . . . , and T is the temperature. A Pade analytical
continuation21 is used to map between the complex energies
z, used in the EMTO iterations, and the complex energies
ivn , corresponding to the Matsubara frequencies and ex-
pressed relative to the Fermi level EF . Next, we describe the
solution of the effective impurity problem.

C. The solution of effective impurity problem

The many-body problem is solved using the SPTF method
proposed in Ref. 20, which is a development of the earlier
approach.22 The SPTF approximation is a multiband spin-
polarized generalization of the FLEX approximation ~FLEX!
of Bickers and Scalapino, but with a different treatment of
particle-hole ~PH! and particle-particle ~PP! channels. The
PP channel is described by a T-matrix approach,23 giving a
renormalization of the effective interaction. This effective
interaction is used explicitly in the particle-hole channel. Jus-
tifications, further developments, and details of this scheme
can be found in Ref. 20. Here, we present the final expres-
sions for the electron self-energy. The sum over the ladder
graphs leads to the replacement of the bare electron-electron
interaction by the T matrix which obeys the integral equation

^13uTss8~ iV !u24&

5^13uvu24&2T(
v

(
5678

G 56
s ~ iv !G 78

s8~ iV2iv !

3^68uTss8~ iV !u24&, ~11!

where the matrix elements of the screened Coulomb interac-
tion, ^13uvu24&, are expressed using the average Coulomb
and exchange energies U and J.20 In this section, for the sake
of simplicity, we use the short notation 15Rlm . In the fol-
lowing, we write the perturbation expansion for interaction
~11!. The two contributions to the self-energy are obtained by
replacing the bare interaction by a T matrix in the Hartree
and Fock terms

S12
s ,TH~ iv !5T(

V
(
34s8

^13uTss8~ iV !u24&G 43
s8~ iV2iv !,

S12
s ,TF~ iv !52T(

V
(
34s8

^14uTss8~ iV !u32&G 34
s8~ iV2iv !.

~12!

The four matrix elements of the bare longitudinal suscepti-
bility represent the density-density (dd), density-magnetic
(dm0), magnetic-density (m0d), and magnetic-magnetic
channels (m0m0). The matrix elements couple longitudinal
magnetic fluctuation with density-magnetic fluctuation. In
this case, the particle-hole contribution to the self-energy is
written in the Fourier-transform form

S12
s ,PH~t !5 (

34s8

W1342
ss8 ~t !G 34

s8~t !, ~13!

t being the imaginary time. The particle-hole fluctuation po-

tential matrix Wss8(iv) is defined in the FLEX
approximation24,22 by

Wss8~ iv !5S W↑↑ W↑↓

W↓↑ W↓↓
D . ~14!

We emphasize that all of the above expressions for the self-
energy, in the spirit of the DMFT approach, involve the
Weiss ~bath! Green’s function ~10!. The total self-energy is
obtained from Eqs. ~12! and ~13! as

Ss~ iv !5Ss ,TH~ iv !1Ss ,TF~ iv !1Ss ,PH~ iv !. ~15!

Since the LSDA Green’s function already contains the aver-
age electron-electron interaction, in Eqs. ~9! and ~10! the
static part of the self-energy Ss(0) is not included, i.e., we
have

S̃s~ iv !5Ss~ iv !2Ss~0 !. ~16!

D. The charge self-consistency loop within the

EMTO-DMFT scheme

After the self-energy S̃
RL ,RL8

s
(z) is determined as the self-

consistent solution of the effective impurity problem, the
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many-body LSDA1DMFT Green’s function G
RL ,R8L8

s
(k,z)

is calculated using Eq. ~9!. The EMTO-DMFT number of
states at the Fermi level is given by the multicenter expres-
sion ~8!, written for the LSDA1DMFT Green’s function.

The charge and spin densities in the EMTO formalism are
represented in the one-center form around each lattice site R,
i.e.,

ns~r!5(
RL

nRL
s ~rR!Y L~rR!, ~17!

where Y L(rR) are the real harmonics. Inside the Wigner-

Seitz cell the partial components nRL
s (rR) are expressed in

terms of the density matrix D
RL8L

s
(z) as

nRL
s ~rR!5

1

2pi
R

EF

(
L9L8

C
L9L8

L
Z

Rl9

s
~z ,rR!

3D
RL9L8

s
~z !Z

Rl8

s
~z ,rR!dz , ~18!

where C
L9L8

L
are the real harmonic Gaunt coefficients. The

density matrix is obtained from the path operator as de-
scribed in, e.g., Ref. 14 Within the present EMTO-DMFT

scheme, the LSDA1DMFT path operator g
RL ,R8L8

s
(k,z) is

determined according to Eq. ~7! using the LSDA1DMFT
Green’s function and the LSDA overlap matrix. Here, we
implicitly make the assumption that the LSDA1DMFT
Green’s function can be expanded on the same basis set as
the one-electron Green’s function. In other words, instead of
the solutions of Eq. ~2! for a single scatterer, we use the
LSDA single-site solutions of Eq. ~1! for a single scatterer to
express the LSDA1DMFT Green’s function in the same
form, as we express the one-electron Green’s function in Eq.
~4!.

Finally, for charge self-consistent calculation, we con-
struct the new LSDA effective potential from the spin and
charge densities n(r)5n↑(r)1n↓(r). The Poisson’s equa-
tion is solved using the spherical cell approximation,14 and
the exchange and correlation terms are calculated within the
LSDA.

IV. RESULTS AND DISCUSSION

The role of the correlation effects in the electronic struc-
ture of 3d transition-metal series is far from being com-
pletely understood.7 In general, spin-polarized band-structure
calculations give an adequate description of the ferromag-
netic ground state for most of the metals. At the same time,
there are obvious evidences of essentially many-body fea-
tures in photoemission spectra of Fe,22 Co,25 and Ni.26 Few
examples are the 6-eV satellite in Ni density of states, broad-
ening of the angle-resolved photoelectron spectroscopy
~ARPES! features due to quasiparticle damping, narrowing
of the d band, essential change of spin polarization near the
Fermi level, etc. Although, there is no direct experimental
information yet, one can assume that the many-body effects
can also be important in the case of magnetic multilayers and
other heterostructures containing transition metals. The im-

portance of correlation effects on transition-metal surfaces
has already been demonstrated by the Scanning tunnel mi-
croscope observation of an orbital Kondo resonance in Cr.27

Here, we will present results obtained using the EMTO-
DMFT method in the case of bulk Ni, Fe, and Cr 3d transi-
tion metals and for the Fe/Cr multilayer structure.

A. Numerical details

The self-consistent EMTO-DMFT calculations were car-
ried out for the experimental ground-state crystal structures,
i.e., fcc for Ni and bcc for Fe and Cr. The lattice parameters
were fixed at the experimental values. The studied Fe/Cr
multilayer system has tetragonal ~001! structure with one
type of Fe atoms and two different types of Cr atoms. This
structural setup describes the situation of one Fe layer em-
bedded in few Cr layers. The atoms in the tetragonal unit cell
were fixed in the ideal positions, and for the lattice param-
eters we used the bulk Cr lattice constant. The LSDA
Green’s function was calculated for 16 complex energy
points distributed exponentially on a semicircular contour.
The k-point sampling was performed on a uniform grid in the
Brillouin zone. For the LSDA energy functional, we used the
Perdew-Wang parametrization28 of the results by Ceperley
and Alder.29 The DMFT parameters, average Coulomb inter-
action U, exchange energy J, and temperature T used in the
present calculation are listed in the last three columns of
Table I.

From the self-consistent density of states ~DOS! we have
determined the magnetic moment m and the electronic
specific-heat coefficient g . The latter is given by the relation

g5p2kB
2 N~EF!~11l !/3, ~19!

where N(EF) is the electronic DOS at the Fermi level and
(11l) is the mass enhancement factor caused by the
electron-phonon interaction. This factor in the case of Ni was
estimated to be 1.24.30 The present theoretical results for the
self-consistent magnetic moments and electronic specific
heats, along with the available experimental data are listed in
Table I.

B. Ni

It has been shown that the main peculiarities of the ex-
perimental Ni photoemission spectra can be understood
within the framework of the LSDA1DMFT approach.26 An
exact quantum Monte Carlo ~QMC! solution of the effective
impurity problem26 gives impressive quantitative agreement
between the experimental and computational data, both for
photoemission spectra and for temperature-dependent mag-
netic properties. Here, we will show that the perturbative
SPTF approach, employed in the present EMTO-DMFT
method, also reproduces the main correlations effects beyond
LSDA in Ni, e.g., the narrowing of the band, reduction of the
exchange splitting, and the appearance of the 6-eV satellite.

The EMTO-DMFT density of states for fcc Ni is shown
on Fig. 1. For the present choise of the average Coulomb
interaction U53 eV, the position of the 6-eV satellite is
shifted to the lower energy. This shift and the large broaden-
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ing of the resonance is due to the perturbative approach of
the solver of the effective impurity problem.20

According to the present result, at T5500 K, i.e., at
T/Tc'0.8, the reduction of the exchange splitting relative to
the LSDA value is 43%. This is in good agreement with
40% estimated from experimental data corresponding to the
same temperature. Our results are also in agreement with
ARPES measurements.31,32 The EMTO-DMFT magnetic
moment of 0.42mB , see Table I, represents a reduction of
30% from the LSDA value. This reduction is comparable
with 25% evidenced from experimental magnetic moments.

Apart from the many-body self-consistency, the present
implementation fulfills also the charge self-consistency. This
allows us to monitor the effect of DMFT on the LSDA
charge and magnetic moment densities in the real space. Fig-
ure 2 shows the LSDA and LSDA1DMFT magnetic mo-

ment densities in Ni along the ^110& direction, which corre-
sponds to the nearest-neighbor distance in the fcc unit cell.
Comparing the two densities one can interpret the reduction
of the magnetic moment in the LSDA1DMFT approach as a
slight narrowing of the real-space extension of the d wave
functions.

The energy dependence of the self-energy for Ni, plotted
in Fig. 3, near the Fermi level shows the typical Fermi-liquid
behavior. For the imaginary part we have 2ImS(E)}E2,
whereas the real part of the self-energy has a negative slope
]ReS(E)/]E,0, where E is the electron energy relative to
the Fermi level.

Within the LSDA for the electronic specific-heat coeffi-
cient we obtain 5.43 mJ/K2 mol, which underestimates the
experimental value from Ref. 33 by more than 20%. This
LSDA value is in good agreement with previous
calculations.34,35 On the other hand, within the LSDA

TABLE I. Theoretical magnetic moments m and electronic specific-heat coeficients g calculated at the LSDA and the LSDA1DMFT

levels. For comparison, some experimental electronic specific-heat coefficients are also listed. The experimental values for g include the

enhancement due to electron-phonon coupling, but this enhancement is not included for the calculated band-structure values for Fe, Cr, and

Fe/Cr multilayers. The theoretical g values for Ni are corrected with 11l51.24 according to Eq. ~19! and Ref. 30. In the last three columns,

the parameters used in the self-consistent EMTO-DMFT calculations are listed.

mLSDA mDMFT gLSDA gDMFT gexpt. T U J

(mB) (mB) (mJ/K2 mol) (mJ/K2 mol) (mJ/K2 mol) ~K! ~eV! ~eV!

Ni 0.63 0.42 5.43 6.78 7.02 a 500 3 0.9

Fe 2.25 2.23 2.43 2.61 3.11,3.69 b 325 2 0.9

Cr 2.07 2.88 3.5 c 250 2 0.9

Fe~Fe/Cr! 1.72 1.75 2 0.9

Cr1(Fe/Cr) 20.05 0.15 6.90 d 7.84 8.760.7 e , d 300 0 0.0

Cr2(Fe/Cr) 0.09 20.11 0 0.0

aReference 33.
bReference 37.
cNonmagnetic Cr, Ref. 39.
dReference 41.
eValues corresponding to the magnetic multilayer.

FIG. 1. The LSDA ~dashed line! and the LSDA1DMFT ~solid

line! densities of states for fcc Ni calculated using the EMTO-

DMFT method. A significant reduction of the exchange splitting can

be evidenced.

FIG. 2. Magnetic moment densities of Ni along the nearest-

neighbor distance in fcc lattice, calculated within the LSDA ~dashed

line! and the LSDA1DMFT ~solid line!.
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1DMFT approach the electronic specific-heat coefficient is
6.78 mJ/K2 mol, which reduces the discrepancy between
theory and experiment by 19%.

C. Fe

In Fig. 4, we compare the LSDA and the LSDA1DMFT
density of states for bcc Fe. The present LSDA magnetic
moment 2.25mB is reduced to 2.23mB within the LSDA
1DMFT approach. We note that our LSDA magnetic mo-
ment is in excellent agreement with the one obtained in the
former ab initio calculation.36 The electronic specific-heat
coefficient increase from the LSDA value of 2.43 mJ/K2 mol
to 2.53 mJ/K2 mol in the LSDA1DMFT calculation. These

values can be compared with the experimental data in the
range of 3.11–3.69 mJ/K2 mol.37 We can see that in bcc Fe,
the correlation effects are much less pronounced than in fcc
Ni. This is due to the Fe large spin splitting and the bcc-
structural dip in the density of states.26 The energy depen-
dence of the self-energy of Fe, see Fig. 5, corresponds again
to the Fermi-liquid behavior, similar to the case of Ni.

The d band exchange splitting in Fe in the LSDA1DMFT
is slightly decreased in comparison with the LSDA result.
The temperature dependence of the exchange splitting in Fe
was determined by spin-resolved photoemission
spectroscopy.38 The experimental results show a very weak
temperature dependence of the exchange splitting in the tem-
perature range 0.3Tc20.85Tc , where Tc51043 K. Our cal-
culations for three different temperatures T/Tc50.3, 0.6,
and 0.8 show almost constant d band exchange splitting, in
perfect agreement with experiment38 and previous
DMFT~QMC! calculations.7

D. Cr

The effect of correlations in the case of bcc Cr is mani-
fested through a small enhancement of the density of states
at the Fermi level, as shown in Fig. 6. The value of the
electronic specific-heat coefficient is 2.88 mJ/K2 mol, which
represents an improvement of about 40% relative to the
LSDA value of 2.07 mJ/K2 mol. Our LSDA1DMFT result
still underestimates the experimental nonmagnetic data of
3.5 mJ/K2 mol ~Ref. 39! by 15%. Although for the bulk Cr
the correlation effects are not very important, one can expect
strong correlation effects at Cr surfaces in light of the obser-
vation of essentially many-body phenomenon, the orbital
Kondo resonance at Cr~001! surface.27

To demonstrate the correlation effect on the real-space
charge distribution in Fig. 7, we have plotted the difference
of the LSDA1DMFT and the LSDA charge densities in the
bcc ~110! plane. As one can see the main effect of the DMFT

FIG. 3. Spin-up ~open symbols! and spin-down ~closed sym-

bols! self-energies for Ni for t2g ~upper panel! and eg ~lower panel!
orbitals.

FIG. 4. The LSDA ~dashed line! and the LSDA1DMFT ~solid

line! densities of states for bcc Fe calculated using the EMTO-

DMFT method.

FIG. 5. Spin-up ~open symbols! and spin-down ~closed sym-

bols! self-energies for Fe for t2g ~upper panel! and eg ~lower panel!
orbitals.
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charge self-consistency is a redistribution of charge density,
suggesting a supplementary accumulation of d electrons due
to correlation effects inside the muffin-tin spheres and a
depletion of density in the interstitial region.

E. FeÕCr multilayer

In order to test the opportunities of the current LSDA
1DMFT approximation further, we have applied this to
magnetic heterostructures of alternating magnetic and non-
magnetic layers. The most remarkable property of these sys-
tems is the giant magnetoresistance ~GMR! measured for a
parallel or an antiparallel configuration of the magnetic mo-
ments belonging to a different layer by application of a mag-
netic field.40 Experimentally it was found that the magnetic
multilayers grown epitaxially shows an enhancement of the
electronic contribution to the low-temperature specific
heat.41 Standard electronic band-structure calculations could

not reproduce this enhancement,42 which can be an evidence
of the correlation effects. Our aim is to check whether the
correlation effects considered in the EMTO-DMFT approach
can lead to an essential renormalization of the density of
states at the Fermi level N(EF).

In the LSDA1DMFT calculations for Fe/Cr multilayer
we have chosen different values for the average Coulomb
interaction and exchange energy for Fe and the two types of
Cr atoms. These values are listed in Table I. Although this
choice is motivated by the fact that correlation effects for
these atoms could be similar in structure, the present results
are more qualitative than quantitative.

The layer-resolved LSDA and LSDA1DMFT densities of
states for Fe/Cr multilayer are plotted in Fig. 8. Comparing
the LSDA and LSDA1DMFT DOS one can see that the
correlation effects produce a strong peak at the Fermi level.
This can give a qualitative explanation of the heat-capacity
data discussed above.

The calculated LSDA and LSDA1DMFT magnetic mo-
ments are shown in Fig. 9. Our LSDA result is in agreement
with previous electronic structure calculations of Fe impuri-
ties in a Cr surrounding.43 We have found that within the
LSDA the magnetic multilayer structure consists of ferro-
magnetically coupled Fe layers with the magnetic moments
of 1.72mB per atom. The Cr spacers have very small mag-
netic moments per atom, 20.05mB and 0.09mB , respec-
tively, and they are oriented antiferromagnetically. This re-
sult is in accordance with a previous ab initio study on Fe/Cr
superlattices.44 The LSDA Fe magnetic moment is drastically
reduced compared with its value in bulk, which is attributed
to the d-d band hybridization between the Fe and Cr states.

The results of the LSDA1DMFT calculations are essen-
tially different from that in the LSDA. In particular, the cor-
relation effects result in a slight increase of the Fe layer

FIG. 6. The LSDA ~dashed line! and LSDA1DMFT ~solid line!
densities of states for bcc Cr calculated using the EMTO-DMFT

method.

FIG. 7. The effect of the DMFT on the LSDA charge density of

bcc Cr.

FIG. 8. The layer-resolved LSDA ~dashed line! and the LSDA

1DMFT ~solid line! densities of states for Fe/Cr1 /Cr2 /Cr1 /Fe

multilayers.
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magnetic moment and a significant polarization of the Cr
spacers, see Table I. In the case where the correlation effects
are considered for all the atoms, the self-consistent calcula-
tion shows the same trend for the magnetic moments:
1.85mB per Fe atom, 0.42mB per Cr1, and 20.19mB per Cr2,
respectively. These results lead us to the conclusion that the
correlation effects induce a strong polarization on the first Cr
layer, which is almost nonmagnetic according to the LSDA
calculations. The appearance of the Cr magnetic moments
can be attributed to the correlation-induced narrowing of the
d band, together with the Fe-Cr d-d hybridization mecha-
nisms. In the presence of the correlations, the Fe-Cr d-d
hybridization is much stronger than the Cr1-Cr2 d-d hybrid-
ization. This can be seen from the majority-spin channels of
DOS from Fig. 8, where Fe d and Cr1 d have pronounced
peaks at the Fermi level. Due to this significant change in the
spin-up d channell of the DOS of Fe, Fig. 8, the spectral
weight is transferred close to the Fermi level and the effec-
tive exchange interaction between the Fe and the first Cr
layer is changed to ferromagnetic. Further investigation on
this magnetic ordering as a function of different parametes
U ,T is important for the nature of the magnetic coupling in
multilayer systems.

Several theoretical approaches have been used to explain
the magnetic properties of such superlattice structures. Many
of these approaches are based on the Ruderman-Kittel-
Kasuya-Yosida ~RKKY!–like model,45,46 tight-binding
models47 and, recently, on the results of ab initio electronic
structure calculations.44 The magnetic coupling studied in the
framework of these models was shown to result from the
interplay between the direct d-d hybridization of Fe and Cr
atoms and the indirect exchange through the sp electrons.
The sp-d coupling44 was found to be the reminiscent of the
RKKY interaction only for superlattices with more than four
Cr layers.

The calculated electronic specific-heat coefficients are
listed in Table I. The present LSDA1DMFT value of
7.84 mJ/K2 mol is in good agreement with a recent experi-
mental study.41

Finally, it is worthwhile to emphasize that the enhanced

DOS at the Fermi level, having a many-body correlation ori-

gin, can play an important role in the GMR, since this DOS

enhancement is strongly spin dependent. It is more effective

for the majority electrons of Fe and Cr1 (Cr1 are the ones

closer to the Fe layer!, giving the result of a quasiparticle

peak centered at the Fermi level. Our finding is in good

agreement with the tendency of the enhancement of elec-

tronic contribution to the specific heat in Fe/Cr magnetic

multilayers.41

V. CONCLUSIONS

In this paper, we present a LSDA1DMFT scheme on the

exact muffin-tin orbitals basis set. The present EMTO for-

malism allows us to combine the many-body problem with

the standard screened KKR~LSDA! method in a self-

consistent manner. The many-body self-consistency is

reached through the self-consistency of the self-energy,

meanwhile the self-consistent charge density is obtained in

the conventional LSDA framework. The results of our

EMTO-DMFT calculation are summarized in Table I, and

they are in good agreement with the former LSDA1DMFT

implementations using the LMTO basis set.

Correlation effects in multilayer systems are important for

transport properties, giving rise to an enhancement of density

of states at the Fermi level. We have studied a simple mag-

netic multilayer system, and have shown that the effect of

correlation is to induce magnetism in nonmagnetic spacers.

We attribute this structure and temperature-dependent polar-

ization mechanism to simultaneous ~i! Fe-Cr d-d hybridiza-

tion and ~ii! narrowing of electronic d bands due to many-

body correlation effects. We note that the latter mechanism,

i.e., the narrowing of the Cr d band, is significantly stronger

than the former one.
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