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Ab initio gene identification in the genomic sequence of Drosophila melanogaster was obtained using Fgenes

(human gene predictor) and Fgenesh programs that have organism-specific parameters for human, Drosophila,

plants, yeast, and nematode. We did not use information about cDNA/EST in most predictions to model a real

situation for finding new genes because information about complete cDNA is often absent or based on very

small partial fragments. We investigated the accuracy of gene prediction on different levels and designed several

schemes to predict an unambiguous set of genes (annotation CGG1), a set of reliable exons (annotation CGG2),

and the most complete set of exons (annotation CGG3). For 49 genes, protein products of which have clear

homologs in protein databases, predictions were recomputed by Fgenesh+ program. The first annotation

serves as the optimal computational description of new sequence to be presented in a database. Reliable exons

from the second annotation serve as good candidates for selecting the PCR primers for experimental work for

gene structure verification. Our results shows that we can identify ∼90% of coding nucleotides with 20% false

positives. At the exon level we accurately predicted 65% of exons and 89% including overlapping exons with

49% false positives. Optimizing accuracy of prediction, we designed a gene identification scheme using

Fgenesh, which provided sensitivity (Sn) = 98% and specificity (Sp) = 86% at the base level, Sn = 81% (97%

including overlapping exons) and Sp = 58% at the exon level and Sn = 72% and Sp = 39% at the gene level

(estimating sensitivity on std1 set and specificity on std3 set). In general, these results showed that computational

gene prediction can be a reliable tool for annotating new genomic sequences, giving accurate information on

90% of coding sequences with 14% false positives. However, exact gene prediction (especially at the gene level)

needs additional improvement using gene prediction algorithms. The Fgenesh program was also tested for

predicting genes of human Chromosome 22 (the last variant of Fgenesh can analyze the whole chromosome

sequence). This analysis has demonstrated that the 88% of manually annotated exons in Chromosome 22 were

among the ab initio predicted exons. The suite of gene identification programs is available through the WWW

server of Computational Genomics Group at http://genomic.sanger.ac.uk/gf.html.

Many bacterial, as well as several eukaryotic, complete

genomes have been sequenced, and Drosophila, mouse,

and human genome sequencing is being pursued ag-

gressively. The first challenge in analyzing sequence

data is finding the genes. Knowledge of gene sequences

has led to a new way of performing biological studies

called functional genomics. The second major chal-

lenge is to find out what all of these new genes do, how

they interact, and how they are regulated (Wadman

1998). Comparisons among genes of different genomes

can provide additional insight into the details of gene

structure and function. To meet these challenges we

need advanced gene-finding algorithms and computer

systems utilizing all available information, such as

similarity with known proteins or ESTs to increase the

accuracy of genome annotation. We cannot precisely

predict all gene components because of limitations in

our knowledge of complex biological processes and sig-

nals regulating gene expression. In this respect, the

analysis of 2.9 Mb of Drosophila sequence by several

gene-finding approaches gives us a unique opportunity

to define the reliability and limitations of our predic-

tions and provides a strategy for the interpretation of

predicted results in the analysis of new genomic se-

quences. Current gene identification approaches

(Burge and Karlin 1998) use dynamic programming

and pattern-based or probabilistic scheme for scoring

potential gene variants. They employ the best signal

and content recognizers and an optimization tech-

nique developed previously (Burge and Karlin 1977;

Brunak et al. 1991; Fickett and Tung 1992; Guigó et al.

1992; Snyder and Stormo 1993; Krogh et al. 1994;

Stormo and Haussler 1994; Solovyev et al. 1994). We

tested two gene prediction approaches developed in

our group, Fgene (pattern based human gene predic-

tion) and Fgenesh (hidden Markov model(HMM))

based gene prediction with Drosophila gene param-

eters. The optimal strategy to annotate long genomic

sequences and predict new genes was investigated. The

best results were produced by organism-specific

Fgenesh program that can accurately predict ∼80% of

verified exons. The overpredicted exons (∼10%) can be

false positives or belong to genes that do not have cor-
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responding ESTs or proteins and have not been pre-

dicted by GENSCAN. Some of them represent the retro-

viruses genes which we included in our annotation.

METHODS
For identification of potential protein-coding regions

in the Adh region of Drosophila sequence we have used

three gene prediction programs (Fgenes, Fgenesh,

and Fgenesh+) developed in our group. Fgenesh is a

HMM based algorithm with the parameters trained on

the set 1600 of Drosophila genes annotated in GenBank

(Benson et al. 1999). Fgenesh+ is a variant of Fgenesh

that takes into account some information about simi-

lar proteins. Fgenes is the program based on discrimi-

nant functions trained to predict human genes. We

included the last program because we observed that

when predicting human genes, the same exons pre-

dicted by the Fgenes and Fgenesh approaches are ac-

curate with a specificity of ∼90%–95% (Solovyev and

Salamov,1999). Therefore, using both programs we can

find a subset of reliable exons that can be used to start

an experimental gene verification study.

Our approach to the annotation was based on ap-

plying basic gene prediction tools and using the BLAST

program to improve the accuracy of gene prediction

when similar proteins are found for ab initio predicted

exons. For most genes only small fragments of mRNA

sequences are presented in databases and complete

cDNAs are known only for a fraction of these genes.

Our experience shows that the use of short EST frag-

ments does not improve the accuracy of predic-

tions. Therefore, we decided not to use EST informa-

tion to make additional improvements testing the sys-

tem to predict genes in which the information about

the transcript sequences is practically absent. The sug-

gested scheme is designed to expedite initial analysis of

large-scale genomic sequences and can be the first step

in a complex system that might apply additional in-

formation to improve the quality of gene annotation.

General Scheme of Analysis

1. The large genomic sequence (2.9 Mb) was divided

into six contiguous subsequences, ∼0.5Mb each.

Fgenesh and Fgenes were run on all regions of the

sequence and the points of division were selected

within the fragments, which were free of predicted

genes. Fgenesh variants were developed to predict

genes of a sequence of any practical length and ap-

plied to the analysis of human Chromosome 22

(http://genomic.sanger.ac.uk/inf/infodb.shtml).

2. Repetitive sequences were masked in the sequence

using RepeatMasker (Smit 1999) and using the

Repbase data set (Jurka 1998).

3. Prediction of genes on masked sequences was done

with Fgenes and Fgenesh.

4. For each predicted exon similarity searches were run

using the BLAST program (Altschul et al. 1997) on

protein and EST databases. We used NCBI’s nonre-

dundant (nr) protein database and the Berkeley Dro-

sophila Genome Project’s EST database.

5. For genomic regions containing predicted exons

with significant protein similarity, we recomputed

gene predictions using a special program Fgenesh+.

6. The total pool of predicted genes was based on an-

notations, with priority given to the genes predicted

by Fgenesh+ (i.e., we removed all predictions

which overlapped with Fgenesh+ exons).

We have presented three annotations to demonstrate

different possibilities to use the predicted genes. The

major CGG1 annotation comprised the nonambiguous

gene set. The genes were included according to the

following criteria (descending in priority): (1) All genes

were predicted by Fgenesh+; (2) genes were predicted

identically by both Fgenes and Fgenesh programs;

and (3) in the regions of overlapped (but not exactly

coincide) predictions, only one predicted gene was in-

cluded with priority given to the genes producing

longer proteins. The annotation CGG2 is intended to

provide a subset of reliable exons. It comprised the set

of all exons predicted by Fgenesh+ augmented by the

exons, identically predicted by both programs (Fgenes

and Fgenesh). The annotation CGG3 included all exon

candidates predicted by Fgenesh+, Fgenes, and

Fgenesh genes.

Gene Identification Programs

Fgenes

Fgenes (Find genes) is the multiple gene prediction

program based on dynamic programming. It uses dis-

criminant classifiers to generate a set of exon candi-

dates. Similar discriminant functions were developed

initially in Fexh (Find exon), Fgeneh (Find gene) pro-

grams (h stands for the version that analyzes human

genes), and described in detail earlier (Solovyev and

Lawrence 1993; Solovyev et al. 1994).

The following major steps describe analysis of ge-

nomic sequences by the Fgenes algorithm:

1. Create a list of potential exons, selecting all ORF:

ATG. . .GT, AG-GT, AG. . . .Stop with exon scores

higher than the specific thresholds depending on

GC content (four groups); 2. Order all exon candi-

dates according to their 38-end positions; 3. Select

for each exon maximal score path (compatible ex-

ons combination) ending on the particular exon us-

ing dynamic programming approach similar to that

of Guigó (1999); 4. Add promoter or poly(A) scores

(if predicted) to terminal exons. Run time of the
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algorithm grows approximately linearly with the se-

quence length.

Scoring functions of Fgenes is based on usage linear

discriminant functions developed for identification

splice sites, exons, promoter, and poly(A) sites (So-

lovyev and Salamov 1997).

Fgenesh

Fgenesh is the HMM-based gene-finding program

with the algorithm similar to Genie (Kulp et al. 1996)

and GENSCAN (Burge and Karlin 1997). The difference

between Fgenesh and analogous programs is that in

the model of gene structure a signal term (such as

splice site or start site score) has some advantage over a

content term (such as coding potentials), reflecting the

biological significance of the signals. It means in log-

likelihood terms that in the model, splice sites and

start sites have an additional score, depending on the

environments of the sites, but not on conserved

nucleotides. At the same time in computing the coding

scores of potential exons, a priori probabilities of exons

were taken into account according to Bayes theorem.

As a result, the coding scores of potential exons are

generally lower than in GENSCAN. Parameters of the

program were trained on 1600 D. melanogaster entries

from GenBank. Separate coding potentials were calcu-

lated for each of two isochores: GC content < 45% and

GC content > 45%. The Fgenesh variant for predicting

Drosophila genes was prepared 1 year before the GASP

experiment; therefore, we did not use a learning set of

sequences provided by the organizers. The run time of

Fgenesh is approximately linear.

Fgenesh+

Fgenesh+ is a version of Fgenesh, which uses addi-

tional information from the available protein homo-

log. When exons predicted by Fgenesh show high

similarity to a protein from the database, it is often

advantageous to use this information to improve the

prediction accuracy. Fgenesh+ requires an additional

file with protein homolog and aligns all predicted po-

tential exons with that protein using the Smith–

Waterman algorithm, as implemented in the sim pro-

gram (Huang and Miller 1991). To decrease the com-

putational time, all overlapping exons in the same

reading frame are combined into one sequence and

aligned only once against the protein sequence.

The main additions to the algorithm, relative to

Fgenesh, include (1) the augmentation of the scores of

exons with detected similarity by an additional term

proportional to the alignment score, and (2) the addi-

tional penalty included for the adjacent exons in dy-

namic programming (Viterbi algorithm), if their corre-

sponding aligned protein segments are not close in the

corresponding (similar) protein.

Fgenesh+ was tested on the selected set of 61 Gen-

Bank human sequences, for which Fgenesh predic-

tions were not accurate (correlation coefficient

0.0 # CC < 0.90) and which had protein homologs

from another organism. The identity between encoded

proteins and homologs varied between 99% and 40%.

The prediction accuracy of this set is presented in Table

1. The results show that if the alignment covers the

significant parts of both proteins, Fgenesh+ usually

increases the accuracy relative to Fgenesh that is not

depending significantly on the level of identity (for ID

>40%). This property makes knowledge of proteins

from even distant organisms useful for improving the

accuracy of gene identification.

RESULTS AND DISCUSSION
Fgenes predicted 384 genes (202 in reverse chain),

with 3.9 being the average number of exons per gene.

The average size of the genes was 5.4 kb (from ATG to

stop codon, including introns) and the average size of

intergenic regions was 7.6 kb. Of these genes, 207 had

sequence similarities on both protein and EST levels,

405 exons had similarities with only proteins, and 335

exons had similarities with only ESTs (with E-

value < 1015). Fgenesh predicted 530 genes (269 in

reverse chain), with 3.2 being the average number of

exons per gene. The average size of the genes was 2 kb

and the average size of intergenic region was 5.5 kb. Of

these exons, 252 had sequence similarities on both

protein and EST levels, 601 exons had similarities only

with proteins, and 390 exons had similarities with only

ESTs (with E-value < 1015).

We used Fgenesh+ to improve the accuracy of

prediction for 49 genes. Of these genes, 37 were pre-

dicted using D. melanogaster’s own proteins already de-

posited in protein databases. Analysis of these predic-

tions demonstrates that even for such cases, prediction

of accurate gene structure may not be trivial, although

in most cases Fgenesh+ improved the prediction ac-

curacy relative to ab initio methods. For example, in

the region of the Beaten path protein (2505534–

2530156 bp) Fgenesh predicts three genes (Fig. 1A).

Table 1. Comparison of Accuracy of Fgenesh and
Fgenesh+ on the Set of Human Genes with Known
Protein Homologs from Other Organisms

CG
(%)

Sne
(%)

Spe
(%)

Snb
(%)

Spb
(%)

CC
(%)

Fgenesh 0 63 68 86 83 0.74
Fgenesh+ 46 82 85 96 98 0.95

The set contains 61 genes and 370 exons. (CG) Correctly
predicted genes; (Sne and Spe) sensitivity and specificity at
the exon level; (Snb and Spb) sensitivity and specificity at the
base level; (CC) correlation coefficient.
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The first and last predicted genes have common exons

with the real gene, but the second predicted gene is in

reverse strand and located inside of first intron. Such

splitting is probably caused by the relatively large size

of the first intron (∼20 kb). Prediction becomes com-

pletely accurate using a proper protein product of the

gene (Fig. 1b). In total, from 49 genes, only 24 coin-

cided completely with the genes annotated in std3 set.

Four predicted retrovirus-related genes from trans-

posons were not annotated because annotators ex-

cluded transposon sequences. Of the remaining 21 pre-

dicted genes, most agreed with annotations, with

slight discrepancies in one to two exons. Below are

listed some cases where we beleive our predictions are

more correct than the annotations in the std3 set.

1. Kuzbanian gene (34,358–130,401), a disintegrin-like

metalloprotease (Rooke et al. 1996). Annotators

probably missed the second exon (52555–52587).

Our predicted protein product is closer to the pro-

tein shown in GenBank’s mRNA entry for this gene

(accession no. U60591).

2. p38b gene (274,751–275,848), stress-activated MAP

kinase (Han et al. 1998). We predicted a single-exon

gene where protein product is identical to Gen-

Bank’s mRNA entry for this gene (accession no.

AF035548). In std3 this gene is described as having

two coding exons (274,751–275,110 and 275,123–

275,848) separated by a small intron of 13 bp.

3. Adhr gene (1,111,284–1,112,578) is alcohol dehy-

drogenase-related gene (Brogna and Ashburner

1997). Our predicted protein is 99.6% accurate (1

mismatch in 256 amino acids) and coincides with

the protein in GenBank’s mRNA entry for this gene

(accession no. X98338).The protein product of the

corresponding gene in std3 has an insert of 10

amino acids.

4. TfIIS gene (1,549,142–1,550,149), RNA polymerase

II elongation factor (Marshall et al. 1990), which is

probably an alternative splicing variant. We pre-

dicted a gene with two exons, the protein product of

which is identical to the TfIIS protein with identifier

sp|P20232 in NCBI’s nr database (313 amino acids).

The corresponding gene in std3 is a single exon and

has a protein product identical to the TfIIS protein

with identifier pir|S55899 in the nr database (263

amino acids).

Because the annotators used GENSCAN for unsupported

protein and EST gene identification, we can anticipate

that the annotation contains some false-positive and

Figure 1 Prediction of beaten gene by Fgenesh (a) and by
Fgenesh+(b). Fgenesh+ predictions coincide with the experi-
mentally verified gene structure.

Table 2. Performance of Several Programs on the Adh Region of Drosophila

CGG1 CGG2 CGG3 Fgenesh

Fgenesh

pruned Genie Genie EST MAGPIE

Base
level

Sn std1 89 49 93 98 98 96 97 96
Sn std3 87 46 91 92 88 79 79 94
Sp std3 77 86 60 71 86 92 91 63

Exon
level

Pe 1115 598 2900 1671 979 786 849 1835
Ce std1 80 54 92 100 100 86 95 84
Sn std1 65/89 44/55 75/94 81/97 81/97 70 77 68
Ce std3 544 405 620 601 565 447 470 705
Sn std3 60/82 45/54 69/90 66/89 62/82 49 52 78
Sp std3 49 68 24 36 58 57 52 41

Gene
level

Pg 288 201 875 530 262 241 246 549
Cg std1 22 7 26 31 31 24 28 20
Sn std1 51 16 60 72 72 56 65 47
Cg std3 102 45 113 108 106 86 92 136
Sn std3 46 20 51 49 48 39 41 61
Sp std3 36 32 14 20 39 37 38 25

std3 contains 222 genes and 909 exons; std1 contains 43 genes and 123 exons. The annotated exons were taken from the set
presented by organizers of GASP at the time of the initial data analysis. Later corrections were not included.
(Pe) Number of predicted exons; (Ce) number of correctly predicted exons; (Cg) number of correct genes; (Pg) number of predicted
genes; (Pe) number of correctly predicted genes.
(Sn) Sensitivity (%); (Sp) specificity (%). At the exon level the second number after the diagonal shows sensitivity, taking into account
exactly predicted and overlapped exons.
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false-negative predictions. In fact, 39 genes in std3

were annotated only on the basis of high score predic-

tions in GENSCAN (Ashburner et al. 1999). Table 2

shows the prediction accuracy for our annotation sets

(based on combination of Fgenes and Fgenesh),

some of the best predictions from another groups

(taken from initial analysis of Reeves et al. 2000), along

with the results for Fgenesh alone. Our results shows

that HMM-based Fgenesh program with Drosophila

parameters performed better than pattern-based

Fgenes, discriminant functions of which were devel-

oped for prediction of human genes. Even though it

was technically incorrect to use the human version of

Fgenes, we were able to demonstrate that applying

two different approaches for prediction

can generate a set of exons with expected

properties.

1. The main annotation CGG1 predicts

∼87% of real coding nucleotides and

∼23% of false positives (there might be

some errors in coding due to the ab-

sence of experimental data in many

regions); 89% of exons are predicted

exactly or with overlapping exons.

These data show that ab initio predic-

tions can provide information about

almost all of the protein coding genes

(only 13% of the coding region was

not predicted) and can serve as a basis

for further experimental analysis.

2. The annotation CGG2 contains ∼50%

of coding exons but has ∼20% fewer

false positive exons. These exons can

be used to start experimental gene

verification.

3. The annotation CGG3 included ∼70%

of correct exons and 92% of all coding

nucleotides. Such redundant annota-

tion can be useful in identifying some

genes with additional selection filters,

(i.e., analysis of similarity with some

important proteins or some experi-

mental procedures).

It is interesting to note that the use of

two programs provided stable prediction

accuracy on both (std1 and std3) sets.

The Genie program demonstrated a 20%

decrease in sensitivity (Table 2). Because

we have no version of Fgenes with all

parameters computed for Drosophila

genes, we tried to find an optimal variant

using one program. We discovered that

the Fgenesh predictions provided the

best accuracy. In this simple variant we

took a set of predicted genes and dis-

carded the low-scoring genes (with an average gene

score <15). This resulted in 88% accurate coding

nucleotide predictions with only 14% false positives

on the std3 set (Table 2).

Our results demonstrate that most of the anno-

tated genes in std3 are at least partially covered by pre-

dictions. For example, only five genes from std3 do not

overlap with Fgenesh predictions (two of them are

also included in the std1 set). Of these five genes, four

are located inside introns of other genes; four are

single-exon genes (three are inside intron genes).

Therefore, one of the limitations of current gene-

finding programs is that they cannot detect nested

genes, that is, genes located inside introns of other

Figure 2 Genes in Pictures (Seledtsov and Solovyev 1999) presentation of
Fgenes and Fgenesh predictions in the Adh region. (Bottom) Fragments of anno-
tations that are marked in the top panel. The last level presents std3 manual anno-
tation. Coding exons are marked in red; introns are in gray. Inverted green triangles
show the start of transcription; red ones mark the poly(A) signal. Exons having
protein or EST similarity are underlined with red and blue lines, respectively.
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genes. This is one in the future directions for improve-

ment in gene-finding software. Although this is prob-

ably a rare event for the human genome, for organisms

like Drosophila it presents a real problem. For example,

annotators identified 17 examples of such cases in the

Adh region. (Ashburner et al. 1999). Another drawback

of the current gene-finding programs is that predic-

tions of terminal exons are generally much worse than

the internal ones. This results in the splitting up of

some actual genes and/or joining some other multiple

genes into a single gene. Several examples of such situ-

ations can be clearly seen in our Genes in Pictures

interactive system (Seledtsov and Solovyev 1999) (Fig.

2) developed to present information about gene struc-

tures described in GenBank (collecting information

about a gene from many entries) or annotated using

gene prediction programs. In total, on std3, 63% of

internal exons from the CGG1 annotation are predicted

exactly, with 54% specificity, whereas the correspond-

ing numbers for initial exons are 58% and 44%, and for

terminal exons 53% and 40%, respectively. On std1

Fgenesh predicts all internal exons correctly (100%),

whereas only 72% of initial exons and 77% of terminal

exons are predicted correctly (Table 3). Thus, methods

to better predict terminal exons and the related prob-

lem of recognizing the beginnings (transcription start

sites) and endings [poly(A) sites] of genes are other pos-

sible areas for improvement in the use of gene-finding

programs.

In conclusion, we note that even programs based

on similar approaches often produce significantly dif-

ferent results. For example, Fgenesh predicts 5839 ex-

ons on human Chromosome 22 (>88% of 3488 manu-

ally annotated exons having some EST or protein simi-

larity are among these predictions), whereas GENSCAN

predicts 6100 exons. Fgenesh predictions are pre-

sented in Infogene database format (Solovyev and

Salamov 1999) at http://genomic.sanger.ac.uk. Of

these exons, ∼80% are the same or similar when com-

paring Fgenesh and GENSPAN predictions and fur-

ther experiments are necessary for verification. A re-

gion that has been analyzed experimentally (but

with low gene density and unusually difficult for ab

initio predictions) provides a good test of the programs

accuracy and demonstrates their differences. The

results of Fgenesh, Fgenes, and GENSCAN gene pre-

dictions on the BRACA2 region are presented in

Table 4. We can see that the repeat masked sequence

results in fewer false-positive predictions, especially

for the GENSCAN program. Exons predicted by differ-

ent methods might represent alternative splicing vari-

ants.

Table 3. Prediction Accuracy for Different Types of Exons

Initial exons Internal exons Terminal exons Single exons

Sn
std 1

Sn
std 3

Sp
std 3

Sn
std 1

Sn
std 3

Sp
std 3

Sn
std 1

Sn
std 3

Sp
std 3

Sn
std 1

Sn
std 3

Sp
std 3

CGG1 55 58 44 79 63 54 61 53 40 42 56 45
Fgenesh 72 65 26 100 70 51 77 57 23 28 56 26
Fgenesh

pruned 72 58 51 100 67 66 77 53 46 28 56 41

(Sn and Sp) Sensitivity and specificity at the exon level (%).

Table 4. Performance of Gene-finding Programs on the BRCA2 1.4-Mb Region of Human Chromosome 13

CC Snb Spb Pe Ce Sne Snep Spe Pg. Cg PCg

GENSCAN 0.68 90 53 271 109 65 80 40 49 0 19
Fgenesh 0.80 89 73 188 115 69 80 61 25 0 17
Fgenes 0.69 79 62 298 110 66 86 37 34 0 19
GENSCAN

masked 0.76 90 66 217 109 65 80 50 32 0 19
Fgenesh

masked 0.84 89 82 172 114 68 79 66 19 0 17
Fgenes

masked 0.73 80 68 257 107 64 85 42 38 0 19

The BRCA2 region contains 20 verified genes and 168 exons.
(CC) The correlation coefficient reflecting the accuracy of prediction at the nucleotide level: (Snb and Spb) sensitivity and specificity
at the base level (%); (Sne and Spe) sensitivity and specificity at the exon level (%), (Snep) exon sensitivity, including partially correct
predicted exons (%); (PCg) number of partially correct genes.
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