
Ab initio gene identification in metagenomic
sequences

Wenhan Zhu1, Alexandre Lomsadze2 and Mark Borodovsky2,3,4,*

1School of Biology, 2Wallace H. Coulter Department of Biomedical Engineering, 3School of Computational

Science and Engineering and 4Center for Bioinformatics and Computational Genomics, Georgia Institute

of Technology, Atlanta, GA 30332, USA

Received December 19, 2009; Revised March 20, 2010; Accepted April 3, 2010

ABSTRACT

We describe an algorithm for gene identification in

DNA sequences derived from shotgun sequencing

of microbial communities. Accurate ab initio gene

prediction in a short nucleotide sequence of an-

onymous origin is hampered by uncertainty in

model parameters. While several machine learning

approaches could be proposed to bypass this

difficulty, one effective method is to estimate par-

ameters from dependencies, formed in evolution,

between frequencies of oligonucleotides in

protein-coding regions and genome nucleotide

composition. Original version of the method was

proposed in 1999 and has been used since for (i)

reconstructing codon frequency vector needed for

gene finding in viral genomes and (ii) initializing par-

ameters of self-training gene finding algorithms.

With advent of new prokaryotic genomes en

masse it became possible to enhance the original

approach by using direct polynomial and logistic ap-

proximations of oligonucleotide frequencies, as well

as by separating models for bacteria and archaea.

These advances have increased the accuracy of

model reconstruction and, subsequently, gene pre-

diction. We describe the refined method and assess

its accuracy on known prokaryotic genomes split

into short sequences. Also, we show that as a

result of application of the new method, several

thousands of new genes could be added to

existing annotations of several human and mouse

gut metagenomes.

INTRODUCTION

A metagenomic sample is a heterogeneous mixture
of rather short sequences originated from a shotgun
sequencing of a microbial community. A vast majority
(99%) of microbial species in a given community are

likely to be non-cultivable (1). Many protein-coding
regions in a new metagenome are likely to code for
barely detectable homologs of already known proteins.
Therefore, along with comparative genomic methods
that rely on sequence similarity search, ab initio methods
able to identify genes having no similarity to ones existing
in databases are vitally important tools of metagenomic
sequence analysis. Sequence similarity-based methods
possess high specificity and ability to characterize function
of predicted genes (2–5). Ab initio gene finders exhibit high
sensitivity along with sufficiently high specificity. The
standard tools for ab initio prokaryotic gene prediction
such as EasyGene (6), GeneMarkS (7) or Glimmer (8)
were not designed to work with short sequence fragments
from unknown genomes. However, a special method for
assignment of parameters of a gene finder, the ‘heuristic
model’ method, designed for accurate gene finding in short
prokaryotic sequences with anonymous origin was
proposed 4 years prior to the advent of metagenomics (9).
The idea was to bypass traditional ways of parameter

estimation such as supervised training on a set of validated
genes or unsupervised training on an anonymous sequence
supposed to contain a large enough number of genes. It was
proposed to use dependencies, apparently formed in evolu-
tion, between codon frequencies and genome nucleotide
composition. Therefore, the vector of codon frequencies,
critical for the model parameterization, could be derived
from frequencies of nucleotides observed in a short
sequence. This ‘heuristic model’ method has been used
for (i) reconstructing codon frequency vector for gene
finding in viral genomes (10) and (ii) initializing the algo-
rithms for iterative parameters estimation for prokaryotic
as well as eukaryotic gene finders (7,11–12). Recently,
several new methods for ab initio gene finding in
metagenomic sequences have been developed (13–15).
Particularly, the authors of MetaGene (14) saw a signifi-
cant potential in the ‘heuristic model’ method (9); they have
extended the method to use of di-codon frequencies. The
authors of new tools have shown that their performance is
comparable to performance of the original ‘heuristic
model’ method (Supplementary Table S3 in (14)) (16).
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In this article, we describe further improvement of the
‘heuristic model’ method. A key observation made upon
analysis of 17 genomes (9) was that frequencies of nucleo-
tides in the three codon positions depend linearly, though
with distinctly different slope coefficients, on global nu-
cleotide frequencies. In turn, due to the second Chargaff
rule (17), this observation means that nucleotide
frequencies in the three codon positions depend linearly
on genomic GC content. These linear functions were used
to reconstruct codon frequencies in the whole genome
using information derived from its short sequence
fragment and to derive parameters of the ‘heuristic’
second-order Markov models [the Heuristic ALgorithm
(HAL)-99 models] for a gene finding algorithm. Gene
finding with ‘heuristic’ models was proved to be effective
for viral genomes (10,18) as well as for metagenomic se-
quences (Nikos Kyrpides, personal communication).
With hundreds of new prokaryotic genomes available, it

is now possible to enhance the original approach and to
utilize direct polynomial and logistic approximations of
oligonucleotide frequencies. Also, the analysis of a larger
set of genomic sequences has shown that patterns of de-
pendence of codon frequencies from nucleotide
frequencies are distinctly different in the two domains of
life, bacteria and archaea. Interestingly, distinctly different
patterns of the dependence of codon frequencies from
genome nucleotide composition have also been observed
in mesophilic and thermophilic species. Thus, for gene
finding in a short sequence, it is worthwhile to make a
simultaneous use of two models, bacterial and archaeal,
or mesophilic and thermophilic.
We have assessed the accuracy of a hidden Markov

model (HMM) based gene finder, GeneMark.hmm,
using the new models on the sets of short sequences
obtained by splitting known genomes into equal length
fragments (ranging from 72 to 1100 nt). The results dem-
onstrate a higher accuracy in comparison with several
other existing methods as well as with the use of original
heuristic models.
Application of whole-genome shotgun sequencing to

studies of mixed microbial communities, such as gut
microbiota of human and mouse have a potential to
reveal details of a large picture of the host metabolism
combining microbial and mammalian elements. It is
estimated that human intestinal microbiota consists of
1013–1014 microorganisms. This microbiome should
contain at least 100 times as many genes as a human
genome per se. Still, due to diversity of the microbiome,
metagenomic data sets consist mainly of unassembled
single-read sequences. We have applied the new method
to the sequences of human and mouse gut microbial
communities (19–20). We detected a large number of
protein-coding regions not yet annotated; for a significant
fraction of the protein products of newly predicted genes,
we found homologs among known proteins. Notably,
identification of incomplete genes carries valuable infor-
mation for reconstruction of metabolic networks and sig-
naling pathways. Since a number of protein-coding
regions in a metagenome may be counted by millions
(4), improving accuracy of gene finding by a percentage
point would affect accurate prediction of tens of

thousands of genes of the organisms constituting micro-
bial communities. Therefore, development of accurate
metagenome-specific methods is of critical importance
for quality analysis of sequence data produced by the
next generation sequencing technologies (21).

MATERIALS

Sequence data of 582 complete prokaryotic genomes (534
bacteria and 48 archaea; genetic code 11) were from the
NCBI RefSeq database. Length of the shortest genome in
the sample, Nanoarchaeum equitans (22), was 490 kb.
Genome GC contents varied from 16.6% to 74.9%. The
data on optimal growth temperature for 357 prokaryotic
species (Supplementary Table S1) was from the NCBI
Entrez genome database (23). Metagenomic sequence
data and annotation for human and mouse gut
microbiomes were from the JGI IMG/M database (24).

Test sets

For assessment of gene prediction accuracy, we used frag-
ments from whole genomes of 29 bacterial and 15 archaeal
species (containing 50 microbial chromosomes) listed in
Supplementary Table S2. The genomic sequences were
split into equal length non-overlapping fragments, with
length ranging from 72 to 1100 nt; fragment annotations
were derived from corresponding RefSeq records. To
retain genes with most reliable annotation, fragments
overlapping annotated hypothetical genes were discarded.

METHODS

Heuristic method of model parameters derivation

A conventional ab initio gene finding algorithm employs a
probabilistic model of genomic sequence containing
protein- and non-coding regions. Gene prediction
accuracy critically depends on precision of the estimation
of model parameters that are genome specific. The number
of parameters of the probabilistic model of a protein-
coding region, a three-periodic Markov chain model (25)
increases exponentially (�4N) with theMarkov chain order
N. The higher the model order, the larger the size of a set of
training sequences required for parameter estimation
without over-fitting, e.g. in practice, estimation of param-
eters of the fifth-order model is made on a set of verified
protein-coding sequences with total length of 400 000 nt.
Note that in our observations even if a larger training set
is available, models with an order higher than five did not
make a noticeable difference in power of discrimination
between coding and non-coding regions (26).

Metagenomic sequence data, mixtures of shotgun se-
quences from numerous members of microbial
communities, are populated with short sequences (with
length �400 nt). The task is to identify a complete or
incomplete protein-coding region residing in a short
fragment. A gene finding algorithm, e.g. GeneMark
.hmm, could be applied to solve this task should we
know or are able to derive the genome-specific model
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parameters. However, the fact that the genomic context of
the short fragment is missing precludes the use of standard
approaches for parameter estimation. In a previous work
(9), we proposed a method to infer parameters of the
three-periodic second-order Markov model for gene
finding in a short (e.g. 400 nt) sequence fragment of
unknown origin. First, we have identified dependencies
that link the nucleotide composition of a genome with
the genome-specific codon frequencies. These depen-
dencies are apparently the strongest determinants of a
genome-wide synonymous codon usage pattern (27–28).
Second, nucleotide frequencies observed in a short
DNA fragment served as estimates of global nucleotide
frequencies in the whole genome, the source of the
short fragment. Then, starting from estimated values of
global nucleotide frequencies we reconstructed the
genome-specific codon frequencies.

In more details, in the first step, analysis of genomes
with known annotation, by taking one genome at a
time, we determined frequencies of occurrence of each

of the 61 codons in a genome-wide set of annotated
protein-coding regions. The codon frequency data deter-
mines 12 genome-specific positional frequencies f1X, f2X,
and f3X, where X=A, C, G, T in the three codon pos-
itions. For a sample of known genomes, r=1, 2, . . .R
with observed fkX, k=1, 2, 3 the fkX values were
approximated by linear regression on the global nucleo-
tide frequency fX, X=A, C, G, T. Initially, in 1999, the
analysis was done for 17 completely sequenced genomes
[Figure 1 in (9), see also (29)].
Now, with many more sequenced genomes available,

the linear regression analysis was done for 319 bacterial
genomes (Figure 1) as well as for 38 archaeal genomes
(Table 1). Graphs in Figure 1 look different from graphs
in Figure 1 in (9) for the following reasons. The global
nucleotide frequency variable strongly correlates with the
genome GC content. The second Chargaff rule states that
at a whole-genome level, nucleotide frequencies, fX,
X=A, C, G, T in a single DNA strand are such that fA
� fT and fG � fC. Therefore, four nucleotide frequencies

Figure 1. Observed frequencies of 4 nt in the three codon positions (first: green; second: blue; third: red) as functions of genome GC content for
319 bacterial genomes. Nucleotides G and T have more contrast in frequencies in the first and second position in comparison with A and C.
Frequencies in the third codon position are most sensitive to genome GC content.
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observed in whole genomes can be derived from a single
parameter, the GC content; if s is a genomic GC content,
fG+fC, then frequencies of nucleotides fG= fC= s/2 and
fA= fT= (1� s)/2. Thus, new graphs of positional nu-
cleotide frequencies (Figure1) were plotted as functions
of genomic GC content.
Further, the s value determined for a short genomic

fragment is used as predictor of positional nucleotide
frequencies fkX, where k=1, 2, 3 and X=A, C, G, T.
Assuming that a codon frequency, fXYZ, is proportional to
product f1Xf2Yf3Z we could obtain an initial approxima-
tion of codon frequency f0XYZ. Additional correction
comes from the value of predicted frequency of encoded
amino acid a, fa (s) determined by linear regression of
frequencies of amino acid a observed in corresponding
proteomes with respect to the genomic GC contents.
To give an example, for alanine with four synonymous
codons, predicted frequency fGCT of codon GCT is:

fGCT ¼ falanineðsÞ � f 0GCT=ðf
0
GCT+ f 0GCG+ f 0GCC+ f 0GCAÞ½ �

ð1Þ

Note that the left part of the formula does not change in
further iterations (i.e. by substituting thus found fGCT into
right part of the equation).
Finally, it was shown that all parameters of the

three-periodic Markov chain model of a protein-coding
region could be determined as functions of the set of
predicted codon frequencies (9). A model of non-coding
region was defined as the multinomial model, the
zero-order Markov model. GC content of non-coding
regions was observed to have strong correlation with the
genome-wide GC content (Figure 2). Therefore, nucleo-
tide frequencies observed in a relatively short DNA
fragment are accepted as estimates of four parameters of
the non-coding region model. Thus parameterized models
of protein- and non-coding regions are ready for use in a
gene finding program such as GeneMark.hmm (7,30).

Refined methods for estimation of parameters of the
model of protein-coding regions

With hundreds of prokaryotic genomes sequenced and
annotated, it is possible to use non-linear (polynomial

or logistic) regression to more precisely determine the de-
pendence of codon frequencies on genome GC content. To
choose the order of regression polynomial, we recall the
observed linearity in dependence of frequencies of nucleo-
tides in the three codon positions on genome GC content;
product of three linear functions is natural to approximate
by the third-order polynomial A+Bs+Cs2+Ds3; the least
squares method is applied to estimate the four coefficients.

A logistic function f ðzÞ ¼ 1=1+e�z
,ðz ¼ �o+�1sÞ could

approximate observed codon frequencies scaled with
respect to the minimum and maximum values: f scaled=
( f� fmin)/( fmax� fmin); this approach was used earlier
(14). A generalized linear regression function glmfit
from the MatLab Statistics Toolbox was used to deter-
mine b0 and b1 parameters from the equation
ln ðf scaled=1� f scaledÞ ¼ �0+�1s. For a given s, codon
frequency was determined as follows. With
f scaled ¼ 1=1+e�zðsÞ

� �

, predicted codon frequency was
determined as f(s)= f scaled * ( fmax� fmin)+fmin.
Frequencies of 64 nucleotide triplets residing in each of
two other reading frames could be reconstructed by either
one of the two regression approaches outlined above.
The three vectors of triplet frequencies thus reconstructed
for a short sequence S with respect to its GC content are
sufficient for computing parameters of the second-order
three-periodic Markov chain model, the model of
protein-coding region in an unknown genome sequence
S came from.

Summarizing the options described above, parameters
of the three-periodic second-order Markov chain could be
determined by several alternative techniques: (i) recon-
structing codon frequencies from predicted nucleotide
frequencies in the three codon positions, with subsequent
derivation of triplet frequencies in the second and third
frame (9), the technique named above HAL-99; (ii) recon-
structing codon frequencies by the third-order polynomial
functions, with derivation of triplet frequencies in two
other frames as in HAL-99, C-3 technique; (iii) recon-
structing frequencies of K-mers, K=3, 4, 5, 6 in the
three frames with the K-order polynomial regression,
K–K techniques; and (iv) reconstructing frequencies
of K-mers, K=3, 4, 5, 6 in the three frames with the
logistic regression, K–L techniques.

Table 1. Values of slopes of linear regression lines (such as in Figure1) showing slope values for frequencies of nucleotides in the three codon

positions for bacterial (B) and archaeal species (A) and the same for mesophilic (M) and thermophilic (T) species

Nucleotide
type

Archaea/
bacteria

Codon position Mesophilic/
thermophilic

Codon position

1 2 3 1 2 3

A B �0.43 �0.34 �0.91 M �0.44 �0.34 �0.92
A �0.50 �0.29 �0.97 T �0.55 �0.32 �0.92

C B 0.40 0.25 1.07 M 0.40 0.25 1.07
A 0.38 0.21 1.04 T 0.51 0.25 1.01

T B �0.25 �0.11 �0.93 M �0.25 �0.11 �0.93
A �0.24 �0.10 �0.86 T �0.25 �0.15 �0.81

G B 0.28 0.20 0.78 M 0.28 0.20 0.78
A 0.36 0.19 0.79 T 0.30 0.22 0.72

The table shows almost identical sets of slope values for bacterial and mesophilic divisions. Slope values of archaeal and thermophilic divisions
are distinctly different.
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We show examples of typical regression graphs for
codons AAT, GCC, TTG and CGT frequencies
observed in bacterial genomes (Figure 3); the regression
curves were produced by the HAL-99, C-3 and 3-L tech-
niques. Codon AAT is A and T ‘rich’. As a rule,
frequencies of eight out of 64 AT rich codons show mon-
otonous decrease over the whole GC range with a rather
small variation in any given GC content (Figure 3a). The
codon GCC frequency, as well as frequency of other seven
GC rich codons increases as genome GC content grows
(Figure 3b). Frequencies of codons with mixed compos-
ition, such as TTG and CGT (Figure 3c and d) show more
variation particularly in the mid GC range, and the task of
approximation of these frequencies by a function of single
variable is more challenging. It was reported that in
genomes with the same GC content, the differences in
codon frequencies correlate with differences in optimal
growth temperature, t (31). These observations motivate
introduction of yet another technique, designated as the
C-M technique using approximation of codon frequencies
by a function of two variables fXYZ ¼ A+Bs+
Cs2+Ds3+Et+Fst, the sequence GC content, s, and the
temperature of microbiome habitat, t, with parameters
determined by multiple regression (Figure 4).

Dual mode of using heuristic models

Linear trends in frequencies of nucleotides in the three
codon positions with respect to genome GC content

have been observed to be different in bacteria and
archaea (Table 1). Therefore, two distinct heuristic
models could be built, one for bacterial and another
for archaeal sequences. Notably, no pre-processing is
needed to identify a domain of life the short sequence
fragment represents. The bacterial and archaeal heuris-
tic models can be used in the GeneMark.hmm algorithm
simultaneously (Figure 5), similarly to the simultaneous
use of typical and atypical gene models (30). A
protein-coding region, if present in the sequence, is
supposed to be recognized by either bacterial or archaeal
model.
Alternatively, all prokaryotic species could be divided

into mesophilic and thermophilic (310 mesophilic and 47
thermophilic in our reference set of sequenced genomes).
Then, application of regression analysis of nucleotide
frequencies in the three codon positions produced once
again two distinct sets of 12 linear functions (Table 1).
The two heuristic models (built for mesophiles and
thermophiles) could also be used simultaneously in
GeneMark.hmm. However, such a dual model seems to
be less effective for practical use, as the temperature of a
microbiome habitat is supposed to be known and one of
the models could be chosen a priori.
In the Results section, we designate the model pairs by

suffix BA or TM, e.g. 3-3BA stands for use a pair of bac-
terial and archaeal models derived by the third-order poly-
nomial approximation of triplet frequencies.

Figure 2. Dependence of GC content of genomic functional regions on genome-wide GC content. Protein-coding and non-coding regions
were identified by GeneMarkS in randomly selected 155 bacterial and 16 archaeal genomes; tRNA genes by tRNAScan-SE, while rRNA genes
were selected as annotated in RefSeq. Triangles and circles with species names indicate GC content of tRNA and rRNA genes of archaeal
thermophiles.
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Length distributions for partial and complete genes

An average gene length in a prokaryotic genome is about
900 nt. In a metagenomic sequence shorter than 900 nt, it
is more likely to observe a part of a gene than a complete
gene. To account for the frequent occurrence of partial
coding sequences (CDS), we have to modify a formula
for the gene length frequency distribution used in

GeneMark.hmm for gene finding in complete genomes.

This distribution is approximated by p(d)=Nc(d/dc)
2exp

(�d/dc), the g distribution formula with two parameters

(30). Also, the length distribution of non-coding re-

gions is approximated by exponential distribution

p(d)=Nnexp(�d/dn). Parameters, dc and dn are estimated

by fitting to empirical distributions of gene length in

Figure 3. Characteristic cases of codon frequency dependence on genome GC content. Each panel shows observed frequencies of a given codon in
319 bacterial genomes. Mesophilic, psychrophilic and thermophilic species are shown as light blue, dark blue and purple dots, respectively. Three
techniques of approximating dependence of codon frequency from genome GC content are illustrated: 1999 heuristic model (HAL-99, black dotted
line); logistic regression (3-L, green dotted line); and order three polynomial regression (C-3, red dotted line). Plots for 61 codons are available at
http://exon.gatech.edu/GeneMark/metagenome/Training/PlotPDF/BAC2D.pdf.
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known genomes. It was observed that values of dc and dn
vary little among different prokaryotic species. Therefore,

values of these parameters in the algorithm were given as

default values: dc=300 and dn=150. The formula for

length distribution of protein-coding regions in

short metagenomic sequences is p(d)=Np(d
2+dcd+2d2c)

exp(�d/dc), with parameters Np and dc. Corresponding

graphs of theoretical and observed length distributions

are shown in Figure 6. To avoid predicting too

short partial genes, we have effectively defined 60 nt as
minimum length of a predicted gene by setting
p(l� 60)=0.

RESULTS

Choice of parameters of length distributions

To analyze how accuracy of GeneMark.hmm depends on
dc and dn values, we used sets of 700-nt long fragments of
Escherichia coli and Bacillus subtilis genomes; the model
used in the runs was the C-3BA one. Sensitivity (Sn) and
specificity (Sp) were determined by comparison of gene
predictions with fragments annotation. A prediction was
accounted as a true positive if locations of the predicted
and annotated 30-ends matched or for partial genes
without 30-ends there was a match between predicted
and annotated reading frames. The values of dc could
vary from 100 to 800, while values of dn varied from 100
to 300. Particularly, dependence of Sn and Sp for dc=800
while dn varied from 100 to 300 as indicated by blue line
in Figure 7; similarly, dependence of Sn and Sp for
dn=100 while dc is varied from 100 to 800 as indicated
by purple line. The dc, dn setting used for analysis of
complete genomes (300, 150) is indicated by red dot.
Combining larger dc (800) and smaller dn (100) leads to
a substantial increase of Sp and a slight decrease of Sn.
This result is due to the decrease in number of predicted
short genes, many of them not matching annotation.

Figure 6. Length distributions of coding and non-coding regions observed and expected in 700-nt long fragments of E. coli K12 genome. An average
E. coli gene length is about 900 nt. Therefore, some of the 700-nt fragments are 100% coding, hence the peak of frequency of partial CDS length
(light blue) at 700-nt point. Similarly, the frequency of length of non-coding region has two peaks at 15 and 700 nt. (a) Complete CDS length
distribution is approximated by function g(d) =Nc(d/dc)

2exp(�d/dc), dc=300; (b) Non-coding region length distribution is approximated by
function f(d)=Nnexp(�d/dn), dn=150; (c) Partial CDS length distribution is approximated by function p(d) =Np(d

2+dcd+2d2c )exp(�d/dc), dc=300.

start

codon

stop

codon

non-coding
state

stop

codon

start

codon

archaeal-type
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bacterial-type 
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archaeal-type
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coding state

Direct strand
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Figure 5. Hidden states diagram of the generalized hidden Markov
model (HMM) used in the GeneMark.hmm algorithm; this is the
case of using bacterial and archaeal model pair (a similar diagram
would be valid for use of mesophilic and thermophilic model pair).
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To facilitate comparison of average values S=
(Sn+Sp)/2, produced by the program runs with different
dc and dn values, the constant S level lines (with slope �1)
were plotted in Figure 7a and b. Performance (Sn, Sp) of
MetaGene and MetaGeneAnnotator (with default param-
eters) was depicted for each of the two genomes as
well; one can see that the performance is high, though
it can be outperformed, especially in the E. coli, by
GeneMark.hmm with a wide range of parameters dc
and dn. As the result of modeling, we have used dc=800
and dn=100 in further analysis of artificial and real
metagenomic sequences.

Tests on sequences with fixed length

We used the GeneMark.hmm program with the pairs of
heuristic models, bacterial and archaeal (or mesophilic
and thermophilic) derived by methods described above
to analyze sequence fragments with fixed length, from
50 microbial chromosomes (Supplementary Table S2).
All models were tested on sets of fragments with length
of 400 and 700 nt; moreover, the models with highest per-
formance were tested on sets of fragments with shorter
(down to 72 nt) and longer (up to 1100 nt) lengths.
Performance characteristics of different models are
shown in Table 2 (with more details provided in
Supplementary Tables S3–S6). Observed values of
(Sn+Sp)/2 were clustered between 94.5% and 96.5% for
700-nt long fragments and between 93.5% and 96.0%
for 400-nt long fragments. Interestingly, among the
triplet-based models, C-3BA, C-3MT, 3-3BA and
3-LBA, the codon frequency derived models, C-3BA and
C-3MT, demonstrated higher performance than 3-3BA
and 3-LBA models, where frequencies of triplets as

functions of GC content are independently approximated
in each frame. Use of higher order Markov models: the
third order, 4-4BA, the fourth order, 5-5BA, and the fifth
order, 6-6BA and 6-LBA, resulted in similar performance,
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Figure 7. Values of Sn and Sp obtained upon variations of parameters dn and dc. Light blue dots represent Sn and Sp values obtained for each of
1491 combinations of (dn, dc) parameters. Blue and purple lines correspond to variation of dn with dc=800 and variation of dc with dn=100,
respectively. Red dots correspond to (dn, dc) setting (150, 300) that is used by default for complete genomes. Also shown are the highest Sn and the
highest Sp (blue squares), the highest (Sn+Sp)/2 (yellow triangles). Use of pair of models, the native model (derived by the GeneMarkS from a
complete genome) and the heuristic model HAL-99, produced the Sn and Sp values shown by orange diamonds. The Sn and Sp of the MetaGene
and MetaGeneAnnotator predictions are shown by green and blue dots, respectively.

Table 2. Accuracy of gene prediction in 700- and 400-nt long

fragments from 50 microbial chromosomes (listed in Supplementary

Table S2)

Program Model Sn Sp (Sn+Sp)/2

700 nt
GeneMark.hmm HAL-99 94.93 94.28 94.61

C-3BA 96.84 95.17 96.01
C-3MT 96.86 95.04 95.95
C-MBA 97.00 93.77 95.39
3-3BA 96.51 94.18 95.35
3-LBA 96.69 94.19 95.44
4-4BA 97.23 94.83 96.03
5-5BA 97.25 94.91 96.08
6-6BA 97.04 94.99 96.02
6-LBA 97.42 94.89 96.16

MetaGene 97.57 92.36 94.97
MetaGeneAnnotator 97.49 93.60 95.55

400 nt
GeneMark.hmm HAL-99 93.81 93.38 93.59

C-3BA 96.24 94.80 95.52
C-3MT 96.32 94.72 95.52
C-MBA 96.34 93.31 94.83
3-3BA 95.64 93.85 94.74
3-LBA 95.97 93.77 94.87
4-4BA 96.70 94.57 95.63
5-5BA 96.75 94.66 95.70
6-6BA 96.49 94.77 95.63
6-LBA 96.99 94.63 95.81

MetaGene 97.22 91.08 94.15
MetaGeneAnnotator 97.15 92.35 94.75

Values of length distribution parameters: dn=100 and dc=800.
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with differences in (Sn+Sp)/2 values <0.3%; this per-
formance level is comparable to performance of the
second-order models C-3BA and C-3MT. Still, a slightly
higher (Sn+Sp)/2 for 700- and 400-nt long fragments was
achieved with the use of 6-LBA heuristic model containing
a pair of the fifth-order model, bacterial and archaeal,
with parameters obtained by logistic regression approxi-
mation of hexamer frequencies. Note that the MetaGene
authors found performance of MetaGene on 700-nt frag-
ments comparable to performance of GeneMark.hmm
with HAL-99 model (Supplementary Table S3 in 14).
This result corresponds to our observations as well
(Table 2).
The use of models utilizing higher order oligonuclotides

brought in a marginal improvement of (Sn+Sp)/2 for
gene prediction in 400- and 700-nt fragments in compari-
son with the codon-based models, e.g. C-3BA and C-3MT
(Table 2, Supplementary Tables S3–S6). This observation
is in agreement with findings of other authors that use of
the fifth-order Markov chains and/or di-codon frequencies
leads to a slight increase in gene prediction accuracy
(13–15). In order to determine accuracy of gene prediction
in fragments with length other than 400 and 700 nt, the
particular values used in tests by several authors, we
have derived from the 50 microbial chromosomes, 11 add-
itional test sets with fragment lengths varying from 72
to 1100 nt (Table 3). Here, in comparison of MetaGene
and MetaGeneAnnotator with GeneMark.hmm using
HAL-1999, C-3BA and 6-LBA models, we see that
GeneMark.hmm with 6-LBA model performs marginally
better in terms of Sn and Sp average. Yet, MetaGene

shows higher Sn for all the 13 test sets, while C-3BA
model shows higher Sp for fragment length longer than
200 nt. For better visualization, we show the programs’
performance as functions of fragment length for the
sequence sets with fragment length �100 nt (Figure 8).
Notably, since the second-order C-3BA model is very
close to the 6-LBA model in terms of performance, we
use the C-3BA model in several applications discussed

Table 3. Gene prediction accuracy of GeneMark.hmm with three different heuristic models, as well as MetaGene and MetaGeneAnnotator

observed on the sets of sequence fragments with length from 72 to 1100 nt fragments from 50 microbial chromosomes

Length 1999 HAL MetaGene MetaGeneAnnotator C-3BA 6-LBA

72 Sn 64.5 72.8 n/a n/a 84.2 83.1 77.8 81.7 81.2 84.0
Sp 81.1 n/a 82.1 85.5 86.8

96 Sn 77.0 80.8 n/a n/a 90.6 87.3 85.9 87.3 88.6 89.1
Sp 84.6 n/a 84.0 88.7 89.6

100 Sn 78.4 81.8 91.2 87.8 90.9 87.8 87.0 88.1 89.4 89.7
Sp 85.1 84.5 84.6 89.2 90.0

200 Sn 90.7 90.8 95.7 92.0 95.6 92.5 94.3 93.9 95.6 94.6
Sp 90.9 88.3 89.5 93.4 93.6

300 Sn 92.7 92.5 96.8 93.3 96.7 93.9 95.5 94.8 96.4 95.2
Sp 92.3 89.9 91.1 94.1 94.0

400 Sn 93.9 93.6 97.3 94.1 97.2 94.7 96.3 95.5 97.0 95.8
Sp 93.3 90.9 92.2 94.7 94.5

500 Sn 94.4 94.2 97.5 94.5 97.4 95.2 96.6 95.8 97.2 96.0
Sp 93.9 91.5 92.9 95.0 94.8

600 Sn 94.8 94.4 97.6 94.7 97.5 95.4 96.9 95.9 97.5 96.1
Sp 94.0 91.9 93.3 95.0 94.7

700 Sn 95.0 94.6 97.6 94.9 97.5 95.5 96.9 96.0 97.4 96.1
Sp 94.2 92.2 93.4 95.0 94.8

800 Sn 95.2 94.8 97.7 95.0 97.6 95.6 97.0 96.1 97.6 96.2
Sp 94.3 92.4 93.6 95.1 94.8

900 Sn 95.4 94.9 97.7 95.1 97.7 95.8 97.1 96.1 97.6 96.2
Sp 94.4 92.5 93.8 95.1 94.7

1000 Sn 95.5 95.0 97.9 95.3 97.8 95.8 97.2 96.2 97.7 96.3
Sp 94.5 92.8 93.9 95.2 94.8

1100 Sn 95.7 95.1 97.8 95.3 97.7 95.9 97.3 96.2 97.7 96.2
Sp 94.5 92.9 94.0 95.2 94.7

The best numbers are in bold.
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Figure 8. Gene prediction accuracy of GeneMark.hmm with three dif-
ferent heuristic models, as well as MetaGene and MetaGeneAnnotator
observed on the sets of sequence fragments with length from 100 to
1100 nt from 50 microbial chromosomes.
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below along with the 6-LBA model (Tables 2–3,
Supplementary Tables S3–S6).

Inferring origin of genes and sequence fragments

Upon analysis of short sequence fragments from 50 mi-
crobial chromosomes, a run of GeneMark.hmm with bac-
terial and archaeal model pair not only produced a list of
predicted genes but also an indication of a likely origin of
each gene (Supplementary Tables S7 and S8). We have
seen that a vast majority of genes in bacterial (archaeal)
sequence fragments was predicted by the bacterial
(archaeal) model. Similarly, a vast majority of genes in
thermophilic (mesophilic) sequence fragments were pre-
dicted by thermophilic (mesophilic) model. Interestingly,
for the thermophilic bacteria Thermotoga maritima (with
optimal growth temperature of 80�C) the archaeal model
predicted 3137 out of a total of 3225 fragmented genes,
corroborating the findings made in the original
T. maritima genome paper (32) of massive horizontal
influx of genes transferred from archaeal species (33).
On the other hand, a vast majority of genes in
Methanosarcina acetivorans, identified in many sources
as mesophilic archaea, were predicted by the thermophilic
model. This result corresponds to observations that
M. acetivorans is able to live in deep sea hydrothermal
vents. Similar observations were made for bacteria
Aquifex aeolicus (34) living in high temperature, as well
as for low temperature archaeal species such as
Haloarcula, Halobacterium and Methanosphaera (Supple-
mentary Tables S7 and S8).

In short fragments, one rarely sees more than one gene
per fragment; therefore, a gene characterization could
normally be extended to the whole sequence fragment.
Rare cases, when there are several genes in a metagenomic
fragment each predicted by different models are worth-
while to set aside as candidates for case study of horizon-
tal gene transfer. Throughout, in the test set of 700-nt long
fragments, with a total of 31 584 archaeal (136 210 bacter-
ial) fragments, GeneMark.hmm with C-3BA model
misclassified 2757 fragments as bacterial type (16 284 frag-
ments as archaeal type); thus archaeal fragments were
identified correctly in 91.27% of cases and bacterial frag-
ments were identified correctly in 88.04% of cases
(Supplementary Table S7, column C-3BA). Similar
analysis for a set of 400-nt long fragments resulted in
89.92% correct predictions for archaea and 87.26% for
bacteria (Supplementary Table S8, column C-3BA).
Note that a life domain classification within a
metagenomic gene finder was first proposed by Noguchi
et al. (14). The difference with the method they used is
rather technical; domain recognition in GeneMark.hmm
is embedded in the Viterbi algorithm that assigns the most
likely type of a hidden state, bacterial or archaeal (thermo-
philic or mesophilic), to predicted coding region.

Analysis of sequences from human and mouse gut
microbiomes

We used GeneMark.hmm with C-3BA model to predict
genes in metagenomic sequences from two human and five
mouse gut microbiomes (Table 4). In these sequence sets,

we have identified 11 865 genes that were not annotated
earlier. Protein products of 1984 genes (in human samples)
and 3435 genes (in mouse samples) had similarity to
known proteins detectable by BLASTP with E-value
threshold 10�5. Protein functions that could be assigned
to the 50 longest genes predicted in the gut microbiomes
derived sequences are listed in Supplementary Table S9. A
relative proportion of new genes in the mouse gut
metagenomic sequences is about three times higher than
that in human; the mere numbers are about or larger 50%
of the number of initially annotated genes. Interestingly,
17% (15%) of the metagenomic sequences in human
Subject 7 (8) could be mapped to known genomes of
bacteria and archaea (Supplementary Tables S10–S12)
by the BLASTN search with E-value threshold 10�13.
However, in the metagenomic sequences from mice guts,
we were not able to identify DNA sequence fragments
highly similar to a sequence in already sequenced
genomes (with threshold 10�13). Still, for less stringent
threshold 10�5, we observed dozens of fragments with
similarity to genomes of known species in each mouse
gut metagenomic sample. Typical situations that are
prone to errors in annotation are illustrated in Figure 9:
short genes could be missed (Figure 9a). Some genes could
be omitted due to artifacts, such as erroneous extension of
the 50-end of a gene to the longest possible start (Figure
9b); such an extension may overlap a real gene in the
opposite strand and this real gene will be missed in
annotation.
The whole set of gene predictions is available at

(http://exon.gatech.edu/GeneMark/metagenome/database);
it was also visualized in a genome browser utilizing the
GBrowse program (35).

Web interface and downloads

We have designed a web site providing access to the new
program for gene prediction in metagenomic sequences:
http://exon.gatech.edu/GeneMark/metagenome. Running
time of GeneMark.hmm with the 6-LBA models on the
Sargasso Sea environmental sample with size 1.045 GB
was 88 s. The program is available for download for
academic use. For reference purposes, we have also
provided an interface to the database of genome-wide
codon frequencies observed in genomes used in the
training set.

DISCUSSION

Back in 1999, upon analysis of 17 prokaryotic genomes,
we have determined that genome-wide 61 codon
frequencies could be approximated by functions of
genome-wide nucleotide frequencies (9), the functions of
a single parameter, genomic GC content. This critical
observation strongly suggested that genomic GC content
is the major factor influencing genome-wide codon usage
pattern. This was a conclusion formulated upon introduc-
tion of the heuristic models (9). Moreover, it soon received
further support by results independently obtained by other
authors (27–28). The major focus of the current study is
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on further developing the heuristic models and on their
applications to gene finding in metagenomic sequences.
Therefore, we had to leave aside intriguing questions on
(i) possible evolutionary mechanisms that formed the de-
pendence of codon usage pattern on genome GC content
and (ii) how could this dependence evolve differently in the
domains of bacteria and archaea, or in the classes of
mesophilic and thermophilic species.
Notably, both divides, either by phylogeny (bacteria

versus archaea) or by the optimal growth temperature
(mesophiles versus thermophiles), have produced similar
results in terms of accuracy of gene finding in short se-
quences. Use of the bacteria and archaeal model pairs is a
natural choice, since the origin of a short sequence is not
known a priori. The second pair of models, mesophilic and
thermophilic, may have less frequent use since the tem-
perature of microbiome habitat is known and the model
can be chosen a priori.
The ability to identify a sequence origin in terms of

bacterial or archaeal domain appears to be an added
value benefit since the algorithm automatically identifies
the model, bacterial or archaeal that best fits the gene
sequence and ‘is attached to’ the most likely type of a

hidden state. Domain classification was shown to be
correct for 88.04% of 700-nt long bacterial fragments
and for 91.27% of 700-nt long archaeal fragments
(Supplementary Tables S7 and S8). Notably, genes hori-
zontally transferred between the two domains should be
responsible for a fraction of misclassification errors.

The results indicate that gene prediction in fragmented
sequences of prokaryotic genomes has the same rate of
success as in complete prokaryotic genomes. This result
is rather surprising as the complete genomes provide a
context for each individual sequence fragment and offer
much larger sets of sequence data for model training.
However, most of prokaryotic genomes are heterogeneous
in terms of GC content. Parameters of a conventional
model used in a genomic gene finder are defined for
the genome as a whole and the accuracy may slightly
suffer in regions whose local GC content deviates from
the average one. Derivation of model parameters for
each short sequence individually, as it is done for
metagenomic sequences, tunes up parameters for each
sequence with regard to its GC content. Therefore, short
sequences as targets for gene prediction have advantages
as well.

Table 4. Results of analysis of metagenomic sequences from human and mouse gut microbiomes. Annotation coordinates were retrieved from

JGI IMG/M database (24)

Methods Microbiome
size (bp)

Number of
annotated
genes

Number of
predicted
genes

Number
of missed
genes

Missed
genes
(%)a

Number
of novel
genes

Novel
genes
(%)a

(Missed+
Novel)/2
(%)

Novel genes
that have
hit to nr (%)

human_sub7
MetaGene 15,817,685 20523 22 271 893 4.4 2641 11.9 8.1 34.6
MetaGeneAnnotator 22 164 755 3.7 2396 10.8 7.2 40.5
GeneMark.hmm with C-3BA model 21 941 730 3.6 2148 9.8 6.7 40.7

human_sub8
MetaGene 20 486 813 25 980 27 750 1223 4.7 2993 10.8 7.7 38.2
MetaGeneAnnotator 27 707 971 3.7 2698 9.7 6.7 41.7
GeneMark.hmm with C-3BA model 27 589 840 3.2 2449 8.9 6.1 45.3

mouse_lean1
MetaGene 2 234 664 2935 4579 244 8.3 1888 41.2 24.8 40.6
MetaGeneAnnotator 4417 216 7.4 1698 38.4 22.9 44.0
GeneMark.hmm with C-3BA model 4279 236 8.0 1580 36.9 22.5 47.6

mouse_lean2
MetaGene 2 133 081 2782 4279 296 10.6 1793 41.9 26.3 32.1
MetaGeneAnnotator 4152 265 9.5 1635 39.4 24.5 35.7
GeneMark.hmm with C-3BA model 3950 264 9.5 1432 36.3 22.9 43.9

mouse_lean3
MetaGene 2 143 888 2793 4262 202 7.2 1671 39.2 23.2 38.7
MetaGeneAnnotator 4198 188 6.7 1593 37.9 22.3 42.8
GeneMark.hmm with C-3BA model 3971 195 7.0 1373 34.6 20.8 47.0

mouse_ob1
MetaGene 2 359 017 3051 4698 218 7.1 1865 39.7 23.4 38.8
MetaGeneAnnotator 4626 196 6.4 1771 38.3 22.4 43.2
GeneMark.hmm with C-3BA model 4432 213 7.0 1594 36.0 21.5 47.7

mouse_ob2
MetaGene 1 841 347 2331 3675 192 8.2 1536 41.8 25.0 37.2
MetaGeneAnnotator 3599 172 7.4 1440 40.0 23.7 42.8
GeneMark.hmm with C-3BA model 3444 176 7.6 1289 37.4 22.5 50.4

Note that the total numbers of genes annotated in JGI IMG/M are different from the number of genes given in original publications (19). This is
because JGI IMG/M used YACOP, a combination of several gene finding methods, namely Critica, Glimmer and ZCURVE (38), while BLASTX
and BLASTP were used in original publications to identify genes in metagenomic sequences of human and mouse microbiomes. Annotation was not
readily available in the original publications. aPercentage values are computed with respect to the number of annotated genes.
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Existence of a difference between GC content of
protein- and non-coding regions is a well-known fact.
However, the nearly constant value of this difference
among genomes ranging wide in GC content is an inter-
esting observation (Figure 2). Notably, RNA genes have
been observed to be uniformly GC rich regardless of
genome GC content (Figure 2); hence, tRNA genes
could be easily detected in AT-rich genomes as local
regions with a sharp GC content elevation. GC content
of protein-coding genes does not correlate with tempera-
ture of the species habitat. Still, it is the RNA genes that

show temperature-dependent composition. RNA genes in
genomes of thermophilic species (genomes that could be
either AT or GC rich) have a significantly higher GC
content than RNA genes in genomes of mesophilic
species (Figure 2). Frequencies of nucleotides in the
three codon positions in protein coding regions of
mesophilic and thermophilic species show difference
in patterns of dependence on genome GC content.
Similarly to inferring a domain of origin, bacterial or
archaeal, for a gene within the gene finding algorithm
with bacterial and archaeal model pair, a pair of heuristic

Figure 9. Genome Browser view for two sequences from Subject 7 human microbiome. The C-3BA model was used to predict coding regions.
(a) The first and third genes shown in panel ‘Predicted coding regions’ were not previously annotated. Protein products of both predicted genes have
sequence similarity to proteins in the nr database with E-value of 8e-44 and 2e-35, respectively. (b) In a 2649-nt microbiome sequence, a single partial
gene was annotated in positive strand in frame+3, starting from nucleotide position 39. New to annotation, three genes were predicted in frames �3,
+1 and +3, respectively. Sequences analyzed can be found in Microbiome DB: http://exon.gatech.edu/cgi-bin/gbrowse/microbiome_human_sub7/
?name=hgutS7_s7_164312; http://exon.gatech.edu/cgi-bin/gbrowse/microbiome_human_sub7/?name=hgutS7_s7_179818_3.
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models derived for mesophilic and thermophilic species
could be used to for inferring mesophilic or thermophilic
origin for an individual gene.
We should mention that the sets of bacterial and

mesophilic species used in this study well overlap each
other; 301 out of 319 species in the bacterial set
are mesophilic. Hence, bacterial and mesophilic
protein-coding regions exhibit a similar dependence of
frequencies of nucleotides in the three codon positions
on genome GC content (Table 1). On the other
hand, although the set of 38 archaeal species contains
23 thermophiles and overlaps significantly with the set of
47 thermophilic species in this study, most archaeal
and thermophilic regression slope coefficients (Table 1)
are distinctly different.
We should note that frameshifts in protein-coding

regions, caused by sequencing errors, are more frequent
in metagenomes than in complete genomes. It was shown
(36) that performance of all current methods for
metagenome gene finding including GeneMark.hmm
with the original HAL-99 models is sensitive to presence
of frameshifts. The new heuristic models make no excep-
tion, and sensitivity to sequence errors has roughly the
same pattern as one already reported for HAL-99 (36).
Additionally, as a separate project we have developed a
new algorithm and software tool for frameshift identifica-
tion (37) that could be combined with the heuristic models
and used for frameshift detection in metagenomic
sequences.
In conclusion, we should say that we have presented

here methods of reconstruction of codon and oligomer
frequencies that have led to new heuristic models for
gene finding in short sequences. We have shown that use
of the new models in GeneMark.hmm resulted in more
accurate gene predictions than use of heuristic model
HAL-99, developed earlier. The gene prediction accuracy
was shown to be higher than that of MetaGene and
MetaGeneAnnotator (Table 2).
The HAL-99 models have been used in gene prediction

and annotation since 1999. They were used in ab initio
prokaryotic and eukaryotic gene finders GeneMarkS and
GeneMark-ES to initiate unsupervised training for
complete and nearly complete genomes (7,11–12).
Particularly, HAL-99 models were used in ab initio gene
prediction and annotation in viral genomes (10) and
in metagenomic sequences within the pipeline of DOE
Joint Genome Institute (Nikos Kyrpides, personal
communication).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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