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An ab initio molecular dynamics simulation of liquid water has been performed using density 

functional theory in the Kohn-Sham formulation and a plane wave basis set to determine the 

electronic structure and the forces at each time step. For an accurate description of the hydrogen 

bonding in the liquid, it was necessary to extend the exchange functional with a term that 

depends on the gradient of the electron density. A further important technical detail is that 

supersoft pseudopotentials were used to treat the valence orbitals of the oxygen atoms in a plane 

wave expansion. The structural and dynamical properties of the liquid were found to be in good 

agreement with experiment. The ab initio molecular dynamics also yields information on the 

electronic structure. The electronic feature of special interest is the lowest unoccupied molecular 

orbital (LUMO) of the liquid which is the state occupied by a thermalized excess electron in the 

conductive state. The main result of calculating the liquid LUMO is that it is a delocalized state 

distributed over interstitial space between the molecules with a significant admixture of the a* 
orbitals of the individual water molecules. 

I. INTRODUCTION 

Realistic simulation of the behavior of aqueous solu

tions is of crucial importance in chemistry, biology, and 

physics. The modeling of pure water based on effective1.2 or 

ab initio3 potentials has reached a high degree of sophisti

cation. However, quantitatively accurate modeling of aque

ous ionic solutions still presents severe problems (for ex

amples of polarizable models of aqueous alkali halides see 

Refs. 4-6). Car and Parrinello have developed a molecular 

dynamics (MD) scheme7 in which the interatomic forces 

are not preassigned before the MD run but are calculated 

in the Bom--Oppenheimer (BO) approximation from ac

curate electronic structure calculations during the simula

tion. This scheme has proved to be accurate and reliable 

for many semiconducting and metallic systems (for a re

view see Refs. 8-11). It is therefore highly desirable to find 

out whether the Car-Parrinello (CP) scheme is sufficiently 

accurate to treat aqueous solutions, as this would circum

vent the lengthy and often not very reliable parametriza

tion of the potential. 

A prerequisite to this admittedly ambitious goal is to 

assess the ability of density functional (DF) based ab initio 

MD to describe the properties of water and the subtleties of 

hydrogen bonding in disordered systems. To this end we 

have performed a CP simulation of water. This simulation 

makes use of some very recent technical developments that 

have been successfully tested on ice I2
•
13 and water clus

ters,14.15 namely, supersoft pseudopotentials introduced by 

Vanderbilt16 and the successful new gradient corrections to 

the local density approximationY·18 The Vanderbilt 

pseudopotential allows us to represent the electron valence 

orbital in terms of plane waves using a relatively small 

energy cutoff in the plane wave expansion. 19.20 Further

more, gradient corrections have dramatically improved the 
description of hydrogen bonding in DF theory.12-15.21 Our 

results are encouraging insofar as they show that DF is 

able to reproduce sufficiently well the main static and dy

namical properties of water. However, we find some quan

titative dependence of our results on the choice of the gra

dient corrections. 

The CP scheme calculates the electronic structure self

consistently by adapting the electron wave functions to the 

evolving ionic configuration. Hence, chemical processes 

such as charge transfer or the formation and breaking of 

covalent bonds are, in principle, treated on the same level 

as the intermolecular interactions. It is, of course, this as

pect that distinguishes the CP scheme from model-based 

simulations and which, hopefully, will ultimately enable us 

to study chemical reactions. One of the fields of research to 

which ab initio MD simulation can already contribute is 

the investigation of the ultrafast reaction dynamics follow

ing dissociation or ionization of an excited water molecule 

in the liquid.22-26 The time scale of most relevant reaction 

processes is a few picoseconds and hence well within the 

range of an ab initio MD run on present-day workstations. 

Therefore, despite the drawback of being limited to adia

batic ground state dynamics, the ab initio MD approach 

can be useful in characterizing the various dissociation 

products and in exploring the reaction pathways and tran

sition states in the adiabatic limit. Solvent effects, which 

play a major role in all of these complex phenomena, are 

automatically included in such simulations. 

A characteristic and intensively studied photolysis 

product of water molecules in the liquid are excess elec

trons. Experiment22-24 has established that the electrons 

are ejected into the conduction band where they are rapidly 

thermalized. In the next period of 0.2 to 0.5 ps, the delo

calized state decays into the cavity state of the solvated 

electron. Experiment22-24 as well as model-based computer 

simulation studies25.26 indicate that complete solvation pro

ceeds through one or more intermediate states. Direct in-
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vestigation by ab initio MD of the solvated electron or its 

various precursors is, at the present stage, prohibited by 

limitations of system size. However, the initial delocalized 

state before it has induced any reconstruction in the liquid 

can be studied in a relatively small water sample under 

periodic boundary conditions. Hence, we will use our first 

ab initio MD simulation of water to examine the lowest 

unoccupied molecular orbital (LUMO) of pure water and 

to draw a comparison between it and the excess electron in 

the conductive state. 

The paper is organized as follows: In Sec. II we de

scribe the CP method, in Sec. III the Vanderbilt pseudo

potential. Section IV is devoted to describing the gradient

corrected DF. Sections V, VI, and VII describe our results 

for the atomic and electronic properties of water. The con

clusion and final comments are to be found on Sec. VIII. 

II. CAR-PARRINELLO METHOD 

We use here the CP approach7 to generate the BO 

dynamics. Details of the method can be found in Refs. 

8-11; we will recall its basic principles here. 

An extended Lagrangian is introduced in which the 

classical variables are the electronic wave functions ifoi(r) 

and the ionic coordinates R] 

subject to the orthonormality constraints 

(ifoilifoj) =Dij. (2) 

Here J1. is a fictitious mass parameter for the electronic 

degrees of freedom, M] is the mass of the atoms, E KS is the 

total energy of the system. The orthonormality constraints 

are incorporated by introducing Lagrange multipliers A ij . 

The equations of motion become 

.. DEKS ~ 

J1.ifoi= - Difot + '7 Aijifoi' (3) 

.. aEKS 
M]R]=- aR] . (4) 

The dynamics that follows from these equations of mo

tion has been analyzed several times. It has been shown 

that under appropriate conditions it closely approximates 

the BO dynamics, namely the dynamics imposed by the 

Hellman-Feynman forces 

aEKS 
F]= - aR

j 
, (5) 

where the derivatives are calculated using the ground state 

wave functions that correspond to the instantaneous ionic 

configuration {R]}. Crucial to the practical success of this 

approach has been the use of the Kohn-Sham scheme to 

obtain the ground state energy and the expansion of the 

electronic orbitals ifoi(r) into plane waves. However, this 

basis set is very inefficient for describing the rapidly vary

ing core electron orbitals. Hence, pseudopotentials are used 

to integrate out these degrees of freedom. Only the valence 

electrons are treated explicitly, the interaction between the 

valence electrons and the ionic cores now being described 

by potential functions. 

The pseudopotential scheme when combined with the 

Kohn-Sham version of the density functional theory 

(DFT) gives for the total energy of N v valence electrons 

the following expression: 

EKS [ {ifoi},{R]}] = L (ifoil-~V2+ VNLlifoi) 
i 

1 ff p(r)p(r') 
+:2 drdr' Ir-r'l +Exc[p] 

+ f dr Vf~c(r)p(r)+U({R]}), (6) 

where p(r) is the electron density, Exc is the exchange and 

correlation energy, and U( {R]}) is the ion-ion interaction 

energy. The pseudopotential contains two parts, a local 

part Vj'~(r) =l:]vj~( I r-R]I) and a nonlocal part for 

which several different expressions have been proposed.27 

The pseudopotential is constructed in such a way that the 

pseudowave functions match the all-electron valence wave 

functions outside a given core radius rc for a reference 

atomic state, which is usually taken to be the ground state 

or a slightly excited atomic configuration. In order to sat

isfy the above requirement the integral of the square of the 

wave function inside a core sphere of radius rc must be the 

same for the all-electron and the pseudowave function. 

This is the norm-conservation condition.28 Norm conser

vation also guarantees that the behavior of the logarithmic 
derivative of the pseudowave function at rc is similar to 

that of the all-electron wave function for small energy vari

ations around an eigenvalue.28 As a consequence norm

conserving pseudopotentials have good transferability 

properties, i.e., they preserve a good match between 

pseudo- and all-electron wave functions when the atom is 

placed in a condensed matter environment, i.e., in an en

vironment different from the atomic reference state. 

In the case of first-row elements such as 0 the standard 

procedure to construct norm-conserving pseudopoten

tials28 leads to very hard pseudopotentials, and therefore a 

prohibitively large number of plane waves is needed to 

represent these rapid variations. Much effort has recently 

been devoted to remedy this situation. On the one hand, 

procedures have been devised that yield optimally smooth 
norm-conserving pseudopotentials.29,3o Others have sug

gested l6,31 to generalize the pseudopotential concept in a 

way that allows the pseudowave functions to be augmented 

in the core region in the same spirit of linear augmented 

plane wave calculations.32 This procedure requires releas

ing norm conservation. Pseudopotentials having equally 

good transferability properties as the norm-conserving 

pseudopotentials are generated at the price of an increased 

number of atomic reference states and of a more compli

cated nonlocal form of the pseudopotential. The advantage 

is that the number of plane waves needed to represent the 

pseudowave functions is considerably reduced even with 

J. Chern. Phys., Vol. 99, No. 11, 1 December 1993 



9082 Laasonen et 81.: Ab initio liquid water 

respect to optimally smooth norm-conserving pseudopo

tentials. For this reason we have chosen to use the Vander

bilt scheme l6 which is outlined in the following section. 

Pseudopotentials of this kind are referred to as supersoft. 

III. THE VANDERBILT PSEUDOPOTENTIAL SCHEME 

Vanderbilt has suggested l6 that the nonlocal part of the 

pseudopotential be written in the fully nonlocal form 

(7) 

where the functions {3~ span the core space and vanish 

outside it. The {3~ functions characterize the pseudopoten

tial together with the coefficients D~c;;. and the local part. 

The corresponding pseudowave functions ifJi match the all

electron valence wave functions outside the core region, 

but, at variance with usual pseudowave functions, they do 

not satisfy the requirement of norm conservation. As a 

consequence one has to write the electron density as the 

sum of two terms, a smooth delocalized part given by the 

squared moduli of the pseudowave functions, and an aug

mented part localized in the core regions which is given in 

terms of functions Qnm(r) 

p(r)= ~ [lifJi(r) 12+ L <!nm(r)(ifJil~)(~lifJi)l. (8) 
I nm,l 

The augmentation functions <!nm(r) =Qnm(r-RI) are also 

provided by the pseudopotential construction and are 

strictly localized in the core regions. Thus the electron 

density in Eq. (8) is still quadratic in the wave functions, 

but the definition of the density differs from the normal 

pseudopotential scheme. Now the density also depends ex

plicitly on the ionic positions through the <!nm(r) func

tions. 

Another consequence of relaxing the norm-conserving 

condition is a generalized orthonormality condition 

(ifJdS( {R1}) I ifJj) =Dij, (9) 

where S is an overlap operator given by 

S=I+ L qnml~)(~1 ( 10) 
nm,l 

and qnm= J dr Qnm(r). The orthonormality condition (9) 

is consistent with the conservation of the charge J dr n(r) 

=Nv • Note that the overlap operator S is also dependent 

on the ionic positions through the ~(r) functions. The use 

of generalized orthonormality constraints that depend on 

the ionic positions require some modification of the CP 

equations (4), which now read20 

(11 ) 

.. aEKS
" (I as I ) M1R1= - aR

I 
+ f; Aij ifJi aR

I 
ifJj . (12) 

Finally, to be able to perform the MD simulation, one 

has to know the forces in Eqs. (11) and (12) and solve for 

the Lagrange multipliers. The values of AU are determined 

using a SHAKE-type method.20,33 The forces can be rela

tively easily derived as partial derivatives of EKS ' The de

rivatives with respect to the electronic orbitals are 

DEKs 1 2 "d.. I nI) 
£.1.*( ) = [-'iV + Veff(r) JifJi(r) + £., nm(r P n 
u'I'i r nm,l 

where 

f 
n(r') DExc[nJ 

Veff(r)=Vf!(r)+ dr' Ir-r'l+ Dn(r) , 

~m= D~c;;. + f dr Veff(r)<!nm(r), 

and those with respect to the ionic coordinates 

aEtot __ dU _ f dVf! _ " ~l ap~m 
aR

I 
- dR

l 
dr dR

l 
n(r) ;:. u"m aR

I 

f " I d<!nm 
- dr Veff(r) £., Pnm dR ' 

nm I 

where P~m=~i(ifJil~) (~I ifJ;)· 

(13) 

(14) 

(15) 

In an MD implementation it is crucial that the deriv

ative shown in Eq. (15) is really the exact (partial) deriv

ative of EKS ' To obtain exact derivatives in other basis sets 

or with other methods is usually much more difficult. This 

feature is one of the reasons for the success of the plane 

wave-based CP method. 

IV. ROLE OF THE EXCHANGE AND CORRELATION 

FUNCTION 

In DF theory the exchange and correlation energy is 

expressed as a functional of the density Exc[p].34 As the 

exact form of this functional is unknown, some approxi

mation has to be used. One of the simplest approximations, 

the local density approximation (LDA), has proven to be 

very reliable for many covalently bonded materials and 

metals. The LDA assumes that the xc energy depends only 

on the value of the density at each point. The density-to

energy function is obtained by interpolating35 the results of 

a quantum Monte Carlo calculation of the homogeneous 

electron gas.36 The LDA typically overestimates the bind

ing energy significantly, but yields very good bond lengths 

and vibrational frequencies in the case of covalent or me

tallic bonding.34 But in the case of weakly bonded systems, 

like hydrogen or van der Waals, 37 the LDA fails badly. For 

example LDA gives a binding energy for the water dimer 

that is 60% too high and an 0-0 distance that is 10% too 

short. 14 The LDA would also predict the ice X to be meta

stable at 0 pressure, while the experimental pressure at that 

density would be - 80 GPa. 13 These errors are so large 

that some correction to LDA has to be made. 

Several approaches have been proposed to correct 

LDA. We use here generalized gradient corrections (Ge) 

where the xc energy also depends on gradients of the den

sity.38 The explicit form of the exchange part is from 

Becke,! 7 
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2 

...c,.c ~ f 4/3 Xu 
J:.x-=-b£; drpu 1 +6bx

u
sinh-i(x

u
), 

(16) 

where b has the value 0.0042 a.u., Pu is the spin density and 

xu= I V Pull p!,,3. (Note that here Pu= 1/2p.) 
The correction to the correlation is from Perdew, 18 

~= f dre-<t>(p)C(p)p(r)-4/3, 

where 

<I>(p) =0.191 95[ C( 00 )/C(p)] IV pi p-7/6, 

(17) 

(18) 

and p = ( 41T";/3 ) -1, 01 = 0.00 1 667, 02 = 0.002 568, 03 

=0.023266, 04=7.389X 10-7
, 05=8.723, 06=0.472 in 

atomic units. 

This GC scheme has been shown to give a good de

scription of H bonding in the water dimer,14 in small water 

clusters,15 in ice X l2 and ice Ic. 13 In other systems these 

gradient corrections also significantly improve the binding 

energies37
-

39 and to a lesser extent the structural properties. 

In order to implement the GC scheme within our MD 

approach based on PW we faced severe difficulties related 

to the use of truncated Fourier expansions. Our way of 

dealing with these problems is described in the Appendix. 

v. SIMULATION DETAILS 

We have simulated a system of 32020 molecules con

tained in a cubic cell of length 9.6 A with periodic bound
ary conditions at room temperature. This amounts to a 

density equal to the experimental one. As discussed above, 

in order to make this calculation feasible it is necessary to 

use the supersoft pseudopotential scheme of Vanderbilt. 

The pseudopotential of oxygen has been generated follow

ing the prescription of Vanderbilt and with a core radius of 

0.74 A. and two reference energies per angular momentum 

channel. The reference energies were chosen to be the 2s 

and 2p eigenvalues of oxygen (Es= -1.76 Ry and Ep= 

-0.67 Ry).19 In the construction of the pseudopotential 

the GC density functional has been applied consistently. In 

order to remove the l/r singularity and thus accelerate the 

convergence with the energy cutoff, we have also con

structed a pseudopotential for H. The Vanderbilt scheme 

was used here as well and the GC were consistently incor

porated in the generation procedure. The pseudopotential 

for H contained only one s-symmetry function and the core 

radius was 0.37 A.. 
The time step for the simulation was 0.169 fs and the J-L 

parameter in the Lagrangian was J-L= 1100 a.u. In order to 

be able to use such a large value of J-L and thus a relatively 

large time step we were forced to use D20 rather than 

ordinary water in order to ensure an adiabatic decoupling 

of the electron and ionic motion. The choice of D20 has 

the added benefit that quantum effects on the ionic motions 

are less important in D20. Since these are completely ne

glected in our calculation, comparison with experiments is 
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FIG. 1. The partial radial distribution functions of water. The solid line 

represents the results from the ab initio MD simulation with the full 

Becke-Perdew gradient corrections (see the text); the dashed lines are the 

experimental results from Ref. 41. 

easier. Furthermore, some of the experimental data such as 

neutron diffraction are available only for the deuterated 

species. 

We first performed a run using the Becke-Perdew 

(BP) GC density functional. The initial configuration was 

taken from an equilibrated MO run which used the TIP4P 

interaction site potential. 40 After an equilibration time of 

0.5 ps we collected statistics for a total duration of 1.5 ps. 

This time is long compared to the librational motion and 

comparable to the slowest vibrational times in liquid water. 

The results for the pair correlation are shown in Fig. 1 and 

compared with experimental data.41 The overall agreement 

is satisfactory, but the 0-0 separation is too short. The 

theoretical value is 2.69 A. while the experimental value is 

2.87 A. which constitutes an error of 6%. Similar shifts are 

seen in gOH(r) and gHH(r). Another general defect of the 

theoretical gij(r) is that they appear overstructured, the 

secondary peaks exhibiting oscillations that are much too 

strong. All these features are probably the result of too 

short a hydrogen bond. The tendency of the BP exchange 

and correlation to give a short 0-0 bond was already 

observed in Ref. 15, where it was also seen that this ten-
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FIG. 2. The spectral density of the velocity autocorrelation of liquid 

(heavy) water. 

dency was compounded by a collective effect when one 

goes from the dimer to the larger clusters. 

We have also investigated some dynamical properties. 

The system showed normalliquidlike behavior and the dif

fusion coefficient measured from the Einstein relation was 

D= (2.2± 1) 10-5 cm2 s-I to be compared with the exper

imental value of D=2.4X 10-5 cm2 S-I.42 Such an excel

lent agreement is somewhat coincidental, considering the 

very short duration of the run. However, we find it reward

ing that our diffusion coefficient is in the correct range. We 

have also studied some of the vibrational properties 

through the calculation of the velocity-velocity autocorre

lation spectrum 

Gvv ({/) = t f dt[V/(t)· V/(O) ]ei(»t. (19) 

The spectrum obtained for our D 20 sample is shown in 

Fig. 2. Three broad peaks are observed at {/)=2300, 1100, 

and 500 cm - I. They correspond to the D-O stretching 

mode, the bending mode, and the librational and vibra

tional modes. Owing to interaction these peaks are broad

ened. Correcting our results for the mass differences, we 

find for H 20 the stretching and librational modes (/) = 3200, 

1600, and 800 cm-I, which are in good agreement with 

experiment (for a review of optical experiments see Ref. 

43, for inelastic neutron scattering see, e.g., Ref. 44) Line 

shapes and band widths are also semiquantitatively cor

rect. 

VI. EFFECT OF A DIFFERENT GRADIENT 
CORRECTION 

Most of the calculations reported here are based on the 

GC of BP. However, at present GC are not as well estab

lished as the local density part. In particular, we notice 

that a good description of exchange effects is crucial for a 

good description of hydrogen bonding, as shown by 

Hartree-Fock calculations on small water clusters.45
,46 The 

generalized gradient corrections, for exchange due to 

Becke, have been empirically adjusted to reproduce the 

exchange energies of atoms and have been shown to im

prove the LDA description of chemical bonding on a large 

molecular data base. 17 
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FIG. 3. The partial radial distribution functions of water. The solid line 

represents the results from the ab initio MD simulation with the Becke 

gradient correction for exchange only; the dashed lines are the experi

mental results from Ref. 41 (from Ref. 47). 

Therefore we decided to perform a simulation using 

only the exchange corrections of Becke in order to assess 

the uncertainties associated with the choice of the GC. 

Thus the Perdew term was omitted from the GC functional 

and the pseudopotential was recalculated accordingly. The 

E! simulation is a continuation of the c:.: trajectory from 

which the final cOnfiguration was taken as the starting 

point. The temperature was increased to 400 K for the 

initial 0.3 ps in order to accelerate memory loss. Next, the 

system was equilibrated again for 1.5 ps at 300 K. The 

results of the final averaging run of 2 ps are depicted in Fig. 

3, which shows a great improvement in the peak position 

and in the quality of the g(r). This is certainly very en

couraging. However, we feel that more extensive tests on a 

variety of systems are necessary to obtain reliable GC func

tionals.38 

VII. ELECTRONIC PROPERTIES 

A special feature of the CP and related approaches is 

the insight they can provide into the electronic properties. 

We have taken advantage of this by investigating a few 

properties related to electronic states. 
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TABLE I. Various properties of water. 

Monomer 

I" (D) 

HOMO-LUMO gap (eV) 

Ionization energy 

Dimer 

HOMO-LUMO gap (eV) 

Ionization energy 

Liquid 
D(IO- 9m2 s- l ) 

I"a~ (D) 

HOMO-LUMO gap (eV) 

aFrom Ref. 48. 

~rom Ref. 51. 

<From Ref. 42. 

LDA+GC 

1.86 

6.7 

-12 eV 

5.4 

-12eV 

2.2 ±I 

2.66 ± 0.04 

4.6 ±0.05 

dFrom Ref. 49. 

"From Refs. 50, 54, 

and 55, see the text. 

Expt. 

1.855" 

2.4C 

2.6d 

9.8< 

One of the simple yet crucial properties is the value of 

the dipole moment in water. This is experimentally known 

to vary from 1.855 D (Ref. 48) to 2.5-2.6 D in going from 

the gas to the condensed phase.49 A correct value of the 

dipole moment is a necessary prerequisite for a realistic 

description of H20 dielectric properties,2 a crucial quantity 

in many solvation processes. The change in the dipole mo

ment fl. in going from the gas to the condensed phases 

cannot be reproduced by empirical models unless they ex

plicitly take electronic polarizability into account.2
,3 In the 

CP approaches this is automatically taken into account 

and thus the value of the enhancement of the dipole mo

ment can be extracted from our calculation. 

We evaluate the average value of fl. from the expression 

JL=2. L f dO fRm dr ?rp(r-R/), 
N j Jo 

(20) 

where p(r-Rj ) is the total charge density (electrons 

+ions) associated with molecule I, the sum runs over all 

the N molecules in the system and R/ is the center of the 

ionic charges for the lth molecule. Clearly the value of fl. 

depends on the choice of Rm which we have set to Rm 

= 1.32 A, which is half the average 0-0 bonding length. 

With this value of R m , we obtain JL=2.66 D, while varia

tions of Rm of ±O.05 A induced variations of fl..of ±O.04 
D. This relatively minor sensitivity to the chOice of Rm 

makes us confident of the soundness of our estimate. The 

results for the dipole moment and other relevant properties 

are summarized in Table I along with the experimental 

data. The value obtained for fl. is in reasonable agreement 

with experimental findings.49 In Ref. 2 it is shown that this 

value is also consistent with the experimentally observed 

dielectric constant. This will open the way for ab initio 

simulations of ionic solutions where a correct description 

of electronic polarizability is crucial, as recently empha

sized in Refs. 4-6. 
We have also monitored the distribution of the Kohn

Sham eigenvalues for the occupied and for some of the 

unoccupied levels (the manifold of levels at the highest 

energy is unreliable since not all unoccupied states have 

been taken into account). In Fig. 4 we show the full den

sity of states in the liquid. Figure 5 is a schematic repre-
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FIG. 4. Electronic density of states of liquid water. The solid and dashed 

curves are the distribution of single electron energies for two water con

figurations sampled from the ab initio MD run at a time interval of Ips. 

The separation between occupied and unoccupied states (Fermi energy) 

is indicated by an arrow. From Ref. 47. 

sentation that compares the electronic spectrum in the liq

uid to the energy level structure of the H20 molecule and 

its dimer. Intermolecular interactions induce significant 

broadening of the energy levels relative to the isolated mol

ecule. The lower levels remain largely unmodified, while 

larger effects are seen for higher levels. It is to be noted that 

the broadening in the condensed phase is very well com

parable to the level splittings that are observed in going 

from the isolated molecule to the dimer. 

Another conclusion that can be drawn from Figs. 4 

and 5 is that the broad manifold starting at - 10 eV and 

terminating with a sharp peak of highest occupied molec

ular orbital (HOMO) states at -6 eV is composed of a 

mixture of the 3A I bonding and 1 B I lone pair oribi tals. 

Photoelectron spectroscopy (PES) experiments determine 

the HOMO levels at -11 eV.50 The discrepancy with the 

KS value of -6 eV in Fig. 4 is an indication of the diffi

culty of determining absolute energies (Le., the location of 

0 

-5 

> ·10 
~ 

llJ 
-15 

·20 

-25 -dimer Water 

FIG. 5. Energy level diagram comparing the Kohn-Sham energies of the 

water monomer (left) and the dimer (middle) to the electronic density of 

states in the liquid (right) of Fig. 4. 
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the vacuum). Energy differences, on the other hand, are 

more reliable. Thus comparing the energies of the positive 

ion with that of the neutral molecule (ignoring the com

plications introduced by the periodic boundary conditions) 

we obtain a value of -12 eY which is in good agreement 

with the experimental value of 12.6 ey51 and the HF-STO 

estimate of 13.8 ey.52 

Before considering the unoccupied levels in Fig. 4, it 

should be recalled that DF and HF are, strictly speaking, 

theories for the ground state energy, and as such they are 

not expected to provide accurate information on the energy 

levels. However, experience has shown that in spite of these 

shortcomings DFT is capable of describing the nature of 

the LUMO rather well, provided the LUMO is stable. For 

closed-shell molecules such as water, the LUMO is gener

ally in the continuum and hence unstable. Therefore, the 

values of the HOMO-LUMO gap of the monomer and 

dimer in Fig. 5 (see also Table I) are not very meaningful. 

The apparent stability of these orbitals can be the result of 

a variety of effects such as periodic boundary conditions. 

The energy difference which separates the occupied 

molecular orbitals and the manifold of empty states in the 

liquid is found to be 4.6 eY. Contrary to the HOMO

LUMO splitting of the monomer and dimer, this number is 

significant and is similar to a band gap in a solid. In the 

condensed phase the average spacing of the molecules is 

imposed by the density. Hence, in the liquid simulation the 

periodic boundaries are no longer arbitrary but determined 

by the number of particles and the density. A direct com

parison with an experimental conduction band gap in wa

ter (or ice) is not straightforward since the electronic ice 

spectrum is dominated by electron-hole pairs.50,53 For ex

ample, the maximum seen at 8.3 eY is most likely an ex

citon of molecular origin. 53 It is possible, however, to ob

tain an indirect estimate of the band gap using the 

minimum energy of delocalized states Vo in water as ob

tained from work function measurements. Although the 

determination of Vo has been subject to some debate, stud

ies of ice-vacuum54 and metal electrode-water55 interfaces 

seem to converge on a value of Vo= -1.2 eY. Subtracting 

from this number the PES energy ( -11 e Y) of the HOMO 

levels, we obtain a value of 9.8 eY for the experimental 

band gap, which is larger than our theoretical estimate by 

a factor of 2. This ratio is typical for DFT; thus water 

confirms a trend observed in many semiconducting systems 

and insulators. 

Bearing in mind that the LUMO levels of H20 and 

(H20h are somewhat artificial, it is nonetheless instructive 

to examine the nature of these states more closely. In fact, 

the replication of the clusters by the periodic boundary 

conditions in our approach amounts to having a system 

with a low but finite density. The monomer and dimer 

levels can be thought of as evolving from the liquid water 

LUMO with decreasing density. The LUMO of a single 

H20 molecule shown in Fig. 6 is the a* LUMO which is 

also found in HF calculations with a restricted basis set. It 

is an Al state. The main features of this molecular orbital 

are the presence of a significant probability density in the 

proximity of the 0 and two lobes that protrude rather far 

FIG. 6. Schematic representation of the LUMO (dark gray) for the H20 
monomer (top) and dimer (bottom). The light gray areas indicate the 

extension of charge density of the occupied states for the monomer. For 

the dimer they give an impression of the LUMO+ 1. From Ref. 47. 

from the molecule in the H directions. The nature of the 

dimer LUMO is not very surprising, it being the a* state of 

the acceptor molecule (see Fig. 6). The LUMO+ 1 state is 

more interesting, one striking feature being the much re

duced amplitude at the hydrogen bond. Both orbitals also 

have substantial amplitudes close to the 0 atoms of the two 
molecules and are quite extended. 

The characterization of the LUMO in the weakly cou

pled low density limit is helpful for the analysis of the 

LUMO in the liquid under conditions of stronger interac

tions. This is the state (or band of states) that will be 

occupied by an excess electron just after injection in the 

liquid (prior to solvation). The hydrated electron has been 
studied by various groupS.25,26,56-59 These studies treat only 

the excess electron and use pseudo potentials of different 

complexity in order to describe the interaction between this 
single electron and the water molecules. 56-58 The main 

physical effect taken into account by these pseudopoten

tials is the excluded volume due to the closed electronic 

shells of the water molecules and the long-range electro

static attraction due the polar OH bonds (in addition, 

some potentials also include polarization effects57,59). For 

the electron in the unreconstructed liquid, this leads to a 

delocalized scattering state where the electronic wave func

tion is repelled by the molecules. 26 The corresponding ei

genvalue is pushed up in energy relative to the vacuum 

level due to the reduced volume accessible to the electron. 

The attractive electrostatic energy is not sufficient to com

pensate for the increase in kinetic energy. The resulting Vo 

value is positive contrary to experiment (see discussion 

above). 

This picture, however, is somewhat controversial since 

quantum mechanical calculations on e-(H20)6 clusters 
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FIG. 7. The "LUMO" state of water. The heart-shaped objects are 
equidensity surfaces of the total density [per) =0.1 e/(a.u.)3] and corre

spond to single molecules. The diffuse surface is the equidensity surface 
corresponding to the LUMO state [Pier) =0.002 e/(a.u.}3] with compact 
pockets inside the molecules. 

indicate a participation of the excess electronic state in the 

a* orbital of the molecule.60
,61 Spin echo experiments62 

have been interpreted along the same lines. We show in 

Fig. 7 the probability density associated with the water 

LUMO for a given molecular configuration. Two features 

are evident: The state is rather de10calized and there is 

some probability density close to the o. This is an indica

tion of a sizable a* component. We can make these two 

statements quantitative by looking at the participation ra

tio p 

P V f drl1f!*(r)1/'(r) 12
' 

(21) 

which gives a measure of the degree of localization. The 

participation ratio goes from p= 1 for an infinitely ex

tended plane wave state to p,-lIV where V is the volume 

of the system in the case of a point like localization. In the 

Vanderbilt scheme, because of the relaxation of the norm 

conservation, Eq. (21) has to be rewritten 

p= V f drl1f.,*(r)K(r)1f!(r) 12 , 

where 

(22) 

(23) 

is the Vanderbilt density overlap operator. We find p=O.22 

which indicates a rather delocalized state (for comparison, 

note that p = 0.003 in the lowest occupied electronic state). 

We have also calculated the total probability for an elec

tron in the LUMO to be within the spheres of radius Rm 

= 1.32 A centered around the 0 atoms. This turns out to 

be 28%. This number should instead be close to 0 if the a* 
were not contributing to the LUMO. A total volume of 

32% is associated with the molecular spheres defined 

above. The difference between these two number measures 

the amount in which the LUMO states are actually ex

pelled from the molecular region. Thus we find that onr 

results based on a calculation for bulk water confirm those 

based on a cluster calculation.60
•
61 

In suppOli of the premise that the a* orbitals play no 

role, it is usually argued that in the molecule the a* orbit

als have much too high an energy to be active (see, e.g., 

Ref. 56). Since in OFT the HOMO-LUMO gap can be 

underestimated by as much as a factor of 2, one could 

argue that OFT does not provide a sufficiently accurate 

description of one-electron properties such as electronic 

orbitals. However, DFT orbitals are in fact remarkably 

accurate in a large variety of systems. Furthermore quan

tum chemical calculations, where the HOMO-LUMO gap 

is much larger than ours, show the same effect, albeit quan

titatively smaller. Regarding the objection that the 

HOMO-LUMO energy separation is too large to permit a 

sizable contribution of the molecular LUMO, it should 

also be mentioned that the zero (vacuum) level is likely to 

be localized in the middle of the HOMO-LUMO gap, 

hence the full gap need not be bridged. 

A further argument of ours concerns the different con

ditions that prevail in the liquid as opposed to scattering 

from single molecules. The LUMO is necessarily orthogo

nal to all occupied orbitals, which implies that it must have 

a* character in the core region. The magnitude of the a* 
component is determined by how much the LUMO wave 

function tail penetrates the cores. In a condensed matter 

environment the overlap with the cores is enhanced by the 

strong confinement. This effect is illustrated by the dimer 

calculation where we have found that the LUMO is ex

pelled from the H bond region. We believe this effect to be 

real. By reducing the accessible volume this effect will in

crease the energy of a hypothetical scattering state ex

cluded from the inaccessible regions of space. This will 

bring the energy of this state to more closely match the 

energy of the a* molecular orbitals, thus favoring 

admixing. 

VIII. DISCUSSION AND CONCLUSIONS 

In this paper we have seen that the GC DF theory is 

capable of providing a satisfactory description of liquid 

water, although several questions remain to be addressed. 

The most crucial one is the role played by the choice of the 

gradient corrections. Better control of the properties of the 

GC is necessary, and this will require extensive testing. 

Another important issue to be discussed in the future is the 

equilibrium pressure in the ab initio water. Pressure has 

proved to be a rather severe test for classical model poten

tials. 

\Ve are also aware of the smallness of our system. The 

finite size effects can, however, be gauged from simulations 

that use classical potentials to verify that they are small for 

the first two peaks of the gi/r) and are not responsible for 

the discrepancies between theory and experiment. Simi

larly the role of nuclear quantum corrections on the static 

properties has been discussed in the literature63 and found 

to be small, especially in D20. Again we believe that this is 

J. Chern. Phys., Vol. 99, No. 11, 1 December 1993 



9088 Laasonen et al.: Ab initio liquid water 

not a major source of discrepancy between theory and ex

periment. 

Looking to future applications, we see that although 

the present results are rather encouraging, the computa

tional costs of this calculation are still relatively high. It 

takes about one month on an IBMIRISC6000 model 550 

to run the simulation for 1 ps. Thus progress must be made 

before one can use this methodology to study problems of 

solution chemistry for which the study of much larger sys

tems is mandatory. However, rapid advances are being 

made in the development of new algorithms which either 

exploit parallel architectures64 or have a much better scal

ing with system size.6s This will soon allow us to study 

more complex chemical systems for which MD based on 

classical potentials presents severe difficulties, and to do so 

at computational costs that are affordable for many labo

ratories. 
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APPENDIX 

In practical implementations of the GC energy density 

functional to ab initio molecular dynamics a considerable 

amount of numerical noise is observed which arises from 

the inaccuracies associated with the evaluation of the vari

able Xu on a finite plane wave basis set. We have alleviated 

this problem by replacing per) in the evaluation of EGC 

with a smoothed density per) 

~[p] =E"!':Lo], 

where 

per) = 2: PG/(G)e- iG
'
r= f dr' g(r-r')p(r'), 

G (AI) 

Vp(r) = -i 2: GpG/(G)e- iG ' r, 
G 

where E~: denotes the Becke-Perdew form of GC, PG is 

the Fourier transform of per), and I(G) is a smoothing 

function which we have taken of the Fermi type 

I(G) 
I +exp[ (G- Gcut )/6,] , 

(A2) 

and g(r) is the convolution function corresponding to 

I(G). In the present calculation the parameters of the 

Fermi function have been chosen as Gcut=0.9Gmax and 

6,=0.8. By introducing this smoothing procedure we have 

effectively redefined the GC energy. Thus the functional 

derivative of Exc(/-Lxc) has to be consistent with the defini

tion of Exc' Despite the nonlocal form of the Exc the func

tional derivative can be determined without too much dif

ficulty 

{jE"!':[p] 

{jp(r) 

= f dr' {jE~:[p] {jp(r') 
{jp(r') {jp(r) 

= f dr' /-L~:(r')g(r-r') 

= 2:/-L~:(G)/(G)e-iG.r, (A3) 
G 

where /-L~: denotes the Becke-Perdew form of /-Lxc' 
This filtering procedure however does not fully elimi

nate all the sources of numerical noise. A good description 

of Xu is still difficult to obtain in the very low charge den

sity regions. These regions contribute very little to the total 

energy, yet due to large relative errors in per) the inte

grand in Eq. (AI) can be locally rather large, leading to 

unphysically large fluctuations in Vxc(r). For these reasons 

we have decided to neglect all the GC contributions com

ing from regions where the density is below a threshold 

value. In the present calculation the threshold value is 

8X 10-4 e/(a.u.)3; this value has to be compared with the 

per) value hydrogen bond region of 0.03 e/(a.u.)3. We 

have verified that these two corrections do not appreciably 

alter the values of the total energy nor the equilibrium 

geometries in calculations of small clusters. 
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