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Ab Initio Many-Body Calculations of n-3H, n-4He, p-3,4He, and n-10Be Scattering
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We develop a new ab initio many-body approach capable of describing simultaneously both bound
and scattering states in light nuclei, by combining the resonating-group method with the use of realis-
tic interactions, and a microscopic and consistent description of the nucleon clusters. This approach
preserves translational symmetry and Pauli principle. We present phase shifts for neutron scatter-
ing on 3H, 4He and 10Be and proton scattering on 3,4He, using realistic nucleon-nucleon potentials.
Our A = 4 scattering results are compared to earlier ab initio calculations. We demonstrate that a
proper treatment of the coupling to the n -10Be continuum is essential to explain the parity-inverted
ground state in 11Be.

PACS numbers: 21.60.De, 25.10.+s, 27.10.+h, 27.20.+n

The development of a quantitative microscopic the-
ory of low-energy nuclear reactions on light nuclei is
key to further refine our understanding of the funda-
mental nuclear interactions among the constituent nu-
cleons, providing, at the same time, accurate predictions
of crucial reaction rates for nuclear astrophysics. The
enormous difficulties involved with such a project are
immediately apparent if one considers the nearly-total
lack of ab initio calculations for scattering processes in-
volving more than four nucleons overall [1]. Neverthe-
less, a breakthrough is within reach today thanks to
the significant progress achieved in the ab initio descrip-
tion of the structure of light nuclei and the advent of
modern high-performance computers. In this Letter we
combine a microscopic-cluster technique, the resonating-
group method (RGM) [2], and a very successful structure
approach, the ab initio no-core shell model (NCSM) [3],
into a new microscopic theory (ab initio NCSM/RGM)
capable of treating bound and scattering states of light
nuclei in a unified formalism, starting from the funda-
mental inter-nucleon interactions. Within this new ap-
proach we study the n -3H, n -4He, n -10Be, and p -3,4He
scattering processes, and address the parity inversion
of the 11Be ground state (g.s.), using realistic nucleon-
nucleon (NN) potentials.
We start from the wave function for a scattering pro-

cess involving pairs of nuclei that can be cast in the form

|ΨJπT 〉 =
∑

ν

∫

dr r2
gJ

πT
ν (r)

r
Âν |ΦJπT

νr 〉 , (1)

through an expansion over binary-cluster channel-states
of total angular momentum J , parity π, and isospin T ,

|ΦJπT
νr 〉 =

[

(

|A− aα1I
π1

1 T1〉 |aα2I
π2

2 T2〉
)(sT )

× Yℓ (r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (2)

The wave functions of the (A − a)- and a-nucleon clus-
ters are antisymmetric under exchange of internal nu-
cleons, and depend on translationally-invariant internal

coordinates. They are eigenstates of the H(A−a) and
H(a) intrinsic Hamiltonians with spin, parity, isopsin and
additional quantum numbers Ii, πi, Ti, and αi, respec-
tively, where i = 1, 2. The clusters centers of mass are
separated by the relative vector ~rA−a,a. Relative angu-
lar momentum and channel spin are denoted by ℓ and
s, respectively. The inter-cluster anti-symmetrizer for
the (A − a, a) partition in Eq. (1) can be schematically
written as Âν = [(A − a)!a!/A!]1/2

∑

P (−)pP , where P
are permutations among nucleons pertaining to different
clusters, and p the number of interchanges characterizing
them. The coefficients of the expansion with respect to
the channel index ν = {A−aα1I

π1

1 T1; aα2I
π2

2 T2; sℓ} are
the relative-motion wave functions gJ

πT
ν (r), which repre-

sent the unknowns of the problem. They can be deter-
mined by solving the many-body Schrödinger equation in
the Hilbert space spanned by the basis states Âν |ΦJπT

νr 〉,
∑

ν

∫

dr rKJπT
ν′ν (r′, r) gJ

πT
ν (r) = 0 , (3)

where the integration kernel is given by:

KJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′(H − E)Âν

∣

∣

∣
ΦJπT

νr

〉

. (4)

Here E is the total energy in the center-of-mass (c.m.)
frame, and H is the intrinsic A-nucleon microscopic
Hamiltonian, which it is useful to decompose into, e.g.:

H = Trel(r) + Vrel + V̄C(r) +H(A−a) +H(a) . (5)

Further, Trel(r) is the relative kinetic energy and Vrel

is the sum of all interactions between nucleons belong-
ing to different clusters after subtraction of the avarage
Coulomb interaction between them, explicitly singled out
in the term V̄C(r) = Z1νZ2νe

2/r, where Z1ν and Z2ν are
the charge numbers of the clusters in channel ν.
We obtain the cluster eigenstates entering Eq. (2)

by diagonalizing H(A−a) and H(a) in the model space
spanned by the NCSM basis. This is a complete har-
monic oscillator (HO) basis, the size of which is defined
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3H n -3H (Ekin = 0.75 MeV)

Nmax Eg.s. 0+ (1S0) 0− (3P0) 1+ (3S1) 1− (1P1) 1− (3P1) 1− (ǫ) 2+ (3P2) σt

9 −7.80 −27.8 2.30 −26.2 2.19 4.96 −17.5 7.51 1.06

11 −7.96 −31.3 2.39 −28.1 2.63 5.93 −12.7 6.42 1.20

13 −8.02 −32.4 2.15 −28.8 3.10 6.17 −9.1 5.75 1.25

15 −8.11 −33.2 2.45 −29.9 3.46 6.12 −9.5 6.08 1.33

17 −8.12 −34.2 2.60 −30.9 3.74 6.30 −10.7 6.19 1.41

19 −8.16 −34.8 2.49 −31.3 4.00 6.49 −10.1 6.02 1.44

4He n -4He (Ekin = 5.0 MeV) p -4He (Ekin = 5.0 MeV)

Nmax Eg.s.
1

2

+
(2S1/2)

1

2

−
(2P1/2)

3

2

−
(2P3/2) σt

1

2

+
(2S1/2)

1

2

−
(2P1/2)

3

2

−
(2P3/2)

9 −27.00 −57.9 33.5 81.8 1.95 −45.8 31.3 76.5

11 −27.41 −58.6 33.7 86.1 1.98 −46.4 31.9 80.2

13 −27.57 −58.7 34.0 85.7 1.98 −46.6 32.0 80.0

15 −27.75 −58.7 33.9 84.6 1.97 −46.6 32.1 79.9

17 −27.77 −58.6 33.9 84.8 1.97 −46.5 32.0 79.9

TABLE I: Calculated 3H and 4He g.s. energies (in MeV), n -3H, n -4He and p -4He phase shifts (in degrees), and n -3H and
n -4He total cross sections (in barns) for increasing Nmax at ~Ω = 18 MeV, obtained using the Vlowk NN potential (derived
from AV18 with cutoff Λ = 2.1 fm−1) [8]. Only the g.s. of the 3H and 4He nuclei were included in the scattering calculations.

by the maximum number, Nmax, of HO quanta above
the lowest configuration shared by the nucleons. Thanks
to the unique properties of the HO basis, we can make
use of Jacobi-coordinate wave functions [4] for both nu-
clei or only for the lightest of the pair (typically a ≤ 4),
and still preserve the translational invariance of the prob-
lem. In the second case we expand the heavier cluster on
a Slater-determinant (SD) basis, and remove completely
the spurious c.m. components in a similar fashion as in
Refs. [5, 6]. We exploited this dual approach to verify our
results. The use of the SD basis is computationally ad-
vantageous and allows us to explore reactions involving p-
shell nuclei. In calculating (4), all “direct” terms arising
from the identical permutations in both Âν and Âν′ are
treated exactly with the exception of

〈

ΦJπT
ν′r′

∣

∣Vrel

∣

∣ΦJπT
νr

〉

.
The latter and all remaining terms are obtained by ex-
panding the Dirac δ of Eq. (2) on a set of HO radial
wave functions with identical frequency Ω, and model-
space size Nmax consistent with those used for the two
clusters. In this respect we note that Vrel is localized also
in presence of the Coulomb force. We solve Eq. (3) by
means of the coupled-channel R-matrix method on a La-
grange mesh [7] imposing either bound-state or scattering
boundary conditions for gJ

πT
ν (r) at large r.

All calculations in the present paper were carried out
using binary-cluster channels (2) with a = 1. We first dis-
cuss results obtained limiting the expansion (1) to config-
urations with the (A−1)-cluster in its g.s. Table I shows
the behavior with respect to Nmax of selected A = 4, 5
data obtained using the Vlowk NN potential [8]. A satis-
factory convergence of both g.s. energies and scattering
data is reached starting from Nmax = 17, for the four-,
and Nmax = 15 for the five-nucleon systems, respectively.

In what follows we present results obtained using ef-
fective interactions derived from the underlying realis-
tic NN potential, VN , through a unitary transformation.
Starting from the relevant two-nucleon Hamiltonian (for
notation and definitions see Ref. [4]) HΩ

2 = H02 + V12,
with V12 = VN (

√
2~r )−mΩ2~r 2/A, the cluster eigenstates

are obtained employing the usual NCSM two-body effec-
tive interaction V2eff = H̄2eff − H02, where H̄2eff is the
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FIG. 1: (Color online.) Calculated phase shifts for n -3H scat-
tering as a function of the relative kinetic energy in the c.m.
frame Ekin, using the N3LO NN potential [9]. Only the g.s.
of the (A− 1)-cluster was included in the present calculation.
Dependence on the model-space truncation Nmax at ~Ω = 22
MeV compared to AGS results of Ref. [10, 11].
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FIG. 2: (Color online.) Same as Fig. 1 for p -3He scattering.

Hermitean effective Hamiltonian. However, in place of
the bare NN potential entering Vrel we adopted the new
effective interaction V ′

2eff = H̄2eff − H̄ ′
2eff , where H̄ ′

2eff is
the effective Hamiltonian derived from HΩ ′

2 = H02+V ′
12,

with V ′
12 = −mΩ2~r 2/A. Note that V ′

2eff → VN in
the limit Nmax → ∞. Figures 1, 2 and the right
panel of Fig. 3 present A = 4, 5 scattering phase shifts
for the high-quality NN potential derived within chiral
effective-field theory at next-to-next-to-next-to-leading
order (N3LO) [9]. For the whole energy range, we find
less than 2 deg absolute difference between the phases
obtained in the largest and next-to-largest model spaces,
a sign of convergence. The only exception is represented
by the 2P3/2 phase shifts of the n-α system, for which this
difference rises up to 5 deg in the range 1 MeV< Ekin < 4
MeV. As a comparison, we show in the left panel of Fig. 3
the n-α phase shifts obtained with the (bare) Vlowk in-
teraction. The convergence rate is clearly much faster.

In order to verify our approach, in Fig. 1 and 2 we
compare our n -3H and p -3He results to earlier ab ini-

tio calculations performed in the framework of the Alt,
Grassberger and Sandhas (AGS) equations [10, 11], using
the same N3LO NN potential. We note that in general
the agreement between the two calculations worsens as
the relative kinetic energy in the c.m. frame, Ekin, in-
creases. For the P -waves in particular we can reasonably
reproduce the AGS calculation for energies within 1 MeV
off threshold, while we can find differences as large as 17
deg (3P2) at Ekin = 2.6 MeV. These discrepancies are
due to the influence, increasing with energy, played by
closed channels not included in our calculations, such as

those with the A− 1 = 3 eigenstates above the Iπ1

1 = 1
2

+

g.s., and (A−a = 2, a = 2) configurations, present in the
AGS results. In Ref. [10] it was shown that the omission
of three-nucleon partial waves with 1

2 < I1 ≤ 5
2 leads to

effects of comparable magnitude on the AGS results at
Ekin = 3 MeV, especially for the 3S1,

3 P1 and 3P2.

We explore the effect of the inclusion of higher excited
states of the (A− 1)-cluster on the n-α scattering phase
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FIG. 3: (Color online.) Same as Fig. 1 for n-α scattering
with Vlowk NN potential [8] at ~Ω = 18 MeV (left panel), and
N3LO NN potential [9] at ~Ω = 19 MeV (right panel).

shifts. Channels with a > 1 have here a much suppressed
effect due to the large binding energy of the 4He nucleus.
Figure 4 shows the influence of the six lowest excited
states of 4He on the n-α phase shifts. The Iπ1

1 T1 = 0+0
excited state affects only minimally the 2S1/2, leaving the
P phase shifts unaltered. On the contrary, we find larger
deviations on the 2P1/2 and 2P3/2 phase shifts, after the
inclusion of the 0−0, 1−0, and 1−1 states for the first,
and of the 2−0 and 2−1 states for the second. These
negative-parity states do not influence the 2S1/2.

In Fig. 5 the n- and p -α phase shifts obtained with
the N3LO NN potential, including the first six 4He ex-
cited states, are compared to the results of an accurate
multi-channel R-matrix analysis of the nucleon-α scatter-
ing data [12]. The 2S1/2 phase shifts are in good agree-
ment with experiment, also in presence of the Coulomb
repulsion between proton and α particle. The magnitude
of the 2D3/2 phase shifts is also qualitatively reproduced.
On the contrary, the P phase shifts present both insuffi-
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FIG. 4: (Color online.) Influence of the lowest six exited
states (0+0, 0−0, 1−0, 1−1, 2−0, 2−1) of the α particle on the
n-α phase-shift results for the N3LO NN potential [9].
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FIG. 5: (Color online.) Calculated n-α (left panel) and p -
α (right panel) phase shifts for the N3LO NN potential [9],
including the 4He g.s., 0+0, 0−0, 1−0, 1−1, 2−0, and 2−1
states, compared to an R-matrix analysis of data (+) [12].

cient magnitude and splitting with respect to the predic-

tions of the R-matrix analysis. The 1
2

+
channel is dom-

inated by the repulsion between nucleon and α particle
induced by the Pauli exclusion principle. Consequently,
the short-range details of the nuclear interaction play a
minor role on the 2S1/2 phase shifts, for which, as shown
in Fig. 3, we find very similar results using the Vlowk po-
tential. On the other hand, the latter figure shows also
that the 2P1/2 and 2P3/2 phase shifts are sensitive to the
interaction model, and in particular to the strength of
the spin-orbit force. The present discrepancy with re-
spect to experiment is due to the omission of the three-
nucleon terms of the chiral interaction at order N3LO,
which would lead to an enhanced spin-orbit splitting.
To show the promise and flexibility of our approach, we

present in Tab. II and Fig. 6 results for a much heavier (A
= 11) system. The parity-inverted g.s. of 11Be, one of the
best examples of disappearance of the N = 8 magic num-
ber with increasingN/Z ratio, was so far left unexplained
by ab initio calculations [14]. The HO asymptotic behav-
ior of the 11Be wave function in the standard NCSM does

10Be 11Be( 1
2

−
) 11Be( 1

2

+
)

Nmax Eg.s. E Eth E Eth

NCSM [13, 14] 8/9 -57.06 -56.95 0.11 -54.26 2.80

NCSM [13, 14],a 6/7 -57.17 -57.51 -0.34 -54.39 2.78

NCSM/RGMa -57.59 -0.42 -57.85 -0.68

Expt. -64.98 -65.16 -0.18 -65.48 -0.50

apresent calculation

TABLE II: Calculated energies (in MeV) of the 10Be g.s. and
of the lowest negative- and positive-parity states in 11Be, ob-
tained using the CD-Bonn NN potential [15] at ~Ω = 13 MeV.
The NCSM/RGM results were obtained using n+10Be config-
urations with Nmax = 6 g.s., 2+1 , 2

+
2 , and 1+1 states of 10Be.

0 0.5 1 1.5 2 2.5 3
-180

-135

-90

-45

0PSfrag replacements

CD−Bonn

Ekin [MeV]

δ
[d

e
g
]

10Be states
n +10Be

g.s.
g.s., 2+

1

g.s., 2+

1
, 2+

2

g.s., 2+

1
, 2+

2
, 1+

1

2S1/2

FIG. 6: (Color online.) Calculated 2S1/2 n -10Be phase shifts
as a function of Ekin, using the CD-Bonn NN potential [15]
at ~Ω = 13 MeV. NCSM/RGM calculation as in Tab. II.

not favor extended n -10Be configurations, thus enhanc-
ing the relative kinetic energy repulsion, and preventing

the experimentally-observed inversion between 1
2

−
and

1
2

+
states. Using the CD-Bonn NN potential [15], we ob-

serve a dramatic (∼ 3.5 MeV) increase in the 11Be 1
2

+

state binding energy leading to the g.s. parity inversion,
when the n -10Be relative motion is treated within the ab
initio NCSM/RGM approach.
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