# Ab initio model potential study of the equilibrium geometry of alkaline earth dihalides: $MX_2$ (M=Mg, Ca, Sr, Ba; X=F, Cl, Br, I)

Luis Seijo and Zoila Barandiarán Departamento de Química Física Aplicada, C-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Sigeru Huzinaga

Department of Chemistry, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada

(Received 5 October 1990; accepted 19 November 1990)

The ground state equilibrium geometry of alkaline earth dihalides  $MX_2$  (M = Mg, Ca, Sr, Ba; X = F, Cl, Br, I) has been optimized at the Hartree–Fock (HF) level using the Cowan– Griffin relativistic *ab initio* model potential method and a uniformly good, extended, *spd* valence basis set. The results show that, according to the method, all magnesium dihalides and CaCl<sub>2</sub>, CaBr<sub>2</sub>, and CaI<sub>2</sub> are linear, SrF<sub>2</sub> and all barium dihalides are bent, and CaF<sub>2</sub> and SrCl<sub>2</sub>, SrBr<sub>2</sub>, and SrI<sub>2</sub> are quasilinear molecules. The alkaline earth (n - 1)d orbitals are shown to be responsible for the bending of the heavier molecules while their (n - 1)p orbitals contribute considerably to the final quantitative prediction of the apex angle and the relative stability of the bent structures. Relativistic effects are shown to be very small on the bond distances and vibrational frequencies; they are important on the size of the bending barrier of the bent molecules. The results obtained are compared to previous theoretical studies and provide some insight in the interpretation of the contradictory experimental conclusions.

#### **I. INTRODUCTION**

The molecular geometry and vibrational spectra of alkaline earth dihalides  $MX_2$  (M = Mg, Ca, Sr, Ba; X = F, Cl, Br, I) have been the subject of many experimental<sup>1-13</sup> and theoretical<sup>14-21</sup> investigations. In spite of this, a systematic and uniformly accurate study of these molecules and properties is missing from both the experimental and theoretical points of view.

Experiments<sup>1-13</sup> have been conducted to infer the values of the equilibrium metal-ligand distance  $(r_e)$  and the bond angle  $(\alpha_e)$  as well as the vibrational frequencies (for totally symmetric stretching  $\overline{\nu}_1$ , bending  $\overline{\nu}_2$ , and antisymmetric stretching  $\overline{\nu}_3$  modes). However, quite often, either the error associated with the measurements or the wide range of values published by different groups, bring about some uncertainty on the experimental description of the bonding, particularly, on the linear or bent nature of these molecules.

From a theoretical point of view, the geometry of only  $MX_2$  (M = Mg, Ca, Sr; X = F, Cl), and  $SrB_2$  and  $SrI_2$  has been calculated (not always completely optimized) at the *ab initio* nonrelativistic Hartree–Fock (HF) level. The quality of the basis sets used varies, ranging from small minimal basis sets to extended ones with polarization and diffuse functions.

It is apparent that a systematic study of the bonding in all these molecules, based on the use of uniformly good basis sets, and reflecting the effects of both relativistic interactions and electron correlation is necessary. Along this line, we present here the results of valence electron calculations on the ground state of the 16 molecules at the HF level, with optimization of the  $D_{\infty h}$  and  $C_{2v}$  symmetries, using the Cowan-Griffin relativistic ab initio model potential (AIMP) method<sup>22</sup> and a uniformly good, extended, *spd* basis set. The main goal of this study has been to obtain a uniformly accurate description of the bonding properties of the  $MX_2$  set trying to clarify their linear/bent nature. In particular, this study should serve to interpret the often inconsistent experimental data. The results are expected to be an adequate reference for the study of other relativistic effects and electron correlation contributions, which have been neglected at this stage due to the high cost of performing the geometry optimization for the whole set of molecules beyond the HF level.

In Secs. II and III we summarize available experimental and theoretical results, respectively, focusing on their accuracy/uncertainty. In Sec. IV we describe the characteristics of the calculations. In Sec. V we compare our results with previous experimental and *ab initio* theoretical works and analyze the effects of the relativistic terms included in the calculations as well as the involvement of the alkaline earth (n-1)p and (n-1)d orbitals in the bonding. In Sec. VI we summarize the conclusions of our study.

#### **II. EXPERIMENTS**

The comparison of the results of our calculations with the experiments published so far is somewhat difficult because it is not always clear what is the precision of the measurements. The study of the experimental work<sup>1-13</sup> shows that the analysis of the results produced by different techniques is not easy: Different schemes of analysis of the same experimental data, which produce considerable discrepancies, are available; reinvestigations of some properties have been necessary; measurements corresponding to different techniques are not always consistent. Therefore, in order to facilitate the discussion of our results later on, we summarize here the experimental data focusing on their accuracy/uncertainty.

The molecular geometry and vibrational spectra of the

alkaline earth dihalides have been examined using several experimental techniques: (i) electron diffraction (ED),<sup>1,11-13</sup> (ii) molecular beam electric deflection (MBED),<sup>4</sup> (iii) gas phase infrared spectroscopy<sup>2,3,7</sup> (ir gas) and infrared spectroscopy of vapor isolated in solid matrices<sup>5,6,8-10</sup> (ir mat), and (iv) Raman spectroscopy (R).<sup>10</sup> The accuracy of the published information, as discussed by the authors,<sup>1-13</sup> is summarized next. Corresponding experimental results are collected in Table I.

#### A. Electron difraction

A very early study of electron diffraction (ED) was conducted by Akishin et al.<sup>1</sup> in 1957. In spite of the uncertainty on the X-M-X angle (typically 30°) the authors concluded that all alkaline earth dihalides have linear structure. Since then, ED reinvestigations which show that not all of the molecules are linear, have been published in the last decade; they use the same experimental technique, but different structure analysis methods.<sup>11-13</sup> The authors<sup>11-13</sup> are unanimous on the necessity of correcting the thermally averaged structural parameters to account for vibrational effects, but they do not coincide in the procedure actually used to do so. As a matter of fact, Gershikov and Spiridonov<sup>12</sup> have shown that different assumptions for the trajectories of the terminal atoms for the bending mode seriously affect the vibrational corrections and thus the actual value obtained, for instance, for the M-X distance. As a showcase<sup>12</sup> the thermally averaged values  $r_g$ , published by Kasparov et al.<sup>11</sup> for the M-X distance in MgCl<sub>2</sub> and CaI<sub>2</sub>, 2.186 and 2.867 Å, are larger than the corrected values, and come to 2.130 and 2.757 Å, respectively if small linearized normal mode displacements are assumed in the vibrational correction procedure,<sup>12</sup> or to 2.179 and 2.859 Å, if a further correction is included that accounts for curvilinearity effects.12

#### **B. Molecular beam electric deflection**

This technique has been used to determine whether a particular  $MX_2$  molecule is linear and centrosymmetric or, on the contrary, is bent and thus shows a permanent dipole moment. The results are not quantitative in measuring the apex angle. Using MBED experiments to study  $MX_2$  molecules in gas phase, Klemperer *et al.*<sup>4</sup> concluded that CaF<sub>2</sub>, SrF<sub>2</sub>, SrCl<sub>2</sub>, and all barium dihalides have bent structure in contrast to the conclusions of Akishin *et al.*<sup>1</sup> This early controversy led to a considerable (mainly experimental) effort aimed at consistently determining the equilibrium geometry of the alkaline earth dihalides through ED and ir/R techniques, mainly.

It is worth stressing that the sensitivity to the bond angle of electric deflection experiments may be limited depending on the size of the bending barrier and the electronic polarizability. Tunnel effects and induced dipole moments are the origin of these uncertainties.<sup>4</sup>

#### C. Infrared spectroscopy

Infrared spectra of gas phase  $MX_2$  (ir gas)<sup>2,3,7</sup> and of  $MX_2$  vapor trapped in solid matrices<sup>5,6,8-10</sup> (ir mat) have been reported. These experiments have been performed not

only to measure the vibrational frequencies, but also to distinguish the linearity or nonlinearity, and furthermore, to infer the apex angle, of the  $MX_2$  molecules through two complementary criteria: (i) the number of ir-active bands, and (ii) the measurement of the frequency shift produced by isotopic substitution of the central atom.

Snelson<sup>5</sup> and Hauge et al.<sup>8</sup> have pointed out the shortcomings of the use of the matrix isotopic shift technique to determine the apex angle because of the very small dependence of the isotopic shift on the bond angle in the range  $150^{\circ}$ -180°. Another difficulty associated with these experiments is the formation of polymeric species<sup>5,8</sup> and/or of complexes of the matrix trapped MX<sub>2</sub> molecules with impurities<sup>10</sup> that can lead to erroneous/uncertain assignments of the vibrational bands. Actually, in the case of MgF<sub>2</sub>, these difficulties led to some controversy: Contradicting previous results,<sup>1,4</sup> Mann et al.<sup>6</sup> deduced a bent structure with an apex angle of 158° for MgF, based on the isotopic frequency shift measurements and cited, in support of this conclusion, the assignment of a band at 478 cm<sup>-1</sup> to the symmetric stretch  $(\bar{\nu}_1)$ , ir active only for bent configuration. This band was shown to be ascribable to dimeric  $MgF_2$ ,<sup>5,8</sup> and  $MgF_2$  was shown to be linear.<sup>1,4,5,8,10,11</sup>

Also, it is timely to comment on what has been called *matrix effects*,<sup>5</sup> associated to the matrix isolation technique. These effects bring about some discrepancies between the results of gas-phase ir spectra and matrix isolation ir spectra: Most of the absorption bands exhibit a multiplet structure that is present under all conditions of matrix dilution and, therefore, is not ascribable to polymeric compounds, but to the trapped species occupying more than one site in the matrix lattice (see data corresponding to Ref. 9 in Table I as an example). More troublesome than this splitting is the effect of the matrix environment on the band center which is shifted from the true gas-phase value to some other frequency. It has been suggested<sup>5</sup> that the matrix values of the frequencies be corrected to estimate gas phase frequencies through some empirical approach using accurately known frequency shift values corresponding to chemically similar compounds.<sup>5</sup> This correction has been actually estimated as 15 cm<sup>-1</sup> to be added to the neon matrix frequencies of MX<sub>2</sub> compounds<sup>5</sup> in order to give a more realistic gas-phase frequency assignment.

#### **III. PREVIOUS CALCULATIONS**

The calculation of the equilibrium geometry and vibrational frequencies of alkaline earth dihalides is also a difficult task for two reasons. First, the number of electrons to be treated grows very rapidly as the size of the central metal and/or the halogens grows. This means not only higher computing time requirements, but also the need for the inclusion of relativistic terms. Second, the basis set to be used both at the HF level or beyond must be very flexible, if the errors associated to truncation are to be small in order to get reliable predictions of the chemical bond. This second circumstance is a consequence of the chemical nature of the elements involved, alkaline earths and halogens, and of the chemical bonds they form in the  $MX_2$  molecules. It is well known that alkaline earth polarizability varies along the IIA

| TABLE I. Experimental and calculated values of bond length, bond angle, and vibrational frequencies of $MX_2$ |
|---------------------------------------------------------------------------------------------------------------|
| molecules.                                                                                                    |

|                   | Method     | Ref.                    | r <sub>e</sub> /Å | $\alpha_e/\text{deg}$ | $\bar{\nu}_1$ /cm ' | $\tilde{\nu}_2/\mathrm{cm}^{-1}$ | $\overline{\nu}_3$ /cm <sup>-1</sup> |
|-------------------|------------|-------------------------|-------------------|-----------------------|---------------------|----------------------------------|--------------------------------------|
| MgF <sub>2</sub>  | ED         | 1                       | 1.77 (1)          | 180(30)               |                     |                                  |                                      |
|                   |            | 11                      | 1.770(9)          | 180                   | 540(20)             | 165(10)                          | 825(20)                              |
|                   | IR gas     | 7                       |                   |                       |                     |                                  | 825(10)                              |
|                   | IR mat     | 5                       |                   |                       |                     | 270(10)                          | 875(10)                              |
|                   |            | 6                       |                   | 158                   | 478                 | 242                              | 837                                  |
|                   |            | 8                       |                   | 180                   | 552ª                | 247                              | 851                                  |
|                   | IR/R mat   | 10                      |                   | 180                   | 550                 | 249                              | 842                                  |
|                   | This work  |                         | 1.758             | 180                   | 579                 | 151                              | 927                                  |
| MgCl <sub>2</sub> | ED         | 1                       | 2.18 (2)          | 180(10)               |                     |                                  |                                      |
|                   |            | 11                      | 2 185(6)          | 180                   |                     | 105(5)                           |                                      |
|                   |            | 12                      | 2 130 2 179       | 100                   |                     | 100(0)                           |                                      |
|                   | IR gas     | 2                       | 2.130,2.179       |                       |                     | 295                              | 597                                  |
|                   |            | 3                       |                   |                       |                     |                                  | 588                                  |
|                   |            | 7                       |                   |                       | 297 <sup>b</sup>    |                                  |                                      |
|                   | IR mat     | 6                       |                   | 180                   | 298 <sup>b</sup>    | 88                               | 590                                  |
|                   |            | 9                       |                   |                       |                     |                                  | 585.603                              |
|                   | IR/R mat   | 10                      |                   | 180                   | 326                 | 93                               | 601                                  |
|                   | This work  |                         | 2.206             | 180                   | 292                 | 105                              | 577                                  |
| MøBr.             | ED         | 1                       | 2.34(3)           | 180(10)               |                     |                                  |                                      |
|                   | IR gas     | 3                       | 2101 (0)          | 100(10)               |                     |                                  | 490                                  |
|                   | IIC gas    | 7                       |                   |                       | 1786                |                                  | 470                                  |
|                   | IP mot     | 0                       |                   |                       | 170                 |                                  | 502 509 520                          |
|                   | IR mat     | 10                      |                   | 190                   | 109                 | 87                               | 107                                  |
|                   | This work  | 10                      | 2 340             | 180                   | 100                 | 80                               | 477<br>577                           |
| Mal               | ID /P mat  | 10                      | 2.349             | 180                   | 148                 | 56                               | 445                                  |
| wigi <sub>2</sub> | This much  | 10                      | 2 690             | 100                   | 140                 | 79                               | 447                                  |
| C-E               | I DIS WORK | 1                       | 2.580             | 180                   | 132                 | /8                               | 44/                                  |
| Car <sub>2</sub>  | ED         | 1                       | 2.10(3)           | 180                   |                     |                                  |                                      |
|                   | MBED       | 4                       |                   | bent                  |                     |                                  |                                      |
|                   | IR gas     | /                       |                   |                       | 412"                |                                  | 575(10)                              |
|                   | IR mat     | 2                       |                   | 145(30)               | 520(10)             | 1.10                             | 595(10)                              |
|                   |            | 6                       | 2.052             | 140                   | 485                 | 140                              | 554                                  |
| 0.01              | This work  | This work 2.053 180 456 | 456               | 17                    | 637                 |                                  |                                      |
|                   | ED         | 1                       | 2.51 (3)          | 180(30)               |                     |                                  |                                      |
|                   |            | 12                      | 2.451(3)          |                       |                     | <i>(</i> <b>)</b>                |                                      |
|                   |            | 13                      | 2.483(7)          | 180                   |                     | 69                               |                                      |
|                   | MBED       | 4                       |                   | linear                | h                   |                                  |                                      |
|                   | IR gas     | 7                       |                   | 100                   | 2380                |                                  | 395(7)                               |
|                   | IR mat     | 0                       | 0.540             | 180                   | 243                 | 64<br>50                         | 402                                  |
| ~ <b>P</b>        | This work  |                         | 2.540             | 180                   | 265                 | 50                               | 442                                  |
| CaBr <sub>2</sub> | ED         | 1                       | 2.67 (3)          | 180(10)               |                     |                                  |                                      |
|                   |            | 13                      | 2.616(16)         |                       |                     | 72                               |                                      |
|                   | MBED       | 4                       |                   | linear                |                     |                                  |                                      |
|                   | IR gas     | 7                       | • (22             | 100                   | 148"                |                                  | 330(5)                               |
| <b>.</b> .        | This work  |                         | 2.680             | 180                   | 171                 | 33                               | 382                                  |
|                   | ED         | 1                       | 2.88 (3)          | 180(10)               |                     |                                  |                                      |
|                   |            | 11                      | 2.866(9)          | 180                   | 115(10)             | 50(10)                           | 295(30)                              |
|                   |            | 12                      | 2.757,2.859       |                       |                     |                                  |                                      |
|                   |            | 13                      | 2.840(10)         |                       | h                   |                                  |                                      |
|                   | IR gas     | 7                       |                   | 100                   | 107*                |                                  | 290(5)                               |
|                   |            | This work               | 2.903             | 180                   | 117                 | 34                               | 316                                  |
| SrF <sub>2</sub>  | ED         | 1                       | 2.20 (3)          | 180                   |                     |                                  |                                      |
|                   | MBED       | 4                       |                   | bent                  | aaab                |                                  |                                      |
|                   | IR gas     | 7                       |                   |                       | 380"                |                                  | 455(7)                               |
|                   | IR mat     | 5                       |                   | bent                  | 485(10)             |                                  | 490(10)                              |
|                   |            | 6                       |                   | 108                   | 442                 | 82                               | 443                                  |
|                   | This work  |                         | 2.191             | 144                   | 440                 | 76                               | 509                                  |
| SrCl <sub>2</sub> | ED         | 1                       | 2.07 (3)          | 180(30)               |                     |                                  |                                      |
|                   | MBED       | 4                       |                   | bent                  |                     |                                  |                                      |
|                   | IR gas     | 7                       |                   | 100                   | 223°                |                                  | 300(7)                               |
|                   | IR mat     | 6                       |                   | 120                   | 269                 | 44                               | 300                                  |
|                   | This work  |                         | 2.700             | 180                   | 251                 | 19                               | 337                                  |
| SrBr <sub>2</sub> | ED         | 1                       | 2.82 (3)          | 180(10)               |                     |                                  |                                      |
|                   | MBED       | 4                       |                   | linear                |                     |                                  |                                      |
|                   | IR gas     | 7                       |                   |                       | 137°                |                                  | 231"                                 |
|                   | This work  |                         | 2.830             | 172                   | 160                 | 13                               | 267                                  |
| Srl <sub>2</sub>  | ED         | 1                       | 3.03 (3)          | 180(10)               |                     |                                  |                                      |
|                   |            | 11                      | 3.009             | 180                   | 105(10)             | 30(5)                            | 190(20)                              |

TABLE I. (continued).

|                   | Method    | Ref. | r <sub>e</sub> /Å | $\alpha_{e}/\text{deg}$ | $\bar{\nu}_1/\mathrm{cm}^{-1}$ | $\tilde{\nu}_2/\mathrm{cm}^{-1}$ | $\bar{\nu}_3$ /cm <sup>-1</sup> |
|-------------------|-----------|------|-------------------|-------------------------|--------------------------------|----------------------------------|---------------------------------|
|                   | MBED      | 4    |                   | linear                  |                                |                                  |                                 |
|                   | IR gas    | 7    |                   |                         | 100 <sup>b</sup>               |                                  | 197 <sup>ь</sup>                |
|                   | This work |      | 3.061             | 180                     | 110                            | 9                                | 217                             |
| BaF,              | ED        | 1    | 2.32 (3)          | 180                     |                                |                                  |                                 |
| -                 | MBED      | 4    |                   | bent                    |                                |                                  |                                 |
|                   | IR gas    | 7    |                   |                         | 367 <sup>b</sup>               |                                  | 415(7)                          |
|                   | IR mat    | 5    |                   | bent                    | 450(10)                        |                                  | 430(10)                         |
|                   |           | 6    |                   | 100 <sup>b</sup>        | 390                            | 64                               | 413                             |
|                   | This work |      | 2.331             | 126                     | 406                            | 77                               | 436                             |
| BaCl <sub>2</sub> | ED        | I    | 2.82 (3)          | 180(40)                 |                                |                                  |                                 |
|                   | MBED      | 4    |                   | bent                    |                                |                                  |                                 |
|                   | IR gas    | 7    |                   |                         | 215 <sup>b</sup>               |                                  | 265(5)                          |
|                   | IR mat    | 6    |                   | 100 <sup>6</sup>        | 255                            | 36                               | 260                             |
|                   | This work |      | 2.898             | 143                     | 233                            | 36                               | 275                             |
| BaBr <sub>2</sub> | ED        | 1    | 2.99 (3)          | 180(30)                 |                                |                                  |                                 |
|                   | MBED      | 4    |                   | bent                    |                                |                                  |                                 |
|                   | IR gas    | 7    |                   |                         | 128 <sup>6</sup>               |                                  | 188 <sup>6</sup>                |
|                   | This work |      | 3.026             | 146                     | 154                            | 25                               | 211                             |
| Bal,              | ED        | 1    | 3.20 (3)          | 180(20)                 |                                |                                  |                                 |
|                   |           | 12   | 3.150(7)          | 148(9)                  | 106(12)                        | 16                               | 145(21)                         |
|                   | MBED      | 4    |                   | bent                    |                                |                                  |                                 |
|                   | IR gas    | 7    |                   |                         | 93 <sup>6</sup>                |                                  | 157 <sup>b</sup>                |
|                   | This work |      | 3.274             | 157                     | 105                            | 18                               | 169                             |

\*MgF<sub>2</sub> is complexed with other molecules in an argon matrix, thereby causing the  $\overline{v_1}$ , to be IR active.

<sup>b</sup>Approximately estimated value.

group<sup>23</sup> and also that their unoccupied d shells lay quite low in energy and tend to adopt an active role in molecular environments.<sup>24,25</sup> Halogens, on their turn, have very high (though variable along the VIIA group) electronegativity and therefore easily form anions in the molecular environment. These chemical behaviors must influence the basis set design to study the equilibrium geometry of the MX<sub>2</sub> molecules. Consequently, double zeta plus polarization quality must be consistently used for all atoms, at least for the valence shells. *d*-type functions that allow for the participation of unoccupied *d* orbitals (especially for Ca, Sr, and Ba) are also necessary,<sup>24,25</sup> and diffuse functions added to the halogen basis sets for a better representation of the anions diffuse electronic densities are also known to be very important.<sup>26</sup>

In Table II we collect most of the *ab initio* calculations reported so far and summarize some details of the calcula-

| TABLE II. Previous ab initio calculations on MX | 2 molecules: characteristics and results. |
|-------------------------------------------------|-------------------------------------------|
|-------------------------------------------------|-------------------------------------------|

| Molecule          | Ref. | Basis set     |                                 | Extra fun             | ctions                | Method        | Optin  | nization    | Res        | sults                  |
|-------------------|------|---------------|---------------------------------|-----------------------|-----------------------|---------------|--------|-------------|------------|------------------------|
|                   | •    |               | Polar.                          | Diff. on X            | Unocc. orb. M         |               | r(M-X) | (X-M-X)     | $r_{e}(Å)$ | $\alpha_e(\text{deg})$ |
| MgF <sub>2</sub>  | 14   | double zeta   | •••                             | 1s1p                  | 1 <i>d</i>            | HF            | opt.ª  | 180         | 1.77       | •••                    |
|                   |      |               |                                 |                       |                       | beyond HF     | 1.77   | opt.        | • • •      | 180                    |
|                   | 15   | minimal       | • • •                           | •••                   | 1 <i>p</i> 1 <i>d</i> | HF            | opt.   | opt.        | 1.762      | 180                    |
|                   | 17   | small minimal | •••                             | •••                   | none/1d               | UHF           | opt.   | 180         | 1.665/1.64 | 3                      |
|                   | 18   | double zeta   | •••                             | •••                   | 1 <i>d</i>            | HF            | opt.   | partly opt. | 1.77       | •••                    |
|                   | 20   | double zeta   | •••                             | •••                   | •••                   | HF            | opt.   | 180         | 1.76       | •••                    |
|                   | 21   | double zeta   | 1d <sup>M</sup> 1d <sup>X</sup> | 1 <i>s</i> 1 <i>p</i> | 1 <i>d</i>            | HF            | opt.   | 180         | 1.770      |                        |
| MgCl <sub>2</sub> | 21   | double zeta   | 1d <sup>M</sup> 1d <sup>X</sup> | 1 <i>s</i> 1 <i>p</i> | 1 <i>d</i>            | HF            | opt.   | 180         | 2.207      | •••                    |
| CaF <sub>2</sub>  | 15   | minimal       | •••                             | •••                   | none/1d               | HF            | 2.10   | opt.        | •••        | 180/145                |
|                   | 16   | double zeta   | •••                             |                       | 2d /3d                | HF            | 2.148  | opt.        | • • •      | 180                    |
|                   | 19   | small minimal | •••                             |                       | •••                   | HF            | opt.   | 180         | 2.209      | •••                    |
| CaCl <sub>2</sub> | 16   | double zeta   | $2p^{M}1d^{X}$                  | 1 <i>p</i>            | 1 <i>p</i> 3d         | HF: ECP on Cl | opt.   | opt.        | 2.527      | 180                    |
| SrF <sub>2</sub>  | 19   | small minimal | •••                             | •••                   | •••                   | HF            | opt.   | 180         | 2.321      | •••                    |
| SrCl,             | 19   | small minimal |                                 | •••                   | •••                   | HF            | opt.   | 180         | 2.701      | •••                    |
| SrBr <sub>2</sub> | 19   | small minimal | •••                             | •••                   | •••                   | HF            | opt.   | 180         | 2.832      | •••                    |
| Srl <sub>2</sub>  | 19   | small minimal | •••                             | •••                   |                       | HF            | opt.   | 180         | 3.059      | ···;                   |

\*The abbreviation opt. means that the geometry parameter has been optimized; otherwise the quoted constant value has been used.

tions as well as the characteristics of the basis sets used. It can be seen that only  $MgF_2$ ,  $MgCl_2$ ,  $CaF_2$ , and  $CaCl_2$  have been studied beyond the small minimal basis set HF level.

The comparison of those results collected in Table II corresponding to the more extensive basis sets, with the experimental data of Table I, shows a very good agreement for  $MgF_2$ ,  $MgCl_2$ , and  $CaCl_2$ , and disagreement in  $CaF_2$  which is shown to be linear in Ref. 16 while it is described as bent by  $MBED^4$  and ir mat.<sup>5,6</sup>

#### **IV. DETAILS OF THE CALCULATIONS**

Due to the growing number of electrons going down the IIA and VIIA groups  $(MgF_2:30;BaI_2:162)$  we decided to study the electronic structure of the ground state of  $MX_2$  molecules through valence–electron calculations. In this way, all 4 alkaline earth are 8-electron atoms and all 4 halogens are 7-electron atoms, the number of occupied molecular orbitals for the 16 molecules being only 11. As valence–electron method we have used the *ab initio model potential* method (AIMP)<sup>22</sup> at the HF level. The atomic valence basis sets are very flexible; they are considerably splitted and extended by the use of polarization, diffuse, and extra *d*-type functions according to the comments in Sec. III. The details of both model potentials and valence basis sets are described next. All of them are available from the authors upon request.

#### A. Nonrelativistic model potentials and basis sets

With respect to their valence properties, main group elements are usually considered to be ns<sup>x</sup> elements (IA and IIA groups) and  $ns^2np^x$  elements (IIIA to VIIIA groups). However, the core character of the outermost (n-1)p orbitals of alkaline earths is questionable. As a matter of fact, it can be shown (see Sec. V) that (n-1)p orbitals do influence the bonding properties of the ground state of most MX<sub>2</sub> molecules considered here. Consequently, we have prepared core model potentials and valence basis sets for Mg, Ca, Sr, and Ba including (n-1) pns orbitals in the valence that we refer to as core-2s (Be-like), core-3s (Mg-like), core-3d (Zn-like), and core-4d (Cd-like), respectively, so indicating what the outermost core orbital is. These model potentials and basis sets have been prepared following the same procedure as in Ref. 22(a). In order to study the effects of the (n-1)p orbitals on the equilibrium geometry, we performed nonrelativistic calculations with the alkaline earth atomic core including up to the (n-1)p orbitals; the corresponding nonrelativistic core (n-1)p model potentials and basis sets have been taken from Ref. 22(a). For the halogens we have used the nonrelativistic model potentials and basis sets presented in Ref. 22(a): in all cases the valence is nsnp.

The ability of the AIMP valence basis sets to mimic the behavior of all electron (AE) basis sets with the same quality in the valence part has been shown in a number of atomic and molecular test calculations.<sup>22</sup> This means that all the experience already gathered on the design of molecular basis sets can be used for model potential calculations: first, analogous splitting pattern for the outermost orbitals can be used and second, the atomic AIMP valence basis sets can be extended with the same extra functions that have been obtained for AE basis sets (in order to make them flexible enough to meet the molecular environment demands). In Table III we show the molecular basis sets used in the calculations. At least single splitting (corresponding to double-zeta quality for the valence) is used, and double or triple splitting is considered going down the IIA and VIIA groups.

As to functions to extend the atomic sets (Table III), orthogonalization functions have been proven to be necessary in model potential calculations<sup>22</sup> when a particular symmetry does not include occupied valence atomic orbitals but only core orbitals; the role of these functions is not to represent any valence orbitals, but to enable the molecular orbitals to reach high orthogonality with the cores. These functions have been taken from Ref. 27 and correspond to that contracted Gaussian type function (CGTF) that contributes most to the outermost core orbital of the symmetry been considered. Polarization functions have been added to all atomic basis sets. One *d*-type polarization function for the halogens and one p-type for the alkaline earths;<sup>27</sup> for magnesium, one *d*-type polarization function generated to be used with  $Mg^{2+27}$  is also included (see below for d-type polarization functions for Ca, Sr, and Ba). Diffuse functions for anions have been taken from Ref. 26 for F and Cl. For Br and I one p-type Gaussian-type function (GTF) with exponent 0.043 and 0.039, respectively, leads to electron affinity values different from the numerical HF ones by 0.05 and 0.03 eV, respectively, when added to the basis sets of Ref. 27 Br (43321|4321|31) and I (433321|43321|421). Finally, an important set of extra d-type functions have been used in the basis sets of Ca, Sr, and Ba. These functions pursue two objectives: (i) they act as polarization and orthogonalization functions (particularly the innermost contracted) and (ii) they enable the participation of unoccupied (n-1)d orbitals. The set (311) used for Ca has been taken from Ref. 24, the sets (421)-Sr and (3221)-Ba have been optimized in atomic calculations on Sr +  $(4d^{1}-^{2}D)$  and Ba +  $(4d^{1}-^{2}D)$ .

# B. Cowan–Griffin relativistic model potentials and basis sets

The major relativistic effects may be straightforwardly included in the AIMP<sup>22(c),28</sup> along the Cowan–Griffin ap-

TABLE III. Basis sets used in the molecular calculations on  $MX_2$  molecules.<sup>a</sup>

| Element |         | Valence basis set              |
|---------|---------|--------------------------------|
| Mg      | core-2p | (61 3"1* 1*)                   |
|         | core-2s | (61 411* 1*)                   |
| Ca      | core-3p | (81 3°1* 311)                  |
|         | core-3s | (81 511* 311)                  |
| Sr      | core-4p | (10,1 3°1* 421)                |
|         | core-3d | (10,1 711* 421)                |
| Ba      | core-5p | (11,11 3°1* 3221)              |
|         | core-4d | (11,11 911* 3221)              |
| F       | core-1s | (41 3111^ 1*)                  |
| Cl      | core–2p | (61 4111^ 1*)                  |
| Br      | core-3d | (711 51111 <sup>A</sup>  3°1*) |
| I       | core-4d | (911)71111^(3°1*)              |

\*Superscripts o, \*, and A denote orthogonalization, polarization, and diffuse for anion-type functions, respectively. proximation.<sup>29</sup> The atomic one-electron operators that constitute the Cowan-Griffin relativistic AIMP are constructed as follows. The numerical Cowan-Griffin (CG) solution is obtained for each atom for which relativistic effects are to be considered. The atomic relativistic (CG) core orbitals are expressed analytically and used to construct the usual core potentials:<sup>22</sup> Coulomb, exchange, and projector operators. Thereby these operators bring indirect relativistic effects to the molecular valence due to relativistic core orbital change. The valence mass velocity (MV) and Darwin (DW) potentials, which correspond to orbital-dependent local one-electron operators, are also obtained along the atomic numerical CG calculation. These operators are represented through nonlocal spectral expansion<sup>22(c)</sup> which, carried to the molecular calculation, ensure that one center valence mass velocity and Darwin integrals are exactly evaluated. This explicit representation of atomic MV and DW potentials in the molecular calculation is characteristic of the AIMP method and is in clear constrast with what is usually done in pseudo-, effective, and model potential methods<sup>30</sup> which include valence MV and DW potentials indirectly through the parametrization of their potentials so as to reproduce CG (reference) all electron results.30

We would like to stress now that, according to the *ab initio* philosophy on which the AIMP method is based, no attempt is ever done to reproduce any reference all electron CG results through parametrization: neither in the construction of model potential operators with relativistic orbitals, nor in the construction of explicit valence MV and DW operators. The only parameters of the method are those in the valence basis set which is optimized through the application of the variational principle to the valence energy.

Cowan-Griffin relativistic core model potentials and valence basis sets have been obtained for Sr (core-4p and core-3d), Ba (core-5p and core-4d), Br (core-3d), and I (core-4d). The basis set patterns used for the molecular cal-

culations are the same as in Table III with the only exception of Sr d-type functions that are now (321). Polarization functions and diffuse functions for anions have been taken from the nonrelativistic sets (test calculations have shown that they are transferable from the nonrelativistic to the Cowan-Griffin relativistic calculations); orthogonalization functions and d-type functions for unoccupied (n - 1)d orbitals have been obtained along atomic Cowan-Griffin relativistic AIMP calculations using the same criteria as the ones used in their nonrelativistic preparation.

### **V. RESULTS**

In this section we analyze the bonding properties of the ground state of  $MX_2$  molecules emphasizing on the equilibrium geometry. Since the quality of the results for the 16 molecules is uniform, overall descriptions of the properties and of their variations along the IIA and VIIA groups are expected to be meaningful. We compare our results with those of previous experimental and theoretical investigations, and analyze them so as to point out (i) the role of different atomic orbitals and (ii) the relativistic effects on the bonding properties.

The results to be discussed (Table IV) are those corresponding to the most accurate calculations of the ones performed along this study, where (i) a Cowan-Griffin relativistic-type of approximation is used for Sr, Ba, Br, and I, (ii) the valence space is defined as (n-1)pns(n-1)d for the alkaline earths and *nsnp* for the halogens, and (iii) the atomic valence basis sets are considerably splitted and extended with orthogonalization, polarization, and diffuse functions (cf. Sec. IV).

#### A. Geometry of the MX<sub>2</sub> molecules in their ground state

The results collected in Table IV show that, according to our calculations, there are three groups of molecules in the

TABLE IV. Cowan-Griffin-relativistic ab initio model potential results on MX<sub>2</sub> molecules.

|                   | <i>r<sub>e</sub>∕</i> (Å) | $\alpha_e/(\text{deg})$ | $\overline{v}_1/(\mathrm{cm}^{-1})$ | $\overline{\nu}_2/(\mathrm{cm}^{-1})$ | $\bar{\nu}_{3}/(\mathrm{cm}^{-1})$ | $V_0/({ m cm}^{-1})$ |
|-------------------|---------------------------|-------------------------|-------------------------------------|---------------------------------------|------------------------------------|----------------------|
| MgF,              | 1.758                     | 180                     | 579                                 | 151                                   | 927                                |                      |
| MgCl <sub>2</sub> | 2.206                     | 180                     | 292                                 | 105                                   | 577                                |                      |
| MgBr <sub>2</sub> | 2.349                     | 180                     | 190                                 | 80                                    | 522                                |                      |
| MgI <sub>2</sub>  | 2.580                     | 180                     | 132                                 | 78                                    | 447                                |                      |
| CaF,              | 2.053                     | 180                     | 456                                 | 17                                    | 637                                |                      |
| CaCl <sub>2</sub> | 2.540                     | 180                     | 265                                 | 50                                    | 442                                |                      |
| CaBr <sub>2</sub> | 2.680                     | 180                     | 171                                 | 33                                    | 382                                |                      |
| Cal,              | 2.903                     | 180                     | 117                                 | 34                                    | 316                                |                      |
| SrF <sub>2</sub>  | 2.191                     | 144                     | 440                                 | 76                                    | 509                                | 167                  |
| SrCl,             | 2.700                     | 180                     | 251                                 | 19                                    | 337                                |                      |
| SrBr <sub>2</sub> | 2.830                     | 172                     | 160                                 | 13                                    | 267                                | 6                    |
| SrI <sub>2</sub>  | 3.061                     | 180                     | 110                                 | 9                                     | 217                                |                      |
| BaF,              | 2.331                     | 126                     | 406                                 | 77                                    | 436                                | 1086                 |
| BaCl <sub>2</sub> | 2.898                     | 143                     | 233                                 | 36                                    | 275                                | 170                  |
| BaBr <sub>2</sub> | 3.026                     | 146                     | 154                                 | 25                                    | 211                                | 215                  |
| Bal,              | 3.275                     | 157                     | 105                                 | 18                                    | 169                                | 89                   |



FIG. 1. Classification of the  $MX_2$  molecules according to the results of Cowan–Griffin relativistic calculation.

MX<sub>2</sub> set in what respects to their equilibrium geometry. These groups are illustrated in Fig. 1. Group 1 is formed by linear molecules: MgX<sub>2</sub>, CaCl<sub>2</sub>, CaBr<sub>2</sub>, and CaI<sub>2</sub>. Group 2 includes all clearly bent molecules: SrF<sub>2</sub> and BaX<sub>2</sub>. Finally, group 3 contains what may be called quasilinear molecules: CaF<sub>2</sub>, SrCl<sub>2</sub>, SrBr<sub>2</sub>, and SrI<sub>2</sub>, meaning that their nuclear potential is very flat along the bending coordinate. As a matter of fact, the variation of the energy with the bond angle, in these molecules, is so small that the precision of the method only allows us to stress on the flatness of the potential, whereas the particular values of  $\alpha_e$ ,  $\bar{\nu}_2$ , and  $V_0$  (bending barrier) become quite irrelevant. As a consequence of this flatness, external perturbations might strongly affect the angle of these molecules, and, in consequence, experimental results based on techniques in which the external perturbations are significant, such as molecular beam electric deflec-



FIG. 2. Ground state bond length of  $MX_2$  molecules: Cowan–Griffin relativistic AIMP results (solid lines) and most recent electron diffraction measurements (vertical barrs).

tion and matrix isolation techniques, should be analyzed with caution.

The comparison of our results with the experimental data can be seen in Table I and Figs. 2 to 5. Given the flexibility of the valence *spd* basis set used, the discrepancies are expected to be ascribable to relativistic effects beyond the Cowan–Griffin level considered here and to electron correlation corrections. CaH results by Pettersson *et al.*<sup>24</sup> suggest that f functions on the alkaline earths might also be necessary beyond the HF level. However, the accuracy of available experimental data as discussed in Sec. II should be kept in mind.

The bigger discrepancies between our  $r_e$  values and the thermally averaged M-X distance corresponding to the more recent ED data available, amount to 0.02 for MgX<sub>2</sub>, 0.06 for CaX<sub>2</sub>, 0.05 for SrX<sub>2</sub>, and 0.08 Å for BaX<sub>2</sub> compounds. Of these, only Mg, Ca, and Sr difluorides show shorter  $r_e$  than the experimental values. Correction of the thermally averaged ED values for vibrational effects<sup>12</sup> could lead to slightly shorter M-X distances; then, the discrepancies rise to 0.09 for CaCl<sub>2</sub><sup>12</sup> and 0.1 Å for BaI<sub>2</sub>.<sup>12</sup> The overall tendencies are correct, suggesting that the unmeasured Mg-I distance might be slightly lower than 2.58 Å. As mentioned before, a central goal of our work has been to estab-



FIG. 3. Vibrational frequency for the symmetric stretching of  $MX_2$  molecules. Cowan–Griffin relativistic AIMP results (solid lines), experimental results (vertical barrs), and approximately estimated values (e).





FIG. 5. Vibrational frequency for the antisymmetric stretching of  $MX_2$  molecules. Cowan–Griffin relativistic AIMP results (solid lines), experimental results (vertical barrs), and approximately estimated values (e).

FIG. 4. Vibrational frequency for the bending of  $MX_2$  molecules. Cowan-Griffin relativistic AIMP results (solid lines) and experimental results (vertical barrs). Only linear and bent molecules (except  $SrF_2$ ) are shown.

lish, in the framework of a uniform theoretical treatment, the variation of the equilibrium geometry from linear to bent along the IIA and VIIA groups. In this way, our results can help to interpret the experimental data, which, in this respect, are particularly contradictory and of irregular accuracy. All molecules of group 1 are found to be linear experimentally in agreement with our results. For molecules of group 2, the experimental picture is not consistent: while Akishin et al.<sup>1</sup> conclude that all of them are linear, MBED experiments,<sup>4</sup> ir mat<sup>5,6</sup> (except for BaBr<sub>2</sub> and BaI<sub>2</sub>, not studied through this technique) and the recent ED study of  $BaI_2$  by Gershikov *et al.*<sup>12</sup> describe them as bent molecules. The results of our work support the conclusions of the latter. However, the apex angle is usually found to be smaller than the calculated one when determined by ir mat through the isotopic shift technique. More accurate measurements of the apex angle for this group of molecules are only available for  $BaI_2$ ,<sup>12</sup> where it has been inferred from gas phase ED experiments (including vibrational corrections) and come to 148(9)° in good agreement with our calculated 157°. For group 3 of quasilinear molecules, the only available gas phase ED experiments are those of Ref. 1, covering the four molecules, and those of Ref. 11 for  $SrI_2$ . (The ir-gas study of Ref. 7, on the vibrational stretching espectral region, assigns

only the antisymmetric one; the values of  $\overline{\nu}_1$  that appear in Table I and Fig. 3 correspond to estimations based on vapor entropy calculations.) All these experiments describe them as linear molecules. However, CaF<sub>2</sub> and SrCl<sub>2</sub> are found to be bent both through MBED and ir-mat experiments, with bond angles of 145 (ir mat) and 120° (ir mat), respectively. The flatness of the nuclear potentials calculated in this work suggests that, in these cases, both matrix effects and induced dipole moment interactions along ir mat and MBED experiments could easily induce a bent structure or, at least, lower the angle of an already bent structure. To illustrate this, the calculated minimum energies at  $\alpha = 150^\circ$ , taking the linear minimum as the reference, are 86 cm<sup>-1</sup> for CaF<sub>2</sub> and 162 cm<sup>-1</sup> for SrCl<sub>2</sub>. This value for SrCl<sub>2</sub> at  $\alpha = 120^{\circ}$  is, however, 1217 cm<sup>-1</sup>, suggesting that 120° for SrCl<sub>2</sub><sup>6</sup> might be too low. Due to the uncertainty that may be expected from both ir mat and MBED experiments when applied to flat potential molecules, we would like to stress on the classification of  $CaF_2$  and  $SrCl_2$  as, simply, quasilinear molecules.

As to the vibrational frequencies, a close look to the experimental data (Table I, Figs. 3 to 5) reflects so wide a discrepancy between the results of different techniques or from gas phase vs matrix isolation experiments, that there is no easy way to make an overall comparison. Nevertheless, excluding the quasilinear molecules where particularly our  $\bar{v}_2$  becomes considerably inaccurate and simply reflects the flatness of the potential, the variations of the  $\bar{v}_i$  along the IIA and VIIA groups coincide qualitatively, and the overall quantitative agreement is satisfactory. Note that the vibra-

tional frequencies have been calculated using the valence force field approximation,<sup>31</sup> which may affect especially the quality of  $\bar{v}_3$ .

We would like to compare now our results with those of previous *ab initio* calculations. Since it has been shown, through basis set effect studies, the importance of a proper representation of (n - 1)d orbitals in the alkaline earth basis sets,<sup>22(a),24,25</sup> of diffuse functions for halogens,<sup>26</sup> and of the use of split valence and polarization functions in molecular calculations, we will only compare our results to the ones of previous calculations which use basis sets of similar quality as those in Table III. In this way we will be able to avoid the consideration of uncontrolled basis set truncation effects along the discussion.

High quality basis sets have been used for MgF<sub>2</sub> and MgCl<sub>2</sub> by Jasien and Dykstra<sup>21</sup> and for CaCl<sub>2</sub> by Yarkony et al.<sup>16</sup> leading to  $r_e$  values in close agreement with ours, being the discrepancy at most 0.01 Å. Although the angle was not optimized for MgF<sub>2</sub> nor for MgCl<sub>2</sub> in Ref. 1, the corresponding optimization on CaCl<sub>2</sub> was performed<sup>16</sup> leading also to 180°. Yarkony et al.<sup>16</sup> used also a good basis set for Ca and F (although no polarization nor diffuse functions were included in the fluorine basis set) in order to study the linear/bent structure of CaF<sub>2</sub>. The authors found a linear equilibrium geometry for this molecule so contradicting the experiments and suggested that a better fluorine basis set might lead to agreement with the MBED and ir mat results. Our results show that a better fluorine basis set describes  $CaF_2$  as a quasilinear molecule with a flatter nuclear potential: The energy necessary to bend the molecule down to 150° is 86 cm<sup>-1</sup> in our calculation, vs 173 cm<sup>-1</sup> found by Yarkony et al.16

# B. Role of the alkaline earth (n-1)p and (n-1)d orbitals on the bonding

Looking at Fig. 1 and Table IV, it can be seen that the more polarizable the alkaline earth and the smaller the halogen, the more likely is the molecule to be bent, and, within group 2, the smaller is the apex angle predicted. This tendency has been commented by Klemperer *et al.*<sup>4</sup> as the qualitative prediction corresponding to the simple classical polarizable ion model used by Debye.<sup>32</sup> The analysis of the bonding, which follows, shows that this overall behavior is actually shown *only* when flexible basis sets are used to represent (n-1)p and (n-1)d orbitals, so enabling the physical response of the central atom densities to the polarizing power of the ligands. Otherwise, *all* MX<sub>2</sub> molecules are wrongly predicted to be linear.

Let us now study the role of the alkaline earth (n-1)porbitals in the bonding. It is possible to study very directly the participation of a particular atomic orbital in the molecular bonds by comparing two types of calculations: First, the atomic orbital is frozen and included in the core model potential to restrict its effects on the bonds. Second, the atomic orbital is promoted to the valence and represented by a flexible enough basis set, so that it could eventually contribute to the bonding. The closer the effective core potential method used is to the frozen orbital approximation, the better the comparison just described illustrates the atomic orbital participation in the bonding.

In Table V we present this kind of study of the bonding for the  $MX_2$  set. The (n-1)p orbitals are included in the core definition in the calculations labeled core (n-1)p and are promoted to the molecular valence otherwise [core (n-1)s or core (n-2)d calculations]. Note that the orthogonalization functions used in core (n-1)p basis sets only serve to the purpose of achieving strong orthogonality, the six p electrons being frozen core electrons.<sup>22</sup>

In the magnesium dihalides, the promotion of the Mg 2porbitals to the valence, only produces a small change in  $r_e$ ,  $|\Delta r_e| < 0.02$  Å, and minor effects in the vibrational frequencies, revealing a negligible deformation of them. However, the variation of the molecular properties after promoting the (n-1)p orbitals to the valence is significant in the rest of  $MX_2$  molecules. The changes in  $r_e$ , with the only exception of  $CaF_2$ , range from 0.05 to 0.18 Å, big enough to be ascribed to actual (n-1)p participation in the bonding.  $r_e$  is extremely affected in  $BaF_2$ , which shows a collapsing nuclear potential when the (n-1)p orbitals are frozen (if an all electron basis set is used, in order to ensure very high corevalence orthogonality, the result is a too short  $r_{e}$ , 2.207 Å.) The (n-1)p orbitals also produce a significant decrease of the apex angle of the bent molecules, as well as a very important effect on their energy barrier at the linear geometry  $V_0$ , which is multiplied by a factor of 2.5 in  $SrF_2$  and goes from a very low, or even null value, to a quite high value for  $BaX_2$ . The vibrational frequencies  $\bar{\nu}_1$  and  $\bar{\nu}_3$  for SrF<sub>2</sub> and BaF<sub>2</sub>, and  $\overline{\nu}_2$  for the bent and quasilinear molecules are also quite affected by the (n-1)p orbitals.

All these results show that the (n-1)p orbitals remain essentially atomic for magnesium dihalides but do participate in the bonding in the rest of the molecules, being particularly active in stabilizing the bent structures according to the polarizable ion model sequence, so suggesting that (n-1)p orbitals contribute to the polarization of the alkaline earth by the ligands.

The involvement of the alkaline earth (n - 1)d orbitals in the bonding has been shown in studies of basis set effects on some of their compounds, both in nonrelativistic and relativistic calculations.<sup>22(a),24,25</sup>

We have picked up the bent molecules,  $SrF_2$  and  $BaX_2$ , to illustrate the role of (n-1)d orbitals in the bonding properties of the dihalides. For this purpose we removed the (21) and (221) outermost d CGTF from the basis sets (10,1|711\*|321) of Sr and (11,11|911\*|3221) of Ba, respectively. These CGTF are the ones actually representing (n-1)d orbitals while the innermost CGTF (3) serve only for core-valence orthogonality purposes and thus must be kept in the basis set.

The results, to be compared with those of Table IV, are:  $r_e = 2.279$  Å for SrF<sub>2</sub> and  $r_e = 2.452$ , 3.045, 3.180, and 3.422 Å for BaF<sub>2</sub>, BaCl<sub>2</sub>, BaBr<sub>2</sub>, and BaI<sub>2</sub>, respectively. In all cases the bond angle turns to be 180°. These results show the chief role of (n - 1)d in the bonding of alkaline earth dihalides.

Altogether, the results in this subsection show that the

TABLE V. Nonrelativistic (NR) and Cowan-Griffin relativistic AIMP (QR) results on  $MX_2$  molecules. The alkaline earth (n-1)p orbitals are included in the core in the calculations labeled core (n-1)p; they are part of the molecular valence otherwise.

|           |            |             | F           | C1                 | Br                 | I     |
|-----------|------------|-------------|-------------|--------------------|--------------------|-------|
|           |            | · · · · · · | ç 1 y 1 = 1 | r <sub>e</sub> /   | (Å)                |       |
| Mg        | core-2p    | NR          | 1.735       | 2.186              | 2.339              | 2.585 |
|           |            | QR          |             |                    | 2.368              | 2.598 |
|           | core-2s    | NR          | 1.758       | 2.206              | 2.355              | 2.597 |
|           |            | QR          |             |                    | 2.349              | 2.580 |
| Ca        | core-3p    | NR          | 2.071       | 2.623              | 2.781              | 3.046 |
|           |            | QR          |             |                    | 2.772              | 3.031 |
|           | core-3s    | NR          | 2.053       | 2.540              | 2.683              | 2.923 |
|           |            | QR          |             |                    | 2.680              | 2.903 |
| Sr        | core-4p    | NR          | 2.125       | 2.802              | 2.960              | 3.234 |
|           | • •        | QR          | 2.148       | 2.799              | 2.945              | 3.207 |
|           | core-3d    | NK          | 2.176       | 2.701              | 2.842              | 3.080 |
|           | ~          | QK          | 2.191       | 2.700              | 2.830              | 3.001 |
| Ba        | core-5p    | NK          |             | 3.052              | 3.203              | 3.472 |
|           |            | QK          | 0.206       | 3.053              | 3.203              | 2.427 |
|           | core-4a    | OD          | 2.320       | 2.690              | 3.026              | 3.270 |
|           |            | QK          | 2.331       | 2.898              | 3.020              | 3.275 |
|           | <b>A</b> u | ND          | 147         | $\alpha_{e}/($     | (deg)              |       |
| ы         | core-4p    | INK<br>OP   | 14/         |                    |                    |       |
|           | core 2d    | UK<br>NP    | 100         |                    |                    |       |
|           | core-sa    |             | 130         |                    |                    |       |
| n.        | <b>F</b>   |             | 144         | 190                | 164                | 167   |
| Ba        | core-sp    | OP          |             | 180                | 160                | 170   |
|           | aara dd    | VR<br>NP    | 125         | 140                | 142                | 153   |
|           | core-4a    | OP          | 125         | 140                | 142                | 157   |
|           |            | QK          | 120         | 145                | 140                | 157   |
|           |            |             |             | $V_{\rm o}/(a$     | $(m^{-1})$         |       |
| Sr        | core-4p    | NR          | 206         |                    |                    |       |
|           |            | QR          | 65          |                    |                    |       |
|           | core-3d    | NR          | 429         |                    |                    |       |
|           |            | QR          | 167         |                    |                    |       |
| 3a        | core-5p    | NR          |             |                    | 21                 | 8     |
|           |            | QR          |             |                    | 6                  | 4     |
|           | core-4d    | NR          | 1396        | 292                | 321                | 133   |
|           |            | QR          | 1086        | 170                | 215                | 89    |
| _         | _          |             |             | $\bar{\nu}_1/(e$   | cm <sup>-1</sup> ) | 107   |
| Лg        | core-2p    | NK          | 570         | 312                | 195                | 137   |
|           |            | QK          | 670         | 202                | 184                | 133   |
|           | core-25    |             | 319         | 272                | 190                | 133   |
| <u></u>   | 00rc 27    |             | A19         | 246                | 150                | 132   |
| <i>La</i> | core-sp    | OR          | 10          | 270                | 153                | 108   |
|           | COT-35     | NR          | 456         | 265                | 167                | 120   |
|           |            | OR          |             | 200                | 171                | 117   |
| Sr        | core-4p    | NR          | 298         | 230                | 147                | 104   |
|           | 'F         | QR          | 296         | 235                | 146                | 102   |
|           | core-3d    | NR          | 457         | 247                | 152                | 110   |
|           |            | QR          | 440         | 251                | 160                | 110   |
| Ba        | core-5p    | NR          |             | 210                | 137                | 102   |
|           | -          | QR          |             | 205                | 134                | 99    |
|           | core-4d    | NR          | 404         | 234                | 156                | 109   |
|           |            | QR          | 406         | 233                | 154                | 105   |
|           |            |             |             | $\overline{v}_2/2$ | cm <sup>- 1</sup>  |       |
| Mg        | core 2p    | NR          | 154         | 106                | 90                 | 79    |
|           | -          | QR          |             |                    | 92                 | 79    |
|           | core 2s    | NR          | 151         | 105                | 90                 | 79    |
|           |            | QR          |             |                    | 80                 | 78    |
| Ca        | core 3p    | NR          | 51          | 53                 | 36                 | 30    |
|           |            | QR          | _           |                    | 37                 | 31    |
|           | core 3s    | NR          | 17          | 50                 | 36                 | 33    |
| -         |            | QR          | <b>n</b> -  |                    | 33                 | 34    |
| Sr        | core 4p    | NR          | 86          | 27                 | 22                 | 21    |

TABLE V. (continued).

|    |                |          | F   | Cl              | Br                | I   |
|----|----------------|----------|-----|-----------------|-------------------|-----|
|    |                | OP       | 60  | 25              | 0                 | 10  |
|    | core 2 d       | QK<br>ND | 09  | 23              | 9                 | 12  |
|    | core sa        | NR<br>OD | 74  | 13              | 13                | 1/  |
| D. |                | QK       | /6  | 19              | 13                | 9   |
| Ба | core <i>sp</i> | NK       |     | 6               | 18                | 9   |
|    |                | QR       |     | 8               | 8                 | 10  |
|    | core 4a        | NK       | 87  | 36              | 29                | 21  |
|    |                | QR       | 77  | 36              | 25                | 18  |
|    |                |          |     | $\bar{\nu}_3/c$ | cm <sup>- 1</sup> |     |
| Mg | core 2p        | NR       | 912 | 617             | 536               | 465 |
|    |                | QR       |     |                 | 508               | 456 |
|    | core 2s        | NR       | 927 | 577             | 523               | 458 |
|    |                | QR       |     |                 | 522               | 447 |
| Ca | core 3p        | NR       | 584 | 409             | 347               | 298 |
|    |                | QR       |     |                 | 342               | 291 |
|    | core 3s        | NR       | 637 | 442             | 374               | 326 |
|    |                | QR       |     |                 | 382               | 316 |
| Sr | core 4p        | NR       | 345 | 310             | 247               | 206 |
|    | -              | QR       | 348 | 316             | 246               | 201 |
|    | core 3d        | NR       | 523 | 332             | 256               | 218 |
|    |                | QR       | 509 | 337             | 267               | 217 |
| Ba | core 5p        | ŇR       |     | 259             | 198               | 169 |
|    | •              | QR       |     | 252             | 196               | 166 |
|    | core 4d        | ŇR       | 433 | 274             | 210               | 172 |
|    |                | OR       | 436 | 275             | 211               | 169 |

alkaline earths are far from being  $ns^2$  elements; instead, they are as demanding in terms of basis set requirements as transition metal elements, being their actual chemical valence (n-1)pns(n-1)d. These results are in the line of what has been found for CaH beyond the HF level<sup>24</sup> and for alkaline earth hydrides in relativistic calculations<sup>25</sup> where both (n-1)p and (n-1)d orbitals have been found to contribute strongly to the accuracy of the calculated equilibrium geometry.

## C. Relativistic effects

The relativistic effects introduced according to the approximate method described in Sec. IV for the molecules containing Sr, Ba, Br, and I are also shown in Table V.

The effects in bond length (always below 0.02 Å in absolute value), bond angle, and vibrational frequencies are very small. Magnesium and calcium compounds show a bond length contraction that grows from the dibromide to the diiodide. Strontium and barium diiodide show a relativistic contraction that is progressively canceled and turned to a net expansion towards the difluorides. Previous studies by Pyykkö et al.<sup>25</sup> have also shown that the participation of (n-1)d orbitals of IIA elements tend to cancel most of the relativistic contraction and sometimes even induce small relativistic bondlength expansions in alkaline earth hydrides. We have done some numerical experimentation to prove that this is also true for the dihalides: The relativistic effect on  $r_e$ ,  $\Delta r_e = r_e (QR) - r_e (NR)$ , for SrF<sub>2</sub> is found to be a contraction if (n-1)d orbitals are removed from the valence,  $\Delta r_e = -0.015$  Å. When they are included in the valence

space (see Table V),  $\Delta r_e$  turns to be + 0.015 Å. The interplay between the expansion brought about by the (n-1)d orbitals and the contraction due to the (n-1)pns orbitals of Sr and Ba, and to the *nsnp* orbitals of Br and I, is responsible for the progressive cancellation of the contraction commented above when going from the diiodides towards the diffuorides.

The relativistic effect which is more remarkable in the  $MX_2$  molecules is the reduction of the barrier at the linear geometry of the bent molecules  $V_0$ . This means that relativistic terms produce a smaller stabilization of the bent structures relative to the stabilization of the linear arrangement. Again, the smaller the ligand and the more polarizable the alkaline earth, the greater is the relativistic decrease of the barrier  $V_0$  (see Table V). This feature can be explained taking into account that d orbitals are known to be instabilized by relativity<sup>33</sup> and that (n-1)d orbitals have just been shown to be responsible for the bending. In any case, the relativistic decrease of the bending barrier is not so high as to change the description of these molecules from bent to quasilinear.

### **VI. CONCLUSIONS**

The equilibrium geometry of alkaline earth dihalides has been studied at the HF level using the Cowan-Griffin relativistic *ab initio* model potential method and a uniformly good, extended, *spd* valence basis set. According to this method, all magnesium dihalides and CaCl<sub>2</sub>, CaBr<sub>2</sub>, and CaI<sub>2</sub> are linear, SrF<sub>2</sub> and all barium dihalides are bent, and CaF<sub>2</sub> and SrCl<sub>2</sub>, SrBr<sub>2</sub>, and SrI<sub>2</sub> are quasilinear molecules.

Calculated bond distances are close to the experimental data available and follow the correct tendency, the magnitude of the discrepancies being ascribable to electron correlation corrections and further improvements in the relativistic treatment and basis set (i.e., use of f functions for the alkaline earths). The major discrepancies with the available experimental data appear in the group of quasilinear molecules:  $CaF_2$  and  $SrCl_2$  are described to be bent in molecular beam electric deflection and infrared of vapor isolated in solid matrix experiments. The very flat potential, with respect to the bending angle, found for these molecules, suggests that the interaction between the applied electric field and the molecules, in the first case, and between the solid matrix and the molecules, in the second case, may be responsible for the experimental detection of bent structures. The apex angle of the bent molecules is calculated higher than the experimental values corresponding to matrix isolation techniques and are in good agreement with more accurate gas phase electron difraction studies.

A comparable, systematic and *uniformly accurate* experimental study of the geometry and vibrational frequencies of these molecules would be necessary. Particularly, accurate determinations of the apex angle and of the bending barrier would be required to contrast our results and, especially, their evolution along the IIA and VIIA groups.

Of particular interest has been the analysis of the participation of (n-1)p and (n-1)d orbitals of the alkaline earths and of the relativistic effects in the bonding properties. The (n-1)d orbitals are shown to be responsible for the bending of the heavier molecules while (n-1)p contribute considerably to the final quantitative prediction of the apex angle and the relative stability of the bent structures. Relativistic effects are shown to be very small on the bond distances and vibrational frequencies and considerable on the size of the bending barrier of the bent molecules, whose value is considerably decreased, this corresponding to a smaller relative stabilization of the bent configuration related to the (n-1)d involvement in the bending.

#### ACKNOWLEDGMENTS

This work was partly supported by grants from MEC (Acciones Concertadas, Ayudas a Grupos Precompetitivos), Spain, and NSERC, Canada. The calculations were done at the installations hosted by the Centro de Cálculo de la Universidad Autónoma de Madrid, and by the Department of Computing Services at the University of Alberta. We are very grateful to the staff of both computing services for their friendly cooperation.

- <sup>3</sup>S. P. Randall, F. T. Greene, and J. L. Margrave, J. Chem. Phys. **63**, 758 (1958).
- <sup>4</sup>L. Wharton, R. A. Berg, and W. Klemperer, J. Chem. Phys. **39**, 2023 (1963); A. Büchler, J. L. Stauffer, and W. Klemperer, J. Am. Chem. Soc. **86**, 4544 (1964).
- <sup>5</sup>A. Snelson, J. Phys. Chem. 70, 3208 (1966).
- <sup>6</sup>D. E. Mann, G. V. Calder, K. S. Seshadri, D. White, and M. J. Linevsky, J. Chem. Phys. **46**, 1138 (1967); G. V. Calder, D. E. Mann, K. S. Seshadri, M. Allavena, and D. White, *ibid*. **51**, 2093 (1969); D. White, G. V. Calder, S. Hemple, and D. E. Mann, *Ibid*. **59**, 6645 (1973).
- <sup>7</sup>V. I. Baikov, Opt. Spectrosc. 25, 356 (1968); 194 (1968); 27, 502 (1969).
- <sup>8</sup>J. W. Hastie, R. H. Hauge, and J. L. Margrave, High Temp. Sci. 3, 56 (1971); R. H. Hauges, J. L. Margrave, and A. S. Kana'an, J. Chem. Soc. Faraday Trans. 2 71, 1082 (1075).
- <sup>9</sup>D. L. Cocke, C. A. Chang, and K. A. Gingerich, Appl. Spectrosc. 27, 260 (1973).
- <sup>10</sup> M. L. Lesiecki and J. W. Nibler, J. Chem. Phys. 64, 871 (1976).
- <sup>11</sup> V. V. Kasparov, Y. S. Ezhov, N. G. Rambidi, J. Struct. Chem. (Eng. Trans.) 20, 217 (1979); 20, 285 (1979); 21, 154 (1980).
- <sup>12</sup> A. G. Gershikov and V. P. Spiridonov, J. Mol. Struct. 75, 291 (1981); V.
   P. Spiridonov and A. G. Gershikov, Chem. Phys. Lett. 77, 36 (1981); V.
   P. Spiridonov, A. G. Gershikov, A. B. Altman, G. V. Romanov, and A.
   A. Ivanov, *ibid.* 77, 41 (1981); V. P. Spiridonov, A. B. Altman, A. G.
   Gershikov, and G. V. Romanov, 2nd. Conference on Determination of Molecular Structure by Microwave Spectroscopy and Electron Diffraction, 5th European Microwave Spectroscopy Conference, Tiibingen, West Germany, 1980.
- <sup>13</sup> E. Vajda, M. Hargittai, I. Hargittai, J. Tremmel, and J. Brunvoll, Inorg. Chem. 26, 1171 (1987).
- <sup>14</sup> M. Astier, G. Berthier, and P. Millie, J. Chem. Phys. 57, 5008 (1972).
- <sup>15</sup> J. L. Gole, A. K. Q. Siu, and E. F. Hayes, J. Chem. Phys. 58, 857 (1973); E. F. Hayes, A. K. Q. Siu, and D. W. Kisker, *ibid*. 59, 4587 (1973).
- <sup>16</sup> D. R. Yarkony, W. J. Hunt, and H. F. Schaefer III, Mol. Phys. 26, 941 (1973); N. Honjou and D. R. Yarkony, J. Phys. Chem. 89, 2919 (1985).
- <sup>17</sup> J. B. Collins, P. R. Schleyer, S. S. Binkley, and J. A. Pople, J. Chem. Phys. 64, 5142 (1976).
- <sup>18</sup> P. Pendergast and E. F. Hayes, J. Chem. Phys. 68, 4022 (1978).
- <sup>19</sup> W. J. Pietro, B. A. Levi, W. J. Hehre, and R. F. Stewart, Inorg. Chem. **19**, 2225 (1980); W. J. Pietro, E. S. Blurock, R. F. Hout, W. J. Hehre, D. J. DeFrees, and, R. F. Stewart, Inorg. Chem. **20**, 3650 (1981).
- <sup>20</sup> V. G. Zakzhevskii, A. I. Boldyrev, and O. P. Charkin, Chem. Phys. Lett. **81**, 93 (1981).
- <sup>21</sup> P. J. Jasien and C. E. Dykstra, J. Am. Chem. Soc. 107, 1891 (1985).
- <sup>22</sup> S. Huzinaga, L. Seijo, Z. Barandiarán, and M. Klobukowski, J. Chem. Phys. **86**, 2132 (1987); L. Seijo, Z. Barandiarán, and S. Huzinaga, *ibid*. **91**, 7011 (1989); Z. Barandiarán, L. Seijo, and S. Huzinaga, *ibid*. **93**, 5843 (1990).
- <sup>23</sup> The (classical) polarizable ion model has been quoted by Klemperer *et al.* (Ref. 4) to interpret the linear/bent structure adopted by alkaline earth dihalides.
- <sup>24</sup> L. G. M. Pettersson, P. E. M. Siegbahn, and S. Ismail, Chem. Phys. 82, 355 (1983).
- <sup>25</sup> P. Pyykkö, J. Chem. Soc. Faraday 2 75, 1256 (1979); P. Pyykkö, J. G. Snijders, and E. J. Baerends, Chem. Phys. Lett. 83, 432 (1981).
- <sup>26</sup> T. H. Dunning and P. J. Hay, in *Modern Theoretical Chemistry*, edited by H. F. Schaefer III (Plenum, New York, 1977), p. 1.
- <sup>27</sup> J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, *Gaussian Basis Sets for Molecular Calculations*, edited by S. Huzinaga (Elsevier, Amsterdam, 1984).
- <sup>28</sup>S. Katsuki and S. Huzinaga, Chem. Phys. Lett. 147, 597 (1988).
- <sup>29</sup> R. D. Cowan and D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).
- <sup>30</sup>O. Gropen, in Methods in Computational Chemistry, Vol. 2, Relativistic Effects in Atoms and Molecules, edited by S. Wilson (Plenum, New York, 1988), and references therein.
- <sup>31</sup>G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1945).
- <sup>32</sup> P. Debye, *Polar Molecules* (Chemical Catalogue, New York, 1929).
- <sup>33</sup> P. Pyykkö and J. P. Desclaux, Acc. Chem. Res. 12, 276 (1979).

<sup>&</sup>lt;sup>1</sup> P. A. Akishin, V. P. Spiridonov, and G. A. Sobolev, Zhur. Fiz. Khim. **31**, 648 (1957); P. A. Akishin, V. P. Spiridonov, G. A. Sobolev, and V. A. Naumar, *ibid.* **31**, 1871 (1957).

<sup>&</sup>lt;sup>2</sup> A. Büchler and W. Klemperer, J. Chem. Phys. 29, 121 (1958).