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We report an ab initio multi-scale study of lead titanate using the Deep Potential (DP) models,
a family of machine learning-based atomistic models, trained on first-principles density functional
theory data, to represent potential and polarization surfaces. Our approach includes anharmonic
effects beyond the limitations of reduced models and of the linear approximation for the polarization.
The calculated enthalpy, spontaneous polarization, specific heat and dielectric susceptibility agree
well with experiments on single crystals. In addition, we study how the free energy depends on
the polarization with enhanced sampling methods, further supporting the first-order and order-
disorder character of the transition. The latter is evidenced by persistence of local dipoles above the
transition temperature. The simulated free energy surface as a function of the global polarization
leads to a Landau-Devonshire theory of the single domain crystal.

I. INTRODUCTION

The iconic feature of ferroelectric crystals is switchable
spontaneous polarization. The polarization P is the sum
of ionic (Pion) and electronic (Pel) contributions. Here,
we take the ions to include nuclei and (frozen) core elec-
trons, so that the electronic contribution is associated
to the valence electrons. While Pion is simply the sum
of the dipole moments of the ions, Pel is associated, ac-
cording to the modern microscopic theory [1], to the
Berry phase of the electronic state. Interestingly, this
contribution can also be expressed as a sum of dipole
moments [1]. These are the dipole moments of the cen-
ters of the maximally localized Wannier functions that
derive from a unitary transformation of the valence or-
bital space [2]. Thus, the polarization P of a crystal is
the sum of the dipole moments of the ions and of the
Wannier centers. This sum is defined modulo a quantum
associated to the periodicity of the crystalline lattice. A
convenient theoretical framework to deal with the elec-
tronic degrees of freedom in the context of the adiabatic
separation of electron and ion dynamics is provided by
Kohn-Sham (KS) density functional theory (DFT). In
this approach, that works well for (electronically) weakly-
correlated ferroelectric materials, Pel is given by a sum
over the occupied bands of an effective non-interacting
system.

So far, using KS-DFT and suitable approximations for
the exchange-correlation functional, the unique proper-
ties of ferroelectric materials have been modeled at zero
temperature [3], while finite temperature modeling re-

mains a great challenge. To circumvent the formidable
computational costs of modeling finite temperature prop-
erties of ferroelectric materials within ab-initio elec-
tronic structure theory, the effective Hamiltonian ap-
proach [4, 5] was developed, a reduced model that re-
tains only the most important degrees of freedom. It
can be viewed as a perturbative theory in the low tem-
perature limit. In the effective Hamiltonian scheme, the
adiabatic potential energy surface, i.e., the potential en-
ergy of interaction among the atoms, is approximated
by the potential energy of a reduced set of collective co-
ordinates, associated to long-wavelength phonon modes
limited to the acoustic modes and the lowest frequency
transverse optical (TO) modes. Anharmonicity is only
included to low order in the local displacements of the
soft TO modes. At the same time, the dependence of
Pel on the atomic configuration is approximated linearly
in terms of the Born charges associated to the soft TO
modes. The model parameters are fitted to zero tem-
perature DFT calculations. Due to its low computa-
tional cost, the effective Hamiltonian approach has been
widely applied to crystalline ferroelectric materials, lead-
ing to major progress as the model could reproduce suc-
cessfully, without empirical parameters, the qualitative
properties of displacive-type ferroelectric perovskites [4–
7]. Notably, the predictive power of the scheme was found
to deteriorate for transitions occurring at relatively high
temperature where many-phonon excitations are impor-
tant [8]. A full account of anharmonicity would be pos-
sible with ab-initio molecular dynamics (AIMD) simula-
tions, whereby DFT calculations are performed on the
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fly at each atomic configuration along atomic trajecto-
ries at finite temperature. This scheme, however, has a
substantial computational cost that severely limits sim-
ulation studies of the ferroelectric transition [9].

Ferroelectric behavior has also been simulated with
empirical force fields. In these approaches all the atomic
degrees of freedom are taken into account. The empirical
force fields are fitted to a limited set of DFT data, but of-
ten fail to describe the ab-initio potential energy surface
with uniform accuracy, even after fine tuning [10–14].
These schemes, sometimes dubbed “second principles” in
the literature, have been examined in a recent review ar-
ticle [15]. Problems with this methodology originate from
the limited representative power of hand-crafted empir-
ical potentials, and from the difficulty of inferring the
dpendence of the electronic degrees of freedom on the
atomic configurations.

In the recent years, general non-perturbative ap-
proaches have emerged in the context of statistical learn-
ing. These methods use either deep neural networks
(DNN) [16] or Gaussian regression [17] to represent
uniformly and with high quantitative accuracy the poten-
tial energy surface predicted by first-principles quantum
mechanical schemes, such as DFT. Related models have
also been introduced to describe the dependence of the
Wannier centers on the atomic coordinates [18]. These
models provide a DNN representation for the polariza-
tion surface, which gives the polarization P as a function
of the atomic configurations. The success of statistical
learning methodologies for molecular simulation is en-
abled by several findings. First, the adiabatic potential
energy and polarization surfaces can be approximated by
extensive short-range models that scale with size like em-
pirical force fields. Second, machine learning (ML) tech-
niques can be used to optimize the models upon training
on first-principles data collected on relatively small sys-
tems. Third, the optimized models typically reproduce
ab initio results with chemical accuracy, i.e., with errors
smaller than 1 kcal/mol. These findings are supported
by studies covering a wide range of material systems and
thermodynamic conditions [19–22]. Molecular dynamics
(MD) with ML potentials retain the accuracy of AIMD
at a much lower computational cost. For example, an
efficient GPU implementation of Deep Potential (DP)
molecular dynamics, a scheme based on a DNN repre-
sentation, makes possible multimillion atom simulations
over time scales of tens to hundreds of nanoseconds on
world class supercomputers [23].

Machine learning-assisted MD open opportunities for
multiscale modelling of ferroelectric materials that one
could hardly imagine in the past [24]. In this context, a
multiscale modelling strategy should involve the follow-
ing steps. First, one should demonstrate that finite tem-
perature simulations of AIMD quality are possible for ML
models of ferroelectric materials. This was shown in re-
cent studies of HfO2 [19] and of monolayer α-In2Se3 [25],
using DP models trained on DFT data within the gener-
alized gradient approximation (GGA). Next, one should

focus on the ferroelectric phase transition. This was done
in a recent study that addressed the sequence of phase
transitions in BaTiO3, using an approximate expression
for the polarization [26]. Finally, one should perform
a detailed analysis of the free energy landscape in the
vicinity of the transition, which would be the starting
point for constructing coarse grained mesoscopic models
fully consistent with the underlying atomistic descrip-
tion. We emphasize the importance of achieving consis-
tency among different scales as this has been an elusive
goal of most multiscale models so far.

In this paper, we report a study targeting all the ob-
jectives listed above for the prototypical ferroelectric ma-
terial lead titanate ( PbTiO3 ). We use DP models for
the potential and the polarization surfaces. The latter is
described without approximation in terms of the dipole
moments of the Wannier centers. With this approach, we
predict accurately, from first principles electronic struc-
ture theory, the change of thermodynamic and dielectric
properties across the ferroelectric phase transition. Our
results include evidence for the first order character of
the transition and agree well with experimental obser-
vations. Next, we use enhanced sampling techniques to
compute the free energy as a function, respectively, of the
magnitude of the cell dipole and of the polarization vec-
tor. From the free energy profile depending on the cell
dipole amplitude we extract with unprecedented accu-
racy the transition point of the model. We also provide
evidence that the transition is mainly driven by order-
disorder effects. Finally, we analyze the free energy as a
function of the polarization vector in a finite temperature
range about the phase transition, finding that it can be
reproduced accurately by a phenomenological Landau-
Devonshire model with suitably fitted parameters. This
result is a first step in the direction of establishing an
effective approach for simulating mesoscopic processes
in ferroelectric materials, e.g., ferroelectric domain dy-
namics, with a model fully derived from the microscopic
Hamiltonian.

The paper is organized as follows. In section II we re-
port our calculated T = 0K bulk properties of PbTiO3

at a meta-GGA level of DFT. These results are not new
but are presented for completeness. Then, we show how
the information necessary to fully describe a ferroelec-
tric material within DFT and the microscopic theory of
polarization can be distilled into an ML framework. We
achieve this goal by constructing two DP models, one for
the adiabatic potential energy surface, the other for the
dependence of the Wannier centers [1] on the atomic
environment. These two models enable deep potential
molecular dynamics (DPMD) simulations that retain the
accuracy of AIMD at a much lower computational cost.
In section III we use DPMD to study a single domain
PbTiO3 crystal in the 1 ∼ 10nm spatial scale. The cal-
culated enthalpy, spontaneous polarization, specific heat
and dielectric susceptibility, agree well with recent ex-
periments. In section IV we use well-tempered metady-
namics [27], a well established technique for enhanced
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statistical sampling, to extract from the atomistic simu-
lations the free energy surface (FES) as a function of two
collective variables (CV) associated to the polarization P.
One CV is the magnitude of the cell dipole |P|Ω, where Ω
is the average volume of the unit cell. The corresponding
FES is one dimensional (1D). The other CV is the po-
larization vector P, and the corresponding FES is three
dimensional (3D). The FES associated to |P|Ω is used
to accurately determine the character and the temper-
ature Tc of the phase transition, after eliminating finite
size effects. The FES associated to P is interpolated in
a finite temperature range with Landau-Devonshire-type
polynomials. These results are relevant to studying sin-
gle domain PbTiO3 crystals at the 10 ∼ 100nm spatial
scale. Three appendices report, respectively, the details
of the DFT calculations (Appendix A), the details of the
training and validation of the DP models (Appendix B),
and the details of the DPMD simulations (Appendix C).

II. DEEP POTENTIAL MODEL FOR PBTIO3

A. Electronic and atomic structure from DFT

The prototypical ferroelectric perovskite crystal
PbTiO3 is the end member of the industrially important
lead zirconate titanate series. It exhibits a high transi-
tion temperature, Tc = 763K, and strong anharmonic
effects. To model PbTiO3 , we adopt the strongly con-
strained and appropriately normed (SCAN) meta-GGA
functional approximation introduced in Ref. [28]. Ac-
cording to Ref. [3], SCAN systematically improves the
prediction of structural and electric properties of a wide
class of ferroelectric materials compared to other general
purpose functional approximations, and, in some cases,
it is as accurate or even more accurate than the hy-
brid functional B1-WC [3], which was specifically de-
signed for ferroectric materials. Detailed studies of the
ground-state properties of PbTiO3 based on the SCAN
functional have been reported in the literature [3, 29],
using electronic structure calculations with the projec-
tor augmented wave (PAW) method [30]. Here, we
use plane waves and norm-conserving pseudopotentials
(NCPP) [31] instead. Our results for the static prop-
erties at zero temperature are reported in Appendix A:
they agree well with prior work, but for minor differ-
ences to be expected from the distinct numerical methods
and convergence criteria adopted. In Fig. 1 we display
a schematic representation of the ground-state P4mm
tetragonal structure of PbTiO3 , including the location
of the centers of the maximally localized Wannier func-
tions (MLWCs) [2]. We further define the Wannier cen-
troid [32] associated to an atom as the average position
of the MLWCs closer to that atom.

The c/a ratio in the tetragonal structure is an impor-
tant geometric property that quantifies the magnitude
of the ferroelectric distortion. Most functional approx-
imations, including SCAN, overestimate the c/a ratio,

FIG. 1. Conventional tetragonal cell for the ground state
P4mm structure of PbTiO3 . Atoms and valence MLWCs
are indicated by spheres. Semicore MLWCs for Ti and Pb are
not shown. The MLWCs can be uniquely attributed to each
atom based on their distance from it. The Wannier centroid
is the spatial average of the MLWCs associated to one atom,
as illustrated for the topmost oxygen atom.

i.e., they suffer of the so-called supertetragonality prob-
lem. In our calculation, the optimized tetragonality of
the P4mm structure is c/a = 1.142, about 7 percent
larger than the zero-temperature value of 1.071 extrapo-
lated from experiments [33]. This is not a minor quan-
titative issue because a strong correlation exists between
the magnitude of the tetragonality and the ferroelectric
transition temperature. The tetragonality error indicates
that available functional approximations are not suffi-
ciently accurate to capture the fine balance between the
two inequivalent Ti-O bonds along the direction of the
spontaneous polarization. In the next section, we will
show that, to large extent, the supertetragonality error
can be corrected by applying an ad hoc hydrostatic pres-
sure to the system, as suggested in Ref. [4]. This empiri-
cal correction to the energy functional is small, of the or-
der of 1kcal/mol, the value conventionally set to quantify
chemical accuracy. Yet, it is sufficient to bring the calcu-
lated transition temperature and thermodynamic prop-
erties of PbTiO3 in rather close agreement with experi-
ment. With this minor empirical adjustment our multi-
scale model gives invaluable insight on the physics of the
ferroelectric phase transition in PbTiO3 .

B. Machine Learning from DFT calculations

The electronic features needed to study the ferroelec-
tric phase transition, are the adiabatic potential energy
surface and the MLWCs that provide the natural local
decomposition of Pel.

We base our work on the Deep Potential (DP) method-
ology developed in Refs. [16, 18, 34]. We use ma-
chine learning to construct DP models for the desired
electronic structure features. One DP model, hereafter
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called the energy model, reproduces faithfully the Born-
Oppenheimer potential energy surface of the atoms. An-
other DP model, hereafter called the dipole model, re-
produces faithfully how pG, the total dipole moment of
the simulation cell, depends on the atomic configurations.
The corresponding polarization is given by P = pG/V ,
where V is the supercell volume. The centrosymmetric
structure is taken as the reference for the zero of polar-
ization, to fix the gauge freedom. In all our simulations,
the variation of the polarization relative to the reference
is small compared to the polarization quantum so that
the dipole model is single-valued without ambiguity.

Upon training on sufficient DFT data, the above two
models can predict with high accuracy the potential
energy and the polarization of configurations indepen-
dent from those used for training. Typical errors of 1
meV/atom and of 1µC/cm

2
, are found for the energy

and the polarization, respectively. Importantly, the er-
ror distributions closely resemble Gaussian distributions,
suggesting that the errors affecting the DP models are
statistical rather than systematic. The details of the
training procedure, including the training dataset are re-
ported in Appendix B.

III. FINITE TEMPERATURE PROPERTIES
FROM DEEP POTENTIAL MOLECULAR

DYNAMICS

DPMD allows us to carry out large scale finite tem-
perature simulations of bulk PbTiO3 of ab initio MD
quality. Here, we consider spatial scales of 1 ∼ 10nm
and observation times of ∼ 1ns, focusing on the thermal
properties of defect-free single-domain bulk PbTiO3 .

An issue that needs to be addressed is the superte-
tragonality error of the SCAN functional approximation.
The extent of this error is evident in panel (a) of Fig. 2,
in which the c/a ratio measured in experiments in a tem-
perature range extending from room temperature up to
Tc and beyond, is compared with the corresponding re-
sults from DPMD simulations at ambient pressure (P0).
The large tetragonality of the theoretical model corre-
lates with an overestimation by almost 300K of the tran-
sition temperature Tc to the cubic phase. As suggested in
Ref. [4], the tetragonality error can be corrected to large
extent by adding an artificial hydrostatic pressure Pa to
the pressure P0 acting on the theoretical sample. Here,
we fix Pa by requiring that the theoretical tetragonality
matches experiment at room temperature (T = 300K).
A value of Pa = 2.8 × 104 bar is obtained in this way.
The corresponding c/a ratio at different temperatures is
shown in the same panel of Fig. 2 for different supercell
sizes, indicated by L× L× L in units of the elementary
cell. Clearly, the additional pressure brings the tetrago-
nality and also the transition temperature of the model
in much closer agreement with experiment. The plots for
different cell sizes in Fig. 2 (a) illustrate the finite size de-
pendence of the transition, which becomes sharper with

increasing size, a behavior consistent with a first-order
character of the transition. The transition appears suffi-
ciently sharp only for L ≥ 9. Under P = Pa+P0, also the
lattice constants shown in Fig. 2(b) agree well with ex-
periment over the entire temperature range. In addition,
the plot shows that the DPMD simulation captures well
also the small thermal expansion of the unit cell volume
Ω = V/L3 in the cubic phase. In the following, unless
otherwise specified, all the reported DPMD simulations
are carried out in the NPT-ensemble with P = Pa + P0.

Next, we consider the thermodynamic properties of
bulk PbTiO3 in the vicinity of the ferroelectric phase
transition. Fig. 3 (a) shows the temperature dependence
of the enthalpy measured in experiments and in simula-
tions with three different cell sizes, relative to the pre-
diction of the Dulong Petit law. In the simulations, the
enthalpy H is computed from the NPT-ensemble average
of E + P0V , where E is the total internal energy of the
system. The experimental data were measured by differ-
ential scanning calorimetry on bulk single crystals grown
by the float-zone technique [35]. In simulations, finite
size effects are weak when L > 12, yielding a latent heat
of about 2000J/mol. Both in experiment and in simula-
tions the cubic phase satisfies well the equipartition law.
The experimental latent heat given by the jump of the
enthalpy relative to the Dulong-Petit law at the phase
transition can be roughly estimated from Fig. 3 (a). It
is only slightly smaller than the DPMD prediction. In
Fig. 3 (b), the specific heat Cp obtained from the sim-
ulations is compared to the results of measurements on
float-zone (FZ) samples [35], and on powder samples
prepared by solid-state reaction (SSR) methods [36]. In
the simulations, Cp is extracted from the fluctuation of
H = E + P0V under isothermal-isobaric conditions at
pressure P . The two experimental curves are slightly
different due to different preparation methods. The bulk
properties of float-zone samples should be closer to the
properties of a pure single domain crystal, than the prop-
erties of powder and flux-grown ceramic samples [38, 39].
Notably, the measured specific heat of flux-grown ceramic
PbTiO3 did not show Dulong-Petit-like behavior in the
cubic phase, while our computation and the two exper-
iments shown here obey closely the Dulong-Petit law in
the cubic phase. However, even float-zone samples near
the transition should still contain a considerable amount
of defects. In a small interval around the transition tem-
perature, i.e., for T = Tc ± 5K, the simulated Cp is
narrower and sharper than in experiments. The exper-
imental observations may be affected by strain inhomo-
geneities [35] that changed the local transition tempera-
ture in the samples, resulting in an extended phase co-
existence that smoothed out the singularity of the heat
capacity.

Finally, we consider finite temperature dielectric prop-
erties. With our model for the Wannier centroids, these
properties can be calculated rigorously, fully including
the effects of anharmonicity, in contrast to the static Born
charge approximation. The results are shown in Fig. 4.
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FIG. 2. (a) The tetragonality of bulk PbTiO3 for NPT-ensemble with P = P0 (red) and P = Pa+P0 (others). The experimental
data are excerpted from [33].(b) The lattice constants of bulk PbTiO3 for NPT-ensemble with P = Pa + P0. The orange line

is overlapping with the green line thus invisible. The red line represents Ω1/3 = (abc)1/3.

FIG. 3. (a) The difference per mole between the enthalpy H and C0T = 3nRT . n = 5 is the number of atoms in one unit
of PbTiO3 . The curves are shifted along the vertical axis for easier comparison. (b) The difference between the computed
specific heat Cp and the Dulong-Petit specific heat C0 = 3nR for bulk PbTiO3 . The experimental data are excerpted from
[35] (red) and [36] (purple).

Panel (a) displays the temperature dependence of the
spontaneous polarization P. The computed P at T =
300K is equal to 84µC/cm2. The computed pyroelectric
coefficient (dP/dT ) at the same temperature is 34nC ·
cm−2K−1. So far, relatively accurate measurements of
bulk P are obtained from extrapolation of thin films re-
sults. The P values at room temperature, estimated in
this way, vary from 70µC/cm2 to 100µC/cm2 [40–42].
The room temperature values for the pyroelectric coef-
ficient estimated in experiments are in the range from
24nC · cm−2K−1 to 27nC · cm−2K−1 [43, 44]. Our sim-
ulation results are compatible with these experimental
values. Fig. 4 (b) shows χl(T ), the longitudinal zero-field
static dielectric susceptibility of bulk PbTiO3 . In the

simulations, well-converged χl(T ) for different cell sizes
are computed from the fluctuation of the polarization.
χl(T ) has a sharp peak near T = 821K, providing ad-
ditional evidence for a first order ferroelectric transition
in pure single-domain PbTiO3 . For comparison, the
float-zone experimental data [37], reported in the same
figure, show a shoulder at T = 763K, the experimental
phase transition temperature, and a broader peak shifted
to temperatures closer to T = 793K. This obvious distor-
tion may come from domain pinning caused by internal
stresses in the sample [37]. Notably, the computed χl(T )
is quantitatively closer to recent measurements on float-
zone samples [37] than to the measurements on ceramic
samples [39, 45]. The good agreement of our results with
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FIG. 4. (a) The temperature dependence of the spontaneous polarization for finite size systems L = 9, 12, 15. The inset shows
the computed pyroelectric coefficient for the ferroelectric region. (b) The longitudinal susceptibility χl near transition. The
experimental data taken from the heating and cooling cycles are excerpted from [37]. The inset shows the Curie - Weiss
behavior of χ−1

l at the cubic phase. The guiding line is fitted to the data points (solid circle) for L = 15.

experiments is a consequence of the fact that our dipole
model captures accurately the behavior of the electronic
degrees of freedom responsible for the dielectric response.
Moreover, our simulations use space and time scales suf-
ficiently large for good statistical convergence.

The computed susceptibility allows examination of the
Curie - Weiss law for PbTiO3 . The inset of Fig. 4
(b) shows a very good linear temperature dependence of
χl(T )−1 in the cubic phase. The optimized Curie con-
stant is C = 1.6×105K. The extrapolated Curie temper-
ature is Tθ = 792K. The temperature gap δT = Tc − Tθ
is of 29K, when using the value of Tc = 821K extracted
from the free energy studies discussed in the next sec-
tion. The simplest Landau theory for a first order tran-
sition stipulates that the polarization dependent free en-
ergy satisfies F (T,P) = A0(T − Tθ)P2 − B0P4 + C0P6.
From this expression one estimates a lower bound for
phase coexistence given by Tθ and an upper bound given
by T ∗ = Tc + δT/3. Hence a rough estimation of T ∗

is 831K. The experimental estimation of C and Tθ usu-
ally relies on fitting a few susceptibility or heat capacity
data in a temperature region above the phase transition.
Previously reported C values vary from 1.1 × 105K to
4.1 × 105K [35, 38, 39]. The large uncertainty in the
experimental estimate of C likely reflects a large con-
centration of defects in the experimental samples. Our
calculation suggests that for pure single domain PbTiO3

, C should be closer to the lower end of the experimental
range.

IV. FREE ENERGY SURFACES FROM
ATOMISTIC MODELING

In this section, we present a coarse-grained descrip-
tion of the ferroelectric transition. In general, coarse
grained descriptions are obtained by mapping the Boltz-
mann weight of an atomic system with generalized coor-
dinates {αi} and Hamiltonian H({αi}) onto a set of col-
lective variables (CVs) {ζj} through non-invertible func-
tions {fj}. The resulting equilibrium free energy surface
G(T, {ζj}) is given by

e−βG(T,{ζj}) ∝
∫ ∏

i

dαie
−βH({αi})

∏
j

δ(ζj − fj({αi})).

(1)
In ferroelectric materials, which are characterized by a
spontaneous onset of non-zero polarization, the polariza-
tion is the natural CV. We use the polarization in two
ways to describe the ferroelectric behavior near the phase
transition.

In the first approach, we calculate the 1-D free energy
surface G(T, |pG|) as a function of the magnitude of the
average unit cell dipole |P|Ω, given by

G(T, |pG|) = − 1

β
ln

∫
dRe−βH(R)δ(|P(R)|Ω(R)− |p

G|
N

).

(2)
Here the polarization P and the average unit cell volume
Ω = V/N are written explicitly as functions of the gen-
eralized coordinates R. The supercell size N equals L3

for all the L × L × L supercells used in our simulation.
G(T, |pG|) is calculated accurately with well-tempered
metadynamics [27]. The results are reported in Sec. IV A.

The second approach focuses on the full 3-D free energy
surface G(T,P) as a function of the global polarization
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vector P, given by

G(T,P) = − 1

β
ln

∫
dRe−βH(R)δ(P(R)− P). (3)

This requires sampling a 3-D domain of the collective
variable P, which is demanding but still possible with
well-tempered metadynamics, taking advantage of the
symmetry of the free energy surface. Having extracted
the free energy landscape G(T,P) from the simulations,
we can make contact with phenomenological models, such
as the Landau-Devonshire (LD) theory, that would al-
low modeling at the mesoscale. To date there have been
many attempts to connect microscopic models based on
the effective Hamiltonian approach to LD theory. Some
efforts sought to match the equilibrium polarization pre-
dicted by the microscopic model with the corresponding
prediction from LD theory [46], while other efforts sought
to determine the parameters of LD theory from free en-
ergy differences calculated with thermodynamic integra-
tion from polarization-constrained MD [47, 48]. Here, we
compute G(T,P) directly from DPMD simulations using
well-tempered metadynamics. The results are reported
in Sec. IV B.

A. 1-D free energy surface

We use the 1-D free energy surface G(T, |pG|) to ac-
curately determine the order and the temperature of the
phase transition. We start by looking at the free energy
profile on a coarse energy scale where it is difficult to
discern finite size effects. The corresponding G(T, |pG|)
scaled by L−3 is plotted against |pG|/L3 ∈[0.15eÅ,4eÅ] in
Fig. 5 (a) for T ∈ [600K, 1000K]. The calculations use a
supercell with L = 9. From a quick inspection it appears
that the phase transition occurs near T = 800K. The
free energy is plotted on a much finer energy scale near
the phase transition in Fig. 5 (b). Here, we use a large
supercell with L = 15 to minimize size effects, and run
4ns metadynamics simulations to reduce the stochastic
error in G(T, |pG|)/L3 to the order of 0.01meV. Details
of convergence are presented in Appendix C. Fig. 5 (b)
suggests that the upper bound for phase coexistence is
around 830K, in good agreement with our previous es-
timate of T ∗ ≈ 831K from Landau theory. Experimen-
tally, the ferroelectric phase transition in PbTiO3 is first
order. Our DP model, based on the SCAN-DFT func-
tional, agrees with experiment on that, as the first order
nature of the phase transition is predicted by both the
direct atomistic simulations presented in Sec. III and by
the present analysis of the free energy profile.

It is instructive to analyze how finite size affects
G(T, |pG|). Fig. 5 (c) shows how the calculated free en-
ergy profile at T = 815K changes by changing the size
of the simulation cell from L = 6 (side length ≈ 2nm) to
L = 15 (side length ≈ 6nm). Small cells clearly destabi-
lize the paraelectric phase. The effect is strong enough
for the metastable paraelectric phase at T = 815K to

completely disappear when L = 6. This suggests that
order-disorder effects could play a key role in the phase
transition, a hypothesis that is strongly supported by
the calculated distributions of the local dipole moments
at the transition. We define the local dipoles to be the
dipole moments of the unit cells belonging to the super-
cell of the simulation. For the L = 12 supercell, paraelec-
tric and ferroelectric phases coexist at T = 820K. The
corresponding distributions of the magnitudes of the lo-
cal dipole moments are close to Gaussian distributions,
with mean near 1.7eÅ in the paraelectric phase and near
2.2eÅ in the ferroelectric phase. The standard deviation
is essentially the same, 0.7eÅ, in both phases. Thus, the
magnitude of the local dipole does not vanish in the cen-
trosymmetric phase when T = Tc, as one would expect
for a purely displacive transition. This result indicates
that the transition is driven primarily by order-disorder
effects. To further support this conclusion, we note that
the centrosymmetric configuration is always energetically
unfavorable in PbTiO3 . SCAN-DFT predicts that the
perfect cubic cell is unstable against polar structural dis-
tortions along the [111] directions [29]. This instability
favors an ordered [001] soft mode transition near Tc, but
the disorder effects, that are strong near Tc due to ther-
mal fluctuations, are sufficient to average out the local
polar distortions and stabilize the cubic phase. Accurate
modelling of these disorder effects requires sufficiently
large supercells in order for the entropy gained by dis-
order to overcome the enthalpy gain of the ordered soft
mode transition. Disorder explains the stark difference
between the energy profiles for L = 6 and L = 9 in
Fig. 5 (c). Additionally, order-disorder effects should ac-
count for the weak local minimum of the free energy in
the paraelectric phase, seen in Fig. 5 (b-c), for small but
non-zero values of |pG|/L3. As shown by the curves in
Fig. 5 (c) the small non-zero value of the dipole gets closer
to zero for larger L, suggesting that it should converge
to zero in the thermodynamic limit. This delicate effect
appears clearly in Fig. 5 (c), demonstrating the accuracy
of our well-tempered metadynamics simulations.

These results are fully consistent with the experimental
finding that the ferroelectric phase transition in PbTiO3

is not an ideal displacive transition [49–52]. A major role
of order-disorder effects in driving the phase transition in
PbTiO3 was pointed out in a recent reverse Monte Carlo
study using an empirical model fitted to a wealth of ex-
perimental data [53]. Here, we provide ab initio evidence
for this effect and open the gate to direct MD modelling
of stochastic instabilities in ferroelectrics taking full ac-
count of the electronic degrees of freedom.

The above discussion shows that achieving convergence
with respect to size is extremely important when mod-
elling ferroelectric phase transitions. MD simulations of
sufficiently large scale, like those presented here, are pos-
sible with DP models [54] on computer clusters of mod-
erate size.

The relative stability of ferro- and para-electric phases
can be estimated from the relative depth of the local free
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FIG. 5. (a) G(T, |pG|) per unit of PbTiO3 . (b) G(T, |pG|)/L3 near the transition. (c) G(T = 815K, |pG|)/L3 computed for
different sizes of supercell. The barrier height between two basins shown in the figure is almost constant for L ≥ 9, suggesting
that the free energy barrier scales with the volume of the supercell, pointing to the importance of entropic volume effects in
promoting the phase transition (see text). The wiggles in the L = 6 curve result mostly from insufficient self-averaging in a
small supercell and can be reduced by extending the time scale of the simulations.

FIG. 6. Free energy difference ∆Gf−p(T ) computed with dif-
ferent finite sizes.

energy minima in Fig. 5 (b). This estimate ignores ther-
mal fluctuations of the order parameter about the local
minima. A better definition of the free energy differ-
ence ∆Gf−p(T ) between ferro- and para-electric phases
including fluctuations of the order parameter is given by

∆Gf−p(T ) = − 1

β
ln

∫
dRe−βH(R)Θ(|P(R)|Ω(R)−P)∫

dRe−βH(R)(1−Θ(|P(R)|Ω(R)−P))
,

(4)

Here, Θ is the Heaviside step function, and P is a thresh-
old parameter that distinguishes the two minima with the
magnitude of the cell dipole. In our calculations, we set
P to be equal to 1eÅ, a value that ensures a good iden-
tification of the two phases. For L > 9, ∆Gf−p(T ) is
unaffected by small changes in the value P. Eq. (4) can

FIG. 7. Free energy difference ∆Gf−p(T ) computed with the
ensemble of models at L = 12. Model 0 indicates the original
energy and dipole models.

be equivalently written as

∆Gf−p(T ) = − 1

β
ln
〈Θ(|P|Ω−P)〉
〈1−Θ(|P|Ω−P)〉

(5)

in terms of the NPT ensemble average 〈·〉.
For L = 15, the largest supercell in our simulations,

the thermal fluctuation near Tc is of the order of kBTc ≈
70meV, which is several times smaller than the free en-
ergy barrier separating para- and ferro-electric phases
given by 0.1meV·L3 ≈ 338meV. The crossing of this bar-
rier is infrequent on a time scale of nanoseconds. To fa-
cilitate barrier crossing, we add a bias potential Vb to the
Hamiltonian for an efficient evaluation of ∆Gf−p(T ). In
terms of the averages calculated in the biased ensemble,
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the expression for ∆Gf−p(T ) takes the form:

∆Gf−p(T ) = − 1

β
ln

〈Θ(|P|Ω−P)eβVb〉Vb

〈(1−Θ(|P|Ω−P))eβVb〉Vb

. (6)

Here 〈·〉Vb
indicates NPT average in presence of an addi-

tional Boltzmann factor e−βVb , where the bias potential
is constructed on the fly according to the well-tempered
metadynamics prescription [27]. At convergence, the
bias potential is related to the free energy G(T, |pG|) via

Vb(R) =
1− γ
γ

G(T, |P(R)|V (R)) (7)

where V (R) is the volume of the supercell and γ > 0 is
a constant bias factor. In our simulations, γ/β was ad-
justed to scale roughly with the height of the free energy
barrier separating the two phases. This ensures good
sampling of the two basins and frequent barrier crossings
for the large supercells.

We use Eq. (6) to compute ∆Gf−p(T ) for L ∈
[6, 9, 12, 15] and T ∈ [815, 820, 825, 830]K with P = 1eÅ.
The results are plotted in Fig. 6. For L = 12 and L = 15,
∆Gf−p(T ) is essentially independent of the value of P,

when this is varied in the interval [0.9eÅ,1.2eÅ]. The
same variation of P changes ∆Gf−p(T ) by approximately
0.1meV·L3 for L = 6 and by approximately 0.01meV·L3

for L = 9. Fig. 6 shows that finite size effects stabilize
the ferroeletric phase and impact negligibly the phase
transition temperature when L > 12. Linear interpola-
tion for L = 12 and L = 15 gives Tc = (821 ± 1)K. By
comparison, conventional effective Hamiltonian models,
not including optical modes, and higher-order effective
Hamiltonian models, including anharmonic coupling be-
tween the soft mode and the TO modes, based on SCAN-
DFT, predict Tc = 630K and Tc = 675K, respectively,
without artificial pressure correction for the tetragonal-
ity error [29]. Thus, the partial anharmonic correction
in the effective Hamiltonian context, raises Tc by 45K.
However, without artificial pressure to correction, our
DP model, which fully includes anharmonicity, supports
a transition temperature Tc between 1000K and 1050K
(see Fig. 2(a)). The significant difference found in the
predicted Tc of DP and effective Hamiltonian models de-
rived from the same DFT functional, is a measure of the
important role played by anharmonicity in the vicinity of
Tc in PbTiO3 .

The phase transition temperature Tc calculated above
for the DP model is only an approximation of the tran-
sition temperature of SCAN-DFT. To roughly quantify
the DP error we note that the standard deviation of our
energy model relative to SCAN-DFT is of approximately
1meV per atom. As shown in Appendix B, the error
distributions of the DP energy and forces are close to
unbiased Gaussian distributions. Thus, we may expect
that the corresponding error for the characteristic energy
kBTc should be also normally distributed with a standard
deviation of the same order of the energy error.

To better estimate the uncertainty of the DP model,
we trained 6 energy models and 6 dipole models with

the same neural network structure and training dataset,
but with different random initializations of the network
parameters. All these models show Gaussian error dis-
tributions with similar standard deviations. The tetrag-
onality of these models at T = 300K fluctuates be-
tween 1.064 and 1.066 under the same artificial pressure
Pa = 2.8 × 104 bar applied to the original DP model to
reduce the tetragonality error. The corresponding spon-
taneous polarization under the same NPT constraints ap-
plied to the original DP model, varies between 83µC/cm2

and 84µC/cm2. At the same time, the free energies
∆Gf−p(T )/L3 of the models near Tc differ from each
other by energies of the order of 0.1meV, as shown in
Fig. 7. The average transition point is Tc = (833± 8)K.
The spread of Tc in the ensemble of DP models can be
taken as an estimate of the DP error relative to SCAN-
DFT. The phase transition is first order in all the models,
with very similar derivatives d∆Gf−p(T )/dT at the tran-
sition. Thus, even though the energy barrier separating
the two phases at Tc is of the order of 0.1meV per unit
cell (see Fig. 5), much smaller than the potential energy
error of 1meV per atom, different, but equally trained,
DP models consistently predict strikingly similar phase
transitions, pointing to the robustness of the model pre-
dictions. To conclude, there is no physical significance
in the quantitative differences between the predictions
the DP models. In the following, we will stick with the
original DP model, i.e., model 0, for consistency.

B. 3-D free energy surface

Here, we focus on the full 3-D free energy surface as a
function of the polarization vector P. We consider single-
domain bulk PbTiO3 under no strain and in absence of
externally applied electric field.

The free energy G(T,P) is invariant under mirror re-
flections and permutations of the Cartesian components
of P. Exploiting the symmetry, G(T,P) is calculated
with well-tempered metadynamics only inside the sec-
tor Pcut > Px > Py > Pz > 0. We adopt a cut-
off Pcut = 96µC/cm2, use a dense 3-D grid to repre-
sent the P sector, and compute the free energy G(T,P)
on the dense P grid at discrete temperature values (
T ∈ [300, 600, 700, 800, 820, 900, 1000]K ). Given the large
number of calculations required to represent the 3-D free
energy surface, we use here L = 9 supercells to avoid ex-
cessive computational cost. With this choice, finite size
effects are rather small. For instance, with L = 9 the
error on Tc, shown in Fig. 6, amounts to a few Kelvin de-
grees. This is insignificant on the scale of the temperature
domain of interest, which spans several hundreds degrees,
with a majority of temperatures far removed from Tc.

Cross sections of the computed G(T,P) are plotted in
Fig. 8. These results are fully compatible with the 1-D
profiles discussed in the previous subsection. The contour
lines in Fig. 8 are noisy due to the difficulty of metady-
namics simulations to converge smoothly when adopting
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FIG. 8. The colored cross-sectional representation of the free energy G(T,P)/L3. The unit of energy is kBT . The red (including
blended red) areas are poorly explored or unexplored.

FIG. 9. The regularized LD coefficients obtained through
least-squared fitting in the well-explored region of G(T,P).

multidimensional CVs, like the 3-D polarization vector
used here. Details on the evolution of the contour lines
with the simulation time are presented in Appendix C.
If higher accuracy were sought, one could use enhanced
variational sampling techniques, which allow multidimen-
sional CVs and can achieve uniformly accurate sampling
over a full, continuously connected, thermodynamic do-
main [55, 56].

For the present purposes, however, the representation

of G(T,P) achieved with well-tempered metadynamics is
good enough, as it converges to a well defined 3-D sur-
face, in spite of the statistical noise. It is instructive to
compare our calculated free energy surface with the pre-
dictions of the classical Landau-Devonshire (LD) theory.
The latter is based on a perturbative expansion of the free
energy in powers of the polarization in the vicinity of a
phase transition. Taking spatial symmetry into account,
the LD free energy per PbTiO3 unit is given by

g = g0 + α1‖P‖2 + α11(P4
x + P4

y + P4
z )

+ α12(P2
xP2

y + P2
xP2

z + P2
yP2

z ) + α111(P6
x + P6

y + P6
z )

+ α112[P4
x(P2

y + P2
z ) + P4

y (P2
z + P2

x) + P4
z (P2

x + P2
y )]

+ α123P2
xP2

yP2
z

(8)

where g0 is the Gibbs free energy per unit volume of
the unpolarized reference system. Non-zero isotropic
coefficients α1, α11, and α111 are required for a first-
order transition. In particular, α1 should depend lin-
early on (T − Tθ), while α11 should be less than zero
and α111 should be greater than zero, in order to have
a first order transition. LD theory also suggests that
Tc − Tθ = α2

11/4α1α111 and T ∗ − Tθ = α2
11/3α1α111. In

the classical formulation of the theory, the temperature
dependence of all the coefficients is ignored, with the ex-
ception of α1. In spite of its oversimplification, the LD
model gives invaluable phenomenological understanding
on the ferroelectric phase transition. When applying the
LD model to specific materials, some of above simplifica-
tions on the coefficients should be relaxed, as it was found
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FIG. 10. The colored representation of the Pz = 0 section of G(T,P)L−3/kbT compared to the optimal fitting g(T,P) at
T = 600K and T = 900K.

that for better quantitative agreement with the proper-
ties of realistic material models, a smooth temperature
dependence of all the LD coefficients should always be
assumed [46, 57].

We found that an LD model describes accurately the
free energy surface G(T,P) of the DP model in the tem-
perature interval [600K, 1000K], by minimizing the l2-
norm of the free energy difference between the models.
In this procedure we assume that each LD coefficient has
a smooth temperature dependence that is well approxi-
mated by a second order polynomial like a0+a1T+a2T

2.
The parameters a0, a1, and a2 are determined by the
least square fit for each LD coefficient. The result-
ing temperature dependence of the LD coefficients for
T ∈ [600K, 1000K] is displayed in Fig. 9. The fitting
accuracy is quite good, as demonstrated by the small de-
viation of the free energy extracted from the atomistic
simulations and the optimized LD free energy. Over the
entire temperature interval, the free-energy deviation is
found to be normally distributed about zero with stan-
dard deviation between 0.04 and 0.06meV/atom. This
error originates mainly from the statistical error in the
atomistic 3-D free energy surface, which is several times
larger than that of the 1-D free energy profile G(T, |pG|).
Fig. 10 illustrates how well G(T,P)/L3 is reproduced by
the fitted g(T,P) at the two temperatures T = 600K
and T = 900K. For temperatures below 600K, the fit-
ting error grows larger and the deviations cease to be
normally distributed, suggesting that a 6-th order LD
theory may be insufficient to extrapolate the free en-
ergy surface to conditions that are too different from
those at the phase transition. However, sufficiently close
to the transition, in the interval T ∈ [600K, 1000K],
α1 shows good linear dependence on temperature, with

α1 = 0.15(T − 835K)meV·m4

C2K
. From the Curie-Weiss law

this slope corresponds to C ≈ 1.5×105K, which matches
well the experimental value of C reported in Ref. [58].
The fitted Tθ = 835K is slightly higher than the com-
puted phase transition temperature of Tc ≈ 825K for
L = 9. This overestimation may be due, in part, to the
error of the least square fitting procedure, and, in part, to

the limitations of the 6-th order LD expansion. Interest-
ingly, both α11 and α111 show almost no temperature de-
pendence, as predicted by the LD theory. The other LD
coefficients show a monotonic temperature dependence.

V. CONCLUSION

In this paper, we presented an ab initio multi-scale
modeling strategy for ferroelectric materials using the
case study of PbTiO3 as an example. In our ap-
proach, multiple models with increasing degrees of
coarse-graining are unified in a systematic and consistent
way. From DFT to the atomistic level, the consistency
is ensured by the ab initio level description of potential
and polarization surfaces. From the atomistic level to the
homogeneous domain level, the consistency is ensured by
a direct calculation of the free energy as a function of
the relevant collective variables. This allows us to obtain
ab initio free energy surfaces and the corresponding ef-
fective LD theory in a continuous range of temperatures.
At each transition of scale, the error caused by the dis-
tillation of a coarser grain model is quantifiable and con-
trolled. The accumulated error is considerably smaller
than the inherent error of the underlying first-principles
model.

The multi-scale approach presented here can be viewed
as a first step towards a more sophisticated description
of multi-domain structures. The outlook is to study the
mechanism of ferroelectric switching, which is shown to
be non-homogeneous and dependent on the spatial scale
in thin film experiments [24, 59–61]. The free energy
surface of a homogeneous domain is not very helpful
in this context since ferroelectric switching typically in-
volves complicated nucleation and growth of domains,
while the coercive field needed to reverse a single domain
may be significantly smaller than the one needed to re-
verse the entire region of domains simultaneously [24]. A
direct modelling of these phenomena would require MD
simulations with DP models at the 10 ∼ 100nm spa-
tial scale that should be feasible with massive parallelism
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[23]. We leave this to future work.
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Appendix A: SCAN-based static description of
PbTiO3

In our electronic structure calculations we use norm-
conserving pseudo-potentials (NCPP) [31]. Relative to
approaches like PAW [30], NCPPs require much larger
plane wave basis set for good convergence. This is not a
major limitation, because we only need a finite set of sev-
eral thousand static DFT calculations, instead of direct
ab-initio MD simulations [62], to train the DP models.
Specifically, all self-consistent KS-DFT calculations are
done with the open-source Quantum ESPRESSO v.6.7
code [63] with NCPPs from the SG15 database [64].
We include the semi-core 5d states of Pb and the semi-
core 3s, 3p, 3d states of Ti into the valence. We adopt
a kinetic energy cutoff of 150Ry for the plane-wave ba-
sis. In the self-consistent calculations for the primitive
cell, Γ-centered 4× 4× 4 Monkhorst-Pack grids are used
for k-point sampling. For 3 × 3 × 3 and larger super-
cells, we use Γ point sampling only. With input from
the self-consistent band structure calculations, the Wan-
nier functions and the polarization are computed with
the Wannier90 code [65] using 2×2×2 Monkhorst-Pack
grids.

Upon structural relaxation, the equilibrium cubic lat-
tice constant of our PbTiO3 model with space group
Pm3m is a = 3.925Å. For reference, the experimental
value extrapolated to zero temperature is ã = 3.93Å [33].
The equilibrium tetragonal lattice constants with space
group P4mm are a = 3.846Å and c = 4.393Å, respec-
tively, corresponding to a tetragonality c/a = 1.142. The

off-centering displacement (in units of the lattice con-
stant c) of titanium is ∆Ti = 0.049. The displacement
of oxygen is ∆O1

= 0.151 and ∆O2
= 0.147. The energy

difference between the equilibrium Pm3m phase and the
P4mm phase is ∆E = 26.9meV/atom.

It is not suprising that SCAN-based PbTiO3 still suf-
fers from the super-tetragonality problem, i.e. c/a was
overestimated compared to the extrapolated experimen-
tal tetragonality 1.071 [33]. At the same time, ∆Ti,
∆O1

and ∆O2
are all overestimated by 20% 30% com-

pared to the experimental measurements [66]. To quan-
tify the subtlety of tetragonality, we compute the po-
tential energy of the relaxed tetragonal structure with
cell fixed to the experimental value and find it to be
only 1.8meV/atom higher than the one with variable cell.
This energy difference is much smaller than chemical ac-
curacy, not to mention the inherent error of meta-GGA.

With KS-DFT results, we further compute the max-
imally localized Wannier functions and the associated
Wannier centers for all valence bands.

The polarization we obtained for the equilibrium
tetragonal P4mm structure as opposed to the Pm3m
structure is 111µC/cm2. For the primitive cell, we obtain
22 MLWCs as shown in Fig. 1. Within the scope of this
work, Pb atom always has six MLWCs. Ti and O always
has four. So the Wannier centroid of an atom is defined
without ambiguity. The effective charge of the Wannier
centroid is the sum of the charges of the MLWCs. For
the equilibrium P4mm structure, the Wannier centroid
of O1 is displaced from its home atom by 0.102Å. The
Wannier centroid of O2 is displaced from its home atom
by only 0.008Å. This is in agreement with the previous
observation that the displaced Ti redistributes the elec-
tron density along the O-Ti-O chain [67] for BaTiO3. But
here Pb also play roles in the hybridization mechanism.

Appendix B: Model Training

Learning atomistic models from KS-DFT consists of
several steps: data design, data generation and model
training. By now these procedures have more or less
become standard. For the rest of this section, we will
try to describe these procedures for ferroelectrics without
the technical details that have already been mentioned
elsewhere [16, 18, 68].

1. Data Design

First, we describe the format of ab initio data for the
two DP models. Each data point consists of the atomic
configuration and associated physical quantities. For a
given PbTiO3 configuration in a supercell with peri-
odic boundary condition, the basic label for supervised
training is adiabatic potential energy and virial tensor
computed from KS-DFT. In addition, we associate each
atom in the supercell to a unique label i, an effective core
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charge Qi, the position Ri, the Hellmann-Feynman force
Fi, the Wannier centroid position Wi and the charge qi
carried by the Wannier centroid. The global polariza-
tion is then 1

V

∑
iQiRi + qiWi module the polarization

quantum.
Our definition of Wannier centroid is consistent with

[32]. For PbTiO3 we also assign a local dipole moment to
each Ti atom, echoing the definition of Ti-centered local
polarization for elementary unit cells [69]. Specifically,
the local dipole moment pj associated to Ti atom j is the
weighted contribution from the neighboring eight Pb, six
O atoms together with the central Ti atom, written as

pj =
∑
i∼j

αiQid(Ri, Rj) + αiqid(Wi, Rj) (B1)

where d computes displacement under minimum image
convention. We let αi = 1/8 for Pb, αi = 1/2 for O and
αn = 1 for Ti. Hence pj vanishes for centrosymmtric
structures. The global (cell) dipole is then pG =

∑
j pj .

The global polarization with respect to centrosymmetric
structure is

P =
pG

V
(B2)

module the polarization quantum. In all our simulations,
the module can be dropped without ambiguity.

All physical quantities introduced above form the
dataset. We use the 3 × 3 × 3 supercell (135 atoms)
in KS-DFT calculations to generate the training data
for the two DP models — they are both short range
with the cutoff radius of 6Å. The short range approx-
imation adopted by our energy model is adequate for
PbTiO3 because the long-range electrostatic interactions
are treated correctly in the KS-DFT data. It will be
effectively included in the trained energy model applied
to the periodic structure, especially for the contribution
from soft modes and long wave-length acoustic modes.
For the same purpose the effective Hamiltonian methods
include long-range dipole-dipole interactions in addition
to short-range coupling. What may not be captured by
our short range model is the non-analytic behavior of the
dynamical matrix near the zone center which drastically
affacts the LO modes. However LO modes are also not
included in the effective Hamiltonian methods. So our
short range model includes all the effects present in the
effective Hamiltonian but with a much better descrip-
tion of anharmonicity, which is more likely the dominant
factor in describing the phase transition.

2. Data Generation and Training

We are interested in the property of PbTiO3 within
T ∈ [300K, 1200K] and P ∈ [0, 105Pa]. The data
within this thermodynamic range are collected with the
active learning procedure introduced in [70]. We use
the DP-GEN [68] code to automate this procedure, the

LAMMPS [71] code as the MD engine and the DeePMD-
kit code [54, 72] to train DP models.

FIG. 11. Error distribution of the energy model on the train-
ing set (Blue plots), test set (orange plots) and extra test set
(yellow plots). EDFT, F

x,y,z
DFT are the energy and force labels

from the DFT data. ∆E,∆Fx,y,z are the difference between
the model prediction and the label. E0 is a constant used to
shift the plot. (a) Left: The distribution of ∆E with respect
to EDFT. Right: The histogram of ∆E for the training set.
(b-d) Left: The distribution of ∆Fx,y,z with respect to F x,y,zDFT .
Right: The histogram of ∆Fx,y,z for the training set.

By the end of the active learning procedure, we collect
5032 data points together with the energy, force and virial
labels. 4432 data points are used to train the energy
model. The other 600 data points are used for validation.

Fig. 11 (blue and orange plots) show the prediction ac-
curacy of the energy model compared to the DFT data.
The distribution of the error is roughly Gaussian. For
the energy prediction, the standard deviation is around
1meV per atom. For the force prediction, the standard
deviation is around 0.25eV/Å. Hence the energy model
is very faithful to the current dataset. All the DFT data
for training used 3×3×3 supercell. To consider the gen-
erality of the model, we should test the model with DFT
data with different supercells. To this end, we generate
an extra test set consisting of twenty 4× 4× 4 supercell
atomic configurations, collected at NPT-MD simulations
in the tetragonal phase. The error made by the energy
model on this data set is shown in the yellow plots in
Fig. 11. The error in the energy does not show any ten-
dency to increase. The error in the force assumes similar
Gaussian distribution as the previous dataset. Thus we
conclude that our short-range energy model is faithful
to the SCAN-based KS-DFT inside the temperature and
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FIG. 12. Error distribution of the dipole model on the train-
ing set (Blue plots) and test set (orange plots). pGDFT, p

x,y,z
DFT

are the global and local dipole labels from the DFT data.
∆pG,∆px,y,z are the difference between the model prediction
and the label. (a) Left: The distribution of the 2-norm of ∆pG

with respect to the 2-norm of pGDFT. Right: The histogram
of |∆pG| for the training set. (b-d) Left: The distribution
of ∆px,y,z with respect to px,y,zDFT . Right: The histogram of
∆px,y,z for the training set.

pressure range specified by our dataset, with a deviation
much smaller than the threshold of chemical accuracy.

In addition, we calculate the optimal lattice constants
for structures with space group P4mm and Pm3m re-
spectively. The cubic lattice constant is aDP = 3.93Å,
the same as the SCAN-DFT result. The tetragonal lat-
tice constants are aDP = bDP = 3.86Å and cDP = 4.30Å,
slightly different from the SCAN-DFT results aDFT =
bDFT = 3.846Å and cDFT = 4.393Å. Further analysis
shows the energy model yields 0.6meV/atom difference
between these two tetragonal structures while SCAN-
DFT yields 1meV/atom difference. This deviation is
compatible with the error distribution of the energy
model.

Dipole labels are added to the dataset after the train-
ing of the energy model. We compute the dipole labels
for only part of the dataset because the entire dataset
contains redundancy. Also, the generation of the dipole
labels is much more expensive than the others. To de-
termine which data point should be labeled, we train an
ensemble of energy models with different reduced train-
ing sets. Then we compare the models trained with the
reduced datasets to the productive energy model trained
with the entire training set in terms of error distribution
and structural relaxation. It turns out that a reduced
dataset containing 1835 data points are already enough

to produce an energy model with basically the same level
of accuracy as the productive model. This is expected
since the initial dataset contains a lot of similar atomic
configurations from very short ab initio MD trajectories.
Also, a lot of data points generated at the early stage
of the learning process became redundant in the final
dataset.

We generate dipole labels for the reduced training set
consisting of 1835 data points. In addition, we gener-
ate a test set consisting of 61 data points collected using
NPT-MD simulations in both cubic and tetragonal phase.
The error distribution of the final dipole model is shown
in Fig. 12. For the global dipole prediction, the stan-
dard deviation is roughly 1eÅ for the 3× 3× 3 supercell.
The results suggest that the dipole model is highly ac-
curate even for largely distorted structures. Meanwhile,
the local dipole prediction is slightly worse. Within the
scope of this work, we need only high accuracy on the
global dipole which is rigorously defined by the modern
theory of polarization. The local dipoles here are merely
auxiliary variables.

For comparison, we also fit a linear model with static
born charges as trainable parameters to all our dipole
data. The standard deviation of the linear model on
global dipole data is two times as large as our dipole
model. For configurations near the two limit |pGDFT| ≈ 0
and |pGDFT| ≈ 100eÅ the linear model gives outliers with
error about three times the standard deviation. It implies
the trained parameters effectively take the average of the
cubic phase Born charges and the tetragonal phase Born
charges.

Appendix C: Technical Details of MD simulation

The MD simulations are carried out with the joint ef-
forts of DeePMD-kit, LAMMPS and PLUMED [73, 74]
with an additional package [75] that implements the
dipole model as the collective variables.

The results in Sec. III are obtained by unbiased MD
simulations with the time step ∆t = 0.5fs and periodic
boundary condition. The isothermal-isobaric condition
is maintained by the MTK method [76] with default
parameters in LAMMPS. For each NPT-MD simulation,
the total simulation time is around 1 nanosecond.

The results in Sec. IV are obtained by biased MD
simulations with the same time step, thermostats and
barostats as the unbiased simulations. The phase space
region explored by MD is controlled by the bias factor in
well-tempered metadynamics.

The results in Sec. IV A were computed from well-
tempered metadynamics simulations each lasting 4ns.
Let G̃(T, |pG|, ts) be the intermediate free energy shifted
to zero mean for interval |pG|/L3 ∈ [0.1eÅ,2eÅ], com-
puted at time ts. We study the convergence of free energy
by the relative height of the two basins in G̃(T, |pG|, ts).
We write G̃m1

(T, ts) for the local free energy minimum

associated to the paraelectric basin and G̃m2
(T, ts) for
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FIG. 13. (a) The evolution of the difference between two free energy minima through the metadynamics simulation. (b) The

average and the standard deviation of G̃(T, |pG|, ts) over ts > 2ns.

FIG. 14. The colored representation of the Pz = 0 section of the intermediate free energy G̃(T,P, ts) in the units of L3kbT for
T = 600K and L = 9. For easier comparison, the free energy is shifted such that its minimum is zero.

the ferroelectric basin. Fig. 13 (a) shows their differ-
ence for T ∈ [815, 820, 825, 830]K. We observe that the
fluctuation of the energy difference is under 0.1meV·L3

after ts = 2ns and not improving further. Let G̃(T, |pG|)
be the average of G̃(T, |pG|, ts) for equally spaced ts
points over ts ∈ [2, 4]ns. Fig. 13 (b) gives a close look

of G̃(T, |pG|)/L3 with standard deviation on the grid of

|pG|/L3 (plotted as filled area) computed with the same
set of ts points, from which a rough estimation of the
stochastic error in free energy is of the order of 0.01meV
per unit cell.

The results in Sec. IV B are computed from well-
tempered metadynamics simulations each lasting 8ns. A
typical convergence pattern represented by shifted inter-
mediate free energy G̃(T,P, ts) is illustrated in Fig. 14.
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