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By applying the Born-Huang expansion, originally developed for coupled nucleus-electron systems, to the full
nucleus-electron-photon Hamiltonian of nonrelativistic quantum electrodynamics (QED) in the long-wavelength
approximation, we deduce an exact set of coupled equations for electrons on photonic energy surfaces and the
nuclei on the resulting polaritonic energy surfaces. This theory describes seamlessly many-body interactions
among nuclei, electrons, and photons including the quantum fluctuation of the electromagnetic field and
provides a proper first-principle framework to describe QED-chemistry phenomena, namely polaritonic and
cavity chemistry effects. Since the photonic surfaces and the corresponding nonadiabatic coupling elements
can be solved analytically, the resulting expansion can be brought into a compact form, which allows us to
analyze aspects of coupled nucleus-electron-photon systems in a simple and intuitive manner. Furthermore,
we discuss structural differences between the exact quantum treatment and Floquet theory, show how existing
implementations of Floquet theory can be adjusted to adhere to QED, and highlight how standard drawbacks
of Floquet theory can be overcome. We then highlight, by assuming that the relevant photonic frequencies
of a prototypical cavity QED experiment are in the energy range of the electrons, how from this generalized
Born-Huang expansion an adapted Born-Oppenheimer approximation for nuclei on polaritonic surfaces can be
deduced. This form allows a direct application of first-principle methods of quantum chemistry such as coupled-
cluster or configuration interaction approaches to QED chemistry. By restricting the basis set of this generalized
Born-Oppenheimer approximation, we furthermore bridge quantum chemistry and quantum optics by recovering
simple models of coupled matter-photon systems employed in quantum optics and polaritonic chemistry. We
finally highlight numerically that simple few-level models can lead to physically wrong predictions, even in
weak-coupling regimes, and show how the presented derivations from first principles help to check and derive
physically reliable simplified models.
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I. INTRODUCTION

In the past decade, tremendous experimental advances
have allowed to investigate and control complex many-body
systems strongly coupled to photons [1–3]. In such situations
of strong light-matter interactions, novel physical effects can
be observed such as symmetry-protected collisions of strongly
interacting photons [4], Bose-Einstein condensation [5], and
room-temperature polariton lasing [6] of exciton-polaritons or
even the control of the energy levels in living bacteria [7].
Such dramatic changes of physical and chemical properties of
many-body systems can even be observed if no real photons
are present and it is only the vacuum of, for example, an
optical cavity that the matter couples to. Examples are a
change of chemical reactivity under strong coupling to the
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vacuum electromagnetic field [8], different transition states in
gas phase and cavity [9], and multiple-Rabi splittings under
vibrational strong coupling [10]. Such experimental results
highlight that disregarding the photonic degrees of freedom
when calculating chemical and physical properties of many-
body systems (as usually done in quantum chemistry and
solid-state physics) can become inadequate when we change
the bare electromagnetic vacuum, for example, by an optical
cavity or nanoplasmonic devices, especially for strong light-
matter coupling. In such cases, we have to take into account
electronic, nuclear, and photonic degrees of freedom at the
same time [11]. Most interestingly, the intricate interplay
between these basic constituents of matter can even prevail at
room temperature and under ambient conditions, making such
strong light-matter coupling situations especially interesting
for quantum technologies. Besides possible applications in the
context of room-temperature quantum-information technolo-
gies, the possibility to design strong-coupling-based chemical
reactors is intriguing. Ideally, a specific change in the electro-
magnetic vacuum would allow us to change reactions without
heating, which is a common drawback when lasers are used to
control chemistry.

While the resulting equations that one would need to solve
in principle are well known [11–13], they are numerically
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unfeasible in terms of full many-body wave functions. One
way to make these equations numerically tractable is by ex-
tending methods of many-body theory such as current-density
and density-functional theory [14,15] or Green’s function
methods [16,17] to coupled matter-photon systems [13,18–
22]. While first ab initio results for coupled matter-photon
problems are available [23–25], so far most calculations have
used simplified descriptions based on quantum-optical models
like the Dicke or Tavis-Cummings model [26,27]. Although
these models can be derived under certain assumptions from
higher lying theories [28] and are able to reproduce well
certain aspects of the experimental results [29,30], their lim-
itations when applied outside of traditional quantum-optical
situations are as of yet not well explored. Besides others, such
models often ignore so-called dark states [31], do often not
capture the diamagnetic shift [10,32], and/or lead to ques-
tionable predictions concerning a superradiant phase transi-
tion [33]. Furthermore, most currently employed models [34–
36] assume that the individual constituents of the physical
ensemble that exhibits strong coupling remain unaffected.
This is in contrast to experimental results that show that
also the individual constituents can be affected [8,37–40]. To
investigate these possible limitations as well as to provide
a consistent way of improving shortcomings is especially
timely, since such models have been used to predict interesting
new effects [41,42] in the context of the emerging field of po-
laritonic chemistry and they form the basis of our current un-
derstanding of strong light-matter interactions. Furthermore,
scrutinizing these quantum-optical models from a quantum-
chemical perspective could also help to analyze long-standing
problems of quantum optics such as the realizability of
a super-radiant phase transition as predicted by the Dicke
model [43,44].

In this work, we employ an unbiased and practical first-
principles description based on nonrelativistic quantum elec-
trodynamics (QED) [11–13], highlight how this allows us to
employ highly accurate quantum-chemical methods to ana-
lyze and simulate general situations of light-matter interac-
tions, and scrutinize paradigmatic quantum-optical models.
In this way, we illustrate shortcomings of usual models,
provide a consistent way to improve their reliability and
identify connections between different situations of strong
light-matter interactions, for example, due to a high-Q cavity
or plasmonic nanostructures, in periodic systems or due to
external driving. The presented framework therefore does not
only allow us to understand and predict effects of strong
light-matter interaction from first principles, but can also
serve as a guide to exchange ideas between different set-
tings of light-matter interactions and even between different
fields of modern quantum physics. We do so by performing
the Born-Huang expansion [45,46] of the coupled nucleus-
electron-photon wave function, which allows us to exactly
rewrite the eigenvalue problem as a set of coupled equations
for nuclear, electronic, and photonic degrees of freedom.
In contrast to previous approaches, we do not combine the
photonic degrees of freedom with the nuclei [47] or single
out the photonic contribution [48] but group them with the
electrons. While this gives rise to photonic potential-energy
surface and nonadiabatic couplings for the electrons and
thus also changes the usual electronic surfaces to polaritonic

(electron-photon quasiparticles) surfaces for the nuclei, the
photonic part can be solved analytically with the help of a
shifted harmonic oscillator basis. This allows us to rewrite the
Born-Huang expansion for coupled nucleus-electron-photon
systems in a compact form. In this form, the importance of the
often ignored photon-mediated dipole self-energy term [49]
(connected to the diamagnetic shift and super-radiant phase
transition) becomes evident and we show how photonic ob-
servables can be constructed from the Born-Huang expansion.
This exact QED expansion shares certain similarities with the
Floquet approach [50,51]. We present how existing Floquet
implementations can be adjusted to adhere to QED [52] and
thus avoid the drawbacks of standard Floquet theory. This also
allows us to import ideas from Floquet engineering [53] to po-
laritonic chemistry. Then, by assuming that the kinetic-energy
contributions of the nuclei are small and that the frequency
of the relevant photon modes is in the energy range of the
electronic excitations, for example, due to an optical high-Q
cavity, we deduce an adapted Born-Oppenheimer approxi-
mation (the explicit polariton approximation) which shares
certain similarities with the approach presented in Ref. [28]
but guarantees the stability of the system. In this form, the ap-
plication of quantum-chemical methods able to tackle strong
correlation in molecules or solids such as coupled-cluster or
configuration-interaction approaches to coupled light-matter
systems becomes straightforward. By further restricting the
basis expansion for the electronic and the photonic subsystem,
we then arrive at a simple few-level approximation that resem-
bles often-employed model Hamiltonians. We then scrutinize
the resulting few-level approximations for a numerically ex-
actly solvable electron-photon problem and highlight how in
the weak-coupling regime some integrated quantities like the
energies are well reproduced but photon occupation and real-
space quantities like the density can be qualitatively wrong.
By including only a few more states, the results improve con-
siderably, provided one increases the electronic and photonic
basis sets consistently. In the strong- to ultra-strong-coupling
regime, however, many more states need to be included for
the integrated quantities to become accurate. This highlights
that for strongly coupled problems the bare, that is, uncoupled,
basis expansion is not very efficient and results based on
a bare description, for example, using the standard Born-
Oppenheimer states and dipole-coupling elements, become
unreliable.

This paper is structured as follows: In Sec. II, we introduce
the basic Hamiltonian, present the Born-Huang expansion,
and show the analytic solution of the photonic subsystem. In
Sec. III, we then discuss the physical implications of the Born-
Huang expansion and derive the explicit polariton approxima-
tion, which is a generalization of the quantum-chemical Born-
Oppenheimer approximation. In Sec. IV, we derive the single-
photon polariton approximation with the help of a bare basis
expansion and connect to quantum-optical models. Next, in
Sec. V we then give numerical details and present the accuracy
of few-level approximations for the case of a GaAs quantum
ring in a high-Q cavity. Finally, we conclude and give an
outlook in Sec. VI. In the appendixes, we further discuss how
the coupling strength effectively changes in collective systems
and show how the resulting framework can also be used to
consider periodic or time-dependent systems.
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II. THEORY

We start by presenting the basic QED nonrelativistic
Hamiltonian for nuclei, electrons, and photons that we con-
sider. Then we perform the Born-Huang expansion in terms of
nuclear, conditional electronic, and photonic wave functions.
Since the Hamiltonian is spin independent (we ignore the
fine-structure influence by spin-orbit and spin-to-magnetic-
field interactions), we can discard for notational simplicity
and without loss of generality the spin degrees of freedom
of the wave functions. By properly symmetrizing the wave
functions at the end, the physical eigenstates can be found.
We further use atomic units throughout the work.

A. Pauli-Fierz Hamiltonian in the long-wavelength limit

Let us assume that for a coupled matter-photon system
the relevant photon modes have wavelengths that are large
compared to the typical size of a matter subsystem, for
example, a molecule. This typically happens, for instance,
if we are interested in ground or excited states and do not
consider long-time dynamics and scattering states that can
spread over space. By definition, these states are exponentially
localized [12] and in this case an approximation of the full
Pauli-Fierz Hamiltonian of nonrelativistic QED in Coulomb
gauge [11–13], where we neglect the spatial dependence of
the photon modes in the length form [23,24,54],

Ĥ = Ĥn + Ĥe + Ĥne + Ĥp + Ĥep + Ĥnp (1)

is known to be accurate. Here the nuclear Hamiltonian for Nn

nuclei

Ĥn = T̂n + Ŵnn =
Nn
∑

j=1

−
1

2Mj

∇2
Rj

+
1

2

Nn
∑

i,j �=i

ZiZj

|R̂i − R̂j |

consists of the sum over all kinetic components for each
nucleus j with effective nuclear mass Mj and Coulombic
nucleus-nucleus interaction Ŵnn with Zj being the effective
positive nuclear charges. The electronic Hamiltonian for Ne

electrons

Ĥe = T̂e + Ŵee = −
1

2me

Ne
∑

j=1

∇2
rj

+
1

2

Ne
∑

i,j �=i

1

|r̂i − r̂j |

includes similarly the corresponding sum over electronic ki-
netic components with the electron mass me and the Coulomb
electron-electron interaction. The nuclear-electron interaction
is given accordingly by

Ĥne = −
Nn
∑

j=1

Ne
∑

i=1

Zj

|r̂i − R̂j |
.

Further, the photonic contribution for Mp modes is then given
by

Ĥp + Ĥep + Ĥnp =
1

2

Mp
∑

α=1

[

p̂2
α + ω2

α

(

q̂α −
λα

ωα

· R̂

)2
]

,

which incorporates the total dipole R̂ =
∑Ne

j=1 r̂j −
∑Nn

j=1 Zj R̂j of electrons and nuclei [55]. Here Mp is a
finite but arbitrarily large amount of photon modes which

are the most relevant modes (see also Subsec. III D) but in
principle run from the fundamental mode of our arbitrarily
large but for simplicity finite quantization volume [56] up to
a maximum sensible frequency, for example, an ultraviolet
cutoff at rest mass energy of the electrons. The quantized
oscillators representing the photonic system consists of the
canonical coordinate corresponding to the displacement
field q̂α = 1√

2ωα
(â†

α + âα ) and its conjugate momentum

p̂α = −i
√

ωα

2 (âα − â†
α ) ≡ −i ∂

∂q̂α
as presented in Refs. [23,24]

with [q̂α, p̂α′ ] = iδαα′ . The fundamental coupling strength
λα = λαeα describes the coupling between the total dipole
and the photonic mode α with wave vector kα and transversal
polarization vector eα . Here the coupling strength

λα =
√

4πSα (r)eα (2)

depends on the form of the mode functions Sα (r) and the
chosen reference point for our matter subsystem [13,23,24].
If we consider free space (as usually done in quantum chem-
istry), then they will be the usual exponentials, while if we
consider a system in, for example, an optical cavity, their form
might be very different. This different form can then lead to an
enhanced coupling of a specific mode with respect to the usual
free-space case. This increase of the fundamental coupling
is an inherent feature of the physical setup, for example, the
form and nature of the cavity, and cannot directly be amplified
by the number of charged particles. We discuss this in some
more detail in Appendix A and highlight how the number of
emitters can, however, enhance the effective coupling strength
when a reduced description is employed. In the case of a free-
space problem, the photon modes that give rise to the radiative
losses, that is, they constitute the photon bath of the matter
subsystem, are then usually only taken into account by renor-
malizing the bare masses me and Mj of the charged particles.
Thus instead of the photonic degrees of freedom, one uses the
“physical” masses of the particles that contain the bare and
the electromagnetic masses. This procedure is highly accurate
when time-independent problems (the focus of this work) are
concerned. The omission of photonic dissipation will become
visible usually only after longer time propagation, since all
the dissipation due to the phonons is included as we treat the
nuclei explicit. For very lossy situations (for example, in plas-
monic cavities), both the photonic and phononic dissipation
can become important also for short-time dynamics. However,
our approach includes the possibility to extend the number
of relevant modes. By doing so, within a time-dependent
calculation we can effectively mimic for a certain time (before
revivals appear) a lossy cavity while remaining within the
current theoretical setting (see, for example, Ref. [57]).

In the case that we now change the modes from free space
to those that are associated with, for example, a cavity, we
can in principle perform the same procedure. We could keep
many modes such that we describe the openness of the cavity,
as has been demonstrated in practice recently in Ref. [25],
or we reduce to slightly adjusted “physical” masses due to
the changed photon field. This also holds for high losses in
relation to light-matter coupling (for example, low Q-factor
cavities) where the finitely many modes will merely sample
the Lorentzian line shape of the finite intrinsic linewidth (see,
for example, Ref. [25]). Only upon increasing the coupling
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will the Rabi splitting become visible; that is, the avoided
crossing is broader than the intrinsic linewidth, which corre-
sponds to the usual criteria of weak versus strong coupling.
In the following, we do not intend to simulate the continuum
of states by explicitly treating many modes. Therefore, our
working assumption will be that we keep the well-established
physical masses of the particles, for example, me = 1, and
treat the effect of the changes in the photon field by keeping
a few of the enhanced modes. This allows us to consider the
effect of the openness of the photonic environment as a mass
renormalization. The numerical investigations in Sec. V then
refer to such a situation, where on top we further assume quite
strong effective couplings (for instance, due to ensemble ef-
fects, as discussed in Appendix A), approachable for example
in circuit QED [3,58]. Wherever we refer to weak or strong
coupling, the notion is motivated by the effect of the light-
matter coupling on the matter subsystem and the strength of
the Rabi splitting. In the weak coupling regime, the Rabi split-
ting is small, and so are the changes in the matter subsystem
with respect to the free-space case. But we point out that these
changes are present even for explicit dissipation [12,59,60],
and we therefore do not make the standard assumption as done
in, for example, investigations of the amplified spontaneous
emission rates due to the Purcell effect [61] that the matter
subsystem remains unaffected. In the strong- and ultra-strong-
coupling regimes, where the Rabi splitting becomes very
large, these changes become more pronounced.

The self-polarization part in the photonic Hamiltonian
1
2 (λα · R̂)2 naturally arises in the length form to make the
Hamiltonian bounded from below, which is a prerequisite to
allow for ground states of an interacting light-matter many-
body system [49]. In Subsec. III B, we give a very intu-
itive physical picture for this abstract statement. The self-
polarization further renders the Hamiltonian invariant under
translations provided we have a charge-neutral system, that is,
∑Nn

j=1 Zj = Ne. In the case that the total system is not charge
neutral, the center-of-charge couples to the photonic field
and for eigenstates a translation by R̄, namely R̂ → R̂ + R̄,
leads to a trivial elongation of the photonic displacement by
q̂α → q̂α + λα

ωα
· R̄ (see also Sec. II C).

For the above nucleus-electron-photon Hamiltonian, we
then want to determine the eigenfunctions [62]

Ĥ�i (Rn, r, q) = Ei�i (Rn, r, q) (3)

with the many-body energies Ei , where Rn, r, and q are
collective variables defined as Rn = (R1, R2, . . . , RNn

), r =
(r1, r2, . . . , rNe

) and q = (q1, q2, . . . , qMp
). Here we note

that if we have all the eigenfunctions of the Hamilto-
nian we also have direct access to all temperature effects,
since we can directly determine the canonical ensemble
ρ̂ = exp(Ĥ /kBT ) =

∑∞
i=1 exp(Ei/kBT ) |�i〉 〈�i |. Next we

perform a Born-Huang expansion, where we expand into
subsystem wave functions. This expansion can be performed
in multiple different ways, resulting in alternative physical
interpretations and consequences for approximations. We will
elaborate on their relevance and implications a little later.

Here we use χ
µ

i (Rn) that represent nuclear wave functions
and �̃µ({Rn}, r, q), the polaritonic components describing
the correlated electron-photon system. We choose �̃µ such
that they form an orthonormal basis in the electron-photon
subsystem and assume that they depend in an yet unspecified
parametric way on the positions of the nuclei {Rn}. Because of
this parametric dependence, we will later find equations that
couple the different subsystem wave functions. In a second
step, we further expand the polaritonic wave function into
electronic ψk

ν (r, {Rn}) and photonic �k (q, {R}) subsystem
wave functions

�i (Rn, r, q) =
∞
∑

µ=0

χ
µ

i (Rn)�̃µ({Rn}, r, q)

=
∞
∑

µ,k=0

χ
µ

i (Rn)ψk
µ(r, {Rn})�k (q, {R}). (4)

We use here that in the photonic subspace we employ
an orthonormal basis of wave functions �k (q, {R})
that parametrically depend on the total dipole of
the matter (nuclei and electrons) subsystem, that is,
〈�k′ |�k〉p =

∫

dq �
∗
k′ (q, {R})�k (q, {R}) = δkk′ , as well

as electronic wave functions parametrically dependent on
the position of the nuclei such that

∑∞
k=0〈ψk

µ′ |ψk
µ〉e =

∑∞
k=0

∫

drψk∗
µ′ (r, {Rn})ψk

µ(r, {Rn}) = δµµ′ . This allows us to
re-express the normalization as

〈�i |�i〉 =
∞
∑

µ′,k′=0

∞
∑

µ,k=0

〈

χ
µ′

i

∣

∣χ
µ

i

〉

n

〈

ψk′

µ′

∣

∣ψk
µ

〉

e

〈

�k′
∣

∣�k

〉

p
(5)

=
∞
∑

µ,µ′=0

〈

χ
µ′

i

∣

∣χ
µ

i

〉

n

∞
∑

k=0

〈

ψk
µ′

∣

∣ψk
µ

〉

e
=

∞
∑

µ=0

〈

χ
µ

i

∣

∣χ
µ

i

〉

n
= 1.

Note that by the introduced expansion we find for each
polaritonic eigenstate �̃µ electronic states ψk

µ associated to
a photonic excitation �k . This shows that the electronic space
is repeated with associated photonic excitations. We can see
here a similarity to Floquet theory [50,51,63] (see Secs. III D
and III E for details), where a matter system driven by a
classical external field is considered. In this case, by assuming
periodic driving, a time-dependent problem can be rewritten
as an eigenvalue problem in a Hilbert space including time.
The resulting eigenvalue equation is unbounded from below,
which expresses itself by the Floquet block index l ∈ Z that
is usually interpreted (despite the absence of actual photons in
the mathematical formulation of the problem) as the number
of photons involved in the process. The Floquet approach
therefore has no well-defined ground state and allows for
negative “photon excitations” which are often interpreted as
the emission of photons. To identify the physically correct oc-
cupation of a “photon-dressed” system in Floquet theory is a
very subtle issue of intense discussion in the community [64].
In contrast to Floquet theory, for the fully coupled matter-
photon problem, the number of possible photonic excitations
k are bounded from below by k = 0, which is the vacuum of
the electromagnetic field.
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B. Coupled equations in separated Hilbert spaces

Let us next derive, by applying the full Hamiltonian (1) on the discussed expansion, coupled equations for the parametrically
dependent subsystem wave functions. We employ here that in configuration space (Rn, r, q) multiplication operators like
potentials and interactions commute with the wave functions. This allows us to formally treat the dependence on other subsystems
parametrically, for example, for the electronic wave function the electron-nucleus interaction becomes

Nn
∑

j=1

Ne
∑

h=1

−Zj

|r̂h − R̂j |
χ

µ

i (Rn)ψk
µ(r, {Rn}) = χ

µ

i (Rn)
Nn
∑

j=1

Ne
∑

h=1

−Zj

|r̂h − Rj |
ψk

µ(r, {Rn}).

In a more physical interpretation, as long as the particles have no quantum character, the coupling between different systems is
purely recovered by their mean values. This simple factorization is no longer valid if the Hamiltonian includes derivatives and
therefore assigns a quantum character to the particles. The kinetic contributions act on all functions, that is, there are nonvanishing
contributions such as [∇Rj

χ
µ

i ][∇Rj
ψk

µ], which explicitly couple nuclear, electronic, and photonic degrees of freedom. The initial
eigenvalue equation then becomes

Ei�i (Rn, r, q) = Ĥ

∞
∑

µ,k=0

χ
µ

i (Rn)ψk
µ(r, {Rn})�k (q, {R})

=
∞
∑

µ,k=0

Ĥn

[

χ
µ

i (Rn)ψk
µ(r, {Rn})�k (q, {R})

]

+
∞
∑

µ,k=0

χ
µ

i (Rn)
[

Ĥe + Ĥne({Rn})
]

ψk
µ(r, {Rn})�k (q, {R})

+
∞
∑

µ,k=0

χ
µ

i (Rn)ψk
µ(r, {Rn})[Ĥp + Ĥep({r}) + Ĥnp({Rn})]�k (q, {R}). (6)

This equation can be exactly decomposed after multiplication with ψ l∗
ν �

∗
l and a subsequent summation and integration, that is,

∞
∑

l=0

∫

drψ l∗
ν (r, {Rn})

∫

dq�
∗
l (q, {R}),

into photonic, electronic, and nuclear subspaces. With the normalization defined as in Eq. (5), we arrive at a reduced equation
for the nuclear subspace

Eiχ
ν
i (Rn) = Ĥnχ

ν
i (Rn) (7)

−
1

2

∞
∑

µ,l,k=0

Nn
∑

j=1

−Zj

Mj

[

2
〈

ψ l
ν

∣

∣ψk
µ

〉

e
∇

lk · ∇Rj
+ 2
〈

ψ l
ν

∣

∣∇Rj

∣

∣ψk
µ

〉

e
· ∇

lk −
〈

ψ l
ν

∣

∣ψk
µ

〉

e
�

lkZj

]

χ
µ

i (Rn) (8)

−
1

2

∞
∑

µ,l=0

Nn
∑

j=1

1

Mj

[

2
〈

ψ l
ν

∣

∣∇Rj

∣

∣ψ l
µ

〉

e
· ∇Rj

+
〈

ψ l
ν

∣

∣�Rj

∣

∣ψ l
µ

〉

e

]

χ
µ

i (Rn) (9)

+
∞
∑

µ,l,k=0

χ
µ

i (Rn)
〈

ψ l
ν

∣

∣

⎧

⎨

⎩

[Ĥe + Ĥne({Rn})]δlk −
1

2

⎡

⎣2∇
lk ·

Ne
∑

j=1

∇rj
+ Ne�

lk

⎤

⎦

⎫

⎬

⎭

∣

∣ψk
µ

〉

e
(10)

+
∞
∑

µ,l,k=0

χ
µ

i (Rn)
〈

ψ l
ν

∣

∣〈�l|[Ĥp + Ĥep({r}) + Ĥnp({Rn})]|�k〉p
∣

∣ψk
µ

〉

e
, (11)

where the photonic coupling elements are given by (see Appendix B for a detailed derivation)

∇
lk =

∫

dq�
∗
l (q, {R})∇R�k (q, {R}) = −

Mp
∑

α

λα√
2ωα

[
√

kα + 1δα
l,k+1 −

√

kαδα
l,k−1

]

=
Mp
∑

α

∇
lk,α = −∇

kl, (12)

and

�
lk =

∫

dq�
∗
l (q, {R})�R�k (q, {R})

= +
Mp
∑

α

(

λα√
2ωα

)2
[

−(2kα + 1)δα
l,k +

√

(kα + 1)(kα + 2)δα
l,k+2 +

√

kα (kα − 1)δα
l,k−2

]

+
Mp
∑

α′,α �=α′

∇
lk,α′ · ∇

lk,α

=
Mp
∑

α

�
lk,α +

Mp
∑

α′,α �=α′

∇
lk,α′ · ∇

lk,α = �
kl . (13)

043801-5



SCHÄFER, RUGGENTHALER, AND RUBIO PHYSICAL REVIEW A 98, 043801 (2018)

In this form, we can identify three equations which have to be solved in a self-consistent manner in order to satisfy the above
combined nucleus-electron-photon problem. The first one is given by the photonic equation (11). Since the total dipole R that
shows up in the coupling to the photon subsystem wave function is given by merely the electronic and nuclear coordinates, for
eigenstates with

[Ĥp + Ĥep({r}) + Ĥnp({Rn})]�k (q, {R}) = εk ({R})�k (q, {R}), (14)

the term (11) simplifies to

∞
∑

µ,l,k=0

χ
µ

i (Rn)
〈

ψ l
ν ({Rn})

∣

∣εk ({R})
∣

∣ψk
µ({Rn})

〉

e
δlk. (15)

The dependence of the photonic eigenvalue on the total dipole therefore leads to a photonic potential-energy surface εk ({R}) ≡
εk ({Rn, r}). We denote the parametrically dependent photonic Hamiltonian as the photonic Born-Oppenheimer Hamiltonian

Ĥ
ph

BO ({Rn, r}) =
1

2

Mp
∑

α

[

p̂2
α + ω2

α

(

q̂α −
λα

ωα

· R

)2
]

. (16)

We can then shift the photonic potential-energy surface into (10) and define a photon-adapted electronic Born-Oppenheimer

Hamiltonian according to

Ĥ l
BO (r, {Rn}) = Ĥe + Ĥne(r, {Rn}) + εl (r, {Rn}). (17)

With this definition, we then solve for the electronic eigenfunctions of (10) including the photonic potential-energy surfaces as

Ĥ l
BO (r, {Rn})ψ l

µ(r, {Rn}) −
1

2

∞
∑

k=0

⎡

⎣2∇
lk ·

Ne
∑

j=1

∇rj
+ Ne�

lk

⎤

⎦ψk
µ(r, {Rn}) = Eµ({Rn})ψ l

µ(r, {Rn}). (18)

The remaining nuclear equation is now the combination of Eqs. (7), (8), and (9) and the additional potential-energy surface
Eµ({Rn}) from (18) such that

[Ĥn + Eν (Rn)]χ ν
i (Rn) −

1

2

∞
∑

µ,l,k=0

Nn
∑

j=1

1

Mj

([

2(−Zj )
〈

ψ l
ν

∣

∣ψk
µ

〉

e
∇

lk · ∇Rj
+ 2(−Zj )

〈

ψ l
ν

∣

∣∇Rj

∣

∣ψk
µ

〉

e
· ∇

lk +
〈

ψ l
ν

∣

∣ψk
µ

〉

e
�

lkZ2
j

]

+ δkl

[

2
〈

ψ l
ν

∣

∣∇Rj

∣

∣ψ l
µ

〉

e
· ∇Rj

+
〈

ψ l
ν

∣

∣�Rj

∣

∣ψ l
µ

〉

e

])

χ
µ

i (Rn) = Eiχ
ν
i (Rn). (19)

We finally end up with three equations, (14), (18), and (19),
that have to be solved self-consistently. Their physical in-
terpretation is that electrons move adiabatically on photonic
energy surfaces εl (r, {Rn}) while excitations of the electronic
system are coupled by photonic excitations l. The bilinear
coupling (12) transfers electronic momentum between differ-
ent electronic states, mediated by photonic excitations. How-
ever, within the long-wavelength approximation, the photon
itself does not transfer momentum to the electron; see also
Appendix C. The quadratic coupling (13) in contrast is an
energetic shift between eigenstates. The equivalence between
the presented Born-Huang expansion and the Power-Zienau-
Woolley transformation [65,66] is elaborated in Sec. III A. In
combination, (14) and (18) constitute the polaritonic subsys-
tem which is interacting with the nuclei. The nuclei move adi-
abatically on the polaritonic surfaces Eν (Rn) with additional
couplings mediated by photonic and electronic excitations as
well as mixed electron-photon excitations. Bare nonadiabatic
coupling elements without photons have to be adjusted, as,
for example, discussed in Sec. IV A, to account for novel
contributions and the change of the electronic structure under
photonic influence 〈ψ l

ν |∇Rj
|ψ l

µ〉. The nonadiabatic couplings
are often negligible as long as the Born-Oppenheimer surfaces
Eν (Rn) (in our case, these are the polaritonic potential-energy

surfaces) are energetically well separated but become relevant
close to conical interactions [28,59,67,68]. For the electron-
photon subspace, two important limiting cases arise. In the
off-resonant case, the energy replica of (14) will merely
resemble a series of harmonic states on top of electronic
surfaces without significant effect on the excited electronic
state. Although the coupling might be sufficient to slightly
distort quantities such as the electronic density, the excited
state will not mix strongly with the photonic replica. In
resonance, where the photon frequency is almost identical to
an electronic transition, the nonadiabatic couplings become
dominant and we find avoided crossings similar to the well-
known electron-nuclear case. For the excited-state structure
in the weak-coupling regime, we therefore see explicitly why
a single photon-mode close to resonance is of particular
relevance while others have only a minor effect. Similarly,
for the ground state in weak coupling, the lowest mode is
the most relevant one, as can be seen in the exact-exchange
approximation to the electron-photon coupling that scales as
1/ω [23]. This can, however, change as we approach the ultra-
strong-coupling regime. Finally, we point out that a similar
construction of coupled equations can be deduced also for the
time-dependent case (see Appendix D). Here, however, we
can only expect our considerations to be accurate for a limited
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amount of propagation time. After a certain time, the fact that
we treat the continuum of photon modes only approximately
will become apparent and beyond this point more advanced
open-quantum-system approaches become necessary.

C. Analytic solution of the photonic subspace

So far we have reformulated the high-dimensional problem
of a correlated nucleus-electron-photon system into a set of
three lower-dimensional but coupled equations. The solution
of these coupled equations is, of course, still as hard (maybe
even harder) than the original problem. In order to make the
problem numerically tractable, we either need to introduce
approximations or we provide analytical solutions to parts of
these equations. In this subsection, we will do the latter and
bring the problem into a more compact form. We use that in
the photonic equations (14) and (D2), respectively, the para-
metric dependence on the total dipole allows for an analytic
solution. The dipole merely introduces a coherent shift in the
photonic harmonic oscillator equations. Let us elaborate on
this briefly in a generalized time-dependent picture, as it will
allow us to extend the Born-Huang framework to explicitly
time-dependent problems in Appendix D.

Equation (14) obeys the generic form

i∂tφ(q, t ) =
1

2

[

p̂2 + ω2

(

q̂ −
λ

ω
· R(t )

)2
]

φ(q, t ), (20)

with a given initial state φ0(q ) = φ(q, 0), q0 = 〈φ0|q̂|φ0〉 and
q̇0 = 〈φ0|p̂|φ0〉. As R(t ), that is, the total dipole including
nuclei, electrons, and potentially external currents, is a given
external perturbation in this context of the photonic subspace,
the solution to the above equation is

φ(q(t ), t ) = D̂†(q(t ))e− i
2 [p̂2+ω2 q̂2]tφ0(q ). (21)

The coherent shift operator, which is a combination of a
time-dependent translation and boost (translation in momen-
tum space), fulfills condition (21) up to a time-dependent
phase [69]

D̂(q(t )) = exp [−i(q(t )p̂ − q̇(t )q̂ )], (22)

where the classical trajectory of the displacement coordinate
q̂ is given by

q(t ) =
∫ t

0
dt ′ sin[ω(t − t ′)][λ · R(t ′)]

+ q0 cos(ωt ) + q̇0
sin(ωt )

ω
.

We therefore see explicitly that a coherently driven photon
mode just follows exactly the classical trajectory and only
other observables provide access to the “quantumness” of
the photon mode. That this holds is due to the quantization
procedure of the electromagnetic field, which makes sure that
without coupling to the matter subsystem the expectation val-
ues of the field operators reproduces the Maxwell equations in
vacuum. So, mode by mode, the quantum harmonic oscillators
need to reproduce the classical oscillators as long as we
only have external sources [13,70]. In the time-independent
case, where the classical equation of motion merely reduce
to q̇ = 0 and q(t ) = q0, we immediately arrive at the shifted

eigenstates since it has to hold that q0 = − λ

ω
· R, where R is

the total static dipole. Consequently we have for the quantum
states

D̂(q0)φk (q ) = φk (q − q0),

where we just used that D̂(q0)q̂D̂†(q0) = q̂ − q0. The result-
ing eigenenergies recover [due to the term 1

2 ( λ

ω
· R)2] the

original harmonic oscillator eigenenergies

εk (q0) = ε(0) = ω
(

k + 1
2

)

.

Since in the photonic subsystem we only have different shifted
harmonic oscillators, the resulting photonic wave function
parametrically dependent on R becomes

�k (q, {R}) =
Mp
∏

α

φα,kα

(

qα − q0
α

)

,

where we have defined q0
α = − λα

ωα
· R and we have a multi-

index k ≡ (k0, . . . , kMp
) that collects the individual mode

excitations; that is, a photonic multimode spectrum εk is given
by the energetic order of all possible photonic excitations.
The low energetic polariton spectrum Eµ for very small ωα

with weak coupling strength is then for example dominated
by replica of the ground state with rising photonic occupation.
With this, we find the parametrically dependent photonic
energy surfaces as

εk ({R}) =
Mp
∑

α

ωα

(

kα +
1

2

)

. (23)

As a consequence, the photonic energy surfaces in Eq. (17)
are just constants that merely shift the total energy. Therefore,
the photons do not affect the coupled equations directly, since
they do not enact a force on the other particles, that is,
∇Rεk = 0. Instead, the photons affect the electrons and nuclei
only via the nonadiabatic coupling elements. In contrast to the
electron-nuclei coupling elements, these photonic coupling
elements are known analytically, that is, given in Eqs. (12) and
(13). Thus, the photons in the long-wavelength approximation
do not introduce extra quantities that need to be determined
numerically but rather change the usual Born-Huang expan-
sion and lead to new but analytically known couplings.

At this point, we would like to note that the explicit
solution of the photon subspace in terms of shifted harmonic
oscillators corresponds to an adapted quantization procedure.
Instead of quantizing the bare (zero-photon) vacuum, we
quantize a nonzero (polarized) vacuum that corresponds to
nonzero electromagnetic fields. This equivalence provides
an interesting connection to trajectory-based approaches for
matter-photon systems [48].

III. IMPLICATIONS

After we have solved the photonic subsystem analytically
in the presented Born-Huang expansion, let us restate the
coupled problem that solves Eq. (3) in a more compact form.
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By solving
⎡

⎣Ĥe + Ĥne(r, {Rn}) +
Mp
∑

α

ωα

(

lα +
1

2

)

⎤

⎦ψ l
µ(r, {Rn})

−
1

2

∞
∑

k=0

⎡

⎣2∇
lk ·

Ne
∑

j=1

∇rj
+ Ne�

lk

⎤

⎦ψk
µ(r, {Rn})

= Eµ({Rn})ψ l
µ(r, {Rn}), (24)

and subsequently with the obtained polaritonic Born-
Oppenheimer surfaces Eµ({Rn})

[Ĥn + Eν (Rn)]χ ν
i (Rn)

+
∞
∑

µ,l,k=0

Nn
∑

j=1

1

2Mj

(

Zj

[

〈

ψ l
ν

∣

∣ψk
µ

〉

e
∇

lk · ∇Rj

+
〈

ψ l
ν

∣

∣∇Rj

∣

∣ψk
µ

〉

e
· ∇

lk −
Zj

2

〈

ψ l
ν

∣

∣ψk
µ

〉

e
�

lk

]

− δlk

[

2
〈

ψ l
ν

∣

∣∇Rj

∣

∣ψ l
µ

〉

e
· ∇Rj

+
〈

ψ l
ν

∣

∣�Rj

∣

∣ψ l
µ

〉

e

]

)

χ
µ

i (Rn)

= Eiχ
ν
i (Rn), (25)

we find that the exact eigenstate is recovered as
�i (Rn, r, q) =

∑∞
µ,k=0 χ

µ

i (Rn)ψk
µ(r, {Rn})�k (q, {R}). In

the following, we consider a few implications of this new form
of the original problem before discussing some approximation
strategies.

A. Relations to the Power-Zienau-Woolley transformation and

the diabatic picture

Let us first compare the above form with the Power-
Zienau-Woolley transformation [65,66] that allows to define
a multipole form of the minimal coupling Hamiltonian. The
length-form Hamiltonian that we use here can be obtained
by approximating the quantized vector potential operator by
its value at zero (or any other reference point) Â(r̂i ) →
Â(0). This approximation leads to the momentum form of
the minimal coupling Hamiltonian [13,20,49] (without loss of
generality, we just show how the momentum of the electrons
are adapted)

1

2

Ne
∑

j=1

⎛

⎝−i∇rj
−

Mp
∑

α=1

λα

ωα

p̂α

⎞

⎠

2

, (26)

where p̂α is as defined before. Then performing an operator-

valued boost of the form exp[−iR̂ ·
∑Mp

α=1
λα

ωα
p̂α] leads to

the length form of Eq. (1). In the photonic subsystem in
the Born-Huang expansion, this operator-valued boost turns
into a translation of the displacement coordinate for a given
dipole moment R and therefore is equivalent to D̂†(q0),
which is just the tensor product of the individual D̂†(q0) as
defined in Eq. (22). Thus when we apply the coherent shift
operator in the Born-Huang expansion we take the step back
to the momentum form of the long-wavelength approximated
minimal-coupling Hamiltonian.

Formally we can connect the above operator-valued boost
to a multipole expansion of the Power-Zienau-Woolley trans-
formation ei

∫

drP(r)·A(r) of classical physics, where P(r) is a
polarization field [65,71,72]. By then promoting the classical
quantities to operators, a multipole form of the minimal-
coupling Hamiltonian can be defined [71,72]. In the above
momentum form of Eq. (26), it becomes straightforward
to generalize beyond the long-wavelength approximation by
reverting our very initial assumption of spatially independent
modes and keeping explicitly λα (r) [13,49]. Keeping the
spatial dependence will change our expansion considerably,
as it is no longer only the total dipole the photons couple
to. In the general case, the photon subsystem wave function
will depend parametrically on all individual coordinates of the
other particles, while in a formal multipole expansion higher
order terms will be introduced. This will lead, similar to the
decoupling of electrons and nuclei, to nonconstant photonic
surfaces that depend on the spatial position of the matter
subsystem. As a consequence, the combined system will try to
occupy a minimal potential point given by the involved modes
of the photon field.

In the context of the momentum form of the nonrelativistic
QED Hamiltonian, we also briefly want to highlight the
difference between an adiabatic and diabatic picture [73].
In the length form, we have decided to use the adiabatic
picture, that is, we assume that the nuclei move on electronic
surfaces and the electrons move on photonic surfaces. The
physical rationale is that we assume that the nuclei “move
more slowly” than the electrons, which in turn “move more
slowly” (be aware that displacement coordinates q are not
real-space movements) than the photons. This has been ex-
pressed formally in our Born-Huang expansion by taking into
account parametrically only the classical quantity R for the
photon subsystem wave function. But in principle we can use
other arrangements. For instance, in Ref. [47] the photons
were grouped with the nuclei due to their obvious similarity
to the simplest approximations of the quantized nuclei by
(harmonic) phonons. The electrons are therefore considered
“fast” with respect to the rest. This is a diabatic picture. In this
case, it is the photons and nuclei that move on the electronic
potential-energy surfaces.

Take, for example, the polaritonic wave function �̃µ but
now we expand in terms of electronic subsystem wave func-
tions parametrically dependent on the momentum-form pho-
ton coordinates and the position of the nuclei as

�̃µ({Rn}, r, p) =
∞
∑

k=0

ψk (r, {Rn, p})�k
µ(p, {Rn}).

If we consider the momentum form Eq. (26), we can get rid
off the parametric photon-coordinate dependence by a boost

in real space of the form exp[−iR̂ ·
∑Mp

α=1
λα

ωα
pα]. This boost

is the transformation from momentum to length form but with
pα as a number not as an operator. By this, we have elimi-
nated the dependence of the electronic wave function on the
photon coordinate. Therefore, for what the photonic subsys-
tem wave function �

k
µ(p, {Rn}) is concerned, the electronic

potential-energy surfaces become flat and it is only coupling
elements that will change the photon field. In the diabatic case,
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however, there are usually no analytic solutions for the elec-
trons available.

So far, we have focused on how the standard Born-Huang
expansion is changed due to analytically known nonadiabatic
coupling elements introduced by the photons. Alternatively,
one could instead of these coupling elements include parts
of the matter-photon interaction directly in the matter sub-
systems; for example, in the diabatic picture we could in-
clude qαλα · R̂ and (λα · R̂)2 in the electronic equation and
vary parametrically qα . The resulting cavity-adapted elec-
tronic eigenstates will already incorporate certain effects of
the coupling (see Ref. [47]). This alone can already lead
to a relatively accurate treatment of ground and dark states.
However, while this cavity Born-Oppenheimer approximation
is accurate for energetically well-separated eigenstates, it does
usually not capture the hallmark of strong coupling, that is,
the polariton formation due to the Rabi splitting (see, for
example, Table 1 in Ref. [47]). For the experimentally easily
accessible coupling values and on resonance with the bare
electronic transition, the upper and lower polariton states are
energetically close and without incorporating the nonadiabatic
couplings the theoretical description is not accurate enough.
This changes for ultrastrong coupling, since the resulting
parametrically shifted surfaces become then energetically
well separated. While from a quantum-optical perspective it
is usually the excited-state structure that is important, for
certain chemical aspects the coupled matter-photon ground
state might be sufficient. Especially in the latter case the cavity
Born-Oppenheimer approach of Ref. [47] represents an in-
teresting alternative. The cavity Born-Oppenheimer approach
then needs an adjustment of common quantum chemical codes
by including the (λα · R̂)2 and qαλα · R̂ parts, with a poten-
tially large parametrically scan of the photonic displacements.
The primary benefit of this method is highlighted in the
discussion of Sec. V C.

Let us at this point also highlight that the length and
momentum form of the nonrelativistic QED Hamiltonian in
the long-wavelength approximation get their name from the
above discussed translations and boosts. In the momentum
form, a translation in real space has no effect on the photons
at all, and a boost of the matter subsystem merely shifts the
photon field coherently, leaving the eigenstates invariant. In
the momentum form, it is the fluctuations in momentum space,
for example, due to nonzero momentum matrix elements ∇

lk ,
that lead to physical effect on the eigenstates. In the length
form (after we have performed already an operator-valued
boost), we can translate the matter subsystem in real space
and it only amounts to a simple coherent shift of the photonic
subsystem, which again leaves the eigenstates invariant. It
is the real-space fluctuations, for example, due to nonzero
dipole matrix elements, that lead to physical effects on the
eigenstates (see Sec. IV B for an example).

B. The relevance of self-polarization

The physical and mathematical relevance of the
self-polarization, also called the dipole self-energy,
∑

α (λα · R̂)2/2, has been discussed in multiple
publications [23,24,49,74,75]. The here presented
reformulation of the nonrelativistic QED problem in the

long-wavelength approximation allows an alternative, very
intuitive, and physical explanation of the most important fact,
that is, that the coupled nucleus-electron-photon system is
not stable without the self-polarization [49]. This becomes
evident if one considers the photonic surfaces εk as defined
in Eq. (23). In the case that the self-polarization term is
discarded in the original Eq. (20), the energy expressions
εk get a dipole-dependent shift −(λ · R)2/2. Therefore, the
photonic potential-energy surfaces εl in Eq. (24) would not be
constant; instead they would be quadratically divergent. This
leads to a linearly divergent force

∇Rεno R2

l ({R}) = −
∑

α

λα (λα · R).

As a consequence Eq. (24) does not possess an equi-
librium solution (if we consider infinite space), that is,
Eµ({Rn}) → −∞, and with this also the original problem
becomes unbounded from below, that is, Ei → −∞. If we
restrict thus to a finite simulation box (which is not connected
to the much larger quantization volume or cavity volume),
then the ratio between coupling strength and box size (which
in turn restricts the value of R) determines whether we get a
stable system or whether the minimal energy is reached by
tearing the system apart (nuclei on one side and electrons
on the other to maximize R). With the self-polarization such
a problem does not appear and a stable, simulation-box-size
independent solution is well defined. That this problem is not
more often encountered has to do with the fact that mostly
the coupled system is solved in a restricted state space. As
long as our electronic expansion is small (see the discussion
in Secs. IV A, IV B, and V), this divergence does not emerge
because the limited set of electronic states cannot describe
such a divergent shift. Take, for instance, the minimal setting
of only a single electronic excitation. The system is then
represented by the Pauli-matrix algebra with R̂ → σ̂z and
(λα · R̂)2 → λ2

α1̂ with the identity on the two-dimensional
vector space denoted by 1̂. The self-polarization has no effect
in this smallest electronic space besides a shift in energy.
However, this is not the case for the exact solution and
the missing contribution is essential to capture ground-state
observables. This effect will be illustrated by a numerical
example in Sec. V.

Let us finally remark that the self-polarization contribution
is necessary to connect the momentum and the length form of
the nonrelativistic QED Hamiltonian in the long-wavelength
approximation and that the self-polarization term is not equiv-
alent to Â2(0). Further, the influence of the self-polarization
term for dynamical phenomena and for weak to moderate
light-matter interaction strength is less evident. Only after suf-
ficiently long propagation will large deviations be observable.

C. Observables

Although excitations of the photonic system are just im-
plicitly addressed in the nuclear (25) and electronic (24)
components, observables can be calculated as usual:

〈�i |Ô|�i〉 =

〈 ∞
∑

µ,l=0

χ
µ

i ψ l
µ�l|Ô|

∞
∑

ν,k=0

χ ν
i ψk

ν �k

〉

.
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For instance, we can consider photonic observables, such as
the mode occupation. The physical interpretation of displace-
ment q̂α and furthermore creation and destruction operators
change between momentum and length form, that is, the
occupation of mode α in momentum form is related to the
electromagnetic field energy density [72]. We solve the pho-
tonic system as discussed in Sec. II C. The coherent translation
D̂ transfers the wave function �i → �̃i into the momentum
frame while the operators remain formally identical. In our
current formulation, this leads to the following mode-resolved
form

〈�̃i |1̂n ⊗ 1̂e ⊗ â†
α âα|�̃i〉

=
∞
∑

µ,ν,l,k=0

〈

χ
µ

i

∣

∣χ ν
i

〉

n

〈

ψ l
µ({Rn})

∣

∣ψk
ν ({Rn})

〉

e

× 〈�l ({R})|â†
α âα|�k ({R})〉p

=
∞
∑

µ,ν,l=0

〈

χ
µ

i

∣

∣χ ν
i

〉

n

〈

ψ l
µ({Rn})

∣

∣ψ l
ν ({Rn})

〉

e
lα.

In this way, we can construct similar photonic observables
such as q̂α and any other observable of the combined nucleus-
electron-photon system. But of course, we can also access
other observables, such as the electronic density or excitation
energies (see Sec. V B for examples). As it will turn out,
depending on which observable we want to consider, we will
need different levels of approximations to the full Born-Huang
expansion to get accurate results. Overly reduced models will
not be able to capture—even qualitatively—some considered
observables.

D. Born-Oppenheimer including photons:

The explicit polariton approximation

The coupled equations of the Born-Huang expansion, that
is, Eqs. (24) and (25) in its compact form, can be drastically
simplified if certain coupling elements can be neglected, that
is, for specific subsystem wave functions the derivative with
respect to their parametrical dependence vanishes. This is
equivalent to the fact that the induced energetic surfaces
are well separated. That this holds true for all electronic
subsystem wave functions is one of the basic assumptions of
the traditional Born-Oppenheimer approximation of quantum
chemistry. If we make the same assumption, we still have
the photonic coupling elements that connect the different
nuclear subsystem wave functions. So in order to arrive at
a similar simple form as the original Born-Oppenheimer
approximation, we have to also assume that these coupling
elements are negligible. This will be the case if we—besides
the usual physical rationale of “slowly moving” (almost clas-
sical) nuclei—also assume that the frequencies of the photonic
modes is mainly in the electronic energy range. In this case, it
seems reasonable to assume that the coupling between nuclei
due to the photons is not important, and we only consider
photons that couple to the electronic system. This is similar
to the matter-photon coupling in Ref. [28] that only considers
the electronic dipole contribution. Under those assumptions,

electron-photon and nuclear coordinates factorize, leading to

�i ≈ �
µ
ν (Rn, r, q) = χµ

ν (Rn)
∞
∑

k=0

ψk
ν (r, {Rn})�k (q, {R}).

The many-body wave function �i is now approxi-
mated by a polaritonic excitation ν and uncorrelated
nuclear vibrations µ with ground state �

0
0 (Rn, r, q) =

χ0
0 (Rn)

∑∞
k=0 ψk

0 (r, {Rn})�k (q, {R}). As a consequence of
the Born-Oppenheimer approximation, the nuclear excitations
are calculated on polaritonic quasiparticle energy surfaces.
The photonic contribution depends parametrically on the total
dipole R. This leads to the following simplified form of the
Born-Huang expansion

Eν ({Rn})ψ l
ν (r, {Rn}) = Ĥ l

BOψ l
ν (r, {Rn})

−
∞
∑

k=0

[

∇
lk ·

Ne
∑

i=1

∇ri
+

Ne

2
�

lk

]

ψk
ν (r, {Rn}), (27)

where the electron-photon-solution feeds into the nuclear
equation
⎛

⎝−
1

2

Nn
∑

j=1

1

Mj

∇2
Rj

+ Eν (Rn)

⎞

⎠χµ
ν (Rn) = Eµ

ν χµ
ν (Rn). (28)

Clearly, other approximations of the fully coupled Born-
Huang expansions are possible; for example, we could assume
that the photonic modes are only within the nuclear-excitation
energy range. To distinguish the above specific choice, we
call the coupled Eqs. (27) and (28) the explicit polariton

approximation to highlight that we consider nuclei moving on
polaritonic surfaces.

To solve the explicit polariton equations, we restrict first
our photonic excitation space to a maximum number of possi-
ble excitations l ∈ {0, 1, . . . , lmax}; that is, the sum

∑∞
k=0 →

∑lmax

k=0 is truncated at a finite photonic occupation. Expanding
the full basis explicitly corresponds to an expansion in gener-
alized coherent eigenstates. The cost we then pay is that we
effectively end up with the same high-dimensional problem
of the initial fully coupled electron-photon Hamiltonian in a
restricted photon space. For the electronic subsystem, we will
in the following, however, also use a suitable basis expansion
which we will truncate in practice. We will discuss how
this is done and how the polaritonic problem of Eq. (27)
is expressed in such a basis expansion in Sec. IV A. The
explicit polariton in a finite-basis expansion (for photonic
and electronic subsystem, respectively) can be efficiently used
to solve coupled systems for weak and strong coupling for
finite and also periodic systems (see Appendix C), where the
interpretation of arising polaritonic bands does conceptually
not deviate from the finite molecular problem. The additional
effort to include the photonic interaction into a common
solution of the nuclear-electron problem is computationally
negligible as long as we can treat the relevant set of the
excited electronic states efficiently and the accuracy of the
restricted electronic and photonic basis can be estimated based
on physical intuition or arguments. We will show explicitly in
Sec. V that this is not always as intuitive as one might hope
for and that there is a subtle interplay between number of
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electronic and photonic excitations that we take into account.
Further, while certain simplified quantities such as changes in
excitation energies due to the emergence of polaritonic states
might seem already converged only after taking into account a
minimal number of photonic excitations and electronic basis
states, the convergence in other quantities and especially of
the underlying approximate wave function with respect to
the photonic and electronic basis set might be much slower.
We will investigate the restricted basis issue later and will as
reference use the frequently employed restriction to merely
just one photonic excitation per mode. We will name the
resulting approximate solution the single photon polariton that
involves at maximum a single excitation per mode lα ∈ {0, 1}.
In Sec. IV B, we will use this approximation to connect the
above quantum-chemical approach to quantum-optical mod-
els that are used to describe coupled matter-photon systems in
a simplified way and we will discuss implications.

While the above explicit polariton approximation is ex-
pected to be a reliable approximation for the weak and strong
coupling regime within a restricted set of excitations, in the
domain of ultrastrong coupling, that is, λα/

√
2ωα ∼ 1, other

possible Born-Huang expansions, for example, such as the
diabatic approach briefly discussed in Sec. III A, might be
more appropriate.

E. Structural similarity to Floquet theory

Let us stress the connection of the explicit polariton ap-
proximation and the Floquet approach. In Floquet theory,
the Hamiltonian is time periodic Ĥ (t ) = Ĥ (t + T ) with the
period T = 2π

ω
. Most commonly, this is achieved by driving a

time-independent system Ĥs with a periodic external driving
D̂(t ) = r̂ · E(t ), where often a monochromatic field is applied
E(t ) = E0 cos(ωt ). More general, the full minimal coupling

−
1

2

Ne
∑

i=1

∇2
i − A(t ) ·

Ne
∑

i=1

(−i∇i ) +
Ne

2
A2(t )

should be considered. The driving vector potential resembles
then for example A(t ) = A0 sin(ωt ). The solution to the time-
periodic Schödinger equation can be achieved by the Floquet-
Bloch ansatz

�µ(rt ) =
∞
∑

ν=1

cνµe−iεν t

∞
∑

n=−∞
e−inωtφν

n (r).

While the Hamiltonian has to satisfy the periodicity condition,
the wave function can be of any arbitrary period, including
for example Rabi oscillations, as a consequence of linear
combinations cνµ. A numerically feasible solution can then
be achieved by solving the Floquet-matrix equation

Hmnφν
n (r) = ενφ

ν
m(r)

with

Hmn =
1

T

∫ T

0
dtei(m−n)ωtH (t ) + δmnmω1

in a restricted subset of possible excitations m, n ∈
{−nmax, . . . ,−1, 0,+1, . . . , nmax}. The driving then leads in

linear order to 1
T

∫ T

0 dtei(m−n)ωtA(t ) ∼ iδm,n±1 and in sec-

ond order, that is, 1
T

∫ T

0 dtei(m−n)ωtA2(t ) ∼ δm,n±{0,2} to con-
nections that resemble the nonadiabatic coupling elements
∇

lk, �
lk of Eq. (27). The according eigenvectors φν (r) =

[. . . φν
−1(r)φν

0 (r)φν
+1(r) . . . ]T possess the structure of differ-

ently weighted electronic solutions associated with an excita-
tion or “photon” number n. While it is intuitive to consider
quantized excitations due to a classical electromagnetic field
as photons, the rigor of this interpretation, of course, relies on
the similarity to the QED formulation.

As we have seen in equilibrium, the effect of the photons
on the electronic structure is purely determined by fluctuations
within the shifted harmonic oscillators which connect elec-
tronic excitations. The classical contribution, namely the shift
q̂α → q̂α − q0

α , is without effect on the electronic structure.
This clarifies that the eigenstates of Eq. (27) are polaritonic
wave functions projected on the electronic subspace, that is,
the solution of Eq. (27) can be constructed as a vectorial
expansion for each mode in sub-blocks according to ψν =
{ψ0

ν , ψ1
ν , ..., ψ lmax

ν }. The explicit polariton is structurally very
similar to solving the Floquet problem as defined above. Two
essential differences arise; that is, the energy is bounded from
below k � 0 and the couplings ∇

lk, �
lk obey a

√
k scaling

which coincides with the classical Floquet description for
large photon numbers k → ∞ and coherent (classical) field
states as pointed out by Refs. [50,51]. As a direct consequence
of the lower bound, all occupations are well known, in contrast
to Floquet theory. While in Floquet theory the n = 0 sector
is not distinct from other components, that is, the solution
is even invariant under arbitrary shifts ε′

ν = εν + nω, n ∈ Z,
in QED every photonic sector, especially the ground-state, is
unique. Therefore, Eq. (27) shows how the typical Floquet
equation has to be adjusted to adhere to QED, also avoiding
usual drawbacks of Floquet theory.

Furthermore, the structural similarity between QED and
Floquet theory (while the physical interpretation and exper-
imental setups are very different) allows us to adjust currently
available Floquet implementations to be able to consider
QED-chemistry situations. Physically, we exchange a clas-
sical external driving with a large number of photons by a
quantized photonic field considering typically small photon
numbers and vice versa. Furthermore, this means that a vast
amount of novel Floquet-engineered effects [76] can be quali-
tatively reproduced with equilibrium QED, where no external
driving is necessary. This is especially interesting since the
usual drawbacks of external driving, for example, heating, can
be avoided, which might prove helpful in stabilizing Floquet-
engineered states. Our derivations furthermore present the
necessary generalization to the full nucleus-electron-photon
problem.

IV. CONNECTION TO QUANTUM-OPTICAL MODELS

We have now approximated the full Born-Huang expansion
by the explicit polariton approximation given in Eqs. (27) and
(28). This has already reduced the complexity considerably.
Still, solving the explicit polariton approximation in full real
space for the electrons is very challenging because of the
involved Coulomb interaction among the particles. Thus, for
practical purposes, also a restriction of the electronic basis set
is desirable. Also, in most models for coupled matter-photon
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systems the solution of the full many-electron problem is
avoided by working in a restricted basis for the electrons.
In its simplest form, this restriction leads to a two-level
approximation to the matter subsystem, which is a common
approximation strategy encountered in quantum optics, for
example, in the Jaynes-Cummings model or for many two-
level systems in the Tavis-Cummings model. In order to
connect to these well-known models and highlight possible
problems in an overly simplified treatment as well as for
practical purposes, we will in the following also restrict the
electronic basis set.

A. Basis expansion in electronic eigenstates

To restrict also the electronic subspace, we expand the
polariton in a common electronic basis. Although this can be
any complete basis, the exact electronic eigenfunctions will
simplify the following steps. What will emerge is a way to use
the basis such that the photonic influence can be treated by a
simple diagonalization in this basis. As a (not necessarily or-
thonormal) basis, we choose some electronic wave functions
ϕn(r, {Rn}) and then we expand the many-body electronic
wave function

ψ l
ν (r, {Rn}) =

∞
∑

n=0

cν
nl ({Rn})ϕn(r, {Rn}).

This expansion applied to Eq. (27) leads to

Eν

∞
∑

n=0

Sjncν
nl =

∞
∑

n=0

H l
BO,jnc

ν
nl −

∞
∑

n,k=0

[

(

− ∇
jn
e cν

nk

)

· ∇
kl

+
Ne

2
Sjncν

nk�
kl

]

, (29)

where

Sjn = 〈ϕj |ϕn〉e, H l
BO,jn = 〈ϕj |Ĥ l

BO |ϕn〉e,

∇
jn
e = 〈ϕj |

Ne
∑

i=1

∇ri
|ϕn〉e, 1 =

∞
∑

l=0

∞
∑

n,n′=0

cν
lnS

nn′
cν
n′l .

Here we suppressed the parametric dependence on the nuclear
configuration for brevity and we did not assume that the basis
is orthonormal. We remind the reader that the analytically
known coupling elements ∇

kl and �
kl are completely inde-

pendent of nuclear and electronic coordinates.
Along this line it becomes evident how the nonadiabatic

nuclear-polariton coupling elements 〈ψ l
ν |∇Rj

|ψk
µ〉e can be

calculated from the knowledge of bare coupling elements
〈ϕn|∇Rj

|ϕm〉e. We expand into
〈

ψ l
ν |∇Rj

|ψk
µ

〉

e

=
∞
∑

n,m=0

cν
ln({Rn})[Snm

∇Rj
c
µ

mk ({Rn})

+ c
µ

mk ({Rn})〈ϕn(r, {Rn})|∇Rj
|ϕm(r, {Rn})〉e] (30)

and observe that two contributions occur. The second line
represents the superposition of bare nonadiabatic elements
according to the participation of those states in the polari-
ton solution. Furthermore, the linear coefficients themselves

introduce an additional component ∇Rj
c
µ

mk ({Rn}) as their
value depends for example on the dipole-transition element
〈ϕn(r, {Rn})|r̂j |ϕm(r, {Rn})〉e which will change depending
on the nuclear configuration, as discussed in Sec. IV B.

Next we choose a basis and here we draw the connection
to quantum chemistry by a selection of Slater determinants.
For this, we multiply from the left with an electronic (excited)
Slater determinant

ϕn(r, {Rn})

= T̂ (n)ϕ0(r, {Rn})

= T̂ (n) 1
√

Ne

∣

∣

∣

∣

∣

∣

ϕ1(r1, {Rn}) ... ϕ1(rNe
, {Rn})

... ... ...

ϕNe
(r1, {Rn}) ... ϕNe

(rNe
, {Rn})

∣

∣

∣

∣

∣

∣

−

with single-particle orbitals ϕj (rm, {Rn}) and the operator for
the nth excitation T̂ (n). The operator T̂ (n) excites the wave
function n times, that is, 〈ϕi (r, {Rn})|T̂ (j )ϕ0(r, {Rn})〉e = Sij .
Further, within Hartree-Fock theory, the photonic coupling
elements would open the usually closed Roothaan-Hall equa-
tion [77] into all possible excited components. Here, however,
we do not restrict to Hartree-Fock theory but rather perform
a configuration-interaction expansion of Eq. (29) within a
restricted subspace of photonic and electronic excitations or
with a variational minimization of the polaritonic energy
according to

Eν =
∞
∑

l,j=0

∞
∑

n=0

cν
ljH

l
BO,jnc

ν
nl

−
∞
∑

l,j=0

∞
∑

n,k=0

cν
lj

[

(

− ∇
jn
e cν

nk

)

· ∇
kl +

Ne

2
Sjncν

nk�
kl

]

.

In this form, it becomes apparent that we can in principle
use and extend common quantum chemical minimization pro-
cedures, such as configuration-interaction or coupled-cluster
techniques [78], to solve the polaritonic problem.

B. A natural connection to model systems

Let us now build the connection to a very common sys-
tem applied in quantum optics. We assume a set of iden-
tical, independent molecules, and the excited Slater deter-
minants are then exact solutions of the electronic system,
coupled by one photonic mode α = 1. With close to de-
generate energies, the first excited component of this single-
photon polariton subspace is represented by the unperturbed
set

{

ψ
l=1,bare
ν=1 = ϕMB

n=0 ; Eν=1 = E0 + ω
}

,
{

ψ
l=0,bare
ν=1 = ϕMB

n=1 ; Eν=1 = E0 + �Ee

}

,

with bare electronic excitation �Ee and detuning of the
photon mode δ

�Ee = E1 − E0, δ = ω − �Ee.

Hereby

ϕMB
n=1 = Ŝ+T̂ (1)Ŝ−ϕ1

0 ⊗ ϕ2
0 ⊗ · · · ⊗ ϕN

0
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is an antisymmetric (Ŝ−) many-body fermionic wave function
with a symmetrized (Ŝ+) excitation represented by the single
excitation operator T̂ (1). In addition to this fully symmtrized
excitation, there exist Ne − 1 excitations with mixed symme-
try which are often referred to as dark states. They possess a
vanishing transition dipole due to antisymmetric components
in the many-body excitation [28] and do not directly couple to
the transversal mode by emission or absorption of a single
photon. Nevertheless, higher order processes such as the
Lamb shift still affect those states. As is usually done, we will
disregard these dark states in the following. Next, instead of
the electronic momentum elements ∇

jn
e , in molecular systems

the dipole moment is typically preferred in calculations. It
is connected to the momentum element ∇

jn
e by the operator

identity

[Ĥ , r̂]− =
[

1
2 p̂2 + Ŵee(r, r′) + Ĥne(r), r̂

]

− = −ip̂ = −∇r.

In the approximation of electronically noninteracting
molecules, that is Ŵee(r, r′) = 0, the electronic eigenvalues
are isolated molecular excitations

∇
jn
e = −〈j |[Ĥ , r̂]−|n〉e = (En − Ej )〈j |r̂|n〉e = �Enj rjn

and the energy-difference leads to a transformation of the
characteristic bilinear coupling scale

1
√

2ω
λ · ∇

jn
e =

En − Ej√
2ω

λ · rjn

→
�Ee√

2ω
λ · r01 =

ω − δ
√

2ω
λ · r01.

The coupling elements in length and momentum form are
identical up to a factor (ω − δ)/ω [72]. The position r̂

is defined in relation to the center of charge. We now
solve this ansatz in the smallest possible subspace for
electronic j and photonic excitations l such that (j, l) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} where we choose the pure elec-
tronic Slater determinants ϕMB

n to form an orthonormal basis

Sjn = δjn.

The two-level single-photon polariton approximation be-
comes extensively problematic as coupling or detuning in-
creases and it is not suited to describe the ground state
of a correlated system although it includes the antirotating
contributions; that is, there is no rotating frame assumed.
In particular, the self-polarization contribution can become
troublesome, as discussed in Sec. III B. This is made more
explicit and elaborated in Sec. V.

The single-photon polariton with a single electronic excitation can be represented by the 4 × 4 matrix
⎛

⎜

⎜

⎜

⎜

⎝

H l=0
BO,00 − Ne

2 �
00 0 0 ∇

01
e · ∇

10

0 H l=1
BO,00 − Ne

2 �
11

∇
01
e · ∇

01 0

0 ∇
10
e · ∇

10 H l=0
BO,11 − Ne

2 �
00 0

∇
10
e · ∇

01 0 0 H l=1
BO,11 − Ne

2 �
11

⎞

⎟

⎟

⎟

⎟

⎠

,

which can be block diagonalized in a degenerate single-excitation 2-by-2 matrix subspace
(

H l=1
BO,00 − Ne

2 �
11 − E1 ∇

01
e · ∇

01

∇
10
e · ∇

10 H l=0
BO,11 − Ne

2 �
00 − E1

)

·
(

c01

c10

)

,

whose solution resembles the upper and lower polariton with
an energy or Rabi splitting of

�E =
√

δ̃2 + �̃2,

the generalized collective detuning

δ̃ = δ + L,

and the collective Rabi frequency

�̃ =
√

Ne2
ω − δ
√

2ω

∣

∣λ · r
{Rn}
01

∣

∣

r
{Rn}
01 =

〈

ϕ1
n=0({Rn})

∣

∣r̂
∣

∣ϕ1
n=1({Rn})

〉

e
.

The conserving fluctuations �
ll introduce a collective fre-

quency or diamagnetic shift

L =
[

√

Ne

λ
√

2ω

]2

(31)

that detunes electronic and photonic excitations and can be
interpreted to some extent as a collective renormalization of

the electronic excitation or, vice versa, the photonic energy.
Hereby r

{Rn}
01 depends parametrically on the nuclear config-

uration in terms of one individual molecular state but is
identical for all molecules. Assuming the molecular system
consists of different species or molecular configurations, one
can partially symmetrize those to recover a collective behavior
for each set of identical configurations [28,34]. The obtained
energy splitting fits the lowest order contribution, that is
n = 0, of the Tavis-Cummings model [27] up to the factor
(ω − δ)/ω with

�ETC
n=0 =

√

δ2 + (
√

Ne

√
2ωλ)2. (32)

It becomes evident that within such a strongly simplified
expansion, that is, a single photonic and electronic excitation,
the resulting solution will vary depending on the selected
coupling form, that is, whether we assume the length or
momentum picture. The only exception occurs exactly on res-
onance or for a completely converged expansion (see Sec. V).
In general, the coefficients c

i=1,±
01 (δ̃({Rn}), �̃({Rn})) depend

on the number of particles, not only via the Rabi splitting
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but also due to the collective detuning. Furthermore, their
behavior is essential close to conical intersections as they de-
termine the nonadiabatic nuclear-polariton coupling elements
〈ψ l

ν |∇Rj
|ψk

µ〉e discussed in Sec. IV A [see Eq. (30)]. Such
a detuning as shown in Eq. (31) caused by the collectivity
of a frequency shift was measured [79,80] and extensively
discussed in Ref. [81]. As a consequence of the collective
detuning, the resonance does no longer coincide with zero
detuning δ but appears for values δ = ω − �Ee = −L.

As a consequence of the quadratic coupling, the collec-
tive molecular participation or the coupling itself has to be
significant or otherwise the effect is negligible. However,
within strong coupling, as for example ωα ∼ 0.1,

√
Neλ ∼√

100 × 0.01 ∼ 0.1 we can see that L is on the order of �̃

and consequently non-negligible.
In combination with the remaining block involving the

counter-rotating contributions
(

H l=0
BO,00 − Ne

2 �
00 − E ∇

01
e · ∇

10

∇
10
e · ∇

01 H l=1
BO,11 − Ne

2 �
11 − E

)

·
(

c00

c11

)

,

the collective many-body (cavity-matter) energetic levels are
given by

E′
0 = Ē − 1

2

√

�̃2 + �̃2, (33)

E−
1 = Ē − 1

2

√

δ̃2 + �̃2,

E+
1 = Ē + 1

2

√

δ̃2 + �̃2,

E′
2 = Ē + 1

2

√

�̃2 + �̃2, (34)

where

Ē = E0 +
�Ee + ω

2
+ L,

�̃ = �Ee + ω + L.

Here, E−
1 and E+

1 correspond to lower and upper polaritons
with conserving excitations; that is, the states are superposi-
tions of excited matter or cavity but never both. In contrast,
E′

0 describes the renormalized ground state of the correlated
system while E′

2 is connected to the coupled state where
electronic and photonic systems are excited simultaneously.
If we drop the excitation nonconserving couplings, that is,
the coupling from no excitation at all to both subsystems are
excited ∇

01
e · ∇

10 and ∇
10
e · ∇

01, E′
0 and E′

2 do not change
beside energetic shifts via L. The single-photon polariton does
naturally include counter-rotating terms within this single
excitation subspace as presented above. Whether the single-
photon polariton approximation is reasonable depends on the
relevance of multiphoton processes. As long as we expect
them to be negligible, the single-photon polariton approxima-
tion is expected to capture the essential physics. This gives
a very intuitive criterion to judge the quality of this minimal
model. But, as will be discussed in Sec. V, this intuition can
sometimes be a little misleading as the quantitative agreement
depends on the interplay of photonic and electronic excita-
tions as well as the observables of choice.

Next, we consider what the single-photon polariton can
teach us about the alleged Rabi-phase transitions in coupled

matter-photon systems. From Eqs. (33) and (34), we can
observe

E−
1 − E′

0 > 0, ∀|�̃| < ∞.

That is, what was the ground state at λ = 0 is connected to the
ground state for all λ > 0. Only in the thermodynamic limit
of Ne → ∞, |�̃| → ∞ does the ground state become degen-
erate with the lower polariton. Performing the rotating-wave
approximation and solving the following Tavis-Cummings
model, namely shifting the first polariton by Eq. (32) will
result in a crossing of lower polariton and the nonsensitive
ground state, that is, E−

1 − E0 < 0; ∀λ > λc with a critical
coupling λc. This type of a Rabi phase transition is not
observed within the single-photon polariton. In contrast to the
out-of-equilibrium super-radiance transition which has been
experimentally verified, a phase transition in equilibrium is
still highly debated [33,43,82–84]. Also note that neglecting
the counter-rotating contributions is only valid for �̃ ≪ �̃.
Although the single-photon collectivity that is captured by the
single-photon polariton approximation is dominant, it only
corresponds to the linear contribution for collective effects.
Nonlinearities can be introduced by matter-photon interaction
where also the self-polarization can be substantial and/or
multiphoton participation, which can lead indeed to drastic
transitions as will be presented in Sec. V and has been
observed also in Refs. [24,54]. Multiphoton participations are
not represented in the above single-photon approach and a
nontrivial collectivity leading to a ground-state transition can
consequently not be ruled out from the above simplifications.
As, for example, presented in Refs. [33,43,83,84], the phase
transition does drastically depend on the interplay between
self-polarization, bilinear coupling, and Coulomb interaction.
The following section will show that these different factors
call into doubt the reliability of few-level approximations.
An extended discussion of this question, including an accu-
rate investigation of the electron-photon coupled system by
high-level renormalization-group techniques, is currently in
progress [85].

V. NUMERICAL DETAILS

Finally, after we have simplified the original nucleus-
electron-photon problem by the explicit and then single-
photon polariton approximation, we want to investigate the
reliability of these approximations. We will do so by con-
sidering a real-space system that we then approximate by a
different number of basis functions for the photonic and elec-
tronic subspaces. To keep the numerical calculation tractable,
we will focus on the polaritonic subsystem and freeze the
nuclear coordinates. By assumption, it is only the electronic
subsystem that is directly affected by the coupling to the
photons and the nuclei merely feel the presence of the pho-
tonic modes as a change in the potential-energy surfaces. We
therefore investigate the accuracy of the different levels of
approximation in terms of the polaritonic observables and
wave functions only. Before we do so, we want to give a brief
recapitulation of the general explicit polariton approximation
and its numerical implementation. This workflow can be
straightforwardly extended beyond the explicit polariton to
the full Born-Huang expansion of Eqs. (24) and (25).
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A. Computational scheme for the explicit polariton

The derived equations incorporate the photonic degrees
of freedom for equilibrium QED calculations in a consistent
way into the common Born-Oppenheimer quantum chemistry
approximation. The additional computational effort remains
limited as the photonic subspace can be represented as bare
excitations of electronic ϕn(r, {Rn}) and nuclear χµ

ν (Rn) wave
functions. Within, for example, configuration-interaction or
coupled-cluster techniques [78], the excitations are part of
the minimization procedure of the fermionic equation anyway
and can be used directly within the minimization procedure as
schematically presented in Fig. 1. The computational work-
flow of the explicit polariton approximation then becomes the
following:

In the first instance (1), we have to clarify how many modes
with corresponding frequency ωα are essential to describe the
field-matter interaction. Commonly a single mode is assumed,
but there are situations where more are relevant [10]. This
can be approached by, for example, comparison of cavity
or nanostructure and matter spectral functions. It determines
which modes and frequencies are essential as well as the
nature of matter excitations, that is, dominantly nuclear or
electronic excitations.

In instance (2), we use the insight from step (1) to calculate
or select the necessary set of electronic states for a sufficient
domain of parametric nuclear positions {Rn}. The selected set
of electronic states does not have to be a set of eigenstates
of the electronic problem but it will render the following step
simpler.

Next, in step (3), those bare electronic states are mixed by
Eqs. (27) or (29) into coupled electron-photon states (polari-
tons). As discussed before, due to the structural similarity to
Floquet theory, small adjustments in existing implementations
can lead to efficient solutions of this step with marginal
additional effort.

Finally, we solve the nuclear component (28) in step (4) on
the polaritonic energy surfaces, potentially including nonadi-
abatic coupling elements from electronic, photonic, or mixed
excitations [see the full Born-Huang expansion, Eq. (19)].

This procedure has to be iterated until self-consistency is
reached. Higher excitations are typically stronger delocalized,
which is more likely to appear with photonic interaction. The
ensemble of parametric nuclear values {Rn} in the polaritonic
subspace has to be potentially adjusted. Beyond the long-
wavelength approximation, this would also take place in the
photonic subspace.

Alternatively for step (3), the coupled-cluster technique or
any other modern quantum-chemistry scheme to deal with
electron correlations could be directly applied to a polari-
tonic Slater determinant in Born Oppenheimer approxima-
tion �̃0({Rn}, r, q) ≈ ψ0

0 (r, {Rn})�0(q, {R}) with a possible
cluster excitation operator for electronic and photonic system

T̂c = exp

[

∑

n

T̂ (n) +
∑

m

P̂ (m)

]

,

P̂ (m) =
∑

α1,...,αm

cα1,...,αm
â†

α1
...â†

αm
.

FIG. 1. Computational scheme for the explicit polariton solution
as discussed in Sec. V A. Here Hp is the photonic subspace, Hs

is the electronic subspace, and Hn is the nuclear subspace. Step
(1) is a purely conceptional selection of energetic domains, (2)
corresponds to the very common process of solving the electronic
many-body problem with parametric nuclear dependence, while (3)
represents the essential and computationally novel step. Solving
the polaritonic step (3) can, for example, be efficiently done with
slight adjustments of available Floquet implementations. Step (4)
corresponds to the familiar nuclear solution with potentially novel
and adjusted nonadiabatic couplings as discussed.

Recently, together with others, we presented how an ef-
ficient implementation of the QED ground-state correction
can be accomplished by means of quantum-electrodynamical
density-functional theory within the optimized effective po-
tential (OEP) approach [24]. There, the Kohn-Sham sys-
tem is factorizing a photonic and electronic system, which
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accounts for the classical shift of the harmonic oscillator basis.
The remaining quantum nature of the photonic orbitals is
contributed by an effective potential which can be derived
from perturbative corrections �

(1)
iσ,α to the Kohn-Sham orbitals

φiσ [24]. Those corrections carry a single photon and are
the solution to a Sternheimer response equation; that is,
they incorporate the effect of the response of the system to
photonic fluctuations. We can identify a structural similarity
of polaritonic associated states ψ l

ν (r, {Rn}) and perturbative
orbital corrections. This is especially prominent in the mode
occupation of Sec. III C.

B. Numerical benchmarks

Since the accuracy of the nuclear Born-Oppenheimer ap-
proximation is well known, we focus here on the polaritonic
contribution (3) to gather additional physical insight for the
presented approach; that is, we skip the final step in Fig. 1.
Additionally, (3) is the step that connects first-principles
quantum-chemical to quantum-optical model systems and we
will see how a reduced set of electronic states affects the qual-
itative and quantitative behavior. An efficient implementation
of the explicit polariton can start from Eq. (29). To allow for
an exact reference, that is, distill the effect of photonic interac-
tion, we solve the electronic system by exact diagonalization
and use the unperturbed states in Eq. (29). The coefficient
matrices cν

nl relate a set of bare electronic states ϕn(r) with
n ∈ {0, 1, . . . , nmax} to mode excitations l ∈ {0, 1, . . . , lmax}.
The full space resolved polaritonic eigenfunctions ψν (r) =
{ψ0

ν (r), ψ1
ν (r), ψ2

ν (r), . . . , ψ lmax
ν (r)} are represented in the

limited set of bare electronic eigenfunctions ϕn(r). The re-
sulting eigenstates represent the electronic as well as photonic
contribution for each polariton eigenstate ν. For example, the
ground-state density of the correlated electron-photon system
is given by

nλ>0
ν=0(r) =

nmax
∑

n,n′=0

∫

dr2dr3 . . . drNe
ϕ∗

n (r, {Rn})

× ϕn′ (r, {Rn})
lmax
∑

l=0

cν=0
ln cν=0

n′l .

The density is an important observable in quantum chemistry
that allows for intuitive interpretations and gives information,
for instance, on the nature of chemical bonding [86]. The
change of the real-space resolved density in the correlated
matter-photon system can be helpful in interpreting the effect
of the emergence of polaritonic states. Such changes do also
directly affect the nonadiabatic coupling elements and can
prove useful to get a more detailed understanding of the
influence of cavity photons on specific chemical processes, as,
for example, transition states, solvation energies, and involved
processes within energy transfer. A further observable of
quantum-chemical interest is the energy difference between
ground and first excited state �E0→1 as those energies present
the surfaces on which the nuclear wave packets move predom-
inantly. On the other hand, of quantum-optical interest is, for
example, the energy difference between first and third excited
correlated states �E1→3 which represents the Rabi splitting
in our numerical example for weak coupling of Sec. V C. The

cavity mode occupation 〈â†â〉 as presented in Sec. III C is an
additional observable of interest. It is important to note that
except for the density all the shown observables are integrated
quantities. It is usually much more involved to accurately cap-
ture nonintegrated (space-resolved) quantities than integrated
quantities. This will become clear in the numerical example
discussed in Sec. V C. So the accuracy of the approximation
strongly depends on the quantity that is considered and simple
models, while reliable for certain quantities, are less so for
other observables.

For computational convenience, we map the coefficient
matrix on a vector

cν
nl → cν

m, m = nlmax + l

to recast the explicit polariton into a diagonalizable matrix
equation.

C. Two-dimensional GaAs quantum ring

Now we will investigate in detail the different possible
levels of approximations. By this, we mean that we con-
sider the numerical convergence with respect to the elec-
tronic n ∈ {0, 1, . . . , nmax} and the photonic subspace l ∈
{0, 1, . . . , lmax}. The computational demand in a truncated
subspace is significantly lower than an exact diagonalization
in the full electron-photon space while reaching a high level
of accuracy up to strong coupling. This is a consequence of
the fact that the electronic eigenstates are a well-suited basis
set for Eq. (29). It changes if the electron-photon correlation
extends into the ultrastrong coupling, where the electronic
structure is drastically distorted by the correlation. The limited
subset nλ≪1

max is then no longer sufficient to describe those
distortions and we have to extend our minimal set nλ≪1

max <

nλ∼1
max to describe the correlated system. This will clarify that a

few-level approximation is problematic by construction in the
(ultra)strong coupling domain. We investigate a model of a
GaAs quantum ring introduced in previous works [24,47,54].
Hereby, one electron is trapped in a two-dimensional Mexican
hat potential

Ĥen =
ξ1

2
(r̂ · r̂) + ξ2 exp

[

−
(r̂ · r̂)

ξ 2
3

]

with ξ1 = 0.7827, ξ2 = 17.70, and ξ3 = 0.997. We couple
this system to a single mode in resonance to the first exci-
tation ωα = Eλ=0

1 − Eλ=0
0 with polarization in the diagonal

direction λ = λ(ex + ey ). We then vary the effective coupling
strength. The electronic structure is solved on a 201 × 201
grid with spacing �x = 0.1 and derivatives approximated by
fourth-order finite differences. The photonic excitation space
is incorporated by 40 Fock number states for weak coupling
and 80 for ultrastrong coupling. For additional information,
we refer the reader to Ref. [24].

1. Weak-coupling solution

The exact solution has two limiting cases with respect to
the effective coupling. For a weak to strong coupling λ =
0.005, the system remains dominantly in its initial configura-
tion and avoids the self-polarization potential; therefore, the
density is elongated perpendicular to the polarization. This
can be illustratively seen in the exact solution, Fig. 2(a). While
the linear component of the photonic interaction ωq̂λ · R̂
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FIG. 2. Weak coupling. Photonic influence on the ground-state density �n(r) = nλ>0(r) − nλ=0(r). Exact solution (a) with a 40-photon
Fock space. The two-level approximation is not capable of qualitatively reproducing the correct physical behavior, even for weak couplings.

favors density accumulation along the polarization, the
quadratic self-polarization potential (λ · R̂)2 diminishes it.
For the ground state, where the bilinear contribution be-
comes relevant in second-order perturbation theory, the cor-
related wave function is calculated in a potential with two
competing contributions. Their relation is sensitive to the
frequency and can consequentially change upon a change
of frequency. In this weak-coupling example, the quadratic
part dominates and is essential to describe the qualitative
behavior of the correlated ground state. Therefore, ignoring
the self-polarization (as done by construction in simple two-
level approximations) would lead to a qualitatively wrong
result. The photonic contribution is here a weak perturba-
tion of the system and can be very accurately recovered
by effective single excitation approximations, for example,
the exact-exchange optimized-effective potential approach in
the context of quantum-electrodynamical density-functional
theory presented in Ref. [24].

The polariton equation effectively mixes momenta of
different electronic eigenstates. As a consequence of the radial
symmetry, there are two degenerate first excited solutions, one
with dominant momentum parallel and one with dominant
momentum perpendicular to the field polarization. The
minimal basis set for electronic excitations has to include
both states; otherwise, the dominant contribution is not
properly captured. If we take this into account and therefore
extend the electronic excitations to two or more, already
the single-photon polariton lmax = 1 does recover the exact
energetic structure for weak coupling quite accurately as
presented in Table I.

Considering the first three rows in Table I which represent
the single-photon polariton approximation, we observe that
increasing the number of electronic states does not drastically
improve the accuracy at first glance. While the chemically
important ground-excited energy difference does slightly im-
prove, the polariton split and the mode occupation do not or
even become worse. If we allow for at most double photonic
occupation, this picture changes. Increasing the electronic set
does then indeed improve the energies. We can intuitively
understand this from the following argument. As long as we
allow just for a single-mode excitation, the probability of
reaching higher excited states is vanishingly small. Including
them nevertheless can then lead to inaccuracies since their
effect is not properly captured in the approximation. The
moment we allow our theoretical description to have two or

more mode excitations, we are able to reach higher excited
states and those states can now participate by contributing
energy and momentum to the correlated solution.

It is especially interesting that the mode occupation intro-
duced in Sec. III C accurately reproduces the one in length
form (ex-dE) as long as the the set of eigenstates include
just the first set (1S, 1P, . . . ). As we incorporate the next
order (2S, 2P, . . . ) nmax > 8, the mode occupation resembles
the one in momentum form (ex-pA). While other integrated
quantities change marginally, the mode occupation does not
only drastically depend on the number of excited states, it even
qualitatively changes its physical interpretation depending on
the selected electronic set.

If we compare in Fig. 2 the electronic density influence
of the smallest possible set, that is, an effective two-level
system with nmax = 2 shown in Fig. 2(b), to the exact solution

TABLE I. Energetic convergence of the explicit polariton equa-
tion (29) in relation to the exact solution for different photonic lmax

and electronic nmax sets of excitations expressed in atomic units.
The exact results [ex-(pA/dE)] are calculated using a number of 40
(weak coupling) or 80 (ultrastrong coupling) photonic Fock number
states. The different mode occupations emerge from the coupling-
form dependent interpretation of the modes (see Sec. III C) in length
(ex-dE) or momentum (ex-pA) form. For a detailed analysis and
interpretation, we refer the reader to the text.

lmax nmax λ �E0→1 �E1→3 Mode occupation

1 2 0.005 0.1224009 0.0054393 0.0001180
1 8 0.005 0.1223674 0.0054417 0.0001180
1 19 0.005 0.1223514 0.0054419 0.0001334
2 2 0.005 0.1223748 0.0054324 0.0001182
2 4 0.005 0.1223403 0.0054369 0.0001183
2 8 0.005 0.1223403 0.0054369 0.0001183
2 19 0.005 0.1222896 0.0054356 0.0001336
4 38 0.005 0.1222861 0.0054355 0.0001343
ex-pA 0.005 0.1222855 0.0054355 0.0001346
ex-dE 0.005 0.1222855 0.0054355 0.0001183
1 2 0.4 0.1193664 1.3520221 0.0190439
4 8 0.4 0.1910540 0.0610576 0.3205813
4 38 0.4 0.0116341 0.1332598 0.2719931
19 38 0.4 0.0059610 0.1084440 0.4976897
ex-pA 0.4 0.0020865 0.0992033 0.4571209
ex-dE 0.4 0.0020814 0.0990272 3.1917314
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FIG. 3. Weak coupling. Convergence of the lower polariton
density �nP− (r) = nP− (r) − nref

P− (r) with respect to the reference
solution with lmax = 4, nmax = 38. The two-level approximation (a)
can, as expected, qualitatively reproduce the results while we observe
deviations on the next perturbative order. Increasing the number of
electronic states (b) improves the quantitative results. Notice that the
counter-rotating component is included.

in Fig. 2(a), we find a qualitatively different behavior. The
single-photon polariton approximation with nmax = 2 cannot
even capture qualitatively the right physical behavior even for
weak couplings. Although the single-photon polariton does
only couple by bilinear components ∇ lk ∼ p̂, it partially in-
corporates the self-polarization by construction. As discussed
before in Sec. III B, an effective two-level system is not able
to properly capture the self-polarization and the same holds
true in momentum form. However, if we stay within the
single-photon polariton lmax = 1 but extend the electronic set
to ground state plus four excited levels nmax = 4, the solution
presented in Fig. 2(c) does switch into the correct orientation.
This puts evidences once more that self-polarization and A2

part cannot be interchanged or regarded as similar, especially
in a truncated electronic set. By further increasing the number
of mode and electronic excitations, we start to quantitatively
recover the exact result, as can be seen in Fig. 2(d). As a
result, it becomes evident that a strongly simplified electronic
structure is not sufficient to capture the physical behavior
of the correlated ground state. That the electronic set has
to be extended quite a bit is also caused by the distorted
elliptic shape of the exact solution, which is demanding to
recover from a superposition of angular momentum states.
Additionally, the set of states should be chosen consistently
with respect to the distribution of momenta. A selection which
is slightly larger but not balanced is in our experience not
beneficial.

As discussed in Sec. III A, an alternative approach to
address changes in the ground state is to parametrically incor-
porate parts of the interaction in the electronic equation. In this
way we avoid the expansion in bare electronic states by adjust-
ing the electronic equation and by introducing further para-
metric dimensions {qα}. Irrespective of whether one chooses
this cavity Born-Oppenheimer approach [47] or employs the
here-employed expansion in bare electronic eigenstates, the
common assumption of an electronic two-level system is not
sufficient to capture the observed effects.

The density of the lower polariton can be captured to a
sufficient amount by the two-level approximation as presented
in Fig. 3. The dominant contribution consists of superposition
of ground and first excited state and higher order corrections

such as secondary radiative interactions, namely the interac-
tion between 1P and 1D, correct the two-level approximation.

The moment we are interested in ground-state observables
such as the electronic density, essential for chemical reactions,
the electronic two-level approximation is not sufficient to
recover qualitatively the correct behavior. Beyond this, de-
pending on the observable of interest and coupling, typical
approximations can be sufficient but have to be questioned
on a case-by-case basis. Strongly simplified models become
problematic as the electronic structure becomes distorted by
the photonic environment. Those effects are enhanced in the
collective ensemble according to Appendix A.

2. Ultra-strong-coupling transition

For ultrastrong coupling λ = 0.4 and therefore λ/
√

2ω =
0.8, the photonic contribution is no longer a weak perturbation
but does drastically reshape the electronic landscape. This
is very illustrative in the effect on the electronic density as
presented in the exact solution Fig. 4(a). Here, �n(r) does no
longer avoid the direction of polarization but is distorted along
the polarization axis. The bilinear contribution is therefore
dominating over the self-polarization and we enter a regime
which we could assign to a super- or subradiant phase, as
briefly discussed in Sec. IV B.

Although the explicit polariton in its perturbative character
becomes problematic, by including a sufficient number of
excited states, which is still negligible in relation to the full
electronic Hilbert-space of 40 401 eigenstates, we can capture
the ultra-strong-coupling twist. Nevertheless, in this limit it
becomes cumbersome to recover the correct energies and
densities; therefore, the single-photon polariton is no longer
a satisfying approximation even for the integrated quantities.

The effective two-level approximation in Fig. 4(b) is
essentially scaling the weak coupling solution, deviating
strongly in the integrated observables. The energies and mode-
occupations in Table I deviate drastically from the exact
solution. Recovering the correct energies is now demanding
even for larger electronic sets and convergence is slow. In
particular, the qualitative behavior of the density demands the
next manifold of excited states, that is, 2S, 2P and so on,
therefore nmax ≫ 8. Furthermore, subsets in Figs. 4(c) and
4(d) elucidate that it can be even counterbeneficial for the
density while beneficial for integrated quantities to incorpo-
rate a large amount of photonic excitations without increasing
the electronic set. From Table I and Fig. 4, we conclude that
within the ultra-strong-coupling domain, a fully consistent
method is demanded that is able to incorporate a large part
of the electronic and photonic Hilbert space.

VI. SUMMARY AND CONCLUSION

We have presented a consistent and comprehensive deriva-
tion of approximation strategies for coupled nucleus-electron-
photon systems based on the Born-Huang expansion. We
highlighted the connection between length and momentum
form with the help of a shifted harmonic oscillator basis
for the photonic subsystem, provided an alternative perspec-
tive on the relevance of the self-polarization contribution,
discussed connections to Floquet theory, and deduced an ap-
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FIG. 4. Ultrastrong coupling. Photonic influence on the ground-state density �n(r) = nλ>0(r) − nλ=0(r). Exact solution (a) with a 80-
photon Fock space. The effective two-level approximation (b) lmax = 1, nmax = 2 is amplified by a factor 10 to compare with other solutions.

proach to solving the fully correlated nucleus-electron-photon
many-body system for finite and periodic systems. In partic-
ular, structural similarities to Floquet theory imply the pos-
sibility of efficient implementations with marginal effort and
furthermore ways to circumvent common problems of Floquet
theory. The resulting generalization of the Born-Oppenheimer
approximation to include photons we have named the explicit
polariton approximation. Since we could solve the photonic
subsystem analytically, the numerical costs of this approxi-
mation is comparable to common Born-Oppenheimer calcula-
tions. If we restrict the number of photonic excitations to one,
the resulting simplified equations we then called the single-
photon polariton, which we were able to solve analytically
when also the electronic excitations were restricted. This
allowed us to connect to well-known analytical models of
quantum optics and discuss implications, for example, for
super-radiant phase transitions. Finally, we investigated the
reliability of the explicit polariton approximation for weak
to strong, and ultrastrong coupling and for different numbers
of basis functions. We found that for integrated quantities
such as excitation energies for weak couplings already the
simple quantum-optical models were very accurate but mode
occupation and spatially resolved quantities such as the den-
sity needed more basis functions to be at least qualitatively
correct depending on the state of choice. On the other hand,
increasing the number of basis functions for the electronic
subsystem while keeping the photonic basis limited to one
excitation led in turn to worse results in certain integrated
quantities. A balanced extension of basis functions in elec-
tronic and photonic subspace is necessary. In the ultra-strong-
coupling regime, the single-photon polariton approximation,
also for the integrated quantities, was qualitatively wrong and
a consistently expanded basis is essential.

The presented results clearly highlight how first-principle
approaches based on nonrelativstic QED in the long-
wavelength limit and models of quantum optics and polari-
tonic chemistry are connected. They show how simple models
can be extended to converge to the first-principle results by
including in a consistent manner more basis functions going
beyond few-level approximations. To go beyond simplified
models or at least to be aware of the limitations of these
models becomes increasingly important in the context of
polaritonic chemistry and material sciences [8,24,28,36,59].
A theoretical description of strong matter-photon coupling to
influence material properties clearly needs a description of the

matter subsystem that can genuinely represent the physical
and chemical processes and a simplified few-level description
might not be enough to capture the complex processes that can
happen in real systems. The presented explicit polariton ap-
proximation together with similar generalizations of quantum-
chemical methods [28,47] as well as generalizations of many-
body methods such as density-functional theory for coupled
matter-photon systems [13,21,24] paves the way for such
studies from first principles [87]. Furthermore, the presented
unifying framework highlights the similarities between differ-
ent settings of strong light-matter interactions, for example,
due to plasmonic nanostructures or due to external driving,
and even between different fields of quantum physics, such as
quantum chemistry, quantum optics, and quantum topological
matter out of equilibrium. It therefore presents a platform
to exchange ideas and concepts between different areas of
research and can help in guiding the development of novel
quantum technologies.
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APPENDIX A: EFFECTIVE COUPLING STRENGTH

While the fundamental coupling strength as defined in
Eq. (2) is determined by the physical situations, for example,
the properties of the cavity or the surrounding environment,
one can still define an effective coupling strength that takes
into account collective effects. The simplest example to ratio-
nalize this is the Tavis-Cummings model [27,88] of many two-
level systems, as discussed in Sec. IV B. Here the rotating-
wave approximation allows us to calculate the Rabi splitting
(which is used as a measure of how strong the coupling is) by

�R ∼ |〈g|r̂|e〉|
√

2Nω

V

√

nph + 1,

where, as discussed, the cavity quantities (the effective vol-
ume V and the frequency ω), the dipole-transition element
between the ground |g〉 and the excited state |e〉 of the
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individual two-level systems, the number of two-level systems
N , and the number of involved photons nph come into play.
If we would like to express the resulting hybridization in
terms of an effective coupling of a single two-level system
to the mode, we therefore see that we have two collective
knobs to turn. The effective coupling can be increased, on
the one hand, in this simplified picture by increasing the
number of identical systems N inside the cavity, such that
we have an increase of

√
N . This perspective suggests that

the individual matter systems (here simplified to a two-level
system) are only affected by the fundamental coupling and
consequently do almost not change and the splitting is a
macroscopic quantity of the resulting collective (bright) state
of symmetrized superpositions. This behavior is recovered in
Sec. IV B, where the unperturbed photonic system (nph = 0)
couples to many identical matter systems.

On the other hand, we also see that we can increase the
effective coupling by the number of involved photons. In
the simplified Tavis-Cummings description, where the ground
state of the combined light-matter system is merely the tensor
product of the bare electronic and photonic ground state, this
is associated with higher excited states of the combined light-
matter system. However, as also seen in Sec. IV B beyond
the rotating-wave approximation, even within a simplified
model there is an increase of photon occupation in the ground
state, which in turn can lead to an increase of the effective
coupling strength. Physically this increase can be interpreted
as the backreaction of the perturbed photonic vacuum on the
matter subsystem, that is, the Lamb shift. The polarization of
the electromagnetic vacuum is stronger the more charges are
placed within it, for example, in the single-excitation subspace
the corresponding energy shift of the ground state goes as
Nλ2 (see Sec. IV B). The effective increase of the coupling
strength due to the vacuum polarization therefore can change
the matter subsystem locally and really affect the electronic
structure and the applied local few-level approximation. It
is this type of increase of the effective coupling strength
we consider if we scale the fundamental coupling for an
individual matter system.

Let us give a slightly more formal explanation of those two
effects. If we consider the Green’s function (propagator) of a
single electron or hole G(r1t1, r2t2) = −i〈T �̂(r1t1)�̂†(r2t2)〉
(see Refs. [16,17] for more details), then it is influenced by
the electronic environment via the Coulomb interaction (lon-
gitudinal photons) and the exchange of transversal photons.
The transversal photons themselves are described by their
mean-field contribution, that is, classical contribution, and
the photon propagator Dα (t1, t2) = −i〈T �q̂α (t1)�q̂α (t2)〉,
where �q̂α (t2) = q̂α (t2) − qα (t2) is the deviation from the
mean-field contribution. In turn, also the photon propagator
is influenced by the environment, which results in a set of
coupled Dyson equations of the form

G(1, 2) = G0(1, 2) +
∫

d3

∫

d4G0(1, 3)�(3, 4)G(4, 2),

D(t1, t2) = D0(t1, t2)+
∫

d3

∫

d4D0(t1, t3)�(3, 4)D(t4, t2),

where we use the abbreviation 1 ≡ (t1, r1) and correspond-
ingly for the integrals. Furthermore, �[G,D] is the matter

self-energy, �[G,D] is the polarization of the mode, and G0

and D0 are the bare, noninteracting Green’s functions of the
matter and the photons, respectively. In lowest order in the
matter subsystem, we can take the bare photon propagator and
get a behavior that resembles the first effect of the collective
interaction that goes as

√
N . On the other hand, the matter

polarization due to the bare matter propagator will change
the photonic subsystem and already in lowest order we find
that the photon number scales as

√
N as well, which will

lead to the second collective effect. This second effect will
be further influenced by the longitudinal Coulomb interaction
and if we go higher in perturbation theory we will get possible
nonlinear enhancements as well. If we look at microscopic
systems where the Coulomb interaction can be substantial,
this might enhance this local effect on the matter system even
further [84].

APPENDIX B: ANALYTIC COUPLING ELEMENTS

We start with the connection between the kinetic operator
including the sum of all individual electronic derivatives
Ne
∑

i=1
∇2

ri
and the dipole derivative ∇R

Ne
∑

i

∇2
ri

[

ψk
ν (r, {Rn})�k (q, {R})

]

.

The linear component

2
Ne
∑

i

[

∇ri
ψk

ν (r, {Rn})
]

·
[

∇ri
�k (q, {R})

]

can be simplified as

∂r
µ

j
f (R) = ∂Rµf (R)∂r

µ

j

(

Rµ
e − Rµ

n

)

= ∂Rµf (R),

where here µ = (1, 2, 3) are the three spatial dimensions, to

2[∇R�k (q, {R})] ·
Ne
∑

i

[

∇ri
ψk

ν (r, {Rn})
]

.

This procedure holds true for the nuclear coupling with the
adjustment

∂R
µ

j
f (R) = ∂Rµf (R)∂R

µ

j

(

Rµ
e − Rµ

n

)

= −Zj∂Rµf (R).

The same is true for the Laplacian acting on the photonic com-
ponent leading with

∑Ne

i=1 = Ne to derivatives with respect to
the electronic dipole.

The element
∫

dq�
∗
l (q, {R})∇R�k (q, {R})

=
∫

dq

Mp
∏

α′

φ∗
α′,l

(

qα′ − q0
α′

)

∇R

Mp
∏

α

φα,k

(

qα − q0
α

)

=
Mp
∑

α

∫

dqαφ∗
α,l

(

qα − q0
α

)

∇Rφα,k

(

qα − q0
α

)
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can now be directly calculated with the explicit form of the
HO eigenstates

φα,k (qα−q0
α ) =

ωα

π

1/4 1
√

2kk!
Hk

[√
ω
(

qα−q0
α

)]

× e− 1
2 ωα (qα−q0

α )2

,

Hk

[√
ω
(

qα − q0
α

)]

=
(−1)k

ω
k
2
α

e
ωα

(

qα−q0
α

)2 dk

dqk
α

e
−ωα

(

qα−q0
α

)2

and q0
α = − 1

ωα
λα · R. We could now either directly use this

explicit form of the HO eigenstates or the fact that we explic-
itly know the translation operator D̂(q0

α ) (22) such that

∇rj
φα,k

(

qα − q0
α

)

= ∇rj
D̂α

(

q0
α ({R})

)

φα,k (qα )

=
(

∇R exp
[

−iq0
α ({R})p̂α

])

φα,k (qα )

= i
λα

ωα

p̂αφα,k

(

qα − q0
α

)

and vice versa for

∇Rj
φα,k

(

qα − q0
α

)

= −iZj

λα

ωα

p̂αφα,k

(

qα − q0
α

)

.

With p̂α = +i
√

ωα

2 (â†
α − âα ) and

〈l|â† − â|k〉α =
[
√

kα + 1δα
l,k+1 −

√

kαδα
l,k−1

]

,

we reach the element presented in Eq. (12). This involves
momentum transfer between electronic states. The same pro-
cedure for the second-order term leads to (13), which in con-
trast does not transfer momentum, represents within the same
mode fluctuations and squeezings �

lk ∼ −p̂2 ∼ (â − â†)2 ∼
−(2â†â + 1) + â†â† + ââ, and couples different modes. The
second-order coupling term, which corresponds to the dia-
magnetic Â2 contribution, can be intuitively understood as

renormalization of the electronic or photonic excitation. For
instance, the collective energetic shift L in Sec. IV increases
with increasing photon number and introduces an additional
detuning between excitations. This nonlinearity is intuitively
elucidating the discussion of Appendix A.

APPENDIX C: IMPLICATIONS FOR PERIODIC SYSTEMS

The initial Hamiltonian (1) is not periodic for λ > 0 in the
electronic positions r since the photonic interaction breaks the
translational invariance in this direction. While this problem
is nontrivial to tackle directly for (1), it is trivial to extend the
polaritonic equation (27) to periodic boundary conditions. The
additional momentum ∇r in the linear coupling is well suited
for periodicity and the electronic surfaces Eν (Rn) just have
to be reinterpreted as polariton-Bloch quasiparticles based
on the pure electronic eigenfunctions ϕk(r, {Rn}). Here the
momentum k labels a continuous excitation from which the
electronic bands in a periodic material emerge via backfolding
into the first Brillouin zone.

We present a simple example to clarify the above state-
ment. Assume we want to solve the periodic Kohn-Sham
equations for a solid within a cavity and saturated spins. We
start with a Fourier ansatz for a single-particle orbital in the
excited state k

ϕk(r, {Rn}) =
nmax

xyz
∑

G

ck(G)ei(k+G)·r,

where G is the inverse lattice vector parametrically depend-
ing on the nuclear configuration and nmax

xyz the correspond-
ing cutoff. By construction of Kohn-Sham theory [89,90],
the single-particle orbitals are solved in a nonlinear self-
consistent procedure using an effective Kohn-Sham potential
that mimics the many-body electronic interactions. The set of
ϕk, εk({Rn}), ck(G) is then given as solution to

εk({Rn})ck(G) =
nmax

xyz
∑

G′

([

|k + G′|2

2
+ Vnn({Rn})

]

δGG′ + vKS (G − G′)

)

ck(G′).

This defines a continuous basis with eigenvalues related to momenta k which are now used as input in Eqs. (27) or (29). As the
simplest example, the single-photon polariton is given as

⎛

⎜

⎜

⎜

⎜

⎝

εk + ε0 − Ne

2 �
00 0 0 ∇

kk′ · ∇
10

0 εk + ε1 − Ne

2 �
11

∇
kk′ · ∇

01 0

0 ∇
k′k · ∇

10 εk′ + ε0 − Ne

2 �
00 0

∇
k′k · ∇

01 0 0 εk′ + ε1 − Ne

2 �
11

⎞

⎟

⎟

⎟

⎟

⎠

where the momenta are connected according to

∇
kk′ =

∑

G,G′

c∗
k(G)ck′ (G′)i(k′ + G′)δk+G,k′+G′ .

Within the long-wavelength approximation, that is, when
there is no momentum transfer between photon and electron,
the electronic momentum is a conserved quantity up to umk-
lapp scattering. Note that ∇

kk = 0 for real functions. As a

consequence, the quantized photonic nature splits the bare
electronic excited bands into polaritonic bands similar to the
interpretation of upper and lower polaritons as for a two-level
system in Sec. IV B.

Solving this equation will already imprint first quantum
features in periodic materials from a natural and simple
perspective. We want to emphasize here that this does not
describe the correct many-body excitations since each of
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the Kohn-Sham orbitals is coupled to the field instead of
many-body states as the Kohn-Sham Slater determinants.
The above procedure is consequently the one of an effective
single-particle one. Calculations for realistic two-dimensional
systems are under investigation [52]. The correct description
would involve coupling of many-body eigenstates correspond-
ing to poles of the spectral function [15].

APPENDIX D: TIME-DEPENDENT BORN-HUANG

EXPANSION

For a wave function with trivial equilibrium time depen-
dence

�i (Rn, r, q, t ) = e−iEi t�i (Rn, r, q),

that is, a time-independent Hamiltonian, the time argument
can be purely absorbed by the nuclear component. Therefore,
the only change appearing is the substitution in Eq. (19) of
Ei → i∂t and χ

µ

i (Rn) → χ
µ

i (Rn, t ). The nuclear wave packet
is then moving on frozen polaritonic surfaces. One possi-
ble realization is an instantaneous Frank-Condon transition
which does not change the eigenstates �i but results in a
superposition of different eigenstates as initial configuration
�(t ) =

∑

i ci (t )�i (t = 0) [15].
Nonequilibrium dynamics, where the Hamiltonian is time

dependent, is of vast interest in chemistry and physics. Proto-
typical examples are the coupling to an external laser field R̂ ·
E(t ) in the nuclear-electronic component or the displacements
of the photonic variable q̂α → q̂α − jα

ext (t ) by an external
current. Similar to the exact equilibrium reformulations (7)–
(11), we can derive the nonequilibrium analog with the Born-
Huang ansatz

�i (Rn, r, q, t ) =
∞
∑

µ,k=0

χ
µ

i (Rn, t )ψk
µ(r, {Rn}, t )�k (q, {R}, t ).

While the decomposition of the Hamiltonian is not affected by
this, the partial time-derivative results in three components:

∞
∑

l=0

(〈

ψ l
ν ({Rn}, t )

∣

∣〈�l ({R}, t )|
)

i∂t |�i (Rn, t )〉

= i∂tχ
ν
i (Rn, t )

+
∞
∑

µ,l=0

χ
µ

i (Rn, t )
〈

ψ l
ν ({Rn}, t )

∣

∣i∂t

∣

∣ψ l
µ({Rn}, t )

〉

e

+
∞
∑

µ,l,k=0

χ
µ

i (Rn, t )
〈

ψ l
ν ({Rn}, t )

∣

∣ψk
µ({Rn}, t )

〉

e

× 〈�l ({R}, t )|i∂t |�k ({R}, t )〉p. (D1)

There are different possibilities of how the time dependence
can be recast efficiently. One possible approach involves the
definition of a parametric phase eiεk ({R},t )

�k (q, {R}, t ) [91].
Since each subsystem is invariant under a global phase which
in this case depends parametrically on the trajectories, the
combined full wave function can be constructed with those
parametric phases. Notice that this gives rise to additional
nonadiabatic coupling elements ∇εk ({R}, t ).

Each time derivative of (D1) can be assigned to one Hamil-
tonian equation of each species, for example,

Ĥ
ph

BO ({R(t )}, t )�k (q, {R}, t ) = i∂t�k (q, {R}, t ). (D2)

The parametric dependence in the Hamiltonian and wave
functions is now time dependent; that is, the total dipole in
the photonic equation (D2), for example, involves parametric
classical trajectories R(t ) such that Eq. (D2) could be intu-
itively solved not just for a set of values R as before but for
a set of trajectories R(t ). Additionally, the nonadiabatic cou-
pling elements change over time. Within the long-wavelength
assumption, the photonic system can be solved analytically
(see Sec. II C).
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