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Abstract
We have derived a non-local, complex and ab initio absorption potential within the framework
of the relativistic Dirac scattering equations and applied it to elastic scattering of electrons and
positrons from the heavy noble gases. We have also developed a perturbation method based on
the Hulthén–Kato formalism that enables us to calculate the scattering phase shifts using only
real quantities and with a very significant reduction in computational effort. We have used this
method to calculate differential cross sections and spin asymmetry parameters for the elastic
scattering of electrons from krypton. In addition, we have applied this method to the elastic
scattering of positrons from krypton. Our results are compared to experimental measurements
and substantial improvements are obtained at intermediate energies with respect to calculations
either without an absorption potential or with a semi-empirical absorption potential.

1. Introduction

Below any inelastic scattering thresholds, the scattering of
electrons and positrons from atoms can be well represented
as a potential scattering problem by including the static and
polarization potentials as well as exchange in the case of
electrons. Above these thresholds, the existence of additional
exit channels for the incident particle flux means that simple
potential scattering models produce an overestimate of the
elastic cross sections. More elaborate theories, such as the
convergent close coupling (Bray and Stelbovics 1992) or
R-matrix (Burke et al 1971) methods, take into account
these additional channels but at the cost of a very substantial
increase in the complexity of the problem and computer
resources needed. A simple way to take into account the
open inelastic channels within the framework of a potential
scattering problem is to use a complex optical potential where
the imaginary part represents the absorption of flux into these
channels.

We have previously used such an approach with the
non-relativistic Schrödinger equation for the scattering of
electrons and positrons from neon and argon (Bartschat et al
1988, 1990). We have also included a semi-empirical model
absorption potential in the Dirac equations for the scattering of

electrons from krypton (McEachran and Stauffer 2003). It is
clear that the use of such potentials can substantially improve
the accuracy of these scattering calculations.

In this paper we develop a non-local, complex and
ab initio optical potential based on the Dirac equations which
can be improved systematically and then apply it to the
scattering of electrons and positrons from krypton. We have
previously shown (McEachran and Stauffer 1987) that the
use of the Dirac equations to represent both the target states
and the free electron can have a substantial effect on the
elastic scattering of electrons from the heavy noble gas xenon.
Moreover, calculations of spin-dependent quantities such as
the Sherman function reported in this paper are most readily
represented within the framework of the Dirac equations. As
well, the excited states of the heavy noble gases which are
required in this work can be best described in j -j coupling
which is the natural coupling scheme for the Dirac equations.
We note that differential cross sections for electron scattering
from xenon using this optical potential have already been
published (Cho et al 2006). We also derive a method of
solving the scattering equations using only real arithmetic by
treating the imaginary part of the potential as a perturbation
within the Hulthén–Kato formalism.
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2. Theory

The noble gases are characterized by having individual
electronic excitation cross sections which are small relative
to the elastic cross section, although the total excitation
cross section can be a significant fraction of the elastic one.
However, the ionization cross section is comparable in size
to the elastic cross section. Hence, to obtain an accurate
absorption potential we must take into account both open
excitation and ionization channels. For positronic excitation
and ionization the situation is the same except that there is an
additional inelastic channel, namely positronium formation.
This latter channel is not included in the present formulation
of our optical potential. In addition, the wavefunctions for
the heavier noble gases, particularly for the excited states, are
better described in j -j coupling than LS coupling. This is
most readily accomplished by using the Dirac Hamiltonian to
represent the target atom instead of the more usual Schrödinger
equation.

Our earlier work on optical potentials (Bartschat et al
1988, 1990) was based on the work of Bransden and Coleman
(1972). The present work differs in two substantial ways from
our earlier version: it is developed within the context of the
Dirac rather than the Schrödinger formalism and it includes
continuum states in the optical potential which our earlier work
did not.

We write the wavefunction of the atomic target as �ν

where ν = ν̄J1M1 is a set of quantum numbers which includes
the total angular momentum J1M1 while ν̄ represents any other
quantum numbers required to specify the target state. These
states include both bound excited states as well as continuum
states where one of the atomic electrons is free. These latter
wavefunctions are included to represent ionization channels.
We then introduce the uncoupled channel functions

�γ (r, σ, x̂, σx) = �ν(r, σ)�κ2m2(x̂, σx), (1)

where

�κ2m2(x̂, σx) =
(

χκ2m2(x̂, σx) 0
0 χ−κ2m2(x̂, σx)

)
(2)

represents the angular momentum and spin functions of the
incident particle (electron or positron) and γ is the set of
quantum numbers νκ2m2. Here the quantum number κ2

of the incident particle is related to its total and orbital
angular momentum quantum numbers j2 and l2 according to
κ2 = − l2 − 1 when j2 = l2 + 1

2 and κ2 = l2 when j2 = l2 − 1
2 .

The individual spin and angular momentum functions are given
by

χκm(r̂, σ) =
∑
M

C(l 1
2 j ;M,m − M)YlM(r̂)ψ 1

2 ,m−M(σ)

(3a)

χ−κm(r̂, σ) =
∑
M

C(l̄ 1
2 j ;M,m − M)Yl̄M(r̂)ψ 1

2 ,m−M(σ),

(3b)

where the Ylm are the usual spherical harmonics and the ψ 1
2 m

are the Pauli spinors. The orbital angular momentum quantum
numbers are related by l̄ = 2j − l. As will be discussed

in section 3, the bound atomic states will, in general, be
represented by linear combinations of the wavefunctions �ν .

However, it is the total angular momentum quantum
numbers JM of the projectile–atom system which are
separately conserved. We therefore construct the coupled
channel functions

�	(r, σ, x̂, σx) =
∑

γ

(γ | 	)�γ (r, σ, x̂, σx) (4)

which are eigenfunctions of the total angular momentum
of the scattering system with quantum numbers JM while
the quantum numbers represented by 	 are ν̄κ2JM . These
uncoupled and coupled representations are related by the
unitary transformation

(γ | 	′) = δ(ν̄J1κ2, ν̄
′J ′

1κ
′
2)C(J1j2J

′;M ′
1m

′
2M

′). (5)

We can then write the wavefunction of the target atom plus
incident projectile as

�(r, σ,x, σx) = A
∑

	

∫
�	(r, σ, x̂, σx)R	(x), (6)

where the radial function of the projectile is given by

R	(x) = 1

x

(
F	(x)

iG	(x)

)
(7)

and A is the antisymmetrization operator which is absent for
positron scattering. We note that the expansion (6) includes
both a summation over the bound atomic states as well as
an integration over the continuum states. The substitution of
equation (6) into the Dirac equations for the total system and
the subsequent projection onto the channel functions �	 yields
the following set of close coupling equations:

F ′
	(x) +

κ2

x
F	(x) − 1

h̄c
[ε̃ν + mc2]G	(x)

= − e2

h̄c

∑
	′

∫
V		′(x)G	′(x) − e2

h̄c

∑
	′

∫
W		′(x)G	′(x) (8a)

G′
	(x) − κ2

x
G	(x) +

1

h̄c
[ε̃ν − mc2]F	(x)

= +
e2

h̄c

∑
	′

∫
V		′(x)F	′(x) +

e2

h̄c

∑
	′

∫
W		′(x)F	′(x) (8b)

for the radial functions of the incident particle. Here the direct
potentials are

V		′(x) = ε
Z

x
δ(	, 	′) − εV̄		′(x) (9)

with

V̄		′(x) =
N∑

i=1

〈�	| 1

|ri − x| |�	′ 〉 (10)

and for electrons the exchange terms are given by

W		′(x)R	′(x) =
N∑

i=1

〈�	| 1

|ri − x| |(A − 1){�	′R	′ }〉.

(11)
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In equations (8a) and (b), the parameter ε̃ν = mγc2 is the total
relativistic energy of the incident particle while in equation (9),
the parameter ε is +1 for positrons and −1 for electrons.

We now divide our total scattering space into two parts
denoted by P and Q. In our treatment, the P space consists of
only the elastic scattering channel while the Q space includes
all of the excitation and ionization channels. For the Q space
channels we approximate equations (8a) and (b) by including
coupling only to the P space channels (the elastic channel
in our case which we now denote by 	 = 0) as well as by
ignoring exchange. This leads to the reduced equations for the
Q space:

F ′
	′(x) +

κ ′
2

x
F	′(x) − 1

h̄c
[ε̃ν ′ + mc2]G	′(x)

= − e2

h̄c
V	′0(x)G0(x) (12a)

G′
	′(x) − κ ′

2

x
G	′(x) +

1

h̄c
[ε̃ν ′ − mc2]F	′(x)

= +
e2

h̄c
V	′0(x)F0(x), (12b)

where the parameter ε̃ν ′ is the total relativistic energy of the
incident particle when the atom is in the state denoted by ν ′.
The experimental excitation energies of the atom were used
in the determination of these parameters. Equations (12a)
and (b) have a formal solution with outgoing wave boundary
conditions, namely(

F	′(x)

G	′(x)

)
= − 1

kν ′

∫ ∞

0
dr U	′0(r)G

Q
	′(x, r)

(
F0(r)

G0(r)

)
. (13)

Note that in equations (12a) and (b) we have also ignored
the diagonal potential V	′	′ . In principle, we could have
retained it but then we would need to have a numerical Green’s
function in place of the analytic one used here since the
potential is in numerical form. We found (Bartschat et al
1990) that retaining this diagonal potential made very little
difference in the case of neon. The particular form of the
Green’s function G

Q
	′(x, r) is given in matrix form by

G
Q
	 (x, r)ij =

{
ūi(kν ′x)vj (kν ′r) for r < x

vi(kν ′x)ūj (kν ′r) for r > x
(14)

for i, j = 1, 2 while

v1(kν ′x) = ĵ l′2
(kν ′x) ū1(kν ′x) = ĥl′2(kν ′x) (15a, b)

v2(kν ′x) = sκ ′
2

h̄ckν ′

ε̃ν ′ + mc2
ĵ
l
′
2
(kν ′x)

ū2(kν ′x) = sκ ′
2

h̄ckν ′

ε̃ν ′ + mc2
ĥ

l
′
2
(kν ′x)

(15c, d)

and

ĥl′2(kν ′x) = −n̂l′2(kν ′x) + iĵl′2(kν ′x) (16)

is the complex Riccati–Hankel function where ĵl and n̂l are
the usual real regular and irregular Riccati–Bessel and Riccati–
Neumann functions, respectively.

In equations (15a, b) and (15c, d), the parameter sκ ′
2

represents the sign of κ ′
2. The wavenumber kν ′ of the outgoing

particle is related to its total relativistic energy ε̃ν ′ according
to

k2
ν ′ = 1

h̄2c2

(
ε̃2
ν ′ − m2c4

) = m2c2

h̄2 (γ 2 − 1) (17)

while in general, the so-called reduced potentials U		′(x) are
defined by

U		′(x) = (1 + γ )me2

h̄2 V		′(x). (18)

We can now substitute the solutions (13) into the P
space equations. In these equations we neglect the exchange
interaction between the P and Q spaces while keeping the
direct interaction between these two spaces. This results in
equations which only involve the elastic scattering functions
F0 and G0. We can then convert these equations into the
following integral equations by using a Green’s function:(

F0(x)

G0(x)

)
=

(
v1(k0x)

v2(k0x)

)
+

1

k0

∫ x

0
dr GP

	0
(x, r)

×
[
U00(r)

(
F0(r)

G0(r)

)
−

(
WP (κ2; r)

WQ(κ2; r)

)
+ Uopt(r)

(
F0(r)

G0(r)

)]
,

(19)

where the optical potential is given by

Uopt(x)

(
F0(x)

G0(x)

)
= [

UR
opt(x) − iUI

opt(x)
] (

F0(x)

G0(x)

)
(20)

with

UR
opt(x)

(
F0(x)

G0(x)

)
= −

∑
	′

∫ ′ 1

kν

U0	′(x)

×
∫ ∞

0
dr U	′0(r)G

Q,R
	′ (x, r)

(
F0(r)

G0(r)

)
(21a)

and

UI
opt(x)

(
F0(x)

G0(x)

)
= +

∑
	′

∫ ′ 1

kν

U0	′(x)

×
∫ ∞

0
dr U	′0(r)G

Q,I
	′ (x, r)

(
F0(r)

G0(r)

)
(21b)

while the large and small components of the exchange terms,
WP (κ2; x) and WQ(κ2; x), are defined by

WP (κ2; x) = − (1 + γ )me2

h̄2 W00(x)F0(x) (22a)

WQ(κ2; x) = − (1 + γ )me2

h̄2 W00(x)G0(x), (22b)

where W00(x) is, in turn, defined in equation (11). The prime
on the summation sign in equations (21a) and (b) indicates
that the term 	 = 0 is to be omitted. Furthermore, the non-
local nature of our optical potential is apparent from these
equations. The Green’s function GP

	0
(x, r) in equation (19)

can be expressed in matrix form according to

GP
	 (x, r)ij = v̄i (k0x)vj (k0r) − vi(k0x)v̄j (k0r) (23)

with i, j = 1, 2 where the functions v1,2(k0x) are defined in
equations (15a, b) while the functions v̄1,2(k0x) are given by

v̄1(k0x) = n̂l2(k0x) v̄2(k0x) = sκ2

h̄ck0

ε̃0 + mc2
n̂l2

(k0x).

(24a, b)
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Furthermore, the Green’s functions G
Q,R
	′ (x, r) and G

Q,I
	′ (x, r)

in equations (21a) and (b) represent the real and
imaginary parts of the Green’s function G

Q
	′(x, r) defined in

equation (14).
The real part of the optical potential represents the

polarization of the target atom by the incident projectile while
the imaginary part allows flux to be absorbed into the open
inelastic channels. In practice, it is often found that the real
part of the optical potential does not adequately describe the
polarization interaction. This was the case, for example, in
the calculations of Bartschat et al (1988, 1990) for the elastic
scattering of electrons and positrons from neon and argon,
although, in neither case, did these authors include continuum
states in their optical potential. Under these circumstances,
it is better to replace the real part of the optical potential by
a local polarization potential Upol(x) and then just treat the
absorption processes in a non-local manner. Equation (19)
then reduces to(

F0(x)

G0(x)

)
=

(
v1(k0x)

v2(k0x)

)
+

1

k0

∫ x

0
dr GP

	0
(x, r)

×
[
U(r)

(
F0(r)

G0(r)

)
−

(
WP (κ2; r)

WQ(κ2; r)

)
− iU I

opt(r)

(
F0(r)

G0(r)

)]
,

(25)

where the local potential U(r) is given by the sum of the static
and local polarization potentials i.e.,

U(r) = U00(r) + Upol(r). (26)

We have followed this procedure here and have replaced the
real part of the optical potential by a local polarization potential
based upon a polarized-orbital method which included both
static and dynamic terms (McEachran and Stauffer, 1990).

2.1. Hulthén–Kato method

Since the optical potential (20) is both non-local and complex,
the numerical solution of equation (25) directly would not
only involve using complex arithmetic but, as with electron
exchange terms, it would involve an iterative process even
for positron scattering. In the case where just the electron
exchange terms are included, the number of iterations for small
values of |κ2| can vary from roughly ten to several hundreds,
depending upon the atom and incident particle energy, in order
to achieve convergence. As will be shown in section 4, we
include over forty excitation and ionization channels in our
summation over 	′ in equation (21b) for the imaginary part
of the optical potential. The evaluation of these terms for
every iteration would require extensive amounts of computer
time and possibly even require a ‘supercomputer’. In order
to simplify the calculation, without any significant loss of
accuracy (see table 1 in section 4), we have used the Hulthén–
Kato method to treat the imaginary absorption potential as
a perturbation which allows us to use real arithmetic for
the whole calculation and avoid the iterative process for the
imaginary part of the optical potential. Such calculations can
then be easily carried out on a modern PC.

The Hulthén–Kato identity has been applied to the Dirac
scattering equations by Darewych (1999) and Demesie et al

(2003) but with respect to local perturbation terms. The non-
local character of the imaginary part of our optical potential
gives rise to a somewhat more complicated formalism. We
shall therefore give a brief outline of the so-called Hulthén–
Kato identity as applied to a non-local potential here. The
development of this identity is much easier in terms of the
differential equations for the scattering wavefunction rather
than the corresponding integral equations (25).

We now let F̄0(x) and Ḡ0(x) be the solutions to
the differential equations corresponding to the integral
equations (25). Similarly, we let F0(x) and G0(x) be the
solutions of these same differential equations but with the
imaginary part of the optical potential omitted. Furthermore,
we shall assume that these solutions vanish at the origin and
have been normalized such that

F̄0(x)x→∞−→ sin

[
k0x − l2π

2
+ δ̄κ2(k0)

]
(27a)

Ḡ0(x)x→∞−→ ck0 cos

[
k0x − l2π

2
+ δ̄κ2(k0)

]
(27b)

and

F0(x)x→∞−→ sin

[
k0x − l2π

2
+ δκ2(k0)

]
(28a)

G0(x)x→∞−→ ck0 cos

[
k0x − l2π

2
+ δκ2(k0)

]
, (28b)

where ck0 is given by

ck0 = h̄ck0

ε̃0 + mc2
. (29)

We note that the wavefunctions F̄0(x) and Ḡ0(x) as well as
the phase shift δ̄κ2(k0) are complex quantities whereas the
wavefunctions F0(x) and G0(x) and the phase shift δκ2(k0) are
real.

The Hulthén–Kato identity can now be derived by starting
with the following identity

[F̄0G0 − F0Ḡ0]′ = F̄0G
′
0 + G0F̄

′
0 − F0Ḡ

′
0 − Ḡ0F

′
0, (30)

where the prime denotes differentiation with respect to x. The
right-hand side of equation (30) can be obtained directly from
the differential equations for the scattering wavefunctions.
Equation (30) is then integrated from zero to infinity and the
left-hand side of the resulting equation is evaluated using the
above boundary conditions. We then obtain the following
result

sin
[
δ̄κ2(k0) − δκ2(k0)

] = i
e2

h̄2c2

ε̃0 + mc2

k0
(1 + γ )

×
∑

	′

∫ ′ 1

kν ′

∫ ∞

0
dx

∫ ∞

0
dr{F0(x)V0	′(x)V	′0(r)

× [v1(kν ′x)v1(kν ′r)F̄0(r) + v1(kν ′x)v2(kν ′r)Ḡ0(r)]

+ G0(x)V0	′(x)V	′0(r)

× [v2(kν ′x)v1(kν ′r)F̄0(r) + v2(kν ′x)v2(kν ′r)Ḡ0(r)]}. (31)

In equation (31), the functions v1,2(kν ′x) are as defined in
equations (15a, c).

4
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So far, the result given in equation (31) is exact. If we
now assume that the optical potential terms act as only a small
perturbation upon the solutions of equations (25) then we can
replace the wavefunctions F̄0 and Ḡ0 by the wavefunctions
F0 and G0 respectively in equation (31). The phase shift
difference δ̄κ2(k0) − δκ2(k0) will then be pure imaginary i.e.,

δ̄κ2(k0) − δκ2(k0) = iγκ2(k0), (32)

where γκ2(k0) is real and positive. In atomic units, it then
follows that, to first order in perturbation theory, equation (31)
becomes

sinh
[
γκ2(k0)

] = (1 + γ )2

k0

{∑
	′

1

′[
I

(1)
	′ (k0) + I

(2)
	′ (k0)

]2

+
∑
	′

2

′ ∫ �ε

0
dε′[I (3)

	′ (ε′, k0) + I
(4)
	′ (ε′, k0)

]2
}
, (33)

where we have broken the sum into two parts, one over the
bound states of the Q space and the other over the continuum
states. Here the integrals I

(1)
	′ (k0), I

(2)
	′ (k0), I

(3)
	′ (ε′, k0) and

I
(4)
	′ (ε′, k0) are given by

I
(1)
	′ (k0) = k

− 1
2

ν ′

∫ ∞

0
dx V0	′(x)v1(kν ′x)F0(x) (34a)

I
(2)
	′ (k0) = k

− 1
2

ν ′

∫ ∞

0
dx V	′0(x)v2(kν ′x)G0(x) (34b)

I
(3)
	′ (ε′, k0) = k

− 1
2

ν ′

∫ ∞

0
dx V0	′(ε′, x)v1(kν ′x)F0(x) (34c)

and

I
(4)
	′ (ε′, k0) = k

− 1
2

ν ′

∫ ∞

0
dx V	′0(ε

′, x)v2(kν ′x)G0(x). (34d)

Furthermore, in equation (33), the upper integration limit �ε

is given by ε0 − εI where ε0 is the relativistic kinetic energy
of the incident electron and εI is the ionization energy of the
atomic state ν. In equation (33), the summation variables 	′

1
and 	′

2 are those subsets of the general summation/integration
variable 	′ which only include discrete quantum numbers.
Here the summation variable 	′

1 pertains to the discrete excited
states while 	′

2 pertains to the continuum states. Furthermore,
in the notations for the potentials in equations (34c) and (d),
we have explicitly indicated that they depend on the energy
of the free electron in the continuum states (see the following
section for more details).

Thus, if we calculate δκ2(k0) from the equations for F0(x)

and G0(x) and then determine γκ2(k) from equation (33),
we can obtain an approximation to the complex phase shift
δ̄κ2 = δκ2 + iγκ2 which not only involves calculations with real
quantities but also avoids the re-evaluation of the non-local
absorption potential in an iterative process. Note that in this
approximation, the addition of an imaginary potential does not
change the real part of the phase shift.

2.2. Scattering parameters

Once the complex phase shifts δ̄κ2 have been determined from
equation (32), the direct and spin-flip scattering amplitudes
can be calculated in terms of the T-matrix elements according
to

f (θ) = 1

k0

∞∑
l2=0

[
(l2 + 1)T +

l2
(k0) + l2T

−
l2

(k0)
]
Pl2(cos θ) (35a)

g(θ) = 1

k0

∞∑
l2=0

[
T −

l2
(k0) − T +

l2
(k0)

]
P 1

l2
(cos θ), (35b)

where Pl2(cos θ) and P 1
l2
(cos θ) are the Legendre and

associated Legendre polynomials and

T ±
l2

(k0) = 1

2i

[
exp

(
2iδ̄±

l2
(k0)

) − 1
]
. (36)

Here T +
l2

is the T-matrix element corresponding to spin-up(
κ2 < 0, j2 = l2 + 1

2

)
while T −

l2
corresponds to spin-down(

κ2 > 0, j2 = l2 − 1
2

)
. In terms of these scattering amplitudes,

the differential cross section σ(θ, φ) is given by

σ(θ, φ) = |f (θ)|2 + |g(θ)|2 (37)

while the Sherman function is given by

S(θ) = i
f (θ)g∗(θ) − f ∗(θ)g(θ)

|f (θ)|2 + |g(θ)|2 . (38)

The Sherman function is a measure of the amount of spin
polarization produced by scattering from an unpolarized
electron beam or equivalently the left–right scattering
asymmetry which occurs when the incident electron beam
is spin polarized perpendicular to the scattering plane.

In terms of the real and imaginary parts of the phase shifts,
the integrated elastic cross section is given by

σ el
(
k2

0

) = 2π

k2
0

∞∑
l2=0

{
(l2 + 1) exp

(−2γ +
l2

)[
cosh 2γ +

l2
− cos 2δ+

l2

]
+ l2 exp

(−2γ −
l2

)[
cosh 2γ −

l2
− cos 2δ−

l2

]}
(39)

while the total inelastic or absorption cross section is given by

σ inel
(
k2

0

) = π

k2
0

∞∑
l2=0

{
(l2 + 1)

[
1 − exp

(−4γ +
l2

)]
+ l2

[
1 − exp

(−4γ −
l2

)]}
. (40)

3. Calculations

We have used the GRASP92 program of Parpia et al (1996) to
calculate the target wavefunctions for the ground and excited
states of krypton. The ground state in the P space is represented
by a fully varied Dirac–Fock wavefunction with an outer
shell np̄2np4 where p̄ represents an electron with total angular
momentum j = 1

2 while p represents an electron with j = 3
2 .

We include in the Q space only those bound and
continuum states which have direct matrix elements with the
ground state. For the bound states, these have the configuration
either np̄np4m′κ ′ or np̄2np3m′κ ′ and are calculated in a
frozen-core approximation where all of the orbitals except
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the valence np̄ and np orbitals and the excited m′κ ′ orbital
are kept as calculated for the ground state. In the work
presented below, we have chosen κ ′ to correspond to s, p̄,
p, d̄, and d orbitals while m′ can be one of n, n + 1 or n + 2
respectively. In the case of the noble gases, different atomic
configurations can have the same total angular momentum J .
Thus, in order to take configuration interaction into account,
the atomic wavefunction for a particular excited state of a
noble gas is formed by taking a linear combination of the
corresponding wavefunctions �ακκ′′JM according to the J lK

coupling scheme:

�
(
n′κ ′[K]PJ

) =
∑
κκ ′′

cκκ ′′(n′κ ′JK)�ακκ′′ JM, (41)

where the expansion coefficients cκκ ′′(n′κ ′JK) are obtained
from the multi-configuration Dirac–Fock calculation. The
above summation is not over κ and κ ′′ separately, but
rather over those combinations of κ and κ ′′ for which the
corresponding values of j and j ′′ will combine to form J .
Here κ refers to the core p̄ or p electron which is excited
i.e., the various wavefunctions �ακκ′′JM in equation (41) will
involve both ‘cores’ while κ ′′ refers to the electron in an excited
state. One of the κ ′′ values will, of course, be κ ′.

With these wavefunctions we can now calculate the direct
and exchange potentials for the ground state as well as the
coupling potentials. The static potential of the ground state is

U00(x) = (1 + γ )me2

h̄2 V00(x)

= (1 + γ )me2

h̄2

[
ε
Z

x
− ε

∑
nκ

qnκ

1

x
y0(nκ, nκ; x)

]
(42)

while the exchange terms are given by

WP or Q(κ2; x) = (1 + γ )me2

h̄2

∑
nκ

{
−[εnκ + εν]�nκ2δ(κ, κ2)

+ e2
∑

ν

qnκ	j2νj

1

x
yν(nκ, κ2; x)

}
{Pnκ(x) or Qnκ(x)},

(43)

where
1

x
y0(nκ, nκ; x) =

∫ ∞

0
dr γ0(r, x)

[
P 2

nκ(r) + Q2
nκ(r)

]
(44)

while
1

x
yν(nκ, κ2; x) =

∫ ∞

0
dr γν(r, x)

× [Pnκ(r)F0(r) + Qnκ(r)G0(r)] (45)

and

�nκ2 =
∫ ∞

0
dr[Pnκ(r)F0(r) + Qnκ(x)G0(x)]. (46)

Here Pnκ and Qnκ are the large and small radial components
of the Dirac–Fock orbitals. The coupling potentials V	′0(x)

are given by

V	′0(x) = ε
∑
κκ ′′

cκκ ′′(n′κ ′J1K)

× (−1)j+j ′
2

[(2J1 + 1)(2J + 1)]
1
2

dJ1(κ
′
2, κ2)dJ1(κ

′′, κ)

× 1

x
yJ1(n

′κ ′′, nκ; x)δ(j2JM, JJ ′M ′), (47)

where the coefficients dJ1(κ
′, κ) are defined in terms of the

Clebsch–Gordan coefficients according to

dJ1(κ
′, κ) =

[
(2j ′ + 1)(2j + 1)

(2J1 + 1)

] 1
2

C
(
j ′jJ1; 1

2 ,− 1
2

)
(48)

and are also subject to the parity constraint that l′ + l −J1 must
be an even integer. Finally, in equation (43), the coefficient
	j2νj is defined by

	j2νj = 1

2ν + 1
C2

(
j2jν;−1

2
,

1

2

)
. (49)

We have also included Q space channels which represent
ionization. In this case, the m′κ ′ orbital is replaced by a
relativistic continuum wavefunction with quantum numbers
ε′κ ′ where ε′ is the relativistic kinetic energy. In the work
presented below, we have chosen κ ′ to correspond to s, p̄, p,
d̄, d, f̄, f, ḡ and g waves. We determine these wavefunctions
from the integral equations

Pε′κ ′(r) = vc
1(kr) − vc

1(kr)

k
Jκ(r) +

v̄c
1(kr)

k
Iκ(r) (50a)

Qε′κ ′(r) = vc
2(kr) − vc

2(kr)

k
Jκ(r) +

v̄c
2(kr)

k
Iκ(r), (50b)

which are expressed in terms of the regular and irregular
relativistic Coulomb functions. Here the integrals Iκ(r) and
Jκ(r) are defined according to

Iκ(r) =
∫ r

0
dr ′

× [
vc

1(kr ′)Uc(r
′)Pε′κ ′(r ′) + vc

2(kr ′)Uc(r
′)Qε′κ ′(r ′)

]
(51a)

and

Jκ(r) =
∫ r

0
dr ′

×[
v̄c

1(kr ′)Uc(r
′)Pε′κ ′(r ′) + v̄c

2(kr ′)Uc(r
′)Qε′κ ′(r ′)

]
. (51b)

In equations (50a) and (b), the potential Uc(r) is related to the
static potential of the ion core Vc(r) according to

Uc(r) = (1 + γ )me2

h̄2 Vc(r), (52)

where the potential Vc(r) is given by

Vc(r) = −Z − 1

r

+
∑
nκ

qnκ

1

r
y0(nκ, nκ; r) +

1

r
y0(m

′p̄,m′p̄; r) (53a)

when a p̄ electron is ionized or by

Vc(r) = − Z − 1

r
+

∑
nκ

qnκ

1

r
y0(nκ, nκ; r)

+
3

r
y0(m

′p,m′p; r) − 4	j2j

1

r
y2(m

′p,m′p; r) (53b)

when a p electron is ionized. Here m′ represents the
principle quantum number of the incomplete subshell while
the summation over nκ is over all the remaining complete
subshells. Furthermore, the coefficient 	j2j is given by
equation (49) with j = 3

2 . We note that the exchange terms
in equations (50a) and (b) for the continuum wavefunctions

6
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Table 1. A comparison of the imaginary part of the phase shift (γκ2 ) calculated exactly and by the Hulthén–Kato method. Also included are
the corresponding values of the excitation cross section (σ ex).

30 eV 50 eV 60 eV 100 eV

κ2 H–K Exact H–K Exact H–K Exact H–K Exact

−1 0.028 856 0.028 971 0.022 758 0.022 960 0.016 130 0.016 253 0.002 220 0.002 176
−2 0.012 644 0.011 979 0.021 017 0.021 315 0.021 824 0.022 235 0.015 341 0.015 550

1 0.011 757 0.011 202 0.020 186 0.020 471 0.021 363 0.021 740 0.015 801 0.016 052
−3 0.012 504 0.012 994 0.017 865 0.018 460 0.018 374 0.018 951 0.016 641 0.017 136

2 0.012 370 0.012 853 0.017 677 0.018 269 0.018 209 0.018 795 0.016 598 0.017 097
−4 0.022 247 0.022 703 0.020 797 0.021 118 0.019 659 0.019 896 0.014 983 0.015 056

3 0.022 293 0.022 742 0.020 800 0.021 121 0.019 656 0.019 892 0.014 980 0.015 053
−5 0.021 942 0.022 079 0.022 346 0.022 540 0.020 735 0.020 918 0.015 862 0.015 964

4 0.021 953 0.022 086 0.022 354 0.022 545 0.020 740 0.020 922 0.015 863 0.015 965
−6 0.015 717 0.015 751 0.020 544 0.020 625 0.019 675 0.019 764 0.014 521 0.014 591

5 0.015 719 0.015 752 0.020 547 0.020 627 0.019 677 0.019 765 0.014 521 0.014 592
−7 0.009 964 0.009 972 0.017 277 0.017 307 0.017 607 0.017 646 0.014 113 0.014 156

6 0.009 965 0.009 972 0.017 278 0.017 307 0.017 608 0.017 646 0.014 114 0.014 156
−8 0.005 915 0.005 916 0.013 569 0.013 579 0.014 818 0.014 833 0.013 570 0.013 594

7 0.005 915 0.005 916 0.013 569 0.013 579 0.014 819 0.014 833 0.013 571 0.013 594

σ ex
(
k2

0

)
5.708 46 5.737 57 6.608 80 6.638 77 6.442 54 6.467 21 5.359 46 5.370 18

have been omitted. Furthermore, the normalization of the
continuum wavefunctions Pε′κ ′(r) and Qε′κ ′(r) is such that∫ ∞

0
dr[Pεκ ′(r)Pε′κ ′(r) + Qεκ ′(r)Qε′κ ′(r)] = δ(ε − ε′). (54)

For the continuum states, it is not necessary to consider
configuration interaction and the coupling potentials simply
become

V	′0(ε
′, x) = ε

(−1)j+j ′
2

[(2J1 + 1)(2J + 1)]
1
2

dJ1(κ
′
2, κ2)dJ1(κ

′, κ)

× 1

x
yJ1(ε

′κ ′, nκ; x)δ(j2JM, JJ ′M ′). (55)

Equation (31) for the imaginary part of the phase shift
includes an energy integration over the continuum waves. We
have replaced this integration by a Gauss–Legendre quadrature
and thus we need to calculate the Coulomb waves for energies
specified by the quadrature points.

4. Results

In terms of the intermediate coupling scheme, we have
included the following 26 excited states of krypton in our
absorption potential, namely, n′s[1/2]o

1, n′s[3/2]o
1, n

′p̄[1/2]0,

n′p̄[3/2]2, n′p[1/2]0, n′p[3/2]2, n′p[5/2]2, n′d̄[1/2]o
1,

n′d̄[3/2]o
1, n′d̄[5/2]o

3, n′d[3/2]o
1, n

′d[5/2]o
3 and n′d[7/2]o

2 with
n′ being given by 5 and 6 for s, p̄ and p states and by 4 and 5
for the d̄ and d states. Note that the parity condition attached
to the coefficient defined in equation (48) requires J1 to be
even for states of even parity and odd for states of odd parity
in order to have a nonzero direct coupling potential V	′0. In
addition, the absorption potential contained the continuum
states corresponding to the 13 states listed above but with n′

above being replaced by ε′ plus 12 more states corresponding
to f̄, f, ḡ and g continuum waves. With the inclusion of these
excited and continuum states, the total inelastic cross section
converged to approximately 3 to 4 significant figures. In the
case of the continuum states four Gaussian integration points
were found to be sufficient.

As was mentioned in section 2 the real part of the optical
potential was replaced with our polarized-orbital polarization
potential. In particular, this potential contained the usual
polarization multipoles from ν = 0 to 7 as well as dynamic
distortion terms for ν = 0 to 6 and is same polarization
potential as used by McEachran and Stauffer (2003) in their
previous work on krypton.

In table 1 we compare the scattering phase shifts
calculated directly from equation (25) with those obtained
using the Hulthén–Kato approximation when the 26 discrete
excitation channels are included in the absorption potential.
We see that the relative error is generally less than 1% but
can go as high as 5%. However, the absolute error in the
splitting between the spin-up and spin-down phase shifts is
much less than the error in the phase shifts themselves. This
is particularly important in obtaining accurate values for the
spin-flip amplitude and spin-dependent parameters such as the
spin asymmetry. The errors decrease as the energy increases
and as the angular momentum increases. The last line of
the table gives the total excitation cross section as calculated
from our phase shifts for −30 � κ2 � 29. Here the relative
error is of the order of 0.5% which is an indication of the
error in the scattering parameters which occurs from the use
of the Hulthén–Kato approximation. In the determination of
the excitation cross section, we used the experimental rather
than the theoretical energy differences.

In figure 1 we show our results for the differential cross
section for the elastic scattering of electrons from krypton
at 20, 30, 50 and 100 eV calculated both with and without
the imaginary absorption potential UI

opt. These are compared
with the experimental measurements of Cho et al (2004),
Danjo (1988) and Srivastava et al (1981). Similar calculations
using a semi-empirical absorption potential were published in
McEachran and Stauffer (2003) and Cho et al (2004).

As expected, the inclusion of an absorption potential
reduces the cross section over much of the range of scattering
angles, though it does not alter substantially the overall shape
of the cross section, and brings it into much better agreement

7
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Figure 1. Differential cross sections for the elastic scattering of electrons from krypton at 20, 30, 50 and 100 eV: solid curve, present results
including absorption; dashed curve, present results with no absorption. Experimental results: open squares, Cho et al (2004); open circles,
Danjo (1988); filled squares, Srivastava et al (1981).

Figure 2. Spin asymmetry for the scattering of spin-polarized electrons from krypton at 50, 60, 65 and 100 eV: solid curve, presents results
including absorption; dotted curve, presents results with no absorption, dashed curve, results including semi-empirical absorption, Went
et al 2002. Experimental results: open triangles, Beerlage et al (1981); open circles, Schackert (1968); closed squares, Went et al (2002).

with the experimental results. This is particularly important
at intermediate angles where, without absorption, our results
are considerably larger than experimental measurements. In
general, our ab initio results are an improvement over the
previous calculations using the semi-empirical absorption
potential. This is particularly true in the backward direction at
30 eV where the semi-empirical absorption potential yielded
results which were approximately a factor of 3 too low.

However, at 100 eV the advantage is not so obvious and may
indicate the need to include ionization from inner shells in our
Q space.

In figure 2 we show our results for the spin asymmetry
parameter for the elastic scattering of spin-polarized electrons
from krypton atoms which are compared with the experimental
results of Beerlage et al (1981), Schackert (1968) and Went
et al (2002). Beerlage et al and Schackert measured the spin

8
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Figure 3. Differential cross sections for the elastic scattering of positrons from krypton at 20 and 60 eV: solid curve, presents results
including absorption; dashed curve, presents results with no absorption. Experimental results: open squares, Kauppila et al (1996).

polarization of an initially unpolarized electron beam after
scattering while Went et al used a spin-polarized incident
beam and measured the left–right scattering asymmetry. As
noted above, the asymmetry parameter measured by these
two methods are identical for elastic scattering. Since this
parameter varies rapidly for angles near the minima in the
differential cross section and the greatest differences among
the three approximations as well as with the experimental
measurements occur in these regions, we have convoluted our
theoretical results with the angular resolution (6.5◦) of the
experiment of Went et al (2002). The effect of the absorption
potential is appreciable only in these regions as well. At
other angles, there is much better agreement with experiment
for all the theoretical results. Given the variation among the
experimental measurements at 50 and 100 eV it is difficult to
assess the accuracy of our various approximations from the
experimental data for this parameter. However, at 50 eV our
Sherman function determined with the ab initio absorption
potential is in much better agreement with experiment at large
scattering angles than either our calculation without absorption
or with a semi-empirical absorption potential.

Results for the differential cross sections for elastic
scattering of positrons from krypton are shown in figure 3 at
20 and 60 eV. We compare our calculations with and without
absorption with the experimental measurements of Kauppila
et al (1996). Most striking is the change in shape of our
cross sections when absorption is included in the calculations.
This causes the minimum in the cross sections around 20◦ to
disappear completely, in agreement with the measurements,
especially at 20 eV. While the range of scattering angles is
limited in the measurements of Kauppila et al (1996) the
disappearance of the minimum at energies above the excitation
thresholds is a consistent pattern in all the noble gases. On
the other hand, measurements below any inelastic thresholds
do show this minimum in agreement with our low energy
calculations without absorption (Kauppila et al 1996). Thus
the inclusion of absorption is vital to obtain the correct shape
of the differential cross sections for positron scattering.

5. Conclusions

We have presented our theoretical method, based upon the
Dirac equations, for the calculation of an ab initio non-local
optical potential which accounts for the open inelastic channels
for elastic scattering of electrons and positrons from atomic
systems at energies above the inelastic thresholds. The real
part of this potential represents the polarization of the atomic
target during scattering and is calculated by our polarized-
orbital method. The imaginary part represents the loss of
incident flux into the open inelastic channels and this potential
is the main focus of the present work. Besides having no
empirical parameters, this method is capable of systematic
improvement by including additional states in the Q-space.
We have also developed a perturbative approach based on the
Hulthén–Kato formalism for solving the scattering equations
which does not require the use of complex arithmetic.

This paper also contains detailed formula for scattering
from the heavy noble gases and presents results for the elastic
scattering of electrons and positrons from krypton atoms
at intermediate energies. Our results are compared with
experimental measurements for the differential cross section
for both electron and positron scattering as well as the spin
asymmetry (Sherman) function for electron scattering. The
inclusion of the imaginary (absorption) part of the potential
reduces the peaks in the differential cross section for electron
scattering and results in much improved agreement with
experimental data at intermediate and large scattering angles.
For positron scattering, the absorption potential substantially
changes the shape of the differential cross section in agreement
with the pattern of behaviour noted in the experimental
measurements. The advantage of using an optical potential
for calculating the Sherman function are less obvious due in
part to the amount of scatter among the various measurements.
Our previously published results for electron scattering from
xenon (Cho et al 2006) provide further evidence for these
conclusions.
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Thus we have established the need to include absorption
in order to obtain accurate values for the differential
cross sections for both electron and positron scattering at
intermediate energies and provided an effective, parameter-
free method for carrying out these calculations within a
potential scattering model. Since this method is based on
the Dirac equations it is particularly well suited for scattering
from heavy atomic systems such as krypton and xenon.
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