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■ Abstract Considerable recent progress has been made in the field of ab initio pro-
tein structure prediction, as witnessed by the third Critical Assessment of Structure
Prediction (CASP3). In spite of this progress, much work remains, for the field has yet
to produce consistently reliable ab initio structure prediction protocols. In this work,
we review the features of current ab initio protocols in an attempt to highlight the
foundations of recent progress in the field and suggest promising directions for future
work.

CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
REDUCED COMPLEXITY MODELS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Lattice Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Discrete State Off-Lattice Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Narrowing the Search with Local Structure Prediction. . . . . . . . . . . . . . . . . . . . . 176

SCORING FUNCTIONS FOR REDUCED COMPLEXITY MODELS. . . . . . . . . . 177
Solvation-Based Scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Pair Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Sequence Independent Terms/Secondary Structure Arrangement. . . . . . . . . . . . . 179
The Use of Multiple Sequence Alignments in Tertiary Prediction. . . . . . . . . . . . . 180
High-Resolution Structure Prediction—Prospects for Refinement. . . . . . . . . . . . . 181

THE ROSETTA METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
RELATIONSHIP TO PROTEIN FOLDING?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
APPLICATIONS OF AB INITIO STRUCTURE PREDICTION. . . . . . . . . . . . . . . 183

Genome Annotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Homology Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Structures from Limited Constraint Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

1056-8700/01/0610-0173$14.00 173

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

01
.3

0:
17

3-
18

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

O
R

N
E

L
L

 U
N

IV
 M

E
D

IC
A

L
 C

O
L

L
E

G
E

 o
n 

03
/2

4/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: GDL

March 24, 2001 12:13 Annual Reviews AR128-08

174 BONNEAU ¥ BAKER

INTRODUCTION

The goal of ab initio structure prediction is simple: Given a protein’s amino acid
sequence predict the structure of its native state. It is generally assumed that a
protein sequence folds to a native conformation or ensemble of conformations that
is at or near the global free-energy minimum. Thus, the problem of finding native-
like conformations for a given sequence can be decomposed into two subproblems:
(a) developing an accurate potential and (b) developing an efficient protocol for
searching the resultant energy landscape.

To date, the most successful methods for structure prediction have been homo-
logy-based comparative modeling and fold recognition (58). When homologous
or weakly homologous sequences of known structure are not available, the most
successful structure prediction methods have been those that predict secondary
structure and local structure motifs; these methods have been available for some
time (12, 40, 43, 46, 74). This review focuses on current methods for predicting
tertiary structure in the absence of homology to a known structure and discusses
these local prediction methods only in the context of tertiary structure prediction.

Many of the methods today that predict protein structure use information from
the protein data bank (PDB). This information can be found in the parameters
of knowledge-based scoring functions, the training sets of machine learning ap-
proaches, and the coordinate libraries of methods that use fragments or templates
from the PDB. In order to test the performance of any one of these approaches, one
must carefully remove sequences that are homologous to proteins in the test set
from all databases used by the method in question. Any errors or oversights made
at this stage could lead to overestimates of success. For these reasons, the Critical
Assessment of Structure Prediction (CASP), a biannual, community-wide blind
test of prediction methods, was conceived and implemented (4, 6, 27). Three such
tests have occurred and the fourth was undertaken this summer (i.e., 2000) (20, 39).
Throughout this review, our assessment of the performance of various methods is
influenced by the results of these community-wide tests, especially CASP3 (58).
CASP1 and CASP2 showed that in spite of some success reported in the literature,
little success was seen for proteins of the size and type being solved by structural
biologists (50). The consensus after these first two experiments was that the ab
initio structure prediction problem would most probably be solved too late to be
applied to any real biological problems (20, 50). CASP3 showed some reversal of
this consensus. Several methods made good predictions in the ab initio category,
and some ab initio methods outperformed fold recognition methods for certain
proteins in the fold recognition category (61, 63, 64).

In spite of recent progress, many issues must still be resolved if a consistently
reliable ab initio prediction scheme is to be developed. No one method performs
consistently across all classes of proteins (most methods perform worse on all-
beta proteins), and all methods examined seem to fail totally on sequences longer
than 150 residues in length (the longest contiguous blind predictions to date are
∼100 residues in length). In addition, the successful prediction methods, as judged
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by performance at CASP3 and by performance reported in the literature, show a
large diversity in their formulation. Our goal here is to review the common fea-
tures of these recent methods in order to highlight current challenges and future
possibilities for the field of ab initio structure prediction.

The most natural starting point for simulating protein folding is standard molec-
ular dynamics (MD) simulation (numerically integrating Newton’s equations of
motion for the polypeptide chain) using a physically reasonable potential function.
This approach has a long history and is still popular, as illustrated perhaps most
dramatically by IBM’s Blue Gene project, which will apparently be devoted, at
least in part, to such an endeavor. There are several rather obvious problems that
have limited the success of such approaches thus far. First, MD is computationally
expensive—with explicit representation of sufficient water molecules to minimally
solvate the folding chain, a nanosecond MD simulation of a 100-residue protein
takes∼400 hours on a current single processor. Advances in simulation strategy
and increases in available computer power have considerably extended simulation
times; for example, Kollman and coworkers carried out a microsecond simula-
tion of a 36-residue peptide using a considerable amount of supercomputer time.
However, simulating the folding of a 100-residue protein for the typical∼1 second
required for a single folding transition requires more than six orders of magnitude
more computing time. The second, and perhaps more serious, class of problems
associated with MD are the inadequacies in current potential functions for macro-
molecules in water. Although important progress has been made, there is still a
lack of consensus as to the best computationally tractable yet physically realistic
model for water (a number of quite different models for water, both polarizable
and nonpolarizable, have been used in current simulation methods), and some un-
certainty exists as to the values of the parameters used in molecular mechanics
potentials (partial atomic charges, Lennard-Jones well depths and radii). Accurate
representation of electrostatics is also a considerable challenge given the high de-
gree of polarizability of water, the large difference in the dielectric properties of
the solvent and the protein, and the uncertainties in the magnitude and location of
atomic partial charges. Because the free energy of a protein represents a delicate
balance of large and opposing contributions, these problems significantly reduce
the likelihood that the native state will be found at the global free-energy mini-
mum using current potentials (2). The best current use of MD methods may be in
refining and discriminating among models produced by lower-resolution methods
(28a, 49).

REDUCED COMPLEXITY MODELS

To overcome the sampling problems mentioned above, most methods for fold
prediction to date have involved some significant complexity reduction. Methods
for reducing protein structure to discrete low-complexity models can be divided
into two major classes: lattice and off-lattice models.
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Lattice Models

Lattice models have a long history in the modeling of polymers due to their analyt-
ical and computational simplicity (22). The evaluation of energies on a lattice can
be achieved quite efficiently (integer math can be made quite fast), and methods
involving exhaustive searches of the available conformational space become fea-
sible (30, 35, 85). However, lattice methods have a somewhat restricted ability
to represent subtle geometric considerations (strand twist, secondary structure
propensities, and packings) and can reproduce the backbone with accuracies no
greater than approximately half the lattice spacing (73). The most common sys-
tematic error observed for a variety of lattice models is their inability to reproduce
helices, and most lattice models exhibit various degrees of secondary structure
bias (70). Given the importance of regular secondary structure in proteins, this is
clearly a problem. Recent successful tests, however, have shown that the compu-
tational advantages of lattice models may outweigh the problems associated with
their systematic biases (30, 47, 48, 73).

Discrete State Off-Lattice Models

Most off-lattice reduced complexity models fix all side chain degrees of freedom
and all bond lengths. The most common practice is to limit the side chain to a
single rotamer, or further to the Cβ, or to one or more centroids plus backbone
atoms (82, 87). Discrete state models of the protein backbone usually fix all side
chain degrees of freedom and limit the backbone to specific Phi/Psi pairs: Models
containing from 4 to 32 Phi/Psi states representing various strand, helix, and loop
conformations have been described in the literature (70). Properly optimized six-
state models (i.e., models that account for local features observed in proteins such
as strands, helices, and canonical loops) can reproduce native contacts, preserve
secondary structure, and fit the overall coordinates of the native state as well as
18-state lattice models that do not account for such protein-specific information
(70).

Narrowing the Search with Local Structure Prediction

Local structures excised from proteins can fold independent of the full protein,
demonstrating that strong local structural biases can exist for short sequence seg-
ments (8, 15, 54, 60). Several examples of excised fragments having little observ-
able structure also exist, indicating that the strength and multiplicity of these
local biases are highly sequence dependent. Some sequences are observed to fold to
different conformations depending on their global sequence context, again demon-
strating the possible multiplicity of local structure biases (17, 42). Bystroff et al
developed a method that recognizes sequence motifs (ISITES) with strong ten-
dencies to adopt a single local conformation that was used to make some good
local structure predictions in CASP2 (12–14, 29). Despite the ambiguities in
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local sequence-structure relationships, secondary structure prediction methods
have been steadily improving (63, 64).

The above mentioned experiments and observations suggest that any method at-
tempting to use local sequence-structure biases to guide complexity reductions will
have to be adaptive to the strength and to the multiplicity of different sequence-
structure patterns. The majority of methods proving successful at CASP3 used
secondary structure predictions in one way or another. In one case, predicted sec-
ondary structure elements were fit to the results of initial lattice-based exhaustive
enumeration, thus erasing any possible secondary structure bias in the initial lat-
tice model prior to all-atom refinement (1). The Rosetta method used secondary
structure to bias the selection of fragments of known structure from the PDB. Yet
another paradigm is, given a secondary structure string, to reduce the problem
of predicting the tertiary fold to the problem of how to assemble rigid secondary
structure elements (24). Additional methods that determine local structure biases
independent of secondary structure prediction algorithms (by calculating these
biases during the folding simulation) have also been described (86).

There is likely to be an upper limit on the accuracy of secondary structure
prediction methods owing to their failure to account for nonlocal interactions.
The best secondary structure prediction algorithms have three-state accuracies of
76%–78%, and any ab initio method must account for this error rate to make
consistently successful predictions (40, 74). A milestone for ab initio structure
prediction, which takes such interactions into account, will be the production of
models with secondary structure predicted more accurately than is possible with
traditional secondary structure methods.

SCORING FUNCTIONS FOR REDUCED
COMPLEXITY MODELS

Once a model for representing the protein is chosen that sufficiently reduces the
complexity of the conformational search, a scoring or energy function that works
in the chosen low-complexity space must be developed. The energy function must
adequately represent the forces responsible for protein structure: solvation, strand
hydrogen bonding, etc. Given that most low-complexity models do not explicitly
represent all atoms and can reproduce even the native state backbone with only
limited accuracy, any energy function designed to work in the low-complexity
regime must represent these forces in a manner robust to such systematic error
(the systematic limitations of the model). Last, these functions must be computa-
tionally efficient, for during the initial stages of any conformational search, huge
numbers of energy evaluations are necessary. Because of the shortcomings of
molecular mechanics-based potentials, and the considerations above, many meth-
ods developed in the last ten years utilize scoring functions derived from the protein
database that in essence favor arrangements of residues frequently found in known
protein structures and disfavor rarely seen arrangements.
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Solvation-Based Scores

It has been long thought that the hydrophobic effect is the principal driving force
behind protein folding (3). Many diverse methods for judging the fitness of con-
formations based on solvation or hydrophobic packing exist, and the debate over
the proper functional form for representing solvation effects represents an open
question of considerable importance and interest (69). A common approach is
to classify sites in proteins according to their degree of solvent exposure (either
through the surface area or the number of nearby residues) (11) and to determine
the frequencies of occurrence of the amino acids in each type of site. The energy or
score of an amino acid at a site is then taken to be the logarithm of the amino acid’s
frequency of occurrence at that type of site. This type of residue-environment term
favors placement of hydrophobic amino acids at buried positions and of hydrophilic
amino acids at exposed positions.

An additional commonly used class of functional forms consists of global mea-
sures of hydrophobic arrangement. One simple global quantity is a residue’s dis-
tance from the entire conformation’s center of mass, which can be used to calculate
quantities analogous to the hydrophobic radius of gyration. Bowie & Eisenberg
used this type of function, coined hydrophobic contrast, in combination with other
terms, including a surface area–based term, to fold small alpha-helical proteins
using an evolutionary algorithm (11). Huang et al used this type of function to
recognize native structures (1, 34). One problem with the above global functions
is that they assume that proteins are ideally spherical in shape when in actual-
ity native proteins exhibit a much larger range of shapes. A more flexible ap-
proach uses an ellipsoidal approximation of the shape of the hydrophobic core that
does not require a significant increase in computation and aids in the selection of
near-native conformations from decoy sets containing a high number of protein-
like yet incorrect compact conformations (9). The problem associated with these
functions is that they will inevitably exclude a small percentage of protein struc-
tures that deviate from their assumptions concerning shape and thus fail when a
protein is divided into small subdomains or contains large invaginations (1HQI
is a toroid). In spite of this potential downfall, they have demonstrated their
usefulness in several methods owing to their ability to recognize the majority of
small hydrophobic cores, their simplicity, and the speed with which they can be
computed.

Pair Interactions

Many low-resolution potential/scoring functions utilize an empirically derived pair
potential in place of or in addition to the residue-environment term described above.
The most common of these potentials are functions of the position of a single center
per residue (Cα, Cβ, or centroid/united atom center) and are thus quite computa-
tionally efficient; all-atom functions have also been used (77). Many variations of
pair terms have been developed, with the two main branches of methods being
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distance dependent and contact based (57, 84). Like the residue-environment term
mentioned above, these scoring functions are sometimes justified by positing that
the arrangements of residues in proteins follow a Boltzman distribution: E(x)=
kT ln P(x), where x is a feature such as the occurrence of two residues separated
by a distance less than r. Alternatively, these scoring functions may be seen purely
as probability distribution functions (23, 83). In the former case, the optimization
may be viewed as a search for the lowest energy configurations; in the latter, a
search for the highest probability configurations. For most applications, there is
little practical difference between the two viewpoints. The issue becomes more
substantive, however, when such database-derived scoring functions are combined
with physics-based potentials, as will likely become increasingly useful over the
next several years.

Several problems are associated with statistically derived pair potentials. The
assumption that free energies can be represented by summing over component
interactions is not generally valid across all interactions present in proteins, and
thus, the basic functional form may not be adequate to represent the free energy of
a protein conformation (21, 53). The most significant problem with pair potentials
is that they are dominated by hydrophobic/polar partitioning, which gives rise to
anomalous effects such as a long-range repulsion between hydrophobic residues
(89). This can be corrected by conditioning the pair distributions on the environ-
ments of the two residues, which largely eliminates these undesired effects (82).
With the elimination of the otherwise overwhelming influence of hydrophobic par-
titioning, specific interactions such as electrostatic attraction between oppositely
charged residues dominate the pair scoring/energy functions, and hydrophobic
interactions make relatively modest contributions. The pair term, in this case, is
perhaps best viewed as the second term in a series expansion for the residue-residue
distributions in the database in which the residue-environment distributions are the
first term.

Some of the earliest comprehensive tests of the discriminatory power of these
pair potentials were done in the context of threading self-recognition (62). Later
work demonstrated that the self-recognition problem was not a sufficiently chal-
lenging test of scoring functions and focused on the performance of multiple pair-
wise energy functions on larger, more diverse sets of conformations (24, 38, 41, 68,
69). The performance of the various energy functions at recognizing native-like
structures in large ensembles of incorrect decoys is highly dependent on the meth-
ods used to create the decoy sets, highlighting the fact that an energy function that
works well in the context of one method will not necessarily work well given a
decoy set created using an orthogonal method.

Sequence Independent Terms/Secondary Structure
Arrangement

Many features of proteins, such as the association of beta strands into sheets, can be
described by sequence independent scoring functions. Several early approaches
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to folding all-beta proteins were protocols dominated by initial low-resolution
combinatorial searches of possible strand arrangements and were concerned only
with the probability of different strand arrangements (16, 18, 19, 72). These early
methods narrowed the conformational space by considering sequence specific ef-
fects only in the context of highly probable strand arrangements. Several of the
relatively successful methods at CASP3 incorporated secondary structure pack-
ing terms (51, 81). Ortiz et al used an explicit hydrogen bond term in combi-
nation with aβαβ and aββα chirality term to ensure protein-like secondary
structure formation. It cannot be expected that low-complexity lattice models pro-
duce the correct chirality or subtle higher-order effects such as strand twist, and
these rules sensibly correct for these expected shortcomings (65). The Rosetta
method used three terms that monitored strand-strand pairing, sheet forma-
tion, and helix-strand interactions to ensure protein-like secondary structure
arrangements.

The Use of Multiple Sequence Alignments
in Tertiary Prediction

The large number of homologous sequences often available for a protein family
represents a potentially rich source of information useful to ab initio structure
prediction methods. Correlated mutation analysis [contact prediction based on
covariance patterns in multiple sequence alignments (MSAs)] was used as part of
one relatively successful method at CASP3 (67). The accuracy of these covariance
methods is not great (63, 64); various methods, including the fitting of secondary
structure to initial constraints in order to obtain additional constraints, were used
to increase the robustness of ab initio protocols based on such information to
expected error levels (66). Previous methods have used MSAs to predict the burial
of sequence positions in the query sequence based on hydrophobicity and patterns
of variation (5, 7).

Another way to use MSAs is in the selection of low-resolution decoys by requir-
ing that all decoys be consistent with all sequences in the family. In one procedure,
the aligned sequences are mapped onto decoys one at a time and the energy of
each decoy averaged over all aligned sequences is computed (2). In another ap-
proach, simulations of multiple aligned homologs are coupled and carried out
simultaneously (45). In these two methods, the models with the lowest score are
selected as the best models. In a recent method for applying MSA information
to fold prediction, an independent simulation is carried out for each aligned se-
quence. Only after multiple simulations for each aligned sequence are completed
is the multiple sequence alignment information utilized by simultaneously clus-
tering all of the structures generated from the different aligned sequences. The
largest and most diverse cluster often contains the best model (9). In all above
described cases, significant improvements were seen in the ability of the predic-
tion methods to select good models using highly simplified representations of
proteins.
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High-Resolution Structure Prediction—Prospects
for Refinement

Reduced complexity approaches, as described above, cannot be expected to consis-
tently generate predictions with resolutions of better than 3– 7Å. Low-resolution
methods are perhaps best viewed as narrowing the possible conformations from an
exponentially large number to a number small enough that more computationally
expensive methods can be applied. High-resolution potentials must be improved
in order for significant progress to be made in the field of ab initio protein fold
prediction.

Some progress has been made in modeling two of the more difficult terms in
the potential—solvation and electrostatics—in the context of full atom models.
Because the transfer-free energies of small molecules from nonpolar solvents to
water are correlated with solvent-accessible surface area, solvation energies are
often described using surface area–based methods. Wesson & Eisenberg found
that the addition of a solvent-accessible surface area–based term, the parameters
for which were based on water-vapor partition experiments, stabilized molecular
dynamics trajectories (90). Promising results were also obtained by combining
a similar surface area–based empirical solvation term with molecular mechanics
and entropic terms (36). One problem with surface area–based methods is that
they do not resolve the considerable difference between the free energy of charges
buried just below the surface and charges buried deep within the protein core. The
generalized Born model remedies this problem by treating the nonpolar interactions
with a surface area–based term while using a generalization of the Born equation
to deal with the desolvation of charges and charge pairs in the protein interior
(37, 52, 88). This method has proven to be useful for modeling loops as described
above and is fast enough to be included in almost any discrimination or refinement
procedure (71). An alternative implicit solvation model that is able to partially
discriminate between native-like and incorrect decoys was developed by Lazaridis
& Karplus (48a).

From the above discussion it is apparent that most current energy/scoring func-
tions are based either on small-molecule parameterized functions with forms sug-
gested by physical chemistry or on protein database statistics. We believe that
progress will come from a combination of these two approaches.

THE ROSETTA METHOD

How can ab initio structure prediction methods produce reasonable models given
the inadequacies of current potential functions? One possible solution is to limit
the conformational space searched to that compatible with the local sequence-
structure propensities of the protein sequence. Such a procedure is consistent with
a view of the folding process in which local structure propensities influence the
conformations sampled by short sequence segments, and folding involves a search
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through these local conformations for a stable tertiary structure simultaneously
consistent with these local biases and with nonlocal constraints (compactness,
electrostatics, hydrophobic burial, etc.). Local biases are influenced by relatively
subtle interactions (side-chain/main-chain hydrogen bonding, side chain configu-
rational entropy losses, etc.) as witnessed by the debate over the origins of sec-
ondary structure propensities; current physical chemistry–based models do not
capture all of the subtleties. To circumvent this problem, the Rosetta procedure
makes the assumption that the distribution of configurations sampled by a peptide
segment are reasonably well-approximated by the distribution of configurations
observed in the protein database. Tertiary structures are generated using a Monte
Carlo search of the possible combinations of likely local structures, minimizing
a scoring function that accounts for nonlocal interactions such as compactness,
hydrophobic burial, specific pair interactions (disulfides and electrostatics), and
strand pairing (see Figure 1). With lists of 25 fragments per sequence position,
many subtly different versions of essentially similar local structures may be repre-
sented; thus, the number of states per position is effectively much lower than 25.
Optimization of nonlocal interactions within conformational space defined by the
fragment sets produces structures with buried hydrophobic residues, paired beta
strands, and other protein-like features that are, by construction, consistent with

Figure 1 Venn diagram illustrating the conceptual basis for Rosetta. Near-native structures are
labeled N.
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local sequence-structure biases. This method produced relatively good predictions
during CASP3 (81).

RELATIONSHIP TO PROTEIN FOLDING?

Do ab initio folding methods have any resemblance to how proteins actually fold?
It is interesting to note that low-resolution models have been surprisingly suc-

cessful in accounting for both protein folding rates and the distribution of structure
in the folding transition state from knowledge of the final folded state (1, 28, 59).
Because of the considerable conformational averaging that takes place before the
native state is reached (either when a protein folds in solution or during a folding
simulation), the level of complexity with which the interactions responsible for
folding must be represented may be relatively low until after the folding transi-
tion state. Thus, low-resolution models can provide reasonable results for the broad
outlines of the folding process (the rate, mechanism, and low-resolution structure),
whereas higher-resolution models are likely to be required for properties depend-
ing on the detailed structure of the native state such as stability and high-resolution
structure prediction.

APPLICATIONS OF AB INITIO STRUCTURE
PREDICTION

As structures are rapidly determined and novel folds become increasingly rare,
what are the likely applications of ab initio structure prediction methods? Three
promising areas are the annotation of open reading frames (ORFs) and genes with
unknown functions and structures, the elaboration and extension of homology-
based models, and the rapid generation of structural models from low-resolution
structural information.

Genome Annotation

Many factors reduce the ability of sequence homology searches to identify dis-
tant homologs (75). Domain insertions and extensions, circular permutations,
and the exchange of secondary structure elements have all been observed in
cases where structural and functional relationships were not clear based on se-
quence homology. In order to reliably interpret the flood of sequence currently
entering databases, we must have at our disposal methods that can deal with
these difficult cases as well as the clearer evolutionary relationships detectable
at the sequence level. One recently solved genome (Mycoplasma genitalium)
showed sequence homology to proteins of known function and/or structure for
38% of its proteins (76). ForSaccharomyces cerevisiae,∼1/3 of the ORFs in the
genome show homology to proteins of known structure (80). Annotation of ORFs
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lacking sequence homology to proteins of known function represents one of the
most promising potential uses for ab initio prediction. Current methods can make
reasonable predictions for small alpha and alpha-beta proteins; the Rosetta method
in particular has been successful in blind tests and extensive in house tests on this
class of proteins. Of the∼6000 ORFs in baker’s yeast,∼300 have at least 15%
of their residues predicted to be helical with a total length less than 110 residues
and no link to proteins of known structure (220 of these 300 also lack functional
annotation) (56). Models can also be produced for modular domains of up to∼150
residues that occur in sufficiently diverse sequence contexts for their boundaries
to be readily evident from multiple sequence alignments.

These low-resolution models can be analyzed using several different methods.
First, the structures may be compared against PDB using a structure-structure
comparison method such as Dali (31–33). Promising preliminary results have
been obtained with such an approach using models produced by Rosetta. Dali fre-
quently matches Rosetta models to protein structures related to the native structure
for the sequence. Second, the structures may be probed for the presence of sets of
residues in specified geometrical arrangements that are indicative of specific pro-
tein functions (25, 26). Third, the structures may be used to increase the reliability
of matches to sequence motif libraries such as PROSITE—Taylor’s and Thorn-
ton’s groups have shown that structural consistency can be used quite effectively
to filter through weak sequence matches to PROSITE patterns (44, 55).

Homology Modeling

Clearly important applications exist for homology modeling in whole genome
structure prediction. For example, Sanchez & Sali have constructed models auto-
matically for all ORFs inS. cerevisiae, showing significant homology to proteins
of known structure (80). Frequently, however, only a portion of the sequence being
modeled is represented in the template structure, and thus, homology models often
leave a significant fraction of the sequence not modeled (frequently large insertions
and N- and C-terminal flanking sequences). Ab initio methods are well-suited for
adding these missing regions to homology models, thereby producing much more
complete (to the extent the elaborations are accurate!) sets of models.

Structures from Limited Constraint Sets

The obvious drawback of current ab initio structure prediction methods is their rel-
atively low accuracy and reliability. Even limited amounts of experimental data on
the structure of a protein can remedy this considerably. For example, quite accurate
structures were produced by Rosetta in conjunction with NMR chemical shift data
(to enhance fragment selection) and sparse NMR constraints (10). Distance con-
straints from cross-linking, followed by mass spectrometry, could also be readily
incorporated into such an approach and could be obtained on a high-throughput
scale.

A
nn

u.
 R

ev
. B

io
ph

ys
. B

io
m

ol
. S

tr
uc

t. 
20

01
.3

0:
17

3-
18

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

O
R

N
E

L
L

 U
N

IV
 M

E
D

IC
A

L
 C

O
L

L
E

G
E

 o
n 

03
/2

4/
05

. F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: GDL

March 24, 2001 12:13 Annual Reviews AR128-08

AB INITIO PREDICTION 185

CONCLUSION

Ab initio protein folding has traditionally been an area of purely academic interest
characterized by relatively slow progress. There is hope that the next years will see
considerable improvements in ab initio structure prediction methods, and that this
will provide both considerable basic insight into folding and a valuable resource
for interpreting genome sequence information.

NOTE ADDED IN PROOF

The recent CASP4 structure prediction experiment showed a dramatic improve-
ment in ab initio structure prediction methods; in particular, the Rosetta method
produced reasonably correct large (∼100 residues) fragments for 16 of 22 domains
under 300 residues for which ab initio predictions were made.

Visit the Annual Reviews home page at www.AnnualReviews.org
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