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the hydrogen of an acid such as HF approaches the peripheral 
of the benzene ring along an axis tilted toward the ring axis as 
predicted by the properties of the Laplacian distribution, 1 to form 
a weak 1r complex. In this complex, the bond path from the proton 
flicks from a carbon atom to a C-C bond with essentially no 
change in energy. The transformation of the complex into the 
protonated intermediate involves the charge rearrangements de­
scribed above, and these are different from the pattern of charges 
found in the reactant molecules that determine the initial site of 
attack, and they involve much greater changes in the energy. 

Acknowledgment. Acknowledgment is made to the donors of 
the Petroleum Research Fund, administered by the American 
Chemical Society, for partial support of this research. 

Appendix 

Table AI summarizes the manner in which the substituents o-, 
NH2, OH, F, CH3, CN, and N02 perturb the atomic populations 
of the benzene ring. The optimized geometries and corresponding 
energies of the protonated intermediates and protonated benzene, 
determined with basis sets 3-21G, 4-31G, 6-31G, and 6-31G*, 
are tabulated in Tables Ali-A VI. 

Registry No. [PhH]W, 26812-57-7; [p-PhOH]H+, 53280-65-2; [m­

PhOH]W, 83608-47-3; [p-PhF]W, 57525-23-2; [m-PhF]W, 74309-
51-6; [p-PhCN]H+, 87176-59-8; [m-PhCN]H+, 87176-58-7; 
(CH3hCHCH(CH3)C+(CH3)CH(CH3)CH(CH3h, 120497-33-8; phe­

nol, 108-95-2; fluorobenzene, 462-06-6; benzene, 71-43-2; benzonitrile, 
100-47-0. 
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A detailed study of methods for generating the minimum energy path of a chemical reaction using ab initio electronic structure 
calculations is presented; the convergence with respect to step size of the geometry and energy along this path is studied 
with several algorithms. The investigations are extended to the calculation of chemical reaction rate coefficients by interfacing 
the POLYRATE code for variational transition-state theory and semiclassical tunneling calculations with a locally modified 
GAUSSIAN82 electronic structure package that now contains reaction path following capabilities at both the Hartree-Fock 
and perturbation theory levels. This combined package is used to study the kinetics of the abstraction reaction CH3 + H2 
-- CH4 + H, which is considered as a prototype organic reaction. We report calculations of reaction rates based on electronic 
structure theory and generalized transition-state theory, including a multidimensional tunneling correction, without performing 
an analytic fit to the potential surface. The calculation of dynamical processes directly from ab initio electronic structure 
input without the intermediary of a potential surface fit is called "direct dynamics", and this paper demonstrates the feasibility 
of this approach for bimolecular reactions. 

1. Introduction 
The prediction of rate constants by ab initio methods is limited 

by the computational effort of calculating and fitting reactive 
potential energy surfaces (PESs). The advances 1 made in the 
calculation of energy gradients and higher order derivatives of 
potential surfaces have, however, been an important factor in 
reducing this effort, in particular by allowing the potential to be 
calculated efficiently along a reaction path. This in turn raises 
the question of the accuracy with which the minimum energy path 
(MEP) for a reaction must be calculated in order to obtain a 
reaction path representation well-enough converged to calculate 
accurate thermal rate constants. Standard two-point and higher 
order methods for integrating differential equations and simple 
specialized methodologies have been tested in this context with 
regard to the step size taken along the reaction path, which must 
be balanced against computer time constraints.2-
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presented herein provides an extension of these investigations. 
Additional methods are tested, and we report a complete calcu­
lation of a bimolecular reaction rate based directly on an ab initio 
reaction path, its curvature, and a harmonic approximation to the 
potential orthogonal to it-without the intermediate step of fitting 
the potential energy surface. 

There are two important reasons for investigating sophisticated 
techniques for tracing the MEP. First, the equations for the 
minimum energy path may be governed by a "stiff" set of dif­
ferential equations for some chemical systems. Standard numerical 
techniques may fail when applied to stiff systems of differential 
equations, or they may require an extremely small step size; 
alternatively, one may apply numerical techniques especially 
designed for stiff systems. 5

•
6 Second, even when the equations 

(5) (a) Curtiss, C. F.; Hirschfelder, J. 0. Proc. Nat/. Acad. Sci. U.S.A. 
1952, 38, 235. (b) Butcher, J. Math. Computation 1965, 19, 408. (c) Davis, 
P. J.; Polonsky, I. In Handbook of Mathematical Functions; Abramowitz, M., 
Stegun, I. A., Eds.; National Bureau of Standards: Washington, DC, 1964; 
p 875. (d) Carnahan, B.; Luther, H. A.; Wilkes, J. 0. Applied Numerical 
Methods; Wiley: New York, 1969. (e) Gear, C. W. Numerical Initial Value 
Problems in Ordinary Differential Equations; Prentice-Hall: New Jersey, 
1971. (f) Miller, W. H.; George, T. F. J. Chern. Phys. 1972,56,5668. (g) 
Hildebrand, F. B. Introduction to Numerical Analysis, 2nd ed., McGraw-Hill: 
New York, 1974. (h) Burden, R. L.; Faires, J.D.; Reynolds, A. C. Numerical 
Analysis; Prindle, Weber, and Schmidt: Boston, 1978. (i) Shampine, L. F.; 
Gear, C. W. SIAM Rev. 1979, 21, I. U) Stoer, J.; Bulirsch, R.lntroduction 
to Numerical Analysis; Springer-Verlag: New York, 1980. (k) Gupta, G. 
K.; Sacks-Davis, R.; Tischer, P. E. Computing Surveys 1985,/7, 10. (I) Press, 
W. H.; Flannery, B. P.; Tevkolsky, S. A.; Vetterling, W. T. Numerical Re· 
cipies: The Art of Scientific Computing; Cambridge University Press: New 
York, 1986. (m) Strang, G. Introduction to Applied Mathematics; Welles· 
ley-Cambridge Press: Wellesley, MA, 1986. (n) Byrne, G. D.; Hindmarsh, 
A. C. J. Comput. Phys. 1987, 70, I. 
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are not stiff, one seeks the most efficient algorithm for calculating 
the MEP to reduce the numbers of gradient calculations required 
to achieve an accurate path for the particular application.4·7·8 If 
more sophisticated, more specialized, or higher order techniques 
permit a larger step, this will usually more than balance the greater 
amount of computational overhead required for the more complex 
methods; this in turn reduces the computer time required for a 
given level of electronic structure theory. An example of a more 
sophisticated approach7 has recently been applied to the isom­
erization of Si2H 2•

7
d 

Section 3 of this paper will illustrate the use of both stiffly stable 
techniques and high-order methods for the reaction 

CH3 + H 2 --+ CH4 + H (RI) 

and it will compare them to the lowest order, non-stiffly-stable 
Euler method, with and without reaction path stabilization. 

On the basis of these comparisons, we can assess the numerical 
reliability of the computed MEP for the chosen level of electronic 
structure theory, and in section 4, we illustrate the use of a reaction 
path and harmonic potential around it for a complete calculation 
of a bimolecular rate coefficient, including tunneling. This is 
accomplished by interfacing a standard electronic structure code, 
GAUSSIAN82,9 to the POLYRATE code 10 for variational transition­
state theory 11 and semiclassical tunneling 11 calculations. Dynamics 
calculations based directly on electronic structure energy and 
energy derivatives without the intermediary of a potential energy 
surface fit are called direct dynamics. The direct dynamical 
calculation of unimolecular rate coefficients was reported earlier 
by Gray et a!., Tachibana et al., and Colwell et al., 12 and the 
present article demonstrates the feasibility of direct dynamics 
calculations for bimolecular rate coefficients. Our calculations 
include all degrees of freedom of the six-atom system and include 
reaction path curvature effects in the tunneling calculations. 

2. Methods 

Once the conventional transition-state structure, i.e., saddle 
point, has been determined, a minimum energy path can be 
followed down to the reactants on one hand and to the products 
on the other, by one of several possible schemes. A convenient 
definition of the reaction path is the path of steepest descents in 
mass-weighted or mass-scaled coordinates; 13-15 this has been called 

(6) (a) Hull, T. E. In Information Processing 68: Proceedings of the 
International Federation for Information Processing Congress 1968; Morrell, 
A. J. H., Ed.; North-Holland: Amsterdam, 1969; p 40. (b) Dahlquist, G. 
Ibid.; p 183. (c) Gear, C. W.lbid.; p 187. (d) Krogh, F. T.lbid.; p 194. (e) 
Osborne, M. R. Ibid.; p 200. 

(7) (a) Page, M.; Mciver, J. W., Jr. J. Chern. Phys. 1988, 88, 15. (b) 
Profeta, S., Jr.; Unwalla, R. J.; Cartledge, F. K. J. Org. Chern. 1986,51, 1884. 
(c) Sprague, J. T.; Tai, J. C.; Yuh, Y.; Allinger, N. L. J. Comput. Chern. 1987, 
8, 581. (d) Koseki, S.; Gordon, M.S. J. Phys. Chern., in press. 

(8) (a) Ishida, K.; Morokuma, K.; Kormornicki, A. J. Chern. Phys. 1977, 
66,2153. (b) Schmidt, M. W.; Gordon, M.S.; Dupuis, M. J. Am. Chern. Soc. 
1985, 107, 2585. 

(9) Binkley, J. S.; Frisch, M.; Ragavachari, K.; DeFrees, D. J.; Schlegel, 
H. 8.; Whiteside, R.; Fluder, E.; Seeger, R.; Pople, J. A. GAUSSIAN82 program, 
Carnegie-Mellon University, 1983, unpublished. 

(10) Isaacson, A. D.; Truhlar, D. G.; Rai, S. N.; Steckler, R.; Hancock, 
G. C.; Garrett, B. C.; Redmon, M. J. Comput. Phys. Commun. 1987, 47, 91. 

(11) (a) Truhlar, D. G.; Isaacson, A. D.; Skodje, R. T.; Garrett, B. C. J. 
Phys. Chern. 1982, 86, 2252. (b) Truhlar, D. G.; Garrett, B. C. Annu. Rev. 
Phys. Chern. 1984, 35, 159. (c) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. 
C. In Theory of Chemical Reaction Dynamics; Baer, M., Ed.; CRC Press: 
Boca Raton, FL, 1985; p 65. (d) Truhlar, D. G.; Garrett, B. C. J. Chim. Phys. 
Phys.-Chim. Bioi. 1987, 84, 365. 

(12) Gray, S. K.; Miller, W. H.; Yamaguchi, Y.; Schaefer, H. F., III J. 
Chern. Phys. 1980, 73, 2733. Gray, S. K.; Miller, W. H.; Yamaguchi, Y.; 
Schaefer, H. F., III J. Am. Chern. Soc. 1981, 103, 1900. Tachibana, A.; 
Okazaki,!.; Koizumi, M.; Hori, K.; Yomabe, T. J. Am. Chern. Soc. 1985,107, 
1190. Colwell, S. M.; Handy, N.C. J. Chern. Phys. 1985, 82, 128. Colwell, 
S. M. Theor. Chim. Acta 1988, 74, 123. 

( 13) (a) Shavitt, I. University of Wisconsin Theoretical Chemistry Labo­
ratory Technical Report WIS-AEC-23, Madison, WI, 1959, unpublished. (b) 
Marcus, R. A. J. Chern. Phys. 1966, 45, 4493. (c) Marcus, R. A. J. Chern. 
Phys. 1968,49, 2610. (d) Truhlar, D. G.; Kupermann, A. J. Am. Chern. Soc. 
1971, 93, 1840. 

(14) (a) Fukui, K. In The World of Quantum Chemistry; Daudel, R., 
Pullman, B., Eds.; Reidel: Dordrecht, The Netherlands, 1974; p 113. (b) 
Fukui, K.; Kato, S.; Fujimoto, H. J. Am. Chern. Soc. 1975, 97, I. (c) Fukui, 
K. Ace. Chern. Res. 1981, 14, 36. 
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the intrinsic reaction coordinate (IRC), 14 and it is especially well 
suited to dynamics calculations based on reaction path poten­
tials.3·13·16·17 The differential equations defining the IRC have 
the following form in mass-weighted Cartesian coordinates x~: 

(ma/IJ.)112X"' = X3a-2 

(m 01 /IJ.) 112Ya = X3a-I 

a = 1, 2, ... , N 

Here, X", Y 01 , and Z"' are Cartesian coordinates of atom a, m01 

is the mass of atom a, 1J. is an arbitrary reduced mass, and V 
represents the potential energy. We will take reaction path, IRC, 
and MEP to be synonymous in this paper. 

The optimum choice of methodology to solve the IRC equations 
( 1) is dependent on both the accuracy required and the particular 
system under study. For example, for semiclassical dynamics 
calculations it is necessary to obtain an especially well-converged 
path.3·4·16·17 We will consider several possible algorithms, which 
are summarized below. The following notation will be used: the 
coordinate s measures distance along the MEP, and sn is the 
distance along the reaction path at point x., where Xn denotes a 
vector with components xisn). The origin of sis at the saddle 
point geometry. The unit vector in the opposite direction from 
the gradient of the potential at point x is called v(x). The nu­
merical derivative of v is 

The quantity sn- sn-1 is variously called the step size, os, or the 
stride. 

Since the gradient at the saddle point is zero, the MEP is 
initiated by making a small displacement in the direction of the 
imaginary normal mode. Within the harmonic approximation, 
the energy lowering, t::.E, for a given step, h, is approximately 

!::.£ = Y2kssh 2 

where kss is the negative force constant, and the step size h is 
chosen to produce a desired energy lowering, which was taken 
as 10-4Eh (where Eh = I hartree). 

GAUSSIAN82,9 modified locally to integrate eq 1 by various 
methods and to output geometries, energies, gradients, and 
Hessians at selected points along the MEP, was used to generate 
reaction paths for the abstraction reaction (R 1). 

Sections 2.1 and 2.2 list the methods to be considered here and 
present convenient abbreviations to refer to them. Section 2.3 
discusses the methods. 

2.1. One-Step Methods. A. Original Euler Single-Step 
Method (ES). 

Xn+l = Xn + OSV(Xn) (2) 

This method is equivalent to the fixed-stride Adams predictor of 
order 0,4 but it is sometimes called "first order~ in text books. The 
differences in terminology arise from the fact that "order" may 
be assigned in various ways, e.g., either as the number of points 
previous to the current one at which grid information is required 
or as the order of the error. The Euler method is of order zero 
in the former scheme, but the error in the solution is first order 
in os. 

(15) Schaefer, H. F., III Chern. Br. 1975, 11, 227. 
(16) (a) Hofacker, L. Z. Naturforsch., A 1963, 18,6007. (b) Marcus, R. 

A. Discuss. Faraday Soc. 1967, 44, 7. (c) Truhlar, D. G. J. Chern. Phys. 
1970, 53, 2041. (d) Garrett, B. C.; Truhlar, D. G. J. Phys. Chern. 1979, 83, 
1052; 1983,87, 4553(E). (e) Miller, W. H.; Handy, N.C.; Adams, J. E. J. 
Chern. Phys. 1980, 72, 99. (l) Isaacson, A. D.; Truhlar, D. G. J. Chern. Phys. 
1982, 76, 1380. (g) Miller, W. H. In The Theory of Chemical Reaction 
Dynamics; Clary, D. C., Ed.; Reidel: Dordrecht, The Netherlands, 1986; p 
27. 

(17) Skodje, R. T.; Truhlar, D. G.; Garrett. B. C. J. Chern. Phys. 1982, 
77, 5955. 
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B. Euler Method with Reaction Path Stabilization,4
•
8
b Versions 

2 and 3 (ES2 and ES3). Equation 2 is corrected (stabilized) by 

a quadratic fit along a "bisector~ line.4•8b The spacing, o2, between 

the points along this bisector is fixed at 0.025a0. In version 2, 
the stabilization step is applied after every Euler step, whereas 
in version 3 stabilization is omitted if the angle between successive 
gradients is less than a stabilization threshold IJ0 . 

C. Backward Euler Method (BE). 

Xn+I(O) = x. + osv(x.) 

Xn+I(i) = Xn + osv(xn+I(i-1)) i = 1, 2 

(3a) 

(3b) 

This method was applied with two iterates of the implicit (3b) 
and was stabilized as follows. If the energy at x.+ 1<

2> was higher 

than that at Xno a new os was defined as 0.75os, and (3a) and (3b) 
were repeated. When the energy condition was satisfied, the step 
was accepted. However, {is was reinitialized to the originally input 

nominal value to begin the next step. 
D. Trapezoidal Euler Method (TE}. Here, we again used (3a} 

but followed it with 

i = 1, 2, ... (4) 

Here, we allowed for more than two iterates if necessary for 

convergence. In particular, beginning with the i = 2 iterate, we 
checked whether lxn+I(i)- Xn+I(i+I)I <~and repeated (4} until this 

was satisfied. We set ~ = (6 X 10-5)a0. 

E. Runge-Kutta Method of Order 25b,c,m (RK2). 

k, = osv(x.) 

Xn+l = x. + osv(x. + Y2k,) 

F. Runge-Kutta Method of Order 45b,c,m (RK4}. 

k, = osv(x.) 

k2 = osv(x. + Y2k,) 

k3 = osv(x. + Y2k2) 

k4 = osv(x. + k3) 

(5) 

Xn+l = Xn + (k, + 2k2 + 2k3 + k4}16 (6} 

In applying the RK2 and RK4 algorithms we used a fixed value 

of the stride os. However, because the Runge-Kutta methods 

involve one to three intermediate points, lxn+I - x.l is not a con­
stant. 

2.2. Multistep Methods. A. Quadratic Fixed-Step Adams 
Predictor4•5r ( QF AP). 

Xn+l = Xn + (sn+l - s.}v(x.) + Y2(Sn+l - s.)2v.,,...,' (7) 

This method was previously4 called fixed-step Adams predictor 
of order 1 ( F API ) , although, for reasons discussed in section 2.l.A, 

it may also be called second order; to avoid confusion we now call 
it QFAP. 

B. Fixed-Stride Adams-Bashforth Method of Order 25
h 

(FAB2). 

(8) 

C. Adapted-Stride Adams-Moulton Predictor-Corrector 

Method of Order 3 (AM3). 

Xn+l(O) = 
x. + (os<0> I 12)[23v(x.) - 16v(x,...1) + 5v(x,...2)] i = 0, I 

(9a) 

(9b) 

Xn+I(i) = Xn+I(O) + 
(os<i-1> I 12)[5v(xn+I(O)) + 8v(x.)- v(x._1)] i = I, 2 (9c) 

Notice that (9b) is similar to standard algorithms5
sj for varia­

ble-stride methods, but in our implementation, os<0> was set equal 
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to the originally input nominal os at the start of each new step. 
Again, we set ~ = 5 X J0-6a0. The final result of the step is xn+1 <

2>. 
D. Adapted-Stride Adams-Moulton Predictor-Corrector 

Method of Order 4 (AM4}. 

Xn+l(i) = 
x. + (os<i) 124)j55v(x.) - 59v(x,...1) + 37v(x._2) - 9v(x,...3)j 

(lOa) 

Xn+l = 
Xn+I(O) + (os<i) 124}j9v(x.+1) + 19v(x.)- 5v(x,...1) + v(x,...2)1 

(lOb) 

The strides os<0> and osO> for the AM4 calculations were the same 

as given above for AM3. 

2.3. Discussion of Methods. The previous paper4 presented 
an investigation of three of the methods considered here, namely 

the Euler and ES2 methods and the QFAP method, as well as 
other methods. Results from that work will be compared with 
the present findings which include additional one-step (BE, TE, 

RK2, and RK4) 3 and multistep (FAB2, AM3, and AM4) 
methods. 

In the one-step methods, the approximation for the new MEP 

point, xn+I• involves information from only one of the previous 
solution points, x •. The Runge-Kutta methods also use function 

evaluation information at intermediate points between x. and xn+Io 
but they do not retain that information for use in approximating 

new points along the MEP. All the information used by these 
methods is obtained within the interval over which the solution 
is approximated. 

The Euler method is the simplest method used to solve initial 
value problems. The basic Euler'method uses only the gradient 

at the previous point. The ES2 method is explained elsewhere;4
•
8

b 

it involves reaction path stabilization steps added to the basic Euler 
algorithm. Since the Euler method is the most commonly used 

method for solving the MEP equations, it and its ES2 extension 
will be used to obtain "standard~ results with which to test the 

convergence properties of other methods. 

The Runge-Kutta methods were originally developed to avoid 

the computation of higher order derivatives required by methods 
based on Taylor series; extra function values are used instead of 
higher order derivatives. The major computational effort in ap­

plying the Runge-Kutta methods to MEP calculations is the 
evaluation of the additional gradients at the intermediate points. 

In the second- and fourth-order methods, the truncation error is 
O(h2

) and O(h4
), respectively, where h = os, while the cost is two 

or four function evaluations per step. Butcher5
b noted that 

Runge-Kutta methods of order greater than 4 have poor stability 

for systems of equations. 
Multistep methods require the use of the approximate solution 

at more than one previous point along the MEP to determine the 
approximation at the new point. The QFAP and Adams-Bash­
forth techniques are explicit methods; that is, they determine the 
next point explicitly in terms of previously determined values. The 

Adams-Moulton techniques are implicit methods, since the new 
point is determined by using the value of that new point. The 
Adams-Bashforth and Adams-Moulton techniques are typically 

used together and collectively called predictor-corrector methods. 

These involve the use of the Bashforth formula to make a first 
prediction of the next point, followed by the application of the 

Moulton formula 5 to make successive improvements. Pre­
dictor-corrector methods have the advantage that from successive 
approximations to each xk value, an estimate of the error can be 
made. The usual procedure is to use an implicit Adams-Moulton 
method of order (n - 1) to improve an approximation obtained 
from an explicit Adams-Bashforth method or order n. This 
combination is called a predictor-corrector method of order n. 

The set of MEP equations (I) can become stif£5·6 for some 
systems. Difficulties result when standard numerical techniques 
are applied to such problems. The only methods considered here 
that are suitable for stiff systems are the trapezoidal and backward 
Euler methods. The trapezoidal method can have unsatisfactory 
features6

• for some systems, in which case the simpler backward 
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-40.156 

-40.162 

UJ -40.168 

w 
~-40.174 
a: 
< 
:I: -40.180 

ES2(0.10) w 
-40.186 1 

-40.192 

2 3 4 

s(a 0 ) 

Figure I. Energy along the reaction path obtained by Euler and QFAP 
algorithms with step size O.O!a0 and ES2 algorithm with step sizes O.!Oa0 

and 0.05a0 for the half reaction CH5' ~ CH4 + H. Three of the curves 
agree quite well over the whole range calculated, but the ES2 curve with 
step size 0.10a0 is somewhat higher in the region (2-3 1/ 2)a0. 

Euler method is preferred. The backward Euler should allow a 
larger step size than non-stiffly-stable methodologies such as the 
original Euler method, when applied to a stiff system of equations. 

3. Illustration of Methods 

The methods discussed above will be illustrated with the ab­
straction reaction (R I). The results from the various methods 
will be compared with each other. 

The minimum energy paths were computed by using analytic 
gradients computed from UHF /ST0-3G 18 wave functions. A 
tight condition (root mean square of the gradient components less 
than 10-s Ehao-1, where a0 = 1 Bohr radius) on the gradient was 
used in the location of the saddle point. The saddle point has C3v 

symmetry and has the following geometry at the UHF /ST0-3G 
level of calculation: R(H-H) = 0.915 A, R(H-C) for bond 
formation is 1.302 A, methyl R(C-H) = 1.083 A, and H-C-H 
angle= 106.5°. The Hessian matrix at the saddle point was 
computed analytically.9 The normal mode corresponding to the 
imaginary frequency consists primarily of transfer of an H atom 
from H2 along the CH3 rotation axis to form Hand methane. The 
arbitrary reduced mass J.L was set equal to 1 u (u = 1 12C atomic 
mass unit). Thus, distances through the mass-scaled coordinates 
in a0 are equivalent to distances through mass-weighted coordinates 
in u112a0• 

The calculated classical endoergicity and classical barrier height 
at this level of theory for the reaction as written in (R I) are 0. 7 
and 24.5 kcaljmol, respectively. The experimental classical 
endoergicity and classical barrier height for this reaction are 
estimated by Kurylo et al. 19 as -2.6 and 11.8 kcaljmol, respec­
tively, and by two of the present authors and co-workers as -2.620a 
and 10.1 20b kcal/mol, respectively. Because of the large dis­
crepancy in the calculated and experimental barrier heights, we 
cannot calculate accurate rate constants at this level; however, 
our goal is to use these calculations to compare various possible 
ways to calculate reaction paths and to demonstrate the feasibility 
of a full calculation with the direct use of ab initio input. The 
results illustrate the interface of the general electronic structure 
code GUASSIAN829 and the general polyatomic rate constant code 
POL YRATE. 10 In addition, we will demonstrate how one can use 
the information generated from POLYRATE, such as the adiabatic 
potential, projected vibrational frequencies along the path, vi­
brational coupling constants, curvature, transmission probabilities, 

(18) Hehre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio 
Molecular Orbital Theory; Wiley: New York, 1986. 

(19) (a) Kurylo, M. J.; Timmons, R. B. J. Chem. Phys. 1969,50, 5076. 
(b) Kurylo, M. J.; Hollinden, G. A.; Timmons, R. B. J. Chem. Phys. 1970, 
52, 1773. 

(20) (a) Steckler, R.; Dykema, K. J.; Brown, F. B.; Hancock, G. C.; 
Truhlar, D. G.; Valencich, T. J. Chem. Phys. 1987, 87, 7024. (b) Joseph, T.; 
Steckler. R.; Truhlar, D. G. J. Chern. Phys. 1987, 87, 7036. 
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Figure 2. Energy along the reaction path obtained by TE algorithm with 
step sizes 0.05a0, 0.1 Oa0, and 0.15a0 for the half reaction CH5' ~ CH4 
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Figure 3. Energy along the reaction path obtained by BE algorithm with 

step sizes 0.05a0 and 0.15a0 for the half reaction CH5' ~ CH4 + H. 
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Figure 4. Energy along the reaction path obtained by Euler, ES2, RK2, 

RK4, AM3, and AM4 algorithms with step size 0.05a0 and Euler al­
gorithm with step size O.Oia0 for the half reaction CH5' ~ CH4 +H. 

and rate constants, to draw conclusions concerning the dynamics 
of the reaction. 

Table la-c gives timing information for various calculations. 
Each entry refers to the computer time and number of gradient 
evaluations required to compute the MEP over an interval of 
3.02a0 on one or the other side of the saddle point. The runs in 
Table Ia were performed on an IBM 3081 and required 0.04-0.4 
h/run, whereas those in parts band c of Table I were performed 
on VAX 8530 and Micro VAX II computers and require 3.5-91 
h/run. For comparison purposes, relative timings between the 
machines were obtained and all run times were converted to a 
common scale on which the time for an ES2 calculation with os 
= 0.05a0 was arbitrarily set equal to unity. 

Throughout this paper, negatives refers to the reactant (CH3 

+ H2) side of the saddle point and positives to the product (CH4 

+ H) side. Figures 1-7 show results for the product side of the 
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Figure 5. Energy along the reaction path obtained by Euler algorithm 
with step size 0.05a0 and RK4 algorithm with step sizes 0.05a0 and 0.20a0 

for the half reaction CH5'--.. CH4 +H. 

-40.156 

-40.162 

ffi -40.168 

a: 
li: -40.174 

~ 
- -40.180 

w 

0 2 3 4 

s(a0 ) 

Figure 6. Energy along the reaction path obtained by RK4 algorithm 
with step sizes 0.05a0, 0.15a0, and 0.20a0 for the half reaction CH5' --.. 

CH4 +H. 
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Figure 7. Energy along the reaction path from Euler, QFAP, ES2, RK2, 
RK4, AM3, and AM4 algorithms with step size 0.05a0 and Euler al­
gorithm with step size 0.0Ja0 for the half reaction CH5' --.. CH4 + H. 
Five of the curves agree well over the whole range they were calculated 
[(3-4)a0, depending on the method] and are labeled at small s; of the 
other three curves, QFAP is high and smooth, ES is even higher and 
smooth, and RK2 oscillates about ES. 

MEP, and Figures 8-12 show results for the reactant side. 

3.1. Single-Step and Quadratic Methods for the MEP. In 

this section, four single-step numerical techniques, TE, BE, RK2, 

and RK4, and the quadratic method will be compared for reaction 

Rl to the Euler and ES2 methods. The latter methods are applied 

with strides of 0.01-0.1 Oa0, as is the quadratic method. The 

trapezoidal method is applied with fixed strides in the range 

0.05-0.!5a0, and the other methods are applied with one or more 

nominal strides in the range 0.05-0.20a0 . 

The results for CH5 ' -+ CH4 + H are in Figures 1-6; those 

for CH 5'-+ CH 3 + H 2 are in Figure 8, and timings are given 

in Tables Ia and lb. In all cases, the results and timings are labeled 
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Figure 8. Energy along the reaction path obtained by Euler, ES2, QFAP, 
TE, BE, and RK2 algorithms with step size 0.05a0 for the half reaction 
TS __.., CH3 + H2. The curve obtained by the RK2 algorithm shows 
spurious oscillations, and the BEM results are essentially identical to the 
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Figure 9. Energy along the reaction path obtained by Euler, ES2, QFAP, 
and FAB2 algorithms with step size 0.05a0 for the half reaction CH5' 

_,. CH3 + H2. 
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Figure 10. Energy along the reaction path obtained by AM3 algorithm 
with step sizes 0.05a0 (curve ends at 2.6a0) and 0.15a0 (curve ends at 4ao) 
for the half reaction CH5'-+ CH3 + H2. 

by the nominal (i.e., input) strides os. 

Figure I shows the energy along the reaction path for the 

product side. This figure shows that the ES2 method with stride 

0.05a0 and the Euler (ES) and QFAP methods with stride O.Ola0 

all provide essentially the same energy profile. Additional cal­

culations with the ES2 method and os = 0.0Ia0 (not shown) also 

agree with these curves, and we therefore take this to be the 

converged value. Similar tests on the reactant side (not shown) 

yield excellent agreement between the QFAP method with os = 

O.Ola0 and the ES2 method with os = 0.05a0 . In this direction 

though the ES2 method with os = 0.0Ia0 is not stable; the Euler 

method with os = O.Ola0 yields a curve just slightly higher than 

the converged ones. 
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Figure 1 I. (a) H-H distance versus path distance from Euler, ES2, 
QFAP, and RK4 algorithms with step size 0.05a0 for the half reaction 
CH5'- CH3 + H2. The ES and QFAP results show strong oscillations, 
and the RK4 curve, which ends at 3.2a0, shows instabilities at 1.2a0 and 
2a0• (b) H-C distance versus path distance from Euler, ES2, QFAP, and 
RK4 algorithms with step size 0.05a0 for the half reaction CH5' - CH3 

+ H2• (c) H-H-C angle versus path distance from Euler, ES2, QFAP, 
and RK4 algorithms with step size 0.05a0 for the half reaction CH5' -

CH 3 + H2. 

Increasing the stride to 0. !Oa0 causes large errors for both the 
Euler and QFAP methods (about 0.003 and 0.002 Eh, respectively, 
at s = 3a0 and 0.009 and 0.005 Eh, respectively, at s = -3a0), but 
an order of magnitude smaller error in the ES2 method in both 
directions. 

The instability of the ES2 method for os = O.Ola0 in the reverse 
direction apparently occurs, as discussed previously,4 because the 
computed points are very close to the MEP prior to the stabili­
zation procedure. Then, the angle between successive gradients 
used in this procedure4 becomes small, and the stabilization step 
becomes both unnecessary and unstable. We tried a modified 
algorithm, ES3, in which stabilization is omitted if the angle 
between successive gradients is less than a stabilization threshold 
110. For os = O.Ola0, setting 60 = 2° did not remove the instability; 
however, if stabilization is performed only when the angle between 
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Figure 12. (a) H-H distance versus path distance from AM3, AM4, 
ES2, and RK4 algorithms with step size 0.05a0 for the half reaction CH5' 

- CH3 + H2. The AM4 curve, which ends at 3a0, begins to oscillate 
at s :;;;: 1.2a0 and more severely at 2.4a0. The oscillations in the AM3 
curve grow in gradually. The ES2 curve also shows oscillations in the 
(l-3)a0 region, but it becomes smooth in the (3-4)a0 region. (b) H-C 
distance versus path distance for from AM3, AM4, and RK4 algorithms 
with step size 0.05a0 for the half reaction CH5 * - CH3 + H2. (c) 
H-H-C distance versus path distance from AM3, AM4, ES2, and RK4 
algorithms with step size 0.05a0 for the half reaction CH5'- CH3 + H2. 

successive gradients is more than 4 °, the instability disappears. 
Since reasonably good convergence is obtained with os = 0.05a0 

for the present application, the smaller strides are unnecessary 
anyway. 

The TE and BE methods are very simple modifications of the 
original Euler approach, and because of their simplicity, they are 
unsatisfactory for some systems. Figure 8 demonstrates that when 
the same stride is used for both methods, the extra computational 
effort of the TE method (a factor of 1.5; see Table Ib) does not 
provide additional accuracy relative to the results of the ES2 
method. In addition, an increase in the step size appears to 
increase the instability of the method, as shown in Figure 2 for 
the forward direction (the errors are even larger for a given os 
for the reverse direction, which is not shown). 

The backward Euler (BE) technique, on the other hand, does 
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TABLE 1: CPU Time and Number of Steps for the Reaction CH3 + H 2 _. CH4 + H 

a. ES, QFAP, and ES2 Methods 

Euler (ES) quadratic (QFAP) ES2 

integration range, a0 os, a0 time• N' 

0 to -3.02 0.01 1.6 301 

0.05 0.3 61 

0.10 0.2 31 

0 to +3.02 0.01 1.7 301 

0.05 0.4 61 

0.10 0.2 31 

time N 

1.7 
0.4 

0.2 
1.8 
0.4 
0.2 

325 
80 
44 

314 

68 
36 

time 

1.2 
1.0 
0.6 
4.1 

1.0 
0.7 

N 

98< 

84 
40 

304 
74 

43 

b. BE, TE, and Runge-Kutta Methods 

backward Euler trapezoidal Runge-Kutta 

(RK2) 

Runge-Kutta 

(BE) (TE) (RK4) 

integration range, a0 os, a0 time• Nb time N time N time N 

0 to -3.02 0.05 3.7 271 1.5 61 0.7 61 3.5 240 

0.10 1.7 101 

0.15 5.4 275 1.2 67 3.8 249 

0.20 3.8 250 

0 to +3.02 0.05 5.7 292 2.3 126 0.7 263 4.3 263 

0.10 1.8 92 

0.15 4.1 296 1.4 79 4.3 267 

0.20 4.0 248 

c. Adams-Moulton Methods 

AM3 AM4 

s range, a0 os, a0 time• Nb time N 

0 to -3.02 0.05 2.7 230 3.1 219 

0.10 2.1 177 

0.15 1.7 109 1.8 54 

0.20 d 

0 to +3.02 0.05 2.8 233 2.7 225 

0.10 2.3 184 

0.15 1.9 !55 1.4 115 

0.20 1.3 109 

• Ratio of CPU time for the indicated method and step size to that of the ES2 method with step size 0.05a0• b N is the number of steps. <This 

number is very small because, as discussed in ref 4, the ES2 method breaks down for very small step sizes. dSmall interatomic distances were 

encountered when too large a step is taken for large s for this particular half reaction. 

appear to improve the convergence of the reaction path. In 
particular, Figure 8 shows that for a nominal stride of 0.05a0, the 
BE method gives comparable accuracy to the ES2 method for the 

same step size. In addition, specification of larger strides gives 
an essentially identical path (see, e.g., Figure 3 for the forward 

direction of reaction; the accuracy with os = 0.15a0 is even better 
for the reverse direction of reaction, which is not shown). One 
must keep in mind, however, that, unlike the Euler method, the 

BE method yields nonconstant values for lxn+l - x.l, and the 
variation turns out to be larger than for the ES2 algorithm. Thus, 
for some portions of the path, the step actually taken may be much 

smaller than the stride. The BE method was implemented with 
a stride condition involving the energy at successive points, and 
for this reason, specification of too large a step can use more time 

than one of smaller step, since the former can require more re­
peated steps. Table lb illustrates this behavior by comparing the 
CPU time required to generate the BE paths with strides of 0.05a0 

and 0.15a0 for the reverse reaction. Also, note that the BE method 

requires a significant increase in computational effort (a factor 
of 2.3-5.4; see Table lb) as compared to either the Euler method 
with os = 0.0 I a0 or the ES2 method with os = 0.05a0. 

The other single-step techniques considered here are the 
Runge-Kutta methods of orders 2 and 4. Runge-Kutta methods 
are often used to find starting values for the Adams-type methods, 
but if the function evaluations are simple, they can be very useful 
on their own. This is illustrated in Figure 4 where a comparison 
is made of the Runge-Kutta methods of order 2 and 4, and the 
latter is found to yield good accuracy. Figures 4 and 8 both clearly 
illustrate the instability of the lower order method-oscillations 
in the energy occur very early along the computed path and 
continue throughout its course. Although the method of order 
4 requires twice as many function evaluations, it has a truncation 
error that is 2 powers of os smaller than the method of order 2. 

(The significant difference in computation times for the RK2 and 

RK4 paths are a consequence of the instability of the lower order 
method.) 

The path calculated by the RK4 method is also compared with 
the converged paths obtained by the ES2 method with stride 0.05a0 

and with the Euler method with stride O.Ola0 in Figure 4. The 

RK4 path generated with a nominal stride of 0.05a0 is superim­
posable with both of these curves. In addition, Figure 6 shows 
that one can use a large stride with this method without greatly 
sacrificing accuracy, and Figure 5 illustrates that the RK4 method 

is more accurate than the Euler method for this test problem. 
Recall, however, that for the same stride the RK4 method requires 

four function evaluations for every one functional evaluation of 
the Euler method. Furthermore, in comparison to the BE method, 

the RK4 procedure yields an even wider variation in the actual 

length of the step taken, i.e., in lxn+l - x.l. Examination of the 
step sizes actually taken during an RK4 run with a nominal stride 
of 0.20a0 demonstrates that portions of the curve are generated 

with step sizes as small as 0.00la0 or even smaller. It turns out 
that utilization of a nominally small stride is sometimes more 

efficient than use of a larger one (see Table Ib). As a consequence, 
the actual CPU time required to generate the various RK4 curves 
are 2.2-3.8 times longer than that for the ES2 (stride 0.05a0) and 
Euler (stride O.Ola0) methods (see Table Ib). Although the RK4 
method requires more computational effort than it takes to gen­
erate a converged Euler or ES2 path, it may be useful in some 
cases for increased accuracy. 

Figure lla-c illustrates the variation in internal coordinates 
with the distance along the reaction path on the reactant side for 
several single-step methods. From Figure lla, one can see that, 
for all methods but the RK4 method, there are oscillations in the 
H-H parameter as one moves away from the saddle point and 
the RK4 method also shows some instability. Even at 3.la0, the 
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TABLE II: Oscillations in the H-H Distance Along the Calculated 
MEP for CHs' -+ CH3 + H1 

s value where eventual width 
method ils, a0 oscillations start, a0 of oscillations, A 
Euler 0.01 -2.2 0.01 

0.05 -1.3 0.04 
0.10 -0.4 0.07 

QFAP 0.01 -2.5 0.01 
0.05 -1.8 0.04 
0.10 -0.4 0.07 

RK4 curve has not converged to the correct value for the H-H 
distance; this illustrates one of the pitfalls of MEP calculations, 
namely that even though the RK4 method might be accurate in 
this region if the integration were on the correct path, errors earlier 
in the calculation have placed it on an incorrect path that is not 
quickly corrected. Similar results are obtained for the variation 
in the H-C bond distance (Figure lib), except that for this 
coordinate the ES2 method gives smooth variation as a function 
of s as well. Overall, the RK4 algorithm yields a slightly better 
converged path for this coordinate. 

In general, the oscillations in internal coordinates become larger 
and begin earlier as os is increased. Table II gives some examples 
for the Euler and QFAP methods on the reactant side. 

3.2. Multistep Methods for the MEP. Figures 4, 7, 9, 10, and 
12 show some of the results obtained with multistep methods and 
compare them to selected single-step results. 

To illustrate the power of the corrector formula in the Ad­
ams-Moulton predictor-corrector methods, an MEP was gen­
erated with utilization of only the Adams-Bashforth predictor 
method of order 2 (FAB2). This can be compared to the quadratic 
method for stability. Figure 9 shows the results of such a com­
parison. Notice that the FAB2 curve is actually much less con­
verged than that obtained with even the simple Euler method with 
the same step size. In general, the Adams-Bashforth techniques 
alone are relatively unstable methods. An explanation for this 
is provided by comparison of an m-step Adams-Bashforth explicit 
method with an (m- I)-step Adams-Moulton implicit method. 
Both require m evaluations of the function per step, and both have 
a local truncation error proportional to (os)m. In general, the 
coefficients of the terms involving the function and the local 
truncation error are smaller for the Adams-Moulton methods [see, 
e.g., eq 9a versus 9b or lOa versus lOb]. This leads to greater 
stability for the implicit methods and a smaller rounding error. 
Thus, as is well-known, the best compromise is to utilize the explicit 
methods for prediction of a new point, followed by refinement of 
this prediction with the Adams-Moulton corrector step. 

Figure 4 shows the results obtained with the AM3 and AM4 
methods for the forward direction of reaction R I; it is clear from 
this figure that, for this reaction with os = 0.05a0, the methods 
are identical in accuracy. Similar good agreement is found with 
this stride for the reverse direction; Figure 10 shows that the AM3 
method is very stable with respect to increasing the stride. A 
comparison of the amount of CPU time necessary to generate the 
respective curves for the AM3 and AM4 methods (Table Ic) 
indicates that both also require similar computer time. Notice 
from Table Ic that the CPU time for the AM3 calculations de­
creases by a factor of 11/ 2-2 when one increases the nominal stride 
by a factor of 3, but that for the AM4 calculations is less pre­
dictable (the reason is probably similar to that discussed in section 
3.1 with respect to the RK4 algorithm). The computational effort 
for the Adams-Moulton calculations is somewhat greater than 
that for well-converged Euler and ES2 calculations. 

The Adams-Moulton methods used here involved stride ad­
aptation. Two approximations (one from the predictor and one 
from the corrector) are available for each MEP point, and com­
parison of these allows one to estimate the uncertainty in the step. 
The difference in these two approximations (the error approxi­
mation) is then used to adapt the stride. (The algorithm is given 
in section 2.2.) This stride adaptation controls the local truncation 
error as well as the global error as one proceeds along the path, 
and it allows one to specify a larger nominal stride and still retain 
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good accuracy in difficult-to-integrate regions. 
A comparison of the multistep methods with various other 

methods is shown in Figure 7. These show that the Adams­
Moulton methods give results comparable to those obtained with 
the Euler method with a very small step size as well as with the 
RK4 method. Figure 12 shows the variance of internal degrees 
of freedom for the multistep methods as compared to the RK4 
method and the "standard" ES2 method. Figure 12a illustrates 
the variance in H-H bond distance with the distance along the 
reaction path. There is still significant unrealistic oscillation with 
the multistep methods, indicating instability. The variance in the 
H-H-C angle, however, is similar to what is observed with the 
RK4 method. The better stability of this parameter may be a 
consequence of the fact that it changes little along the reaction 
path. 

3.3. Recommendations. The criteria on which a comparison 
of the methods can be based include the number of function 
evaluations or CPU time required for a given accuracy and the 
accuracy of the method for a given computational effort. The 
comparison of methods also depends in part on where one needs 
the reaction path information and which reaction path properties 
(e.g., geometries, vibrational frequencies, curvature of the reaction 
path) will be used. On the basis of these criteria and the different 
possible uses for a reaction path calculation, it is probable that 
no single method is always best. The best choice will probably 
also depend on the particular reaction system being studied. One 
can, however, at least assess the behavior of methods within each 
class and extract some useful guidelines as to which methods might 
be recommended for general use. 

We recommend that one should first try one of the simple 
methods (Euler, QFAP, ES2) for applications that require only 
qualitative information about the reaction path (for example, 
verification that a particular transition state leads to an indicated 
set of reactants and products) and for other more quantitative 
applications in which the reaction path equations are known to 
be nonstiff. If one knows ahead of time that a particular reaction 
path calculation involves stiff equations, then a stiff method may 
be preferable. If one requires particularly high accuracy, the 
higher order methods might become more competitive. 

Among the Euler, QFAP, and ES2 methods, it appears that 
the method of choice for the present system is the ES2 method. 
The stabilization algorithm works very well for this problem. The 
ES2 method also performed well in our previous tests4 although 
we previously recommended the Euler method because of the 
difficulties sometimes encountered by the ES2 algorithm when 
the stride is small. Although the ES2 method is computationally 
more expensive than the Euler and QFAP methods for a given 
step size, a larger step may be used (see Figure I). For more 
complex systems, however, where function evaluations are more 
costly, it is possible that one may be better off choosing the Euler 
or QFAP methods with a smaller step. Although we again found, 
as was also found previously,4 that the ES2 method breaks down 
if the stride is too small, we found that the instability disappears 
if the stabilization is performed only when the angle between 
successive gradients is more than a preselected stabilization 
threshold 80 . This selective application of the stabilization step 
is called ES3, and it appears to fix the most serious defect of the 
ES2 method. 

Of the TE, BE, and Runge-Kutta methods tested, only the BE 
and RK4 methods appear to be competitively reliable as compared 
with the ES2 method (see, e.g., Figure 4). The fourth-order 
Runge-Kutta method performs better than the second-order one, 
and it appears to be the most stable of these four methods for the 
present test case. In addition, it allows one to efficiently use a 
larger stride than the BE method. 

It will be most interesting to test the RK4 method for more 
systems, particularly for complicated reactions, even though this 
method takes slightly more computer time than some other 
methods, since the RK4 method not only competes with both the 
single-step ES2 method and the Adams methods in convergence 
properties, but it also shows very good stability. It would also 
be interesting to test variable-stride Runge-Kutta methods. 



Ab Initio Reaction Paths and Direct Dynamics Calculations 

The Adams-Moulton predictor-corrector methods are probably 
the best of the nonstiff multistep formulas for general computa­
tion.5 Results given in above text indicate that these methods are 
reliable in predicting a converged reaction path within a reasonable 
amount of computer time. However, many problems are not 
particularly appropriate for any sort of multistep method. The 
intervals of integration may be so short that the multistep methods 
have little chance to demonstrate their advantage over the 
Runge-Kutta methods. The plots with the results of the AM and 
RK4 methods (e.g., Figure 7) and timings from Table Ib,c il­
lustrate the similarities in performance of these methods for re­

action Rl. 

4. Dynamics 

Once a sufficient portion of the potential energy surface is 
known, it is in principle possible to calculate the reaction rate 
constant, k, as a function of temperature. A particularly appealing 
method for such calculations is variational transition-state theory 
(VTST) with semiclassical adiabatic ground-state (SAG) 
transmission coefficients.3·11 ·21 The VTST method is an im­
provement on conventional TST,22 which assumes that the net rate 
of forward reaction at equilibrium is given by the flux of tra­
jectories across the critical dividing surface that passes through 
the saddle point (s = 0) in the direction of products. 23 In contrast, 
in VTST, the location of the dividing surface through which the 
equilibrium flux in the product direction is calculated is varied 
to obtain the minimum rate constant, which may be rigorously 
motivated24 in classical mechanics; this provides the foundation 
on which to add quanta! effects. From a thermodynamic point 
of view, one considers entropic and zero-point effects on the 
location of the transition state with VTST, and the SAG coef­
ficients introduce tunneling. Whereas a conventional TST cal­
culation requires only the barrier height and saddle point and 
reactant properties, and the CVT rate constant for the present 
case requires treating only a small range of s near zero (i.e., near 
the saddle point), to be treated accurately, the rate constant derived 
from VTST with SAG transmission coefficients depends not only 
on the barrier height and saddle point and reactant properties but 
also on the shape of the reaction path and the s dependence of 
the associated transverse vibrations over a wide range of s. 

For a generalized transition state (GTS) that intersects the 
MEP at some nonzero value of s, the generalized TST rate 
constant at temperature T, without tunneling, is expressed in terms 
of equilibrium partition functions of the reactants and a quasi­
equilibrium partition function of the generalized transition state 
as described elsewhere. 3,11,21 

We consider six approximations to the rate constant; the first 
three are kcvt, corresponding to canonical variational transi­
tion-state theory,3,11,21 kCVT/MEPSAG = KCVT/MEPSAGkCVT, and 

kcvr;scsAG = Kcvr;scsAGkcvr, where the transmission coeffi­

cients17·21 are labeled CVT /XSAG since they must be consistent 
with the CVT version of VTST and because they are semiclassical 

(21) (a) Truhlar, D. G.; Garrett, B. C. Ace. Chern. Res. 1980, 13,440. (b) 
Garrett, B. C.; Truhlar, D. G. J. Phys. Chern. 1979, 83, 1079; 1983, 87, 
4553(E). (c) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A. W. 
J. Phys. Chern. 1980, 84, 1730; 1983, 87, 4554(E). (d) Skodje, R. T.; Truhlar, 
D. G.; Garrett, B. C. J. Phys. Chern. 1982, 85, 3019. (e) Truhlar, D. G.; 
Isaacson, A. D.; Skodje, R. T.; Garrett, B. C. J. Phys. Chern. 1982, 86, 2252. 

(22) See for example: (a) Glasstone, S.; Laidler, K. J.; Eyring, H. Theory 
of Rate Processes; McGraw-Hill: New York, 1941. (b) Johnston, H. S. Gas 
Phase Reaction Rate Theory; Ronald Press: New York, 1966. (d) Laidler, 
K. J. In Theories of Chemical Reaction Rates; McGraw-Hill: New York, 
1969; p 42. (e) Weston, R. E.; Schwartz, H. A. Chemical Kinetics; Pren­
tice-Hall: New York, 1972. (f) Rapp, D. Statistical Mechanics; Holt, 
Rinehard, and Winston: New York, 1972. (g) Nikitin, E. E. Theory of 
Elementary Atomic and Molecular Processes in Gases; Clarendon Press: 
Oxford, U.K., 1974. (h) Smith, I. W. M. Kinetics and Dynamics of Ele­
mentary Gas Reactions; Butterworths: London, 1980. 

(23) (a) Wigner, E. Trans. Faraday Soc. 1938, 34, 29. (b) Jaffe, R. L.; 
Henry, J. M.; Anderson, J. B. J. Chern. Phys. 1973, 59, 1128. (c) Pechukas, 
P. In Dynamics of Molecular Collisions; Miller, W. H., Ed.; Plenum Press: 
New York, 1976; Part B, p 269. 

(24) (a) Keck, J. C. J. Chern. Phys. 1967, 13, 85. (b) Miller, W. H. J. 
Chern. Phys. 1974, 61, 1823. (c) Garrett, B. C.; Truhlar, D. G. J. Chern. 
Phys. 1979,70, 1593. (d) Garrett, B. C.; Truhlar, D. G. J. Phys. Chern. 1979, 
83, 1052; 1983,87, 1553(E). 
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Figure 13. Classical potential energy and vibrationally adiabatic 

ground-state potential energy along the reaction path for the reaction 

CH3 + H 2 - CH4 + H. 

(S) calculations based on the adiabatic ground-state (AG) po­
tential curve. X = MEP denotes a transmission coefficient based 
on tunneling along the minimum energy path (MEP), and X = 
SC denotes inclusion of negative internal centrifugal effects on 
the tunneling path in the small-curvature approximation. 17·21 We 
also consider the three corresponding calculations in which CVT 
is replaced by improved CVT (ICVT, see text below). These 
transmission coefficients are calculated as described in ref 4 and 
lie. 

The reaction path curvature is a scalar for collinear three-atom 
systems and a vector in general. The components of this vector 
along the generalized normal modes are referred to as Bkr 
(s), 110·1se,2Sa where F indicates the reaction coordinate and there 

are F- I generalized normal modes, k. Each Bkr{s) is a scalar 
product of the generalized normal mode vector of a vibration k 
and the derivative of the normal mode with respect to the reaction 
coordinates. If the jBkr{s)l are not negligible, then motion along 
the reaction path is dynamically coupled to the transverse vi­
brations. The total curvature of the reaction path is defined as 

F-1 

K(s) = j L [BkF(s)Fjll2 (II) 
k=1 

In the present case, we follow the spectroscopic convention of 
assigning a single mode number n to degenerate modes. The 
components are labeled mm and the reaction coordinate is still 
labeled F. Then, if dn is the degeneracy of mode n, eq 11 becomes 

F-1 d, 

K(S) = lL L [Bnm,F(s)j2jll 2 

n=l mn=l 

(12) 

and F is now a smaller number. If K(s) were zero, the SCSAG 
transmission coefficient would reduce to the MEPSAG one. When 
it is not zero, the SCSAG transmission coefficient accounts for 
the curvature coupling of transverse coordinates to the MEP in 
determining the optimum tunneling path and hence it provides 
a multidimensional estimate of the tunneling contributions to the 
reaction rate. 

All calculations in this paper employ the harmonic approxi­
mation for vibrations. The CVT and MEPSAG calculations 
require only the MEP, the potential energy along it, and the 
vibrational frequencies for a sequence of generalized transition 
states. SCSAG transmission coefficients depend on these quan­
tities plus the BkF(s) curvature elements. 

The MEP was generated by the ES2 method with step size 
0.05a0, and this path was utilized in POLYRATE to study the dy­
namics of reaction R 1. A preliminary run with the Euler MEP, 
again computed with os = 0.05a0 and with force fields performed 
every third point, revealed that the major contribution to tunneling 
occurs between s = -1.18a0 and 1.1 Oa0• Thus, the ES2 calculation 

(25) (a) Miller, W. H. In Potential Energy Surfaces and Dynamics 
Calculations; Truhlar, D. G., Ed.; Plenum: New York, 1981; p 265. (b) 
Garrett, B. C.; Truhlar, D. G.; Grev, R. In Ibid.; p 587. 
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TABLE III 

a. UHF /ST0-3G Harmonic Frequencies and Corresponding 
Accurate Frequencies ( cm·1

) 

frequency UHF /ST0-3G accurate• 

CH4 
v1(a 1) 3527 2917 
v2(e) !904 1534 

V3(f2) 3788 3019 

v4(tz) 1675 1306 

CH3 
v1(a 1') 3553 3002 
v2(a() 585 580 
v3(e) 3828 3184 
v4(e) 1690 1383 

Hz 
5482 4401 

b. UHF jST0-3G Harmonic Frequencies for the CHs 

Transition-State Geometry 

frequency 

v1(a 1) 

v2(a 1) 

I'J(a,) 

v4(e) 
v5(e) 

v6(e) 

v7(e) 

v8(a 1) 

UHF /ST0-3G J3b 

3566 
1810 
1445 
3794 
1773 

1550 
721 
2740i 

3006 
1628 
1129 
3068 
1376 

1202 
586 
!088i 

Po!CI/DZP" 

3228 
1960 
995 
3404 
1534 
1146 

592 
974i 

c. Energetic Properties for the Reaction CH3 + H 2 -+ CH4 + H 

property, kcaljmol UHF /ST0-3G accurate 

reactant ZPEd 29.5 24.5' 

product ZPE 33.9 27 .I • 
t::..E 0.67 -2.(/ 
!::..H0 -3.73 +0.028 
V* 24.5 I 0.1 h 

/::,. V.'G 27.2 IJ.9h 

• Most accurate available: ref 28 and 29. bSemiempirical analytic 
surface; see ref 20b. 'Ab initio calculations based on polarization 
configuration interaction with a double-! plus polarization basis set; see 
ref 28. d Zero-point energy (harmonic). •Computed with the harmonic 

approximation and the frequencies found in the JANAF tables; see ref 
19, 20, and 29. !Classical endoergicity computing with other energies 
as given in this column. 8Computed from the JANAF tables. h Best 

available estimate of harmonic zero-pointed corrected barrier height 
evaluated at the saddle point, from ref 20b. 

of the MEP was performed in this region. Force fields were 
computed at every third MEP point. 

Figure 13 shows a plot of the potential energy along the MEP 
and the vibrationally adiabatic ground-state potential 
curve3,It,I6,t7,2t,25b,26 as a function of the distance along the MEP. 

Notice from the comparison of these two curves that the vibra­
tionally adiabatic barrier is slightly thinner than the bare barrier. 
The quantum effect of adding zero-point vibrational energy to 
the classical potential curve has the effect of making it easier for 
tunneling to occur for a given energy deficit below the top of the 
barrier. This is opposite to the direction of the effect in the 
well-studied collinear H + H2 reaction without bends.27 

Some properties of the potential in the valley along the MEP 
are shown in parts a-c of Table III. Table lila gives harmonic 
frequencies for H2, CH3, and CH4 along with the most accurate 
available values,28·29 and Table Illb gives the harmonic frequencies 
for the saddle point. Table Illc gives harmonic zero-point in­
formation calculated from these frequencies, the overall t:.E and 

(26) Colwell, S.M. Mol. Phys. 1984,51, 1217. 
(27) Truhlar, D. G.; Kuppermann, A. Chern. Phys. Lett. 1971, 9, 269. 
(28) (a) Schatz, G. C.; Walch, S. D.; Wagner, A. F. J. Chern. Phys. 1980, 

73, 4536. (b) Schatz, G. C.; Wagner, A. F.; Dunning, T. H., Jr. J. Phys. 
Chern. 1984, 88, 221. 

(29) JANAF Theormochemical Tables, 2nd ed.; Stull, D. R., Prophet, H., 
Eds.; National Standard Reference Data Series 37; U.S. NBS: Washington, 
DC, 1971. 
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Figure 14. Projected harmonic frequencies along the reaction path for 
the reaction CH3 + H 2 -+ CH4 +H. Curves v1-v3 are the nondegenerate 

a1 modes and curves vcv1 are the degenerate e modes. Imaginary fre­
quencies are plotted as negative numbers in this figure. 

t:.H298° for the reaction, and the calculated saddle-point barrier 
height without ( V*) and with (!:.. V* 6 ) the inclusion of zero-point 
effects. As discussed above, the ST0-3G barrier is too high, and 
this makes the imaginary frequency at the saddle point too high 
as well. 

The projected3·11c,I6e matrix of second derivatives at every third 
point was diagonalized to give the harmonic frequencies v.(s) and 
the corresponding generalized normal modes L 01,-y,n,m.(s), where 
'Y = x, y, z and n = 1-7 (n = 8 refers to the imaginary frequency 
of the MEP; see Table Illb). The variation of the frequencies 
along the reaction path is shown in Figure 14. The MEP consists 
primarily of the relative translational motion of methyl and 
molecular hydrogen in the reactant region and of methane and 
H in the product region. The diabatic mode correlating with v1 

at the reactants, where it is the H-H stretch, with the antisym­
metric motion indicated in Figure 15e at the transition state, and 
with v2 at products, where it is a C-H stretch, is the frequency 
that changes most appreciably. The remaining two modes with 
a1 symmetry at the saddle point are v1 and v3• v3 is the deformation 
of methyl in the reactant region and the deformation of methane 
in the product region and overall shows little change along the 
reaction path. The motions corresponding to v1 and v3 at the saddle 
point are shown in parts f and g of Figures 15, respectively. 

The three highest frequency modes of e symmetry, vcv6, 

corresponding to the motions indicated in parts a-c of Figure 15, 
respectively, show very little change along the reaction path. The 
lowest frequency e mode, v7, is the torsion mode, i.e., the out­
of-plane motion of the odd hydrogen (see Figure 15d), and v7 has 
become imaginary, which implies that the second derivative matrix 
has a second negative eigenvalue and the reaction path bifurcates. 
This means that the picture of a multidimensional harmonic well 
perpendicular to the reaction path is not valid beyond this point, 
and so, anharmonicity would be required for accurate calculations. 
In the present case, the zero-point energy of this mode was set 
equal to zero when the frequency became imaginary. 

The harmonic frequencies shown can be compared to results 
obtained from ab initio calculations with a split-valence 4-31 G 
basis by Yamashita and Yamabe,30 as well as with calculations 
performed with analytic representations of the potential energy 
surface.20 One of the differences between the frequencies shown 
here and those of Yamashita and Yamabe is the behavior of the 
two highest frequency modes of a1 symmetry, v1 and v2• We have 
labeled all generalized transition-state modes adiabatically, and 
therefore, our results show an avoided crossing of v1 and v2• 

Yamashita and Yamabe, on the other hand, show a "nonadiabatic" 
representation of the modes. 

The nonadiabatic coupling of vibrational coordinates due to 
curvature of the reaction is represented in the coupling elements 

(30) Yamashita, K.; Yamabe, T.lnt. J. Quantum Chern., Quantum Chern. 
Symp. 1983, No. 17, 177. 
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0 

Figvre-15. UHF /ST0-30 normal mode v" of the CH5 transition-state structure ( C3.) and the corresponding real frequency: (a) v4, 3794 cm-1
; (b) 

v5, 1773 cm-1; (c) v6, 1550 cm-1; (d) v7, 721 cm-1; (e) v2, 1810 cm-1; (f) v1, 3566 cm-1; (g) v3, 1445 cm-1• 
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Figure 16. Curvature elements BkF(s), for k = I and 2, as a function of 
reaction coordinate s. 

TABLE IV: Transmission Coefficients for the Reaction CH3 + H2 --+ 

cu.+ H 

temp, K */W CVT/MEPSAG CVT/SCSAG 

298 8.29 1.86 X 102 2.99 X 103 

400 5.50 1.23 X 101 3.91 X 101 

667 2.46 2.29 3.06 
1000 1.65 1.44 1.62 
1550 1.27 1.16 1.22 

BkF<s), which arise from the curving of the MEP into the various 
generalized normal mode directions. Figure 16 shows the two 
of these coupling elements that change most significantly as a 
function of the distance measured along the MEP. The v1 and 
v2 modes, which change the frequency significantly as the reactive 
bond changes from an H 2 stretch in the reactant region to a CH 
stretch in the product region, show significant coupling to the 
reaction path. 

The curvature of the reaction path is partitioned among the 
different vibrational modes as in eq 12; two components are 
illustrated in Figure 16. The curvature of the MEP has the effect 
of allowing corner-cutting tunneling, 3

•
11

•
17

•
21

•
31 thereby lowering 

(31) Marcus, R. A.; Coltrin, M. E. J. Chern. Phys. 1977, 67, 2609. 
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Figure 17. (a) Total curvature of the reaction path as a function of 
reaction coordinate. (b) Effective mass as a function of the reaction 
coordinate s. 

the effective mass for the s motion. In this way, curvature in­
creases the probability of tunneling through the barrier. Figure 
17a shows the curvature of the reaction path. There are two sharp 
peaks, one before and one after the saddle point (s = 0), due to 
strong coupling with the H-H and C-H stretch modes, respec­
tively. The very large peak on the reactant side in addition to 
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TABLE V: Forward Rate Coefficients (cm3/(molecule s)) 

T, K TST (*) ICVT/MEPSAG• 

298 
400 
667 

1000 

1550 

3.9 X 10-35 

6.5 X 10-30 

7.7 X 10-24 

9.3 X 10-21 

1.9 X J0-18 

7.3 X ] 0 33 

8.0 X J0-29 

1.8 X J0-23 

1.3 X 10-20 
2.2 X J0-18 

ICVT /SCSAG• 

1.2 X J0-31 

2.5 X 10-28 

2.4 X 10-23 

1.5 X J0-20 

2.3 X J0-18 

Baldridge et al. 

6.5 X JO-I8b 

9.0 X J0-16b 

1.5 X J0-14c 

• ICVT /MEPSAG agrees with CVT /MEPSAG, and ICVT jSCSAG agrees with CVT /SCSAG, to the number of significant figures shown. 
bCalculated from the reverse rate constants of Shaw and JANAF equilibrium constants.29

•33 ccalculated from the reverse rate constant of Sepehard 
et al. and JANAF equilibrium constants. 29

•
34 

these two peaks is due to the avoided crossing of v1 and v2 noted 
earlier; this large peak was not calculated in ref 7 because the 
avoided crossing was not resolved. (Another difference from ref 
30 is that in the present work the curvature maximum at positive 

s is about 3 times larger than the one at s ~ -0.1 a0, whereas in 
their work the ratio of peak heights is about I .3.) Figure 17b 
shows the effective mass as a function of reaction-path distance. 

This is one of the most difficult properties of the reaction path 

to converge, as is apparent from the extreme jaggedness of the 

plot, and as we know from many calculations4
•
11

•
17

•
21 with analytic 

potential energy surfaces. (Fairly sharp peaks in the reaction path 
curvature as a function of the reaction coordinate are not un­

common; see, e.g., previous work on H + H 2
17 and 0 + H 2.

32
) 

The effective mass represents a consequence of the trends depicted 
in the curvature plot (Figure 17a) plus the distances to the vi­

brational turning points. 
The rate constants were computed by both canonical-ensemble 

variational theory (CVT) and improved CVT (ICVT). 11 •21 The 
canonical variational transition-state rate constant, kcvT, can be 

formulated in terms of the generalized free energy of activation, 
as given by 

kCVT(T) = (crj{3h)K 0 exp!-max~GGT,o(T, s)/RTI (13) 
s 

where t:J.GGT,o ( T, s) is the generalized transition-state standard­

state free energy of activation at temperature T for a generalized 
transition state dividing surface at s, cr is the symmetry number, 

and K0 is the reciprocal of the standard-state concentration. The 
ICVT rate constant 11

c·
21

c includes, in addition, a threshold cor­

rection. 
Figure 18 shows plots of the generalized free energy of activation 

curves ~GGT,o ( T, s) as functions of distance s along the reaction 

coordinate for four temperatures. For low temperatures, the 

maximum in the free energy profile occurs at s = 0, which cor­
responds to the saddle point. At higher temperatures, the max­
imum is just removed from s = 0. The effect is very small due 
to the fact that the ST0-3G barrier height is so high. The free 

energy involves an enthalpy and an entropy contribution, and the 
zero-point effects or the other vibrational contributions in the latter 
often have the effect of moving the generalized transition state 

away from the saddle point. Since the potential energy term is 
so high for the UHF/ST0-3G level of approximation, the vi­
brational effects on the location of the best transition state are 

relatively underestimated. 

The Wigner approximation is the simplest tunneling correction 
to conventional TST. In addition to the information needed for 
conventional transition-state theory calculations, it is only necessary 
to know the imaginary frequency for the unbound normal mode 
at the saddle point. Table IV gives the Wigner tunneling ap­

proximation, * / W (where * refers to conventional TST), as a 
function of temperature. Since the restrictions involved in this 
approximation are so severe, the Wigner correction is justifiable 
only for reactions for which the variational transition state is 
located at s = 0 and even then only at very high temperatures 
where the value is near unity. When it differs appreciably from 
unity, as seen in Table IV for temperatures below 1000 K, the 
assumptions contained in its derivation are never satisfied and it 
is often found to be inaccurate. 21 

(32) Garrett, B. C.; Truhlar, D. G. Int. J. Quantum Chern. 1986, 29, 1463. 
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Figure 18. Generalized standard-state free energy of activation (kcal/ 
mol) as a function of reaction coordinate for the temperatures (a) 298 
and 400 K, (b) 667 K, and (c) 4000 K. 

The calculation of more accurate transmission coefficients also 
corrects the VTST results somewhat for nonseparability of the 
reaction coordinate. Here, tunneling corrections are computed 
by the MEPSAG and SCSAG methods. 11

•
17

•21 The latter ap­
proximation is the more accurate of the two, since it incorporates 
effects of the curvature of the reaction path. In those cases where 
there is no coupling of the reaction coordinate to the transverse 
vibrational modes in the tunneling region, MEPSAG should be 
a sufficient approximation to the transmission probability, but 
this is seldom the case. The more accurate SCSAG results are 
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also given in Table IV. At low temperatures, there is a I order 
of magnitude difference between the MEPSAG and SCSAG 
results, indicating the importance of reaction path curvature ef­
fects. At higher temperatures, where curvature has a smaller 
effect, the three sets of results merge to similar values. The 
transmission coefficients at the UHF /ST0-3G level are expected 
to be too large because the barrier is too high and too thin. 

The final rate constant is the product of kcvT(T) and 
KcvT;scsAo(n. Table V gives various approximations to the rate 

constants for (R I) as functions of temperature. Calculations 
performed with conventional TST without allowance for tunneling 
or curvature are given in the column headed with *. The final 
rate constants of this study are those in the column headed 
ICVT /SCSAG. As previously mentioned, the actual value of the 
rate constant is unreliable for (R I) because of the quality of the 
basis set. The forward rate constant is far too small compared 
to experiment33•

34 because of the overprediction of the barrier. It 
is still interesting to compare results obtained with various ap­
proximations, however, if we consider the present study to be a 
model of some other reaction with a higher barrier. 

Allowance of tunneling but no curvature gives rate constants 
designated by ICVT /MEPSAG in Table V. These calculations 
ignore all reaction-path-curvature elements, but include the 
tunneling by the MEPSAG method, and this is appreciable at low 
temperatures. The inclusion of curvature effects yields even larger 
increases at low temperatures, as seen in the ICVT /SCSAG 
results. As the temperature increases, the two sets of tunneling 
results become almost identical, but at low temperatures there 
is as much as a !-order of magnitude difference, as seen above 
in K( T). 

The variation in the rate constant for the three methods without 

tunneling, *· CVT, and ICVT, is not significant for this model 
system until very high temperatures ( T > 1550 K) are reached. 
It is only at these high temperatures that the no-recrossing as­
sumption of conventional TST breaks down significantly more 
than that of VTST for the present model reaction. 

(33) Shaw, R J. Phys. Chern. Ref Data 1978, 7, 1179. 
(34) Sepehrad, A.; Marshall, R. M.; Purnell, H. J. Chern. Soc., Faraday 

Trans. 1 1979, 75, 835. 
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5. Summary and Conclusions 

The efficiency of several methods for computing steepest descent 
paths has been compared. Euler, stabilized Euler, and a 
fourth-order Runge-Kutta method are shown to perform well. 

A complete quantum mechanical calculation has been per­
formed for the abstraction reaction (Rl). The reaction path was 
generated by the stabilized Euler algorithm (version ES2) with 
step size 0.05a0, and generalized normal coordinates orthogonal 
to the path and vibrational frequencies were determined. This 
information has enabled calculation of the temperature-dependent 
rate constants with ab initio electronic structure calculations and 
the POLYRATE computer code without performing an analytic fit 
to the potential surface, i.e., "direct dynamics". The results include 
the effects of both tunneling and reaction path curvature. 

The calculations show that it is possible to use electronic 
structure reaction path methods to study the dynamics of fairly 
large systems. (Of course "fairly large" is a relative descriptor; 
the present system has eleven vibrational degrees of freedom 
orthogonal to the reaction path, compared to two or three for an 
atom-diatom collision.) With the UHF jST0-3G level employed 
here, though, the results are not as accurate as previous results20

b 

for reaction Rl with a semiempirical analytic potential surface. 
Thus, they represent a model system. It would also be interesting 
to investigate this system at a much higher level of calculation. 
When the level of electronic structure theory is good enough to 
give a reliable barrier and reaction path, the approach described 
in this work may provide useful accuracy for applications requiring 
rate constants. 11

•
21 
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