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We present a practical scheme for performingab initio supercell calculations of charged slabs at
constant electron chemical potentialm, rather than at constant number of electronsNe . To this end,
we define the chemical potential relative to a plane~or ‘‘reference electrode’’! at a finite distance
from the slab~the distance should reflect the particular geometry of the situation being modeled!. To
avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we
restore the electroneutrality of the periodically repeated unit by means of a compensating charge,
whose contribution to the total energy and potential is subtracted afterwards. The ‘‘constantm’’
mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed
potential relative to the reference electrode. We expect this to be useful in modeling many
experimental situations, especially in electro-chemistry. ©2001 American Institute of Physics.
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I. INTRODUCTION

Density functional theory~DFT! in conjunction withab
initio self-consistent electronic structure calculations h
proved to be a reliable tool in investigating various system
in particular metallic surfaces. Since the DFT was form
lated, there has been continuous interest in applying the
malism to study charged surfaces, or surfaces in an exte
electric field. The issues which have been addressed inc
the density of the induced surface charge and the~actual!
position of the image plane,1–7 field-induced reconstruction
of a surface,8,9 modeling of scanning tunneling microscop
~STM! measurements,10–12 simulation of adatoms in the
presence of external electric field,13 changes of the vibra
tional frequencies of adsorbed molecules,14 the study of
metal–water interfaces,15 and electrodes in an underpotent
deposition experiment.16

Originally, DFT was formulated for systems with a fixe
number of electronsNe .17 Soon after18 it was realized that
there exists an~equivalent! formulation of DFT in which the
chemical potential of the electrons,m, rather than their num-
ber, is one of the basic variables. In this case, thegrand
potentialof the system considered as a functional of the el
tron density,V@r#, attains a minimum at the correct groun
state electron density,r0 , corresponding to a givenm,19

rather than thefree energy F@r# at fixedNe . The importance
of this formalism lies in the fact that, in complex system
with strongly interacting parts, one cannot unambiguou
assign a certain number of electrons to any particular par
the system, whereas the electron chemical potentialm is a
global quantity and, hence, is uniquely defined.20
1660021-9606/2001/115(4)/1661/9/$18.00
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The difference between the canonical~‘‘ Ne5const’’!
and grand canonical~‘‘ m5const’’! description is easy to il-
lustrate in the case of a charged metallic slab. Suppose
are interested in finding the equilibrium state of the system
variable charge and fixed temperatureT and volumeV. For
instance, if the surface of the slab can adopt several alte
tive configurations, which one would be preferred at a giv
set of thermodynamic parameters? The following examp
are illustrative of such a situation: surface reconstruction
deconstruction, reorientation of water molecules next to
metallic electrode in an electrochemical cell, adsorptio
desorption of specific ions depending on the sign and m
nitude of the charge of the metallic surface.

If the number of electrons is fixed in a system switchi
between possible alternatives, thenNe is a convenient vari-
able, and the thermodynamic potential which should be co
pared for different configurations is the Helmholtz free e
ergy F(T,V,Ne). If, on the other hand, alternativ
configurations have the same chemical potential of electr
then m is a more natural variable for describing the char
state of the system, and the grand potentialV(T,V,m) is the
relevant thermodynamic potential.21 This is just the usual
thermodynamic choice of extensive or intensive variabl
e.g., pressure versus volume, or entropy versus tempera
where the most convenient variable is chosen depending
the particular problem under consideration.

A realization of the ‘‘Ne5const’’ mode for a metallic
slab is, e.g., when anisolatedslab is placed in an externa
electric field ~as in the case of an isolated capacitor plat!.
The ‘‘m5const’’ mode corresponds to a metallic slab whi
is a part of an electric circuit. There are numerous examp
1 © 2001 American Institute of Physics
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1662 J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Lozovoi et al.
in different types of electrochemical experiments;22 perhaps
this is also relevant to STM measurements although, in
case, the system is not in equilibrium. We briefly summar
the above in Fig. 1.

Although the grand canonical DFT formalism is we
established and in many cases is closer to an actual ex
mental situation, its practical implementation is less straig
forward than that in the ‘‘Ne5const’’ mode. Possibly, this
explains whyab initio calculations of metallic surfaces hav
almost invariably been done at a constant number
electrons.23

Below we provide a practical scheme which allows f
the implementation of the ‘‘m5const’’ mode within a stan-
dardab initio supercell calculation. This gives rise to a num
ber of subtle issues regarding the definition ofm and the
removal of the electrostatic divergence associated w
charged systems in three dimensions, whose resolution is
of the principal goals of this article.

II. CHEMICAL POTENTIAL OF ELECTRONS

We would like to develop a scheme in which the electr
chemical potential can be held fixed. However,m is defined
with respect to an energy zero, which can be arbitrarily c
sen. This is a general property of the chemical potential
specifying the chemical potential of a particle in a giv
state, one must choose the standard~or reference! state,
where the particle is put after being removed from the sys
and where it is assigned zero energy. Although no phys
property of the system is affected by the choice of the ‘‘p
ticle reservoir,’’ care should be taken to keep the ‘‘reservo
unchanged during the simulation, and also to specify
same reservoir for systems which one is going to comp
with each other. If we work with infinite slabs of definit
orientation, at a given amount of vacuum, the chemical
tential might be considered to be the energy required to

FIG. 1. The system under considerationS can be maintained either at con
stant charge~‘‘ Ne5const’’ mode! or at constant potential dropDV relative
to the reference electrodeR ~‘‘ m5const’’ mode!. In the first case the rel-
evant thermodynamic potential is the Helmholtz free energyF, while in the
second it is the grand potentialV.
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move an electron from the slab and put it at the ‘‘infinity
that is, sufficiently far in vacuum. For a neutral slab, this
simply the work function. The latter, however, is not defin
for charged slabs, and we need to provide a generalized
nition.

A. Uncharged slab

In the case of a neutral metallic surface, the elect
chemical potentialm ~defined as the first-order free energ
change with respect to the electron numberNe! is related to
the work functionf as24

f5V`2m, ~1!

whereV` is the potential far away from the surface, well in
the vacuum region. For finite slabs,V` must be considered to
be the value of the potential at a distance which is sm
compared to the macroscopic size of the slab, though la
compared to any relevant microscopic distance, such as
lattice parameter.25

The work function measures the difference of poten
between the Fermi level and the vacuum, and this differe
depends on the surface dipole which varies with the f
exposed. A way to display the dependence of the work fu
tion on the surface-dipole explicitly is to rewrite~1! as

f5~V`2Vb!2~m2Vb!5D2m̄, ~2!

whereVb is the average potential in the interior of the cry
tal. In this equation,m̄ is the position of the Fermi leve
relative toVb , and is the same for the metal regardless of
face exposed.24 D is the surface-dipole potential, which i
dependent on the surface orientation.26 Thus the effect of
changing the surface dipole is to change the electrostatic
tential of the interior of the metal relative to the vacuum a
so to shift the energies of the whole electron band includ
the Fermi level with respect to the potential at infinity. Th
chemical potential of electrons in different crystals must
measured relative to a common energy zeroV` . This means
that electrons in crystals with different exposed surfaces
different shapes have different chemical potentials.

In simulations of periodically repeated~neutral! slabs
there is no field outside the slab and the computed w
function is identical to that measured by a threshold exp
ment in which an electron is moved from the interior to
point just outside the crystal face. For a real crystal there
small change in potential between this point and ‘‘true infi
ity,’’ that is, points whose distance from the crystal is lar
compared to crystal dimensions. This is the ‘‘true’’ vacuu
potential. However, provided that the crystal is slab sha
with a thickness small compared its lateral dimensions,
correction is negligible. Within the current study we consid
slabs of crystal with parallel faces of the same type.

B. Two metals in contact

Next, we consider two different metals Me1 and Me2
having different work functionsf1 and f2 ~Fig. 2!. If the
metals do not interact, their potentials are aligned so a
equalize the vacuum levels@Fig. 2~a!#. As soon as the elec
trons are allowed to flow from one metal to the other, th
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1663J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Simulation of charged slabs
chemical potentials or, equivalently, their Fermi leve
equilibrate@Fig. 2~b!#. The resulting charge on each met
1q and 2q gives rise to a constant electric field,E, in the
vacuum region between the surfaces of the two metals—
plates of a condenser. The surface charge per unit ares,
which is related toq, and the fieldE are connected via

s5
E

4p
52

1

4p

dV

dz
,

whereV denotes the electrostatic potential, and the deri
tive dV/dz is taken sufficiently far away from the metalli
surfaces, i.e., where the charge density becomes neglig
small.

We note that the surface charge is inversely proportio
to the distance between the condenser platesd @Fig. 2~b!#
with more charge being transferred if the plates are ne
together.

C. An isolated charged slab and the corresponding
system with periodic boundaries

Figure 3~a! shows the potential of a charged symmet
slab of metal. Outside the slab the magnitude of the field
constant and its direction is opposite on the two sides of
slab. Takingz50 at the center of the slab we have, in r
gions sufficiently far from the slab,

V5V012psuzu, ~3!

which tends to infinity asuzu→`. If we chooseV0 in Eq. ~3!
such that the potential is zero atuzu5L, then this is equiva-
lent to placing reference electrodes atL and2L.

FIG. 2. Diagram showing two metals Me1 and Me2 before~a! and after~b!
the electrons are allowed to equilibrate their Fermi levelsEF; f denotes the
work function, V` indicates the potential far away from the surface, a
DV5V2`2V1` .
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Figure 3~b! shows a periodic arrangement of slabs se
rated by a vacuum region. All replicas are subjected to
same local conditions, i.e., they are identical copies o
unique slab. The system is neutralized by placing a coun
charge 2s per unit area on two-dimensional shee
A,A8,A9,... . Each periodic unit~metal/vacuum/metal! rep-
resents a symmetric condenser with capacitance 4pd; the
charge distribution and field on the two sides of the slab
symmetric provided that the slab is symmetric itself, and t
it is placed in the center of the space between the char
sheets. The electric field near each slab in Fig. 3~b! is
identical to the isolated charged slab in Fig. 3~a!.

D. The idea of a reference electrode

In an electrode in an electrochemical cell the poten
falls off from the metal surface to a constant value as
double layer is traversed. The charge on the electrode’s
face depends on the potential difference between the m
and the solution far from the electrode, and on the cap
tance of the double layer. In this setup, the control variabl
the potential rather than the surface charge, and calculat
should be carried out at constant chemical potential ra
than constant charge.

In order to define the origin for the electron chemic
potential, we set to zero the electrostatic potential at a
tance6L from the center of the slab:

V~ r̄ !u uzu5L50. ~4!

This is equivalent to placing reference electrodes at th
points. The electron chemical potential is then the differen
between the potential at these points and the Fermi le
@Fig. 3~a!#. This definition is compatible with the system
with periodic boundaries shown in Fig. 3~b!. However, since
the potential is linear in the regions of low electron density
is not necessary to have the cell boundaries at6L. In fact, if
m8 is the chemical potential~Fermi level! corresponding to
the periodic system shown in Fig. 3~b!, where the choice of
the energy zero is arbitrary, then the chemical potential c
sistent with~4! can be recovered as

m5m82V~Lz/2!2~L2Lz/2!
dV

dzU
z.z0

, ~5!

where z0 is a point beyond which the electron density
negligible, and thus the potential is linear~obviously z0
b and
e

FIG. 3. The potential of an isolated, symmetric charged slab~a! can be reproduced by that of a periodically repeated neutral system consisting of sla
compensating charged planesA ~b!. The energy zero in~a!, which definesm, is chosen such thatV50 atz56L. This is equivalent to placing the referenc
electrode atL. The choice of zero of the energy axis on~b! is not relevant, because the chemical potentialm8 is related tom in ~a! by Eq. ~5!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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<Lz/2!. This means that the size of the simulation cellLz

need not be as large asL. While the choice ofL is dictated
by the characteristics of the problem under considerat
e.g., the Debye–Hu¨ckel screening length of the electrolyt
solution, the above reasoning suggests that, in practice
first-principles calculations can be done for the periodic s
tem shown in Fig. 3~b!, by assuming that the reference ele
trode is placed at positionA ~i.e.,L5Lz/2!. Then, the results
can be recalculated in a simple way for any particular va
of L.

III. TWO SURFACE PHASES. WHICH IS MORE
STABLE?

Suppose that the surface of a metal carrying a cer
charge can assume a few different structures: how can
decide which one is preferred?

Here we must distinguish whether the surface is in
‘‘ Ne5const’’ mode or in the ‘‘m5const’’ mode. In the first
case all states of the surface correspond to the same su
charge, and consequently to the same field. Therefore
answer the question, we should minimize the Helmholtz f
energy:27

F5Fe1Eii ,

whereFe is the free energy of the electron subsystem~in-
cluding their interaction with the ions!28 andEii is the elec-
trostatic ion–ion interaction energy.

In the second case, the system maintains the samem, but
the charge of the surface can differ from one state to anot
As a consequence, the electric field near the surface
change, and this enters the overall energy balance. Note
the closer the reference electrode~i.e., the smaller the value
of L!, the larger the variation in the electric field should b
that is another illustration of why the position of the refe
ence electrode becomes important in the ‘‘m5const’’ mode.

In this case, to decide which of the states of the surf
is more stable we have to compare the grand potentials:

V5F2mNe5Fe2mNe1Eii .

The surface can change state continually, rather than
cretely; in this case we speak about the equilibrium state
function of m.

IV. PRACTICAL AND COMPUTATIONAL
CONSIDERATIONS

In practice,ab initio calculations of solid surfaces ar
usually done within the supercell approach, in which the s
face is represented with a slab, embedded in a vacuum
gion. The cell comprising the slab and the correspond
vacuum is periodically repeated, thus restoring the 3D p
odicity of the system. Although the supercell approach is
the only possible way to calculate the electronic structure
the surfaces, and other methods have been devised,4,7 the
computational scheme presented here assumes that thab
initio calculations use the supercell approach as the m
efficient at present.

In this case, treating charged surfaces becomes prob
atic because the net charge of the cell makes the electros
Downloaded 07 Dec 2001 to 131.111.120.149. Redistribution subject to 
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potential and energy diverge. To circumvent this problem
compensating charge must be introduced into the cell. In
‘‘ Ne5const’’ mode, this does not introduce any addition
complication, because the neutralizing charge distribut
can be chosen in such a way that the free energy differe
remains unaffected. For example, in Refs. 8 and 9 the ch
was neutralized by placing sheets of charge in the vacu
region. The distribution of charge across the sheets
Gaussian. As long as the surface energies are compare
the same charge, then the Gaussian charge contribution
the total energy cancel out. Unfortunately, this is not the c
of the ‘‘m5const’’ mode, in which the states that are com
pared have different charges, and therefore the contribu
of the neutralizing charge is different and must be trea
explicitly.

The whole scheme of computation in the ‘‘m5const’’
mode consists, then, of two steps:~1! Having introduced the
compensating charge, the self-consistent electronic den
potential, and grand potential per supercell are calcula
~Sec. IV A!. ~2! The properties of the isolated supercell a
restored by removing the compensating charge and reca
lating the potential and grand potential, so as to satisfy
appropriate boundary conditions~4! ~Sec. IV B!.

A. Grand potential calculation

To find the electron grand potential we use the meth
proposed in Ref. 29, which we briefly recall in the followin
referring the reader to the original papers 29 and 30 fo
more extensive discussion. The method has been im
mented in theCPMD code31 and since then has repeated
been used forab initio calculations of various types.

The method is related to Mermin’s extension of the de
sity functional theory~DFT! to finite temperatures, in the
sense that the Helmholtz free energy functional

F@re#5V@re#1mNe1Eii ~6!

shares the stationary points with the Mermin functional.18 In
Eq. ~6! re denotes the electron density, which integrates
Ne electrons,m is the electron chemical potential,Eii is the
energy of the ion–ion electrostatic interaction, and the gra
potentialV is a functional defined at a finite temperatureT
.0 in the following way:

V@re#52
2

b
ln det~11e2b~H2m!!

2E dr̄re~ r̄ !S VH~ r̄ !

2
1

dVxc@re#

dre~ r̄ ! D1Vxc@re#.

~7!

Hereb51/kT, VH is the Hartree potential,Vxc is the finite-
temperature exchange-correlation grand potential functio
~although in our calculations we shall use the zero tempe
ture exchange-correlation functional!, and H is the one-
electron Hamiltonian:

H52 1
2 ¹21V~ r̄ !.

The effective one-electron potentialV( r̄ ) is
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1665J. Chem. Phys., Vol. 115, No. 4, 22 July 2001 Simulation of charged slabs
V~ r̄ !5VH~ r̄ !1Vext~ r̄ !1
dVxc@re#

dre~ r̄ !
,

andVext is the external~ionic! potential.
In order to perform constant-m calculations, at each self

consistent iteration we calculate the electron density as a
of partial densities over Kohn–Sham orbitals with eigenv
ues up to a givenm, thus rendering the electron density a
the total number of electronsm dependent. Correspondingl
we obtain the grand potential as a function ofm.

In practice, however, the self-consistent procedure
fixed m turns out to converge more slowly than that at fix
Ne ~as in standard DFT applications!; the number of elec-
trons Ne may initially undergo large fluctuations, althoug
the procedure is always able eventually to find the s
consistent solution, which is fairly reproducible. We fou
that a simple way to speed up the calculation is to use
self-consistent density previously calculated for some va
of m—which is sufficiently close to the desired value, as
initial guess for the electron density. In this case, the pro
dure converges in only 10 to 15 iterations.

In this type of simulation, the total number of electro
is not an integer. This is permissible within a free ene
functional: the interpretation is that the electron density is
average of all possible states in a grand canonical ense
at the specified temperature and electron chemical poten
The states themselves, however, correspond to different
integral numbers of electrons each. The problem is that
usual exchange-correlation functionals do not distingu
states with integer and nonintegerNe , and therefore do no
treat the latter as a superposition of the former.32 A detailed
discussion of this interesting issue is beyond the scope o
present article. A recent investigation of how well the dens
functional approach deals with noninteger numbers of e
trons for both finite and extended systems can be foun
Ref. 33.

B. Compensating charge correction

The compensating charge can have an arbitrary sh
for example the 2-D sheets of charge in Fig. 3~b!. However,
in many ways the simplest shape to implement is a unifo
3-D background charge.34,35 In the case of localized charge
defects, the uniform background contribution to the ene
decays with the supercell sizeL as36

DEes5
q2a

2L
1

2pqQ

3L3 1O~L25!, ~8!

whereq is the net charge,a is the Madelung constant, andQ
is the spherical quadrupole moment of the charge den
distribution. Explicit subtraction of the background corre
tion given by~8! allows for achieving a more rapid energ
convergence with the supercell size.

Turning now to the case of charged slabs, one can s
larly ask the question of how to determine the electrost
energy and potential of the slabwithout any compensating
charge, or with the compensating charge at a more dis
reference electrode~6L!, knowing the energy and potentia
of a slab with the compensating charge. In doing so, w
Downloaded 07 Dec 2001 to 131.111.120.149. Redistribution subject to 
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employ the scheme suggested by Schultz,37,38which consists
in decomposing a general charge density,r( r̄ ), into the sum

r~ r̄ !5r8~ r̄ !1r lm~ r̄ !, ~9!

wherer8 does not contain any moments~up to some valuel!,
and r lm matches moments ofr and has an analytical form
The potentialV8, corresponding tor8( r̄ ), can be calculated
using periodic boundary conditions. The potentialVlm , re-
lated tor lm , can be found by consideringr lm as an isolated
charge in vacuum. Finally, the electrostatic potentialV is
obtained as

V~ r̄ !5V8~ r̄ !1Vlm~ r̄ !. ~10!

In this context the uniform background looks like a particu
case of~9! for l 50.

Note, correcting the potential by using~9! and ~10! is
only accurate to first order as it does not involve any red
tribution of the electron density due to the changes of
potential. In other words, ifV8 and r8 are calculated self-
consistently within the DFT formalism,r8 is the density
which minimizes the total energyonly for external potential
V8. By addingVlm non-self-consistently, we change the e
ternal potential, andr is no longer a variational density in th
DFT sense. This has been recognized in Refs. 34 and 36,
a correction involving the electronic response function w
proposed. However, provided that the cell is large enou
compared to the slab thickness, the perturbation of the e
tron density in the slab is small and can be ignored in a fi
approximation. If the compensating charge can be place
vacuum, then the removal of the neutralizing charge is ex
that is, it does not affect the ground state electron densit

Below we consider, first, a compensating charge of a
trary shape~Sec. IV B 1! and, then, we address specifical
the case of a uniform background~Sec. IV B 2!.

1. Background of general shape

Consider a single slab placed in vacuum; the slab is
finite and periodic along thexy directions. The charge den
sity r( r̄ ) of the slab is not required to satisfy the neutral
condition. Our goal is to find the electrostatic energyEes ~per
unit surface area! and the electrostatic potentialV( r̄ ) of the
slab in the absence of any background density.

We embed the slab with some vacuum on both si
~sufficient to reach negligible electron density away from t
slab! into a unit cellV0 having dimensionsA0 and Lz(V0

5A0Lz), and introduce the background chargerb(z) which
has an analytical form and restores the electroneutrality
the cell. The slab1 background charge density,r̃( r̄ ),

r̃~ r̄ !5r~ r̄ !1rb~ r̄ ! ~11!

satisfies

E
V0

r̃~ r̄ !d3r 50.

Hereafter, we use the ‘‘tilde’’ to denote quantities that cor
spond to the cellwith the compensating charge.

We do next the DFT calculation for the slab, from whic
we extract the self-consistent charge densityr̃( r̄ ) and the
corresponding electrostatic energyẼes ~per unit cellV0! and
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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electrostatic potentialṼ. The latter is defined up to an add
tive constant, so we remove the ambiguity by setting itsxy-
average equal to zero in the middle of the vacuum@cell
boundaries in Fig. 3~b!#:

^Ṽ~Lz/2!&5^Ṽ~2Lz/2!&50, ~12!

where

^Ṽ~z!&5
1

A0
E

A0

Ṽ~ r̄ ! dx dy. ~13!

Now we take a single cellV0 with the backgrounded
slab out of the infinite periodic media and place it into t
vacuum ~Fig. 4!. We assume that this procedure does
change either the electrostatic energyẼes or the potentialṼ
of the frame: the accuracy of such an assumption depend
the identity of the lowest nonzero multipole moment of t
density r̃( r̄ ). This is basically the same assumption as
glecting the interaction between periodic images in neu
supercell calculations.

The resulting system can be regarded as the superp
tion of two: the charged slab without background and
background itself. Correspondingly, for the electrostatic
tential we have

Ṽ~ r̄ !5V~ r̄ !1Vb~ r̄ !, ~14!

where Vb( r̄ ) is the electrostatic potential generated by t
compensating chargerb( r̄ ).

To find Vb( r̄ ), one needs to solve the Poisson equat
with the charge densityrb( r̄ ) and the boundary condition
for Vb consistent with~4!, namely,

Vb~ r̄ !uz56L5Ṽ~ r̄ !uz56L . ~15!

Once Ṽ at z56Lz/2 is known, one can find its value atz
56L, L>Lz/2, by solving the corresponding Laplac
equation; in practice however, this is an unnecessary com
cation: neglecting again any corrugation of the potential

FIG. 4. A slab with a corresponding portion of background~compensating
charge!, representing a periodic unit in the supercell calculation, is pla
into the vacuum. Both the slab and the strip of background are period
the x andy directions, but are not periodic in thez direction. The reference
electrode R specifies the zero boundary conditions for the electrostatic
tential of the slab.
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away from the slab and taking into account~12!, we can
assume thatṼ( r̄ )uz56L50 @Ṽ(2̄)50 everywhere between
Lz/2 andL#.

Similar to ~14!, we write the electrostatic energyẼes of
the backgrounded slab in the vacuum as:

Ẽes5Ees1Ebc1Ebb , ~16!

whereEes is the electrostatic energy of the slab without a
background~i.e., the desired quantity!, Ebc is the electro-
static energy of the background interaction with the cha
density of the slab, andEbb is the electrostatic energy of th
background interaction with itself.

We take the termẼes from the supercell calculations
Ebb can be easily found as soon as the background den
rb and potentialVb are known:

Ebb5
1

2A0
E

2`

`

dzE
A0

dx dy@Vb~ r̄ !rb~ r̄ !#. ~17!

Ebc can be thought of in two ways: as an interaction
the background chargerb with the slab potentialV, or as an
interaction of the slab charger with the background potentia
Vb .

In the first case,

Ebc5
1

A0
E

2`

`

dzE
A0

dx dy@V~ r̄ !rb~ r̄ !#, ~18!

and in the second case,

Ebc5
1

A0
E

2`

`

dzE
A0

dx dy@Vb~ r̄ !r~ r̄ !#, ~19!

The equivalence of the last two formulas is guaranteed
Green’s theorem39 and the boundary conditions forV and
Vb : one can choose whichever formula is more conveni
for any specific application.

2. Uniform background

By solving the Poisson equation for the uniform bac
ground potential in the cell with the boundary conditio
Vb(6L)50, and substituting the result into~14!, we obtain
that the artificial electrostatic potential due to the backgrou
can be eliminated by choosing

V~ r̄ !5Ṽ~ r̄ !1
2pq

A0

3FL1z, z<2Lz/2,

2@z22LzL1~Lz/2!2#/Lz , 2Lz/2<z<Lz/2,

L2z, z>Lz/2,

~20!

whereṼ is the potential taken from the supercell calculati
with the background, andq is the uncompensated charge p
simulation cell, which is positive if electrons are in exce
Note thatṼ( r̄ )50 if uzu.Lz/2.

As an example, we plot in Fig. 5 the self-consistentxy-
averaged electronic density and effective potential~before
and after the correction! for the Pt~110! unreconstructed sur
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face. The calculations are done for periodically repea
eight layer slabs separated with vacuum of thickness equ
ten interlayer spacings of the bulk platinum. The slab is po
tively charged~1 electron out of 160 valence electrons p
unit cell is missing, i.e.,q521!, which corresponds to sur
face charges520.25ē per surface atom, or20.023ē/Å 2.
This is actually a rather large charge. We have chosen su
plot to demonstrate that the corrected potential becomes
ear in the region where the electronic density is negligib

Another feature visible in Fig. 5 is the small curvature
the average potential inside the slab. This is an artifact
one does not expect any electric field inside a metal, and
consequence of the non-self-consistent character of the
rection mentioned above: the electronic response to the
moval of the background charge has been neglected.

Similarly, substituting the uniform background dens
rb and its corresponding electrostatic potentialVb , into ex-
pressions~17!–~19!, and using~16!, we arrive at the follow-
ing alternative forms of the correction to the electrosta
energy per unit cell surface area:

FIG. 5. Pt~110! unreconstructed surface:~a! the effective potential before
~dashed line! and after applying the background correction~solid line!; and
~b! electronic density, obtained as a result of the self-consistent DFT ca
lations and averaged in thexy directions~note the logarithmic scale for the
density!. The slab is charged positively and contains 159 valence elect
instead of 160 per 16-atom unit cell, which corresponds to the sur
charges as large as20.25ē per surface atom, or20.023ē/Å 2. The bound-
ary condition for the charged slab potential is chosen to be zero at
supercell boundary (L5Lz/2). The linear behavior of the potential far from
the charged slab is what one expects in the absence of any distrib
charge.
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Ees5Ẽes1
q

A0
^Ṽ&V0

1
pq2

A0
2 S L2

Lz

3 D , ~21!

Ees5Ẽes2
2p

V0

q

A0
r̃2z1

pq2

A0
2 S L2

Lz

3 D , ~22!

where^Ṽ&V0
is the average electrostatic potential obtained

the supercell calculation,

^Ṽ&V0
5

1

V0
E

V0

Ṽ~ r̄ ! d3r , ~23!

andr̃2z is the second moment of densityr̃ in thez direction:

r̃2z5E
V0

z2r̃~ r̄ ! d3r . ~24!

Both equations express the necessary correction in te
of tilde quantities which are the output of the supercell c
culation of the slab with the background. Equation~22!
seems more convenient for a theoretical analysis of the
mula, whereas Eq.~21! is better for practical calculations.

As a test of internal consistency of the above correcti
we plot in Fig. 6 the Helmholtz free energy of the slab re
resenting the (131) unreconstructed Pt~110! surface as a
function of the chemical potential of electrons. TheF(m)
curve reaches the minimum very close them50 point: this
agrees with the following general thermodynamic relation

S]F

]mD
V,T,Vext

5S ]F

]Ne
D

V,T,Vext

3S ]Ne

]m D
V,T,Vext

5mS ]Ne

]m D
V,T,Vext

,

where the partial derivatives are calculated at constant t
peratureT, volume V, and external potentialVext ~i.e., the
ionic positions are fixed!.

u-

ns
e

e

ted

FIG. 6. Pt~110! unreconstructed surface: Helmholtz free energyF per 16-
atom supercell as a function of the electron chemical potentialm after ap-
plying the background correction. The result of the self-consistent D
calculations are shown with open circles, the solid line represents the fi
order polynomial fit of the DFT results. Position of the neutral slab
marked with the arrow: chemical potential of the electrons in this case is
negative of the work function~5.53 eV!. The boundary condition for the
charged slab potential is chosen to be zero at the supercell boundarL
5Lz/2). The figure demonstrates that the minimum of the free energy ne
coincides withm50.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The removal of the background charge also implies c
rections to theforcesacting on the ions. In case of the un
form background, thez-component of the force which ioni
experiences should be corrected as

Fz
i 5F̃z

i 1
4pq

V0
Qizi , ~25!

whereQi andzi are the charge of the ion~expressed in units
of electron chargee, i.e., Qi,0! and itsz-coordinate. The
correction vanishes with increasing the cell size asLz

21. For
comparison, the corresponding correction in the case of
calized charged defects in a cubic supercell given in Ref
should decay asL23, whereL is the cube size. However, thi
formula must be used with caution, as the~opposite! polar-
ization of the electronic cloud due to the background m
partly cancel the correction~25!.

V. REAL ELECTRODES

As we have shown above, the ‘‘m5const’’ mode of cal-
culation becomes necessary if electrons are maintained
constant chemical potential, which is the case in most exp
ments. However, if the experimental conditions are such
the change of the electric field near the surface~i.e., the
surface charge!, due to possible changes in the surface,
negligible, the ‘‘Ne5const’’ mode is still a good approxima
tion. The distinction between ‘‘m5const’’ and ‘‘Ne5const’’
disappears asL tends to infinity, but can be important othe
wise.

Perhaps, one of the most important areas in which
‘‘ m5const’’ mode is relevant is electrochemistry. Althoug
the distance between the charged electrodes is macrosc
the electric field is confined to a small distance away fr
the electrode~within the so-called double layer! due to the
screening of the electrode charge by ions dissolved in
electrolyte. In this case, one can chooseL as a typical
screening length in a particular electrolyte, which depends
the electrolyte composition.40 Therefore, it becomes ver
easy to model the dependence of some surface effect on
electrolyte concentration by tuning the effective screen
length L ~see Ref. 41 for a recent review of models of t
double layer!.

The final comment is on the perturbation of the electr
density by the removal of the neutralizing charge. This is
main limitation of the scheme described here, especially
a uniform background charge, because it restricts the ma
tude of the surface charge which is meaningful to consid
Fortunately, even for the uniform background case, the ef
is not very large because dVb(z)/dz50 in the center of the
slab; it becomes increasingly steeper near the cell bou
aries, i.e., in the vacuum. Therefore, one can afford to c
sider higher fields for pure slabs than for slabs with adsor
molecules, as the latter are in regions where there is a la
correction to the field. Introducing the compensating cha
in such a way that it does not overlap with the charge den
of the slab and adsorbed molecules seems to be a b
solution to the problem. Then, no additional electric fie
acts on the electrons of the slab. For example, charged p
were placed in the vacuum region in Refs. 8, 9, and 12
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cases when this is not possible~for example, if the space
between the electrodes is filled with ions and water!, the use
of a uniform background charge with the approximate c
rection described here may be a better option.

However, in some special situations~especially in the
electrochemical environment!, where the screening occurs i
the immediate vicinity of the charged surface, it might
useful to model the screening effect by an explicit distrib
tion of background charge, or even to optimize its shape.
scheme considered in the current article is perfectly suita
for that purpose.

VI. CONCLUSIONS

~1! Alternative configurations of a system~such as different
surface reconstructions! can be compared either at th
same charge or at the same electron chemical poten
The second case corresponds to an experiment in w
the system is maintained at constant potential drop r
tive to the reference electrode. The relevant thermo
namic potential in this case is the grand potentialV
rather than the free energyF.

~2! In practical terms, the difference becomes importan
the distance corresponding to the potential drop is mic
scopic, which is true in the case of electrochemical p
nomena. This distance, therefore, enters into the de
tion of the electron chemical potentialm.

~3! The approach presented here allows for performing c
culations in the ‘‘constantm’’ mode, without abandoning
the standardab initio supercell schemes. The physic
quantities are thus obtained with no additional compu
tional effort, as compared to the ‘‘constantNe’’ mode.
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