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We present a practical scheme for performatginitio supercell calculations of charged slabs at
constant electron chemical potentialrather than at constant number of electrdlas To this end,

we define the chemical potential relative to a pléoe“reference electrode)’at a finite distance

from the slak(the distance should reflect the particular geometry of the situation being mpdeded
avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we
restore the electroneutrality of the periodically repeated unit by means of a compensating charge,
whose contribution to the total energy and potential is subtracted afterwards. The “com$tant
mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed
potential relative to the reference electrode. We expect this to be useful in modeling many
experimental situations, especially in electro-chemistry. 2@1 American Institute of Physics.

[DOI: 10.1063/1.1379327

I. INTRODUCTION The difference between the canoniddIN.=const”)
and grand canonicdl' u=const”) description is easy to il-

Density functional theoryDFT) in conjunction withab  |ustrate in the case of a charged metallic slab. Suppose we
initio self-consistent electronic structure calculations hasare interested in finding the equilibrium state of the system at
proved to be a reliable tool in investigating various systemsyariable charge and fixed temperatdr@nd volumeV. For
in particular metallic surfaces. Since the DFT was formu-instance, if the surface of the slab can adopt several alterna-
lated, there has been continuous interest in applying the fotive configurations, which one would be preferred at a given
malism to study charged surfaces, or surfaces in an externgkt of thermodynamic parameters? The following examples
electric field. The issues which have been addressed includge illustrative of such a situation: surface reconstruction or
the density of the induced surface charge and (d®ua)  deconstruction, reorientation of water molecules next to the
position of the image plank, field-induced reconstruction metallic electrode in an electrochemical cell, adsorption/
of a surfacé,® modeling of scanning tunneling microscopy desorption of specific ions depending on the sign and mag-
(STM) measurement$;*? simulation of adatoms in the nitude of the charge of the metallic surface.
presence of external electric fieltlchanges of the vibra- If the number of electrons is fixed in a system switching
tional frequencies of adsorbed molecutésthe study of between possible alternatives, thig is a convenient vari-
metal—water interface’S,and electrodes in an underpotential able, and the thermodynamic potential which should be com-
deposition experimertf pared for different configurations is the Helmholtz free en-

Originally, DFT was formulated for systems with a fixed ergy F(T,V,N.). If, on the other hand, alternative
number of electrond,.*’ Soon aftef® it was realized that configurations have the same chemical potential of electrons
there exists aiiequivalent formulation of DFT in which the then w is a more natural variable for describing the charge
chemical potential of the electrong, rather than their num- state of the system, and the grand poterf®&Tl,V, u) is the
ber, is one of the basic variables. In this case, ghend  relevant thermodynamic potentfdl.This is just the usual
potentialof the system considered as a functional of the electhermodynamic choice of extensive or intensive variables,
tron density,()[p], attains a minimum at the correct ground e.g., pressure versus volume, or entropy versus temperature,
state electron density,, corresponding to a givem,'®  where the most convenient variable is chosen depending on
rather than théree energy Fp] at fixedN.. The importance the particular problem under consideration.
of this formalism lies in the fact that, in complex systems A realization of the ‘N.=const” mode for a metallic
with strongly interacting parts, one cannot unambiguouslyslab is, e.g., when aisolatedslab is placed in an external
assign a certain number of electrons to any particular part oélectric field (as in the case of an isolated capacitor plate
the system, whereas the electron chemical poteptisd a  The “u=const” mode corresponds to a metallic slab which
global quantity and, hence, is uniquely defirféd. is a part of an electric circuit. There are numerous examples
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move an electron from the slab and put it at the “infinity,”

Mode Scheme Thermodynamic ~ Experimental that is, sufficiently far in vacuum. For a neutral slab, this is
potential realization simply the work function. The latter, however, is not defined
for charged slabs, and we need to provide a generalized defi-
nition.
-q
N, = const R F(T,V,N,) Isolated capacitor A. Uncharged slab
In the case of a neutral metallic surface, the electron
chemical potentiaju (defined as the first-order free energy
change with respect to the electron numbgj is related to
— &V — the work function¢g as*
|
1 = const | R UT,V,p) Electrochemistry ¢=Vo—p, @
(STM) whereV., is the potential far away from the surface, well into

the vacuum region. For finite slabg, must be considered to
be the value of the potential at a distance which is small
compared to the macroscopic size of the slab, though large

FIG. 1. The system under consideratiBcan be maintained either at con- Compared to any relevant microscopic distance' such as the
stant chargé“ N.=const” mode or at constant potential drapV relative lattice param ete®

to the reference electrode (“ w=const” mode. In the first case the rel- . . .
evant thermodynamic potential is the Helmholtz free enérgwhile in the The work function measures the difference of potential

second it is the grand potentiél. between the Fermi level and the vacuum, and this difference
depends on the surface dipole which varies with the face
exposed. A way to display the dependence of the work func-

in different types of electrochemical experimeftgerhaps tion on the surface-dipole explicitly is to rewri@) as
this is also relevant to STM measurements although, in this

case, the system is not in equilibrium. We briefly summarize ¢~ (V==Vo) =(L=Vp)=D—p, 2
the above in Fig. 1. whereV, is the average potential in the interior of the crys-
Although the grand canonical DFT formalism is well tal. In this equationu is the position of the Fermi level
established and in many cases is closer to an actual experelative toV,,, and is the same for the metal regardless of the
mental situation, its practical implementation is less straightface exposed* D is the surface-dipole potential, which is
forward than that in the N.=const” mode. Possibly, this dependent on the surface orientatfriThus the effect of
explains whyab initio calculations of metallic surfaces have changing the surface dipole is to change the electrostatic po-
almost invariably been done at a constant number ofential of the interior of the metal relative to the vacuum and
electrons?® so to shift the energies of the whole electron band including
Below we provide a practical scheme which allows forthe Fermi level with respect to the potential at infinity. The
the implementation of the /= const” mode within a stan- chemical potential of electrons in different crystals must be
dardab initio supercell calculation. This gives rise to a num- measured relative to a common energy 2éxa This means
ber of subtle issues regarding the definition ofand the that electrons in crystals with different exposed surfaces and
removal of the electrostatic divergence associated witllifferent shapes have different chemical potentials.
charged systems in three dimensions, whose resolution is one In simulations of periodically repeategheutra) slabs

of the principal goals of this article. there is no field outside the slab and the computed work
function is identical to that measured by a threshold experi-
1I. CHEMICAL POTENTIAL OF ELECTRONS ment in which an electron is moved from the interior to a

point just outside the crystal face. For a real crystal there is
We would like to develop a scheme in which the electronsma|| change in potential between this point and “true infin-
chemical potential can be held fixed. Howeveris defined jty ~ that is, points whose distance from the crystal is large
with respect to an energy zero, which can be arbitrarily chocompared to crystal dimensions. This is the “true” vacuum
sen. This is a general property of the chemical potential: imotential. However, provided that the crystal is slab shaped
specifying the chemical potential of a particle in a givenyjth a thickness small compared its lateral dimensions, this
state, one must choose the standéod reference state,  correction is negligible. Within the current study we consider

where the pal’tiCle is put after being removed from the Systerg|abs Of Crystal W|th para”e' faces of the same type
and where it is assigned zero energy. Although no physical

property of the system is affected by the choice of the “par-
ticle reservoir,” care should be taken to keep the “reservoir”
unchanged during the simulation, and also to specify the Next, we consider two different metals Meand Me
same reservoir for systems which one is going to comparkaving different work functionss, and ¢, (Fig. 2). If the

with each other. If we work with infinite slabs of definite metals do not interact, their potentials are aligned so as to
orientation, at a given amount of vacuum, the chemical poequalize the vacuum leve|fig. 2(@)]. As soon as the elec-
tential might be considered to be the energy required to retrons are allowed to flow from one metal to the other, their

B. Two metals in contact
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Figure 3b) shows a periodic arrangement of slabs sepa-

|
V. Er . | .
2 ¢1[ ] E} ( W rated by a vacuum region. All replicas are subjected to the
l
Me v

same local conditions, i.e., they are identical copies of a

: Me, unigue slab. The system is neutralized by placing a counter-
charge —o per unit area on two-dimensional sheets
A,A’,A”,.... Each periodic uni{metal/vacuum/metalrep-

AV
b Ve ¢1| ] EF | s EF _i¢ Vioo resents a symmetric condenser with capacitaned;4the
W charge distribution and field on the two sides of the slab are
e — symmetric provided that the slab is symmetric itself, and that
it is placed in the center of the space between the charged

sheets. The electric field near each slab in Fi) B
identical to the isolated charged slab in Figa)3

FIG. 2. Diagram showing two metals Mand Me before(a) and after(b)

the electrons are allowed to equilibrate their Fermi le&is ¢ denotes the
work function, V., indicates the potential far away from the surface, and
AV=V_,-V,..

D. The idea of a reference electrode

chemical potentials or, equivalently, their Fermi levels, |n an electrode in an electrochemical cell the potential
equilibrate[Fig. 2b)]. The resulting charge on each metal fa|is off from the metal surface to a constant value as the
+q and —q gives rise to a constant electric fielfl, in the  gouble layer is traversed. The charge on the electrode’s sur-
vacuum region between the surfaces of the two metals—thgyce depends on the potential difference between the metal
plates of a condenser. The surface charge per unit atea, and the solution far from the electrode, and on the capaci-
which is related taj, and the fieldS are connected via tance of the double layer. In this setup, the control variable is
& 1 dv the potential rather than the surface charge, and calculations
Al Pl p should be carried out at constant chemical potential rather
o a Z
than constant charge.
whereV denotes the electrostatic potential, and the deriva-  In order to define the origin for the electron chemical
tive dV/dz is taken sufficiently far away from the metallic potential, we set to zero the electrostatic potential at a dis-
surfaces, i.e., where the charge density becomes negligibbance+A from the center of the slab:
small.
We note that the surface charge is inversely proportional Vm|‘z|=A:0' )
to the distance between the condenser plat¢Eig. 2(b)]  This is equivalent to placing reference electrodes at these
with more charge being transferred if the plates are neargoints. The electron chemical potential is then the difference

together. between the potential at these points and the Fermi level
[Fig. 3(@]. This definition is compatible with the system

C. An isolated charged slab and the corresponding with periodic boundaries shown in Fig(l8. However, since

system with periodic boundaries the potential is linear in the regions of low electron density, it

. h h ial of h q . _is not necessary to have the cell boundaries At In fact, if
Figure 3a) s OV.VSt e potential of a C_ arge symnjetrlg " is the chemical potentiglFermi leve) corresponding to
slab of metal. Outside the slab the magnitude of the field '%ﬁe

d its direction | . h id fth periodic system shown in Fig(t8, where the choice of
constant an Its direction is opposite on the two si es o Néhe energy zero is arbitrary, then the chemical potential con-
slab. Takingz=0 at the center of the slab we have, in re-

sistent with(4) can be recovered as

gions sufficiently far from the slab, @
dVv
V=V,+2molz, 3 M:M’—V(LZIZ)—(A—LZ/Z)E

which tends to infinity agz| — . If we chooseV, in Eq. (3)
such that the potential is zero |at= A, then this is equiva- where z, is a point beyond which the electron density is

, ®)

z> 4!

lent to placing reference electrodes/faand —A. negligible, and thus the potential is line&bviously z,
V,
Ol b)
0 I~
I w

z

FIG. 3. The potential of an isolated, symmetric charged &lzan be reproduced by that of a periodically repeated neutral system consisting of slab and
compensating charged plan&gb). The energy zero ifa), which definesu, is chosen such that=0 atz= =+ A. This is equivalent to placing the reference
electrode at\. The choice of zero of the energy axis () is not relevant, because the chemical potentiaiis related tou in (a) by Eqg. (5).
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<L,/2). This means that the size of the simulation deJl  potential and energy diverge. To circumvent this problem, a
need not be as large @ While the choice ofA is dictated compensating charge must be introduced into the cell. In the
by the characteristics of the problem under consideration; No.=const” mode, this does not introduce any additional
e.g., the Debye—Hikel screening length of the electrolytic complication, because the neutralizing charge distribution
solution, the above reasoning suggests that, in practice, ttean be chosen in such a way that the free energy difference
first-principles calculations can be done for the periodic sysfemains unaffected. For example, in Refs. 8 and 9 the charge
tem shown in Fig. @), by assuming that the reference elec-was neutralized by placing sheets of charge in the vacuum
trode is placed at positioA (i.e., A=L,/2). Then, the results region. The distribution of charge across the sheets was
can be recalculated in a simple way for any particular valuegsaussian. As long as the surface energies are compared at

of A. the same charge, then the Gaussian charge contributions to
the total energy cancel out. Unfortunately, this is not the case

Il. TWO SURFACE PHASES. WHICH 1S MORE of the “u=const” mode, in which the states that are com-

STABLE? pared have different charges, and therefore the contribution

) ~of the neutralizing charge is different and must be treated
Suppose that the surface of a metal carrying a certaigypjicitly.

charge can assume a few different structures: how can we The whole scheme of computation in the.* const”

decide which one is preferred? mode consists, then, of two stefg$) Having introduced the
Here we must distinguish whether the surface is in the;ompensating charge, the self-consistent electronic density,
“Ne=const” mode or in the jx=const” mode. In the first potential, and grand potential per supercell are calculated
case all states of the surface correspond to the same surfa@ec, IV A). (2) The properties of the isolated supercell are
charge, and consequently to the same field. Therefore, tRstored by removing the compensating charge and recalcu-
answer the question, we should minimize the Helmholtz freQating the potential and grand potential, so as to satisfy the

energy?’ appropriate boundary conditiori$) (Sec. IV B).

F=Fct+E;, A. Grand potential calculation
whereF. is the free energy of the electron subsystém To find the electron grand potential we use the method
cluding their interaction with the iop& andE;; is the elec-  proposed in Ref. 29, which we briefly recall in the following,
trostatic 1on—lon Iinteraction energy. referring the reader to the original papers 29 and 30 for a

In the second case, the system maintains the garbet  more extensive discussion. The method has been imple-
the charge of the surface can differ from one state to anothefented in thecemp codé® and since then has repeatedly
As a consequence, the electric field near the surface cafeen used foab initio calculations of various types.
change, and this enters the overall energy balance. Note that The method is related to Mermin’s extension of the den-

the closer the reference electrode., the smaller the value sty functional theory(DFT) to finite temperatures, in the
of A), the larger the variation in the electric field should be:gense that the Helmholtz free energy functional

that is another illustration of why the position of the refer-
ence electrode becomes important in the="const” mode. F[pel=Q[pe]+ uNe+E;; (6)
In this case, to decide which of the states of the surface
is more stable we have to compare the grand potentials: shares the stationary points with the Mermin functiofiah
Eqg. (6) p. denotes the electron density, which integrates to
Q=F=puNe=Fe=uNctE; N(: elecﬁgns,ﬂ is the electron chemica}I/ potentid;; ig the
The surface can change state continually, rather than dignergy of the ion—ion electrostatic interaction, and the grand
cretely; in this case we speak about the equilibrium state aspotential() is a functional defined at a finite temperatdre

function of w. >0 in the following way:
IV. PRACTICAL AND COMPUTATIONAL Q[po]=— 2 In det(1+e~AH- 1)
CONSIDERATIONS B

In practice,ab initio calculations of solid surfaces are V() 0Qyd pel
it i i — | drpg(r) + +Qyd pel-
usually done within the supercell approach, in which the sur- 2 Spe(T)
face is represented with a slab, embedded in a vacuum re-

gion. The cell comprising the slab and the corresponding (7)

vacuum is periodically repeated, thus restoring the 3D_ pe”Hereﬁ= 1/kT, V,, is the Hartree potentiaf), . is the finite-
odicity of the system. Although the supercell approach is notemperature exchange-correlation grand potential functional
the only possible way to calculate the electronic str.ucture Ofalthough in our calculations we shall use the zero tempera-
the surfaces, and other methods have been deliSéte  yre exchange-correlation functionaland H is the one-
computational scheme presented here assumes thabthe gjectron Hamiltonian:
initio calculations use the supercell approach as the most
efficient at present. =—1V2+V(T).

In this case, treating charged surfaces becomes problem-
atic because the net charge of the cell makes the electrostafite effective one-electron potenti(r) is
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80 pel employ the scheme suggested by Schifit2which consists
V(1) =Vu(r) + Vex(r) + tsp—(?)’ in decomposing a general charge dengity,), into the sum
e
p(M)=p' (M) +pim(1), €)

andV.y is the externalionic) potential. h ' , ué
In order to perform constani-calculations, at each self- wherep’ does not contain any momeritsp to some value),

consistent iteration we calculate the electron density as a suﬁﬂd Pim mgtch(?s moments qj and ’has an analytical form.

of partial densities over Kohn—Sham orbitals with eigenvaI-T © poteqtla!\/ ’ correspondmg 'tq» (r), can be c'alculated

ues up to a givernu, thus rendering the electron density and using periodic boundary condltlon_s. T_he potent@], re-

the total number of electrons dependent. Correspondingly, lated to‘_"m’ can be fo_und by considering, as an |so_lated

we obtain the grand potential as a functionzof charge in vacuum. Finally, the electrostatic poten¥ais
In practice, however, the self-consistent procedure gpbtained as

fixed u turns out to converge more slowly than that at fixed V(1) =V'(1)+V,,(1). (10

Ne (as in stan'dg'rd DFT applicationshe ”“”?ber of elec- In this context the uniform background looks like a particular
trons N may initially undergo large fluctuations, although case of(9) for 1= 0

the procedure is always able eventually to find the self- : . . .
consistent solution, which is fairly reproducible. We found Note, correctmg the poten.tlal by usn(Q) and (10) is .
that a simple way to speed up the calculation is to use th nly gccurate to first order as it does not involve any redis-
self-consistent density previously calculated for some valuer(')ligﬂggl Orntr:)ethzlres\fg?gsd?{},S'tgngu? gorethc;gzﬁzggssg{f.me
of u—which is sufficiently close to the desired value, as anPorental. L ! P A )
consistently within the DFT formalismp’ is the density

initial guess for the electron density. In this case, the proce- | . 7 .
. . . which minimizes the total energynly for external potential
dure converges in only 10 to 15 iterations.

In this type of simulation, the total number of electrons ¥ - BY addingVi, non-self-consistently, we change the ex-
ternal potential, angd is no longer a variational density in the

is not an integer. This i rmissible within a fr ner . . )

S not & . ege S IS permiss ble a free ene gyDFT sense. This has been recognized in Refs. 34 and 36, and

functional: the interpretation is that the electron density is an S . . :
correction involving the electronic response function was

average of all possible states in a grand canonical ensemb"fl(—:-rO osed. However brovided that the cell is large enough
at the specified temperature and electron chemical potentia?. P . » P 9 9

The states themselves, however, correspond to different bcpmpared to the slab thickness, the perturbation of the elec-

. . ron density in the slab is small and can be ignored in a first
integral numbers of electrons each. The problem is that the L . .

. . ... approximation. If the compensating charge can be placed in
usual exchange-correlation functionals do not distinguish

states with integer and nonintegsig, and therefore do not vacuum, then the removal of the neutralizing charge is exact,

o . that is, it does not affect the ground state electron density.
treat the latter as a superposition of the forifek detailed Below we consider. first gcompensating charge of ar)k/)i—
discussion of this interesting issue is beyond the scope of the ' ' o

, . o .. trary shapgSec. IV B 1 and, then, we address specifically
present article. A recent investigation of how well the den5|ty,[he case of a uniform backgrouri8ec. IV B 2
functional approach deals with noninteger numbers of elec- 9 ’ '
trons for both finite and extended systems can be found i|} Background of general shape

Ref. 33.
Consider a single slab placed in vacuum; the slab is in-

finite and periodic along they directions. The charge den-
The compensating charge can have an arbitrary shapgity p(r) of the slab is not required to satisfy the neutrality

for example the 2-D sheets of charge in Figo)3However, condition. Our goal is to find the electrostatic enekgy, (per

in many ways the simplest shape to implement is a unifornunit surface aregaand the electrostatic potentis(r) of the

3-D background charg¥#:>°In the case of localized charged slab in the absence of any background density.

defects, the uniform background contribution to the energy ~We embed the slab with some vacuum on both sides

B. Compensating charge correction

decays with the supercell siteas® (sufficient to reach negligible electron density away from the
slab into a unit cellQ)y having dimension®\, and L ,(,
q’a 2mqQ s =AyL,), and introduce the background chayggz) which
ABes=5+ 3z tO(L ), (8)  has an analytical form and restores the electroneutrality in
the cell. The slab+ background charge densify(r),
whereq is the net chargey is the Madelung constant, aq (M) =p(T)+pp(1) (11)

is the spherical quadrupole moment of the charge density =
distribution. Explicit subtraction of the background correc- Satisfies
tion given by(8) allows for achieving a more rapid energy _ 5
convergence with the supercell size. o p(r)d°r=0.

Turning now to the case of charged slabs, one can simi- 0
larly ask the question of how to determine the electrostatidiereafter, we use the “tilde” to denote quantities that corre-
energy and potential of the slakithout any compensating Spond to the celwith the compensating charge.
charge, or with the compensating charge at a more distant \We do next the DFT calculation for the slab, from which
reference electrodexA), knowing the energy and potential We extract the self-consistent charge dengify) and the
of a slabwith the compensating charge. In doing so, wecorresponding electrostatic enerys (per unit cellQy) and
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away from the slab and taking into accouiR), we can
assume thaV ()|, . =0 [9(2)20 everywhere between
L,/2 andAl.

Similar to (14), we write the electrostatic enerd, of
the backgrounded slab in the vacuum as:

Ees=EesT Epct Epp, (16)
whereE.; is the electrostatic energy of the slab without any
background(i.e., the desired quantityE, is the electro-

R R static energy of the background interaction with the charge
L. density of the slab, anH,, is the electrostatic energy of the
2A background interaction with itself.

FIG. 4. A slab with a corresponding portion of backgroundmpensating We take th? termees from the supercell calculations; )
charge, representing a periodic unit in the supercell calculation, is placedEpp Can be easily found as soon as the background density
into the vacuum. Both the slab and the strip of background are periodic irpb and potential\/b are known:

the x andy directions, but are not periodic in tteedirection. The reference

electrode R specifies the zero boundary conditions for the electrostatic po- 1

tential of the slab. EbeZ_AOJ' dz . dx dy[ V(1) pp(N)]. a7
e .

Vacuum Vacuum

Ey. can be thought of in two ways: as an interaction of
the background chargs, with the slab potentiaV/, or as an

electrostatic potentiaV'. The latter is defined up to an addi- nteraction of the slab chargewith the background potential
tive constant, so we remove the ambiguity by settingts V.

average equal to zero in the middle of the vaculosll In the first case,
boundaries in Fig. ®)]: L
(V(L12)) = (V(~L,12)) =0, (12 Eb°:A_of I N AU a8
where and in the second case,
1 0
~ 1 - _ =
(V(2))= A fAOV(?) dx dy. (13) Ebc—AO deondX dyVe(rp(n], (19

The equivalence of the last two formulas is guaranteed by
Green’s theorefl and the boundary conditions for and

V. one can choose whichever formula is more convenient
tfor any specific application.

Now we take a single cell), with the backgrounded
slab out of the infinite periodic media and place it into the
vacuum (Fig. 4). We assume that this procedure does no

change either the electrostatic enekgy or the potentiaV
of the frame: the accuracy of such an assumption depends on
the identity of the lowest nonzero multipole moment of the 2. Uniform background

density’s(r). This is basically the same assumption as ne- gy solving the Poisson equation for the uniform back-
glecting the interaction between periodic images in neutral.ound potential in the cell with the boundary conditions
supercell calculations. V,(+A)=0, and substituting the result intd4), we obtain

~ The resulting system can be regarded as the superposjia; the artificial electrostatic potential due to the background
tion of two: the charged slab without background and the,gn pe eliminated by choosing

background itself. Correspondingly, for the electrostatic po-
i ~ 2
tential we have VA=Y )+ - q
0

V(M =V +V, (1), 14
(N=VN+ V(1) 19 A+z, z=—L,J>2,

where V(1) is the electrostatic potential generated by the x| —[2=LA+(LJ22IL,, -Lj2<z<L,J2,
compensating charge,(r).

To find V,(T), one needs to solve the Poisson equation A=z, z=LJ2,
with the charge density,(r) and the boundary conditions (20)

for V,, consistent with(4), namely, ~ . _ _
b h#) 4 whereV is the potential taken from the supercell calculation

melz:iA:vm|z:tA- (15) with the_ backgroun_d, a_nq is t_h_e uncompensated c_harge per
simulation cell, which is positive if electrons are in excess.
OnceV at z=*+L,/2 is known, one can find its value at  Note thatV(r)=0 if |z|>L,/2.
==*A, A=L,/2, by solving the corresponding Laplace As an example, we plot in Fig. 5 the self-consistept
equation; in practice however, this is an unnecessary complaveraged electronic density and effective potentimfore
cation: neglecting again any corrugation of the potential famnd after the correctigrfor the P{110) unreconstructed sur-
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6 - | FIG. 6. Pt110 unreconstructed surface: Helmholtz free eneffgger 16-
E atom supercell as a function of the electron chemical poteptiafter ap-
S -8 r 7 plying the background correction. The result of the self-consistent DFT
2 40t i calculations are shown with open circles, the solid line represents the fifth-
L order polynomial fit of the DFT results. Position of the neutral slab is
-12 - 7 marked with the arrow: chemical potential of the electrons in this case is the
14 + i negative of the work functiort5.53 e\j. The boundary condition for the
1 i charged slab potential is chosen to be zero at the supercell boundlary (
16 ¢ L . L ! ! 1 L ! L =L,/2). The figure demonstrates that the minimum of the free energy nearly
0 5 10 15 20 25 30 35 40 45 coincides withu=0.
z,a.u. 2
EomBoct (Vo + "4 (A2 (21)
FIG. 5. P{110 unreconstructed surfacéa) the effective potential before es— —es AO< >Qo Aé 3/’
(dashed lingand after applying the background correctisolid line); and
(b) electronic density, obtained as a result of the self-consistent DFT calcu- ~ 27 q ,n.q2 L
lations and averaged in the directions(note the logarithmic scale for the E.=E..— — _77 A— —z (22
. g " > es es Qq A 2z A2 3/
density. The slab is charged positively and contains 159 valence electrons 0 Mo 0

instead of 160 per 16-atom unit cell, which corresponds to the surface -

chargeo as large as-0.25 per surface atom, ot 0.023/A2. The bound- Where(V>Q0 is the average electrostatic potential obtained in
ary condition for the charged slab potential is chosen to be zero at th?he supercell calculation

supercell boundaryX=L,/2). The linear behavior of the potential far from '

the charged slab is what one expects in the absence of any distributed 1 ~
charge. Ma,= —f V() d?r, (23
o Qg Ja,
andp,, is the second moment of denspyin the z direction:
fe}ce. The calculations are glone for perlod'lcally repeated ﬁsz 225(7) ddr. (24)
eight layer slabs separated with vacuum of thickness equal to 2o

ten interlayer spacings of the bulk platinum. The slab is posi-
tively charged(1 electron out of 160 valence electrons per

unit cell is missing, i.e.q= —1), which corresponds to sur- culation of the slab with the background. Equati2e)

face charger=—0.25% per surface atom, or 0.0237/A2. : ) )
. seems more convenient for a theoretical analysis of the for-
This is actually a rather large charge. We have chosen such a . : .
. . mula, whereas Eq21) is better for practical calculations.
plot to demonstrate that the corrected potential becomes lin- . . .
As a test of internal consistency of the above correction,

ear in the region where the electronic density is negligible. we plot in Fig. 6 the Helmholtz free energy of the slab rep-

Another feature visible in Fig. 5 is the small curvature of resenting the (X 1) unreconstructed B0 surface as a
the average potential inside the slab. This is an artifact, a8 nction of the chemical potential of electrons. THé)
one does not expect any electric field inside a metal, and is &urve reaches the minimum very close fhe 0 p;)int' this

Both equations express the necessary correction in terms
of tilde quantities which are the output of the supercell cal-

consequence of the non-self-consistent character of the cor- . . ) o
. . ) . agrees with the following general thermodynamic relation:
rection mentioned above: the electronic response to the re-
moval of the background charge has been neglected. &F) dF ) y ( &Ne) (&Ne)

Similarly, substituting the uniform background density |, K ’

rary ng ) grour Y\oulyzy . INe/y 1y R VeV I vty

pp and its corresponding electrostatic potentgl, into ex- ex ex ex ex
pressiong17)—(19), and using'16), we arrive at the follow- where the partial derivatives are calculated at constant tem-
ing alternative forms of the correction to the electrostaticperatureT, volumeV, and external potentiaV,,; (i.e., the
energy per unit cell surface area: ionic positions are fixed
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The removal of the background charge also implies corcases when this is not possibir example, if the space
rections to theorcesacting on the ions. In case of the uni- between the electrodes is filled with ions and wattdre use
form background, the-component of the force which ion  of a uniform background charge with the approximate cor-

experiences should be corrected as rection described here may be a better option.
_ amq However, in some special situatior(\espec_ially in the.
Fl=Fl+ Q—Q'z', (250  electrochemical environmentvhere the screening occurs in
0 the immediate vicinity of the charged surface, it might be

whereQ' andZ' are the charge of the iofexpressed in units useful to model the screening effect by an explicit distribu-
of electron charges, i.e., Q'<0) and its z-coordinate. The tion of background charge, or even to optimize its shape. The
correction vanishes with increasing the cell sizé.as. For ~ scheme considered in the current article is perfectly suitable
comparison, the corresponding correction in the case of lofor that purpose.
calized charged defects in a cubic supercell given in Ref. 36
should deca?/ as 3, whereL is the cubz size. Ig-|0wever, this VI. CONCLUSIONS
formula must be used with caution, as tfupposite polar- (1) Alternative configurations of a systefauch as different
ization of the electronic cloud due to the background may surface reconstructionsan be compared either at the
partly cancel the correctiof25). same charge or at the same electron chemical potential.
The second case corresponds to an experiment in which
the system is maintained at constant potential drop rela-
V. REAL ELECTRODES tive to the reference electrode. The relevant thermody-
As we have shown above, thg.= const” mode of cal- namic potential in this case is the grand potenfihl
culation becomes necessary if electrons are maintained at a rather than the free energy
constant chemical potential, which is the case in most experi2) In practical terms, the difference becomes important if
ments. However, if the experimental conditions are such that  the distance corresponding to the potential drop is micro-

the change of the electric field near the surfdte., the scopic, which is true in the case of electrochemical phe-
surface charge due to possible changes in the surface, is nomena. This distance, therefore, enters into the defini-
negligible, the ‘N,=const” mode is still a good approxima- tion of the electron chemical potential _

tion. The distinction between=const” and “N,=const’  (3) The approach presented here allows for performing cal-
disappears a4 tends to infinity, but can be important other-  culations in the “constani” mode, without abandoning
wise. the standardab initio supercell schemes. The physical

Perhaps, one of the most important areas in which the quantities are thus obtained with no additional computa-
“ w=const” mode is relevant is electrochemistry. Although tional effort, as compared to the “constaN{” mode.
the distance between the charged electrodes is macrOSCOD}fCKNOWLEDGMENTS
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