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ABSTRACT

Warm dense matter (WDM)—an exotic state of highly compressed matter—has attracted increased interest in recent years in astrophysics
and for dense laboratory systems. At the same time, this state is extremely difficult to treat theoretically. This is due to the simultaneous
appearance of quantum degeneracy, Coulomb correlations, and thermal effects, as well as the overlap of plasma and condensed phases.
Recent breakthroughs are due to the successful application of density functional theory (DFT) methods which, however, often lack the
necessary accuracy and predictive capability for WDM applications. The situation has changed with the availability of the first ab initio data
for the exchange–correlation free energy of the warm dense uniform electron gas (UEG) that were obtained by quantum Monte Carlo
(QMC) simulations; for recent reviews, see Dornheim et al., Phys. Plasmas 24, 056303 (2017) and Phys. Rep. 744, 1–86 (2018). In the
present article, we review recent further progress in QMC simulations of the warm dense UEG: namely, ab initio results for the static local
field correction G(q) and for the dynamic structure factor Sðq;xÞ. These data are of key relevance for comparison with x-ray scattering
experiments at free electron laser facilities and for the improvement of theoretical models. In the second part of this paper, we discuss the
simulations of WDM out of equilibrium. The theoretical approaches include Born-Oppenheimer molecular dynamics, quantum kinetic
theory, time-dependent DFT, and hydrodynamics. Here, we analyze the strengths and limitations of these methods and argue that progress
in WDM simulations will require a suitable combination of all methods. A particular role might be played by quantum hydrodynamics, and
we concentrate on problems, recent progress, and possible improvements of this method.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143225

I. INTRODUCTION

Warm dense matter (WDM) has become a mature research field
on the boarder of plasma physics and condensed matter physics, e.g.,
Refs. 1–4. There are many examples in astrophysics such as the
plasma-like matter in brown and white dwarf stars,5–7 giant planets,
e.g., Refs. 8–13, and the outer crust of neutron stars.14,15 Warm dense
matter is also thought to exist in the interior of Earth.16 In the

laboratory, WDM is being routinely produced via laser or ion beam

compression or with Z-pinches, see Ref. 17 for a recent review article.

Among the facilities, we mention the National Ignition Facility at the

Lawrence Livermore National Laboratory;18,19 the Z-machine at the

Sandia National Laboratory;20,21 the Omega laser at the University of

Rochester;22 the Linac Coherent Light Source (LCLS) in Stanford;23,24

the European free electron laser facilities FLASH and X-FEL in
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Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI

Darmstadt, Germany.27,28 A particularly exciting application is inertial

confinement fusion18–20 where electronic quantum effects are impor-

tant during the initial phase. Aside from dense plasmas, many con-

densed matter systems exhibit WDM behavior – if they are subject to

strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS

Let us recall the basic parameters of warm dense matter:40,89 the
first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line C

eff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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v ¼ nK3, where K ¼ h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p

, is the thermal DeBroglie wave-
length, and the Fermi energy of electrons (in 3D) is

EF ¼ �h2

2m
ð3p2nÞ2=3; (1)

where n is the electron density and T is the electron temperature. The
ion degeneracy parameter is a factor ðmT=miTiÞ3=2 smaller than
the one of the electrons and typically negligible for WDM. Second,
is the classical coupling parameter of ions Ci ¼ Q2

i =ðaikBTiÞ, where Qi

is the ion charge and ai is the mean inter-ionic distance. Furthermore,
the quantum coupling parameter (Brueckner parameter) of electrons
in the low-temperature limit is

rs ¼
a

aB
; aB ¼ �h2�b

mrQie
; (2)

where a ¼ ð4=3pnÞ�1=3 denotes the mean distance between two elec-
trons, aB is the Bohr radius, and mr ¼ mmi=ðmþmiÞ �b are the
reduced mass and background dielectric constants, respectively, for
hydrogen mr � m; �b ¼ 1, and aB ¼ 0:529Å. Note that another way
to measure the coupling strength in the degenerate limit, that is
directly related to rs, is via

C
2
q ¼

ð�hxplÞ2

E2
F

¼ rs �
16

9p

12

p

� �1=3

� 0:88 � rs: (3)

We can introduce an effective coupling parameter that interpolates
between the classical and strongly degenerate limits,

C
eff ¼ e2=a

ðkBTÞ2 þ E2
F

� �1=2
¼ e2

akBT

1

1þH
�2ð Þ1=2

; (4)

and a simple estimate for the boundary between ideal and nonideal
plasmas is the line Ceff ¼ 0:1 that has been included in Fig. 1. Finally,
the degree of ionization of the plasma—the ratio of the number of free
electrons to the total (free plus bound) electron number, aion ¼ n=ntot ,
determines how relevant plasma properties are compared to neutral
gas or fluid effects.

The parameters v; vi, and Ci are shown in Fig. 1 where we indi-
cate where these parameters equal one. Note that the classical coupling
parameter increases with the density whereas the quantum coupling
parameter decreases with the density n. We underline that the parame-
ters aB; EF ;K; h contain the density of free electrons andCi; vi the den-
sity of free ions. This means the lines of constant Ci; v; vi; rs shown in
Fig. 1 refer to the free electron (ion) density. In cases when the plasma
is only partially ionized, the free electron density has to be replaced by
n ! aion � n. The degree of ionization decreases when the tempera-
ture is lowered, according to the Saha equation, aion � e�jEbj=kBT , where
Eb denotes the binding energy of the atom, and in Fig. 1 we indicate
the line where a classical hydrogen plasma has a degree of ionization of
0.5. Qualitatively, a quantum plasma is found to the right of this line.
Figure 2 shows a zoom into the warm dense matter range and also con-
tains lines of constant rs- andH-values.

III. QUANTUMMONTE CARLO SIMULATIONS
OF THE UNIFORM ELECTRON GAS

A. Summary of ab initio static results

The uniform electron gas (UEG) is one of the most fundamental
model systems in physics.4,92,93 In particular, the accurate

parametrization94,95 of the ground-state exchange–correlation energy
excðrsÞ, based on ab initio quantum Monte Carlo simulations,96 has
been essential for the striking success of the density functional theory.
While the influence of temperature on the electrons is negligible for
most applications in, e.g., condensed matter or chemistry, the recent
interest in matter under extreme conditions has led to new demands
regarding our understanding of the UEG. More specifically, it has long
been known that a thermal DFT97,98 simulation of warm dense matter,
see Sec. IV, requires a parametrization of the exchange–correlation
free energy fxcðrs; hÞ, which explicitly depends both on the density and
on the temperature.75,99

Consequently, many such parametrizations have been presented
over the last decades that are based on various approximations such as
dielectric theories,100–105 quantum–classical mappings,106,107 and per-
turbative expansions;108,109 see Refs. 4 and 110, for a topical overview.
In addition, Brown et al.111 presented the first quantum Monte Carlo
results for the warm dense UEG using the restricted path integral
Monte Carlo (RPIMC) method, which have subsequently been used as
input for many applications,112–114 most notably the parametrization
of fxc by Karasiev et al.

115 (KSDT).
While being an important mile stone, these data have been

obtained on the basis of the uncontrolled fixed node approximation,116

which has recently been revealed to be surprisingly inaccurate with
systematic errors in the exchange–correlation energy exceeding 10%,
at a high density and a low temperature.54 This unsatisfactory situation
has sparked a surge of new developments in the field of fermionic
QMC simulations at a finite temperature.55,117–124 In particular, Groth
and co-workers have introduced a combination of two complementary
QMC methods—permutation blocking PIMC (PB-PIMC) and config-
uration PIMC (CPIMC)—that allow for a highly accurate description
of the UEG over a broad parameter range without the fixed node
approximation. After developing a new finite-size correction
scheme,125 the same authors presented the first ab initio parametriza-
tion of fxc with respect to density, temperature, and spin-polarization
covering the entire WDM regime with an unprecedented accuracy
of�0:3%.

FIG. 2. Density–temperature plane around the WDM parameters with a few rele-
vant examples. Electronic quantum effects are observed for H�1. The coupling
strength of quantum electrons increases with rs (with decreasing density). Note that
the values of H and rs refer to jellium (electrons in fully ionized hydrogen). Adapted
from Ref. 4.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 042710 (2020); doi: 10.1063/1.5143225 27, 042710-3

VC Author(s) 2020

https://scitation.org/journal/php


This is illustrated in Fig. 3, where we show the temperature-
dependence of the interaction energy of the spin-polarized UEG for
two different densities and compare different parametrizations and
data sets. The red solid line corresponds to the parametrization by
Groth et al.73 (GDB, referred to as GDSMFB hereafter), which is based
on finite-T QMC data (red crosses) for 0:5 � h � 8 and temperature-
corrected ground-state QMC data (red diamonds) for h � 0:25. The
other curves depict the RPIMC data from Ref. 111 (BCDC, blue
circles) and a corresponding parametrization (KSDT, solid blue),
HNC data and a parametrization thereof by Tanaka104 (HNC, green
squares and line), and the Singwi–Tosi–Land–Sj€olander (STLS)-based
parametrization by Ichimaru et al.101 At a high density [rs ¼ 0:1,
panel (a)], both dielectric theories agree relatively well with the
GDSMFB reference data (see also the bottom panel showing the rela-
tive deviation), while the KSDT curve exhibits deviations of up to
Dv=v � 15%. This is a direct consequence of the absence of RPIMC
input data in this regime, and the insufficient finite-size correction
of these data, where they are available.4,125,126 In the WDM regime
[rs ¼ 1, panel (b)], the situation somewhat changes as both, HNC
and STLS, become less accurate and exhibit deviations of up to
Dv=v � 5% in the relevant temperature range. Moreover, the RPIMC
data exhibit systematic deviations from the other curves as they are

systematically too large, for a small h, and too low, in the opposite
case. This is due to a combination of the fixed-node approximation
and the extrapolation to the thermodynamic limit; see Ref. 4 for an
extensive discussion. Interestingly, the KSDT curve is remarkably
accurate in the low-temperature limit and does not reproduce the
biased RPIMC input data on which it is based. Still, there occur devia-
tions of up toDv=v � 8%, at an elevated temperature.

In the meantime, the availability of the accurate GDSMFB bench-
mark data has led to a revised version of the KSDT parametrization
(denoted as corrKSDT in Refs. 74 and 127) which basically reproduces
GDSMFB over the entire WDM regime.74 First and foremost, we note
that both GDSMFB and corrKSDT are suitable to be used as an
exchange–correlation functional on the level of the local density
approximation76 (the GDSMFB parametrization is available in the
libxc library as “GDSMFB,” cf. Sec. IV), and as the basis for more
sophisticated functionals such as a temperature-dependent generalized
gradient approximation.127 This opens up new avenues for DFT simu-
lations of WDM systems without neglecting thermal effects in the
XC-functional itself. On the other hand, Karasiev et al.74 have found
that there occur some potentially unphysical oscillations in quantities,
that are derived from fxc, such as the specific heat CV. This is not sur-
prising as CV involves the second derivative of the fit with respect to

FIG. 3. Temperature dependence of the interaction energy of the spin-polarized (n ¼ 1) UEG [the polarization is defined as n ¼ ðN" � N#Þ=N] for two densities, computed
from different methods and parametrizations. Red crosses: ab initio QMC data, red line: parametrization of the QMC data by Groth et al. (GDB).73 Blue circles: extrapolated
RPIMC data by Brown et al. (BCDC).111 Blue line: RPIMC-based parametrization by Karasiev et al. (KSDT).115 Green squares and line: HNC-based dielectric data points and
parametrization thereof by Tanaka.104 Black line: STLS-based parametrization by Ichimaru et al. (IIT).101 The bottom panel shows the relative deviation in v with respect to the
GDB reference data. Reprinted with permission from Dornheim et al., Phys. Rep. 744, 1–86. Copyright 2018 Elsevier.
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the temperature which may contain a large error. In addition, the
entropy was found to become negative at strong coupling and low
temperature, which, however, is outside of the intended domains of
application of both GDSMFB and corrKSDT.

Let us conclude this section by proposing a few possible solutions
to the remaining open questions: (i) the unphysical behavior in the
second- and higher-order derivatives are most likely a consequence of
the functional form of the GDSMFB and corrKSDT parametriza-
tions.74 Therefore, addressing this issue would require a modification
of the corresponding Pad�e approximation to automatically fulfill some
additional constraints. (ii) The current validity domain of, e.g., the
GDSMFBB parametrization to 0 � rs � 20 can be significantly
extended by incorporating the recent ab initio PIMC results for the
electron liquid regime (20 � rs � 100) by Dornheim et al.128 (iii) New
ab initio QMC results at a low temperature, h � 10�1, could help to
more accurately resolve open thermodynamic questions like the effec-
tive mass enhancement,129 but are difficult to obtain due to the notori-
ous fermion sign problem.130 (iv) Neural networks are known to be
valuable as universal function approximators (see also Sec. III B) and
can be designed to fulfill all known constraints on the UEG. Moreover,
they constitute a handy way to combine data for different quantities
from different methods into a single, unified representation.

B. Summary of ab initio results for the static local field

correction

One important step in going beyond local approximations, such
as the local density approximation (LDA) and generalized gradient
approximations (GGAs), is to consider the response of an electron gas
to an external harmonic perturbation [cf. Eq. (6)], which is described
by the density response function

vðq;xÞ ¼ v0ðq;xÞ
1� ~vq 1� Gðq;xÞ½ �v0ðq;xÞ

; (5)

with q and x being the corresponding wave number and frequency,
respectively, and ~vq ¼ 4pe2=q2 (frequently atomic units are used,
then this becomes 4p=q2) is the Fourier transform of the Coulomb
potential. Furthermore, v0ðq;xÞ denotes the usual Lindhard func-
tion that describes the density response of the ideal (i.e., noninter-
acting system),93 and the local field correction Gðq;xÞ entails the
full frequency- and wave number resolved information about
exchange–correlation effects on v.131 For example, setting
Gðq;xÞ ¼ 0 in Eq. (5) leads to the widely used random phase
approximation (RPA), which describes the density response of the
electron gas on a mean field level.

Consequently, the local field correction (LFC) is of paramount
importance to incorporate nonlocal exchange–correlation effects into
other theories, like QHD,87,88,132 effective potentials,3,133–138 and the con-
struction of advanced exchange–correlation functionals for DFT139–142

and time-dependent DFT.69 Moreover, it can directly be used to com-
pute important material properties like the stopping power,143–145 elec-
trical and thermal conductivities,146,147 and energy transfer rates.148

Finally, we mention the interpretation of x-ray Thomson scattering
(XRTS) experiments,149–153 e.g., within the Chihara decomposition,154

which is of paramount importance as a method of diagnostics.
Naturally, there have been many attempts to find suitable

approximations for Gðq;xÞ, most commonly within the purview of

dielectric theories.155–159 The first accurate benchmark data for the
LFC have been obtained by Moroni et al.160,161 by performing ground-
state QMC simulations of a perturbed electron gas governed by the
Hamiltonian

Ĥ ¼ ĤUEG þ 2A
X

N

k¼1

cos ðr̂k � q̂Þ; (6)

with ĤUEG corresponding to the unperturbed UEG and A being the
perturbation amplitude. More specifically, they have performed multi-
ple simulations for a single wave number q to measure the response of
the electron gas in dependence of A, which is linear for a small A with
vðq; 0Þ being the slope. While being limited to the static limit (i.e., x
¼ 0), these data have subsequently been used as an input for the
parametrization of Gðq; 0Þ by Corradini et al.162 (CDOP), which, in
turn, has been used for many applications, e.g., Refs. 3, 136, 139, 140,
163, and 164.

Recently, Dornheim and co-workers165,166 have extended the
idea behind Eq. (6) to finite temperature using the novel permutation
blocking PIMC and configuration PIMC methods, which has allowed
to obtain the first ab initio results for the static density response of the
UEG under WDM conditions. While being conceptually valid and
interesting in their own right, these simulations suffer from a prohibi-
tive computational cost: the full characterization of Gðq; 0; rs; hÞ
requires a dense grid of densities, temperatures, and wave numbers,
ðrs; h; qÞ. Unfortunately, each such tuple would, in turn, require multi-
ple simulations for different perturbation amplitudes A, and poten-
tially also different N to eliminate possible finite-size effects. Therefore,
the aforementioned strategy is valuable to produce an accurate bench-
mark data at specific points, but cannot be feasibly used to generate
the bulk of input data needed for a full description of Gðq; 0; rs; hÞ
covering the entire WDM regime.

A different, more convenient route is given by the imaginary-
time version of the fluctuation–dissipation theorem,165,167

vðq; 0Þ ¼ �n

ðb

0

ds Fðq; sÞ; (7)

with

Fðq; sÞ ¼ 1

N
hqðq; sÞqð�q; 0Þi; (8)

being the density–density correlation function (also known as the
intermediate scattering function) evaluated in the imaginary time
s 2 ½0;b�. Equation (8) can be straightforwardly computed using the
standard PIMC method,168,169 which means that the entire wave-
number dependence of vðq; 0Þ can be obtained from a single simula-
tion of the unperturbed UEG (i.e., setting A¼ 0 in Eq. (6). The
corresponding results for Gðq; 0Þ are then computed by solving
Eq. (5) for G, i.e.,,170

GðqÞ ¼ 1� 1

~vq

1

v0ðqÞ
� 1

vðqÞ

� �

: (9)

This strategy—in combination with the efficient finite-size correction
introduced in Ref. 166—was recently used by Dornheim et al.171 to
obtain extensive new ab initio PIMC results for Gðq; 0Þ for Nparam

� 50 density–temperature combinations covering a significant part of
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the relevant WDM regime. These data, together with the CDOP
parametrization for h ¼ 0, were subsequently used as input to train a
deep neural net, which takes as input a tuple of ðq; rs; hÞ and predicts
as output the corresponding LFC Gðq; 0; rs; hÞ in the range of
0 � h � 4; 0:7 � rs � 20, and 0 � q � 5qF.

A typical result is shown in Fig. 4, where the static LFC is plotted
in the wave number-temperature plain for a fixed value of the density
parameter, rs ¼ 5. The black squares depict the ground-state QMC
results by Moroni et al.,161 and the dashed blue line depicts the corre-
sponding CDOP parametrization, which incorporates both, the com-
pressibility sum-rule,103 for q ! 0, and the exact large-q limit found by
Holas.172,173 The red crosses show the new PIMC data computed from
Eq. (7), which is available at a dense grid of wave numbers that is deter-
mined by the usual momentum quantization in a finite simulation cell.
Finally, the green surface has been evaluated using the neural net pub-
lished in Ref. 171. Evidently, the machine-learning representation
nicely reproduces the input data where they are available, and smoothly
interpolates in between. Moreover, its capability to predict Gðq; 0; rs; hÞ
has been validated against independent benchmark data that had not
been included in the training procedure, see Ref. 171 for details.

Let us conclude this section by explicitly investigating the impact
of thermal excitations on the static LFC. To this end, we plot G at a
metallic density, rs ¼ 4, for five different temperatures in Fig. 5. The
solid green curve corresponds to the zero-temperature limit, where G is
accurately represented by CDOP. Upon increasing the temperature to
h ¼ 0:5 (red dots), the LFC essentially remains unchanged, for q� 3qF,
but exhibits a significant drop and an apparent saddle point, for large
wave numbers. At the Fermi temperature (blue dashes), Gðq; 0; rs; hÞ
exhibits an even more interesting behavior: while it is approximately

equal to the h¼ 0 curve, for q� 2qF, there appears a complicated shape
with a maximum around q � 2:7qF, a subsequent minimum at
q � 4:5qF, and a positive large wave number tail. Finally, further
increasing the temperature to h ¼ 2 (dash-dotted black curve) and h ¼
4 (long-dashed brown curve) leads to significant thermal effects, even
for small q values, andG exhibits a pronounced maximum at intermedi-
ate wave numbers, followed by a tail with a negative slope.171

For completeness, we mention that new ab initio results for
Gðq; 0; rs; hÞ, at strong coupling beyond the WDM regime (rs 	 20),
have recently been presented in Ref. 128.

C. Ab initio dynamic results

In Secs. IIIA and III B, we have outlined the current state of the
art regarding both, thermodynamics and the static density response of
the UEG in the WDM regime. However, a direct comparison to
experiments often requires the calculation of dynamic properties. For
example, the central quantity in modern x-ray Thomson scattering
(XRTS) experiments149 is given by the dynamic structure factor
Sðq;xÞ, which is defined as the Fourier transform of the intermediate
scattering function F(q, t) [cf. Eq. (8)],

Sðq;xÞ ¼ 1

2p

ð1

�1
dt Fðq; tÞeixt : (10)

Naturally, the straightforward evaluation of F(q, t) requires real time-
dependent simulations,174–176 for which, presently an exact simulta-
neous treatment of exchange–correlation, thermal, and degeneracy
effects is not possible. Therefore, previous results155,174,177–181 were
based on partly uncontrolled approximations, the quality of which had
remained unclear. Moreover, ab initioQMCmethods, which were piv-
otal for the accurate description of static properties, as was discussed
in Secs. IIIA and IIIB, are effectively rendered unfeasible regarding
time-dependent simulations due to an additional dynamical sign
problem.182,183

An alternative to simulations in real time is given by the method
of analytic continuation, with the imaginary-time density–density cor-
relation function Fðq; sÞ, as defined in Eq. (8), being the starting point.
Recall that the latter can be computed without any approximation

FIG. 4. The static local field correction Gðq; 0; rs; hÞ in the wave number–tempera-
ture plane at rs ¼ 5. The black squares and dashed blue line depict the ground-
state QMC data from Ref. 161 (MCS) and an accurate parametrization thereof162

(CDOP), and the red crosses correspond to the new finite-temperature PIMC data
from Ref. 171. The green surface shows the prediction by the neural net, that is
available at continuous q, rs, and h. Reprinted with permission from Dornheim
et al., J. Chem. Phys. 151, 194104 (2019). Copyright 2019 AIP Publishing.

FIG. 5. Wave-number dependence of the static LFC at metallic density, rs ¼ 4. All
curves have been obtained by using the machine-learning representation of
Gðq; 0; rs; hÞ from Ref. 171, which approaches CDOP162 in the low-temperature
limit.
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from standard PIMC simulations, and it is connected to the dynamic
structure factor via a Laplace transform,

Fðq; sÞ ¼
ð1

�1
dx Sðq;xÞe�sx: (11)

The task at hand is then to find a trial solution Strialðq;xÞ that, when
being inserted into Eq. (11), reproduces the PIMC data for Fðq; sÞ, for
all values of s 2 ½0; b�. Such an inverse Laplace transform is a
well-known, but notoriously difficult task, as different Strialðq;xÞ
might fulfill Eq. (11) within the given statistical uncertainty.184,185 A
first step to further restrict the space of possible Strialðq;xÞ are fre-
quency moments, which are defined as

hxki ¼
ð1

�1
dx Sðq;xÞxk; (12)

and the results for the cases k ¼ �1; 0; 1; 3 are known from different
sum-rules.170,186 While the combination of Eqs. (11) and (12) has
often turned out to be sufficient to accurately reconstruct Sðq;xÞ in
the case of, e.g., ultracold bosonic atoms,187–190 we have found that
this does not hold for the UEG in the WDM regime, and additional
information is indispensible.

To his end, we invoke the fluctuation–dissipation theorem93

Sðq;xÞ ¼ � Imvðq;xÞ
pnð1� e�bxÞ ; (13)

which gives a straightforward relation between the dynamic structure
factor (DSF) and the imaginary part of the dynamic density response
function introduced in Sec. III B. In this way, the original reconstruc-
tion problem has been recast into the quest for a suitable dynamic
local field correction Gtrialðq;xÞ. This is extremely advantageous, as
many additional exact constraints on G, such as the static and high-
frequency limits, and the Kramers–Kronig relation between its real
and imaginary part, are known.

In practice, we solve the inversion problem posed by Eq. (11) by
stochastically sampling trial solutions Gtrialðq;xÞ such that a signifi-
cant number of exact properties are built in by design. Subsequently,
we use the corresponding vtrialðq;xÞ to generate trial solutions for the
DSF via Eq. (13), which are finally plugged into Eqs. (11) and (12),
and discarded if the deviation from our PIMC data is more than the
Monte Carlo error bar. The final solution for Sðq;xÞ is then computed
as the average over a large number of such valid trial solutions, which
also allows us to estimate the remaining variance around our estimate
for Sðq;xÞ.

This is illustrated in Fig. 6, where we show the frequency depen-
dence of Sðq;xÞ for a fixed wave number q � 2qF at rs ¼ 6 and h¼ 1.
First and foremost, we note that the stochastic sampling of Gtrialðq;xÞ
still allows for nontrivial structures in Sðq;xÞ, and even solutions with
two peaks are possible. The colored curves correspond to those
Strialðq;xÞ that are not consistent with our PIMC data for Fðq; sÞ and
hxki, whereas the black curves are valid solutions, and are included in
the calculation of the average for the final solution for Sðq;xÞ.
Moreover, we note that all black curves fall within a narrow band
around their average, and exhibit a single broad peak centered around
twice the plasma frequency. Therefore, the remaining degree of uncer-
tainty is small, and we have achieved an accurate reconstruction of the
DSF of the warm dense UEG.

These new ab initio results for the dynamics of correlated elec-
trons have opened up numerous new avenues for future research proj-
ects. Most importantly, we mention that the detailed investigation of
Sðq;xÞ is interesting in its own right and might, potentially, lead to
the discovery of hitherto unobserved physical effects. This is illustrated
in Fig. 7, where we show the dispersion relation of Sðq;xÞ at the
Fermi temperature for two different values of the density parameter rs.
Let us first focus on the red and green curves (shaded areas), which
depict the peak positions (full width at half maximum) of the ab initio
solution for Sðq;xÞ computed from the stochastic sampling of the
dynamic LFC (DLFC) and the random phase approximation (RPA).
At the metallic density (rs ¼ 4, left panel), the exact DSF exhibits a sig-
nificant red-shift and correlation induced broadening as compared to

FIG. 6. Stochastic sampling method for the dynamic structure factor. Shown is the
frequency dependence of Sðq;xÞ for the unpolarized UEG at rs ¼ 6 and h ¼ 1 for
a fixed wave number q � 2qF. The black curves depict trial solutions, Strialðq;xÞ,
that are consistent with our PIMC data [cf. Eqs. (11) and (12)], whereas the colored
curves are being discarded. Reprinted with permission from Grothet al., Phys. Rev.
B. 99, 235122 (2019). Copyright 2019 American Physical Society.

FIG. 7. Dispersion relation of the unpolarized UEG at the Fermi temperature,
H ¼ 1, for rs ¼ 4 (left) and rs ¼ 10 (right). The solid red, black dashed, and solid
green curves depict the position of the maximum in Sðq;xÞ obtained from the full
solution of our stochastic sampling procedure (dynamic LFC, DLFC), the exact
static approximation, Eq. (15) (static LFC, SLFC), and the usual random phase
approximation (RPA), respectively. The corresponding shaded areas illustrate the
full width at half maximum, and the gray areas enclosed by two parabolas illustrate
the zero temperature electron–hole pair continuum.93 Reprinted with permission
from Dornheim et al., Phys. Rev. Lett. 121, 255001 (2018). Copyright 2018
American Physical Society.
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the mean-field solution, which are particularly pronounced for inter-
mediate wave numbers. On the other hand, all curves converge for
small and large q, as expected. The right panel shows the same infor-
mation for stronger coupling strength, rs ¼ 10. Remarkably, we find a
pronounced negative dispersion xðqÞ in the DLFC curve around
q � 1:8qF, which is not captured by the RPA at all. This feature had
previously been reported by Takada and Yasuhara180,181 based on
the approximate results at zero temperature, and might indicate an
incipient excitonic mode, which emerges in the electron liquid regime.
A more detailed investigation of this effect, which includes a “phase
diagram” of its appearance regarding rs and h, and a prediction of
experimental conditions, where it can be measured, is currently in
progress. As a second important application, we mention the interpre-
tation of XRTS experiments,149 where the DSF of the UEG is used to
describe the free electronic part.153

The third application of the new data for the dynamics of the
warm dense UEG is their potential utility as input for other simulation
methods. For example, the dynamic LFC is directly related to the
exchange–correlation kernel of TD-DFT69 via

Kxcðq;xÞ ¼ �~vqGðq;xÞ; (14)

which gives rise to the intriguing possibility to systematically go
beyond the nearly ubiquitous adiabatic approximation for the
XC-functional. In addition, such information can directly be used to
further improve QHD simulations where a similar relation as (14) has
been derived in Ref. 88, cf. Sec. VD.

The fourth application of our ab initio dynamic results is the
computation of additional material properties, such as the stopping

power,143–145 the dynamic conductivity,146,147 the dynamic dielectric
function �ðq;xÞ, and the density response function vðq;xÞ. As an
example we show preliminary results for the dynamic density response
function, Eq. (5) in Fig. 8. Again, we clearly see the effect of correla-
tions, by comparing the dynamic results (red) to the RPA (green).
While, for rs¼ 2, the effect is relatively small and mainly seen in a red-
shift of the imaginary part; at rs ¼ 10, the RPA completely fails to
describe the density response.

A fifth important application of the ab initio data for Sðq;xÞ is
that they unambiguously allow us to benchmark previous approxima-
tions,172,174,176,177 which are commonly used for WDM research. For
example, Dornheim et al.186 have reported that RPA exhibits signifi-
cant inaccuracies even at relatively moderate coupling, rs ¼ 2 and
h ¼ 1, where electronic correlation effects had often been assumed to
play a minor role. This has potentially important consequences for the
interpretation of WDM experiments, as the determination of plasma
parameters, such as the electronic temperature and the degree of ioni-
zation, is sensitive to the exact dispersion relation of the DSF of free
electrons.153 Moreover, it has allowed us to introduce a significantly
more accurate, yet computationally equally cheap alternative to the
RPA. More specifically, we replace in Eq. (5) the dynamic LFC by its
exact static limit,

vSLFCðq;xÞ ¼ v0ðq;xÞ
1� ~vq 1� Gðq; 0Þ½ �v0ðq;xÞ

; (15)

that is conveniently available as a neural-net representation,171 see Sec.
III B. The corresponding results for the dispersion relation of Sðq;xÞ
computed within this exact static approximation (as opposed to static

FIG. 8. Ab initio PIMC results for the dynamic density response function computed via Eq. (5) for electrons under WDM conditions:H ¼ 1; k ¼ 1:88kF . Top: real part and bot-
tom: imaginary part. Left (right) column: rs ¼ 2 (rs ¼ 10). The RPA result is compared to the full PIMC data (DLFC) and the static approximation (SLFC) [Eq. (15)].

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 042710 (2020); doi: 10.1063/1.5143225 27, 042710-8

VC Author(s) 2020

https://scitation.org/journal/php


dielectric theories like STLS,101–103 where the results for Gðq; 0Þ are
approximate and systematically biased) are shown as the dashed black
lines in Fig. 7. At warm dense matter conditions (rs ¼ 4 and h ¼ 1, left
panel), the SLFC curve is basically indistinguishable from the exact
data both with respect to the peak position and shape over the entire
q-range. Upon approaching the electron liquid regime (rs ¼ 10, right
panel), there do appear small yet significant deviations between the
two curves, although the SLFC still captures both, the broadening and
the negative dispersion. The same behavior is seen in the dynamic
density response function, cf. Fig. 8. Thus, we conclude that the exact
static approximation constitutes a distinct improvement over the RPA
everywhere, without any additional effort.

Finally, an ambitious follow-up project regarding the ab initio
calculation of dynamic properties is the extension of our simulations
to real WDM systems, i.e., going beyond the UEG model and to also
include ions. Although computationally challenging, this would allow
for the first exact theoretical results for the dynamics of warm dense
matter. More specifically, the combination of PIMC and the subse-
quent analytic continuation does not require any arbitrary external
input, such as the XC-functional in DFT, or the Chihara decomposi-
tion,154 which presupposes a potentially unrealistic distinction between
bound and free electrons.69

IV. FINITE TEMPERATURE DFT RESULTS

A. Kohn–Sham–Mermin DFT

In this section, we explore the effect of the finite temperature
exchange correlation functionals that were obtained by QMC simula-
tions (cf. Sec. IIIA) in DFT simulations of dense plasmas. We present
results for the equation of state (EOS) of dense hydrogen and carbon
in Figs. 9 and 10.

The finite temperature DFT-MD method combines the quantum
treatment of the fast moving electrons with the classical description of
the slow ion dynamics.191 For the electrons, finite temperature DFT
developed by Mermin97 for the Kohn-Sham scheme192 is applied,
which minimizes the grand potential, X ¼ E � TS� lN . Here, E is
the total energy, T is the electron temperature, S is the entropy, l is the
chemical potential, and N is the number of electrons. For simplicity, E
and S are expressed in the spin-averaged form as

E ¼ �
X

1

i¼1

f eqð�iÞhwijr2jwii þ EH n½ � þ Exc n½ �

þ
ð

drVeiðrÞnðrÞ (16)

and

S ¼ �2
X

1

i¼1

ff eqð�iÞ ln f eqð�iÞ � 1� f eqð�iÞ½ � ln 1� f eqð�iÞ½ �g; (17)

where i is the index of the energy eigenvalues, EH is the Hartree energy,
Exc is the exchange–correlation energy, Vei is the ionic potential experi-
enced by the electrons, and nðrÞ is the charge density of the electrons.
Furthermore,

f
eq
i ¼ f eqð�iÞ ¼

1

exp bð�i � lÞ½ � þ 1
; b ¼ 1

kBT
(18)

represents the Fermi-Dirac equilibrium distribution. The energies �i,
the wave functions wi, the chemical potential l, and the charge density

nðrÞ are self-consistently determined from the variational Kohn–Sham
equation,

� 1

2
r2 þ UH n½ � þ Vxc n½ � þ VeiðrÞ

� �

wiðrÞ ¼ �iwiðrÞ; (19)

with

nðrÞ ¼ 2
X

1

i¼1

f eqð�iÞjwiðrÞj2; (20)

and l is determined by the charge conservation equation

N ¼ 2
X

1

i¼1

f eqð�iÞ; (21)

where the orthonormality of the orbitals has been assumed. When the
Kohn–Sham–Mermin equations are solved self-consistently, the forces
acting on each ion can be determined by the Hellman–Feynman theo-
rem or its finite-temperature generalization. Then, classical Newton’s
equations are solved to compute the dynamics of the ions.

FIG. 9. Electronic part of the pressure of dense hydrogen using zero-temperature
(LDA) and finite temperature (GDSMFB, Ref. 73) functionals. The left insets show
the relative pressure difference, ðpLDAel � pGDSMFBel Þ=pLDAel . The insets on the bottom
right show the relative difference in total pressure for GDSMFB with respect to LDA
and also by Karasiev et al. using Kohn–Sham (KS) and orbital-free (OF) DFT.75
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In the finite temperature DFT (FT-DFT) method, the many-
body effects of the electrons beyond the Hartree mean field are
accounted for by the exchange–correlation functional Exc. In particu-
lar, if the exact functional would be used, one could reproduce the
exact solution of the original many-body problem of interest. For prac-
tical applications, however, this term has to be approximated. Previous
exchange–correlation functionals were limited to the case of zero tem-
perature such as the expressions due to Perdew–Wang (PW)193 and
Perdew–Burke–Ernzerhof (PBE).194 The latter are adequate for many
condensed matter applications, but they become problematic when it
comes to WDM. In this case, finite temperature and entropic effects in
the exchange–correlation functional are becoming important,75,76 and,
instead of Exc, an accurate exchange–correlation free energy, Fxc, has to

be used. In this section, we quantitatively examine the importance of
the related finite temperature effects.

B. Equation of state of warm dense hydrogen

The DFT-MD simulations for dense hydrogen have been per-
formed using the CP2K code.195 The Gaussian plane waves method is
used to solve the Kohn–Sham equations with Gaussians as the basis
set and additional plane waves as the auxiliary basis of the form
wðrÞ ¼ RiðrÞYli;mi

ðh;/Þ, with RiðrÞ denoting the radial part and Yl;m

denoting the angular part. Goedecker–Teter–Hutter (GTH) pseudopo-
tentials of LDA (Pad�e) form are used for approximating the potential
due to the usage of the LDA form of the xc-functional as the reference
functional to compare with the parametrized LDA form incorporating
finite temperatures, hereafter referred to as GDSMFB.73,196 The
GDSMFB functional is accessed in the CP2K code using the library of
exchange–correlation (LIBXC) functionals commonly supported by
DFT codes.197,198

Due to the huge computational cost at high densities and the
large temperatures considered in these cases, we choose 32 atoms in
an hexagonal supercell for the simulations. On the same note, the sam-
pling is performed only at the C-point. The system size and the sam-
pling of k-points can improve the convergence of the EOS, especially
near the liquid-liquid phase transition (LLPT) and in the low density
limit.199 We observe finite size effects resulting in a lower electronic
pressure, at low temperatures, compared to the orbital-free MD results
of Wang et al.200

At the low-temperature limit, especially near the LLPT
(1000� 2000) K, the pressure obtained using DFT-MD for these den-
sities is dependent on a suite (Jacob’s ladder, non-local, dispersion, …)
of xc-functionals ignoring other parameters such as system size and
k-point sampling.71,201 The first order phase transition (LLPT) is well

characterized using @P
@q

	 


�

�

�

T
¼ 0 in the EOS visibly more prominent in

the QMC results compared to DFT-MD which requires more sampling
near the transition region.202,203 The synthesis of metallic hydrogen is
among the current key topics of high-pressure physics, and significant
progress has been made over the last decade in the prediction of the
transition using QMC and higher rungs of xc-functionals.21,204–206 The
inclusion of the finite-temperature component to the LDA can be sim-
ply ignored for characterizing the phase transition at temperatures
(1000–5000) K, as this corresponds toH < 0:01 and, instead, we focus
on the improvement in the EOS results across a gamut of higher tem-
peratures accessible using Kohn-Sham and orbital-free DFT.

The variation of electronic pressure with respect to temperature
at two different densities for dense hydrogen is shown in Fig. 9. At
rs ¼ 1:4; the total pressure with the finite-temperature xc-functionals
differs by less than 0.5% compared to LDA, in the temperature range
(5000–10000) K, and accurate reptation quantum Monte Carlo
(CEIMC) results show a deviation of less than 2%.207 With increasing
temperature, the pressure obtained using GDSMFB converges toward
the path integral Monte Carlo results obtained by Hu et al.208,209 The
relative difference in electronic pressure due to finite-temperature xc
effects is more prominent at lower densities, with a maximum of 6%,
observed at rs ¼ 1.4, for H ¼ 0:33� 0:42. The relative difference in
total pressure is in good agreement with the Kohn-Sham DFT and
orbital-free results obtained by Karasiev et al.75 An analysis of finite
temperature exchange–correlation effects on various optical and

FIG. 10. Equation of state of warm dense carbon for q ¼ 10:0 g cm�3

(rs ¼ 1:475 5), computed with various models. Top: total pressure and bottom:
electronic part of pressure. The insets show the relative difference of various mod-
els to our finite-temperature results (GDSMFB, Ref. 73). PW: zero-temperature
LDA (PW-functional);193 PBE: zero-temperature PBE-functional194) Danel-OF:
orbital-free MD results;218 and Benedict-PIMC: restricted PIMC results.217

Interpolation is applied to align the different data grid when necessary.
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transport properties of deuterium was recently presented in Ref. 210,
and an extensive topical investigation of hydrogen can be found in
Ref. 76.

C. Equation of state of warm dense carbon

The DFT-MD simulations for dense carbon are performed using
the recently developed ext-FPMD method211 implemented in the
QUANTUM-ESPRESSO code,212 which combines the analytical treatment
of high-energy electrons as plane waves and the numerical treatment
of the remaining electrons within the Kohn–Sham–Mermin scheme.
This ext-FPMD method thus elevates the temperature limit of previ-
ous DFT-MD simulations and can be coherently applied from cold
materials to hot dense plasmas.213 The interaction between the
carbon ions and the electrons is described by an all-electron projector
augmented-wave (PAW) potential.214 32 carbon atoms are included in
our simulation, which amounts to 192 electrons in total, in the cubic
simulation box with periodic boundary conditions for all three direc-
tions. A shifted 2� 2� 2 K mesh grid is used for all the simula-
tions.215 The ion temperature is controlled by an Andersen
thermostat.216 A sufficiently large number of time steps are applied to
ensure that the system has reached equilibrium before data collection
starts using the last 5000 time steps. The electronic part of pressure is
converged to within 1% with respect to all parameters such as plane
wave cutoff energy, K-mesh density, and finite size effects.

The variation of both, total pressure and electronic part of pres-
sure of carbon, at a density of q ¼ 10:0 g/cm3, corresponding to
rs ¼ 1:4755, is shown in Fig. 10. For the lowest temperatures, i.e., at 1
and 5 eV, we find that LDA193 and the finite temperature GDSMFB
results73 are close to each other. Both deviate from the PBE result,194

which shows that the gradient correction of the exchange–correlation
energy is more important than the finite-temperature effects, for a low
temperature, as expected. As the temperature rises, LDA and PBE
results get closer to each other, however, both deviate from the
GDSMFB result. This shows that, in this region, finite-temperature
effects play a more important role. The relative deviation for the elec-
tronic part of the pressure between zero-temperature exchange–corre-
lation functionals and their finite-temperature counterpart reaches a
maximum of �4% at 105 K for PW and 2� 105 K for PBE, where
H ¼ 0:374 andH ¼ 0:749, respectively.

We note that a further increase in the temperature will eventually
make the form of the exchange–correlation functionals less important,
as the system approaches the hot classical plasma regime where many-
body effects are less prominent. This is shown in Fig. 10 for the high-
temperature region around 107 K. PIMC results217 are only available
for high temperatures, and they are within 1% of our GDSMFB results
shown in this figure. The deviations are comparable to the data accu-
racy, due to the statistical errors. OFMD simulations218 struggle, in the
low-temperature region, because they lack shell structure effects, and
they are also found to be inaccurate in the high-temperature region,
because they use the PBE exchange–correlation functional that does
not account for finite-temperature effects.

V. WDM OUT OF EQUILIBRIUM

The response of warm dense matter to an external excitation and
the subsequent thermalization are of prime importance for many
applications. This includes laser excitation and ionization of warm

dense matter but also compression experiments including phase tran-
sitions and the path to inertial confinement fusion.

Theoretical methods for WDM out of equilibrium are even more
challenging than equilibrium applications that were discussed above.
They include time-dependent DFT,69,219 semiclassical kinetics,78 quan-
tum kinetic theory and nonequilibrium Green functions,44,83,220,221

hydrodynamics80,88,222 or rate equations.223 Among the problems that
were studied are the equilibration of the electron distribution by elec-
tron–electron collisions,83,220 non-thermal melting induced by fs x-ray
pulses,219 the density response for nonequilibrium momentum distri-
butions,79,221 density evolution following short-pulse laser excitation,78

collisional heating of quantum plasmas by a laser pulse,224,225 or ioni-
zation dynamics in a short laser pulse.80

In the remainder of this section, we discuss the quantum hydro-
dynamics approach and its relation to DFT89 more in detail because
the former is comparatively less discussed for WDM applications,
even though it appears to be filling a gap in the arsenal of simulation
techniques, what we discuss in Sec. VI.

A. Dynamics of N quantum particles: Wave function

and density operator

We consider a non-relativistic quantum system of N electrons
described by the spin-independent hamiltonian

Ĥ ¼
X

N

i¼1

� �h2

2m
r2

i þ VðriÞ
� �

þ 1

2

X

i6¼j

wijðRÞ; (22)

where R ¼ ðr1;r1; r2; r2;…rN ; rNÞ; ri are the particle coordinates
and ri their spin projections, and V is an external potential, e.g., due to
the plasma ions. Assuming the first one as a pure state, the dynamics
of the system are governed by the N-particle Schr€odinger equation

i�h
@WðR; tÞ

@t
¼ ĤWðR; tÞ; WðR; t0Þ ¼ W0ðRÞ; (23)

that is supplemented by an initial condition and the normalization
P

r1…rN

Ð

d3NR jWðR; tÞj2 ¼ N . For particles with spin s, there are
gs ¼ 2sþ 1 different spin projections, and each spin sum gives rise to
a factor gs (in the following, we will not write the spin arguments and
spin sums explicitly).

If the many-body system (22) is coupled to the environment—as
is typically the case in plasmas that we concentrate on in this section—
a description in terms of wave functions and the Schr€odinger equation
(23) is no longer adequate. Instead, the system is described by an inco-
herent superposition of wave functions (“mixed state”). This can be
taken into account, by replacing the N-particle wave function by the
N-particle density operator,40

q̂ðtÞ ¼
X

a

pajWaðtÞihWaðtÞj ; Tr q̂ðtÞ ¼ 1; (24)

where the sum runs over projection operators on all solutions of the
Schr€odinger equation (23), and pa are real probabilities, 0 � pa � 1,
with

P

a pa ¼ 1. Here, we used a general representation-independent
form of the quantum states. It is directly related to the wave functions
if the coordinate representation is being applied: hRjWaðtÞi
¼ W

aðR; tÞ [hRj are eigenstates of the coordinate operator in
N-particle Hilbert space]. The previous case of a pure state is naturally
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included in definition (24) by setting pk ¼ 1 and all pa 6¼k ¼ 0. The sec-
ond relation (24) is the normalization condition where the trace
denotes the sum over the diagonal matrix elements of q̂, see below.
The equation of motion of q̂ follows from the Schr€odinger equation
(23) and is the von Neumann equation supplemented by the initial
condition,

i�h
@

@t
q̂ � Ĥ ; q̂

� �

¼ 0; (25)

q̂ðt0Þ ¼
X

a

pajWa
0ihWa

0j: (26)

The method of density operators is well established in quantum
many-body and kinetic theory, and relevant representations are the
coordinate representation, momentum, and Wigner representation,
e.g., Refs. 36, 40, and 226. From the N-particle density operator, all
time-dependent properties of a quantum system can be obtained.
However, in many cases, simpler quantities are sufficient such as
reduced s-particle density operators, including the single-particle den-
sity operator (which is related to the distribution function or the
Wigner function),40

F̂ 1ðtÞ 
 NTr2…N q̂ðtÞ ; Tr1F̂ 1 ¼ N: (27)

The equation of motion for F̂ 1 follows straightforwardly from
Eq. (25), e.g., Refs. 40 and 89, and is given below, cf. Eq. (29).

B. Time-dependent Kohn–Sham equations for

electrons in WDM

We now derive the equation of motion for the time-dependent
single-particle orbitals of N interacting electrons. We follow the idea of
DFT that the many-particle quantities are expressed in terms of
single-particle quantities via a mean field description. Exchange and
correlation effects are then taken into account a posteriori, by adding
the potential Vxc.

Considering an N-particle system in the grand canonical ensemble
(specified by the inverse temperature b and chemical potential l), the
single-particle nonequilibrium density operator has the following form:

F̂ 1ðt;b;lÞ ¼
X

1

i¼0

f
eq
i ðb; lÞj/iðtÞih/iðtÞj; (28)

where the mean occupation numbers in equilibrium are given by the
Fermi function (18). The equation for F̂ 1 in the mean field (Hartree)
approximation has the following form:40

i�h
@F̂ 1

@t
� Ĥ 1 þ Ĥ

H

1 ; F̂ 1

h i

¼ 0; (29)

Ĥ
H

1 ¼ Tr2ŵ12F̂ 2: (30)

Correlation effects would give rise to a collision integral on the r.h.s. of
Eq. (29), for various approximations, see Ref. 40.

From Eq. (28), we obtain the density matrix by multiplying with
coordinate eigenstates hr0j and jr00i:

f ðr0; r00; t;b;lÞ ¼
X

1

i¼0

f
eq
i ðb; lÞ/iðr0; tÞ/�

i ðr00; tÞ: (31)

The single-particle wave functions are the so-called “natural orbitals,”
and in the mean field approximation, the N-particle wave function

obeying Eq. (23) is just their product. By inserting Ansatz (31) into the
coordinate representation of Eq. (29), it is easy to verify that the latter
is solved when each orbital fulfills the following single-particle
Schr€odinger equation (i ¼ 1;…;N)

i�h
@

@t
/iðr; tÞ ¼ � �h2

2m
r2

r þ V þ UHðr; tÞ
� 

/iðr; tÞ ; (32)

UH nðr; tÞ½ � ¼ gs

ð

dr2 wðr� r2Þnðr2; t;b;lÞ; (33)

nðr; t; b; lÞ ¼
X

1

i¼0

f
eq
i ðb;lÞj/iðr; tÞj2; (34)

where the Hartree mean field is the coordinate representation of oper-
ator (30) and contains the densities of all occupied orbitals. Equations
(32) and (33) are the time-dependent Hartree equations for weakly
interacting fermions (interactions are taken into account only via the
mean field UH).

This result can be directly extended beyond the mean field
approximation by replacing

UHðr; tÞ ! UH nðr; tÞ½ � þ Vxc nðr;~tÞ; b; l
� �

; (35)

and, as a consequence, Eqs. (32) and (33) become the time-dependent
Kohn-Sham equations–the basic equations of the time-dependent
density functional theory (TD-DFT).227 A particular strength of this
theory is its solid theoretical foundation on the Runge-Gross theo-
rem227 and the corresponding theorems for time-independent DFT.228

The basic statement is that a system of N interacting fermions can be
mapped exactly onto a system of N non-interacting particles with the
same density nðr; tÞ where all interactions are lumped into an effective
single-particle potential that is a direct generalization of the Hartree
potential (33).

The first remarkable property of these equations is that, both, the
mean field and the additional exchange–correlation potential do not
explicitly depend on the individual orbital wave functions but only on
the total density, so also the coordinate dependence is only implicit,
via the functional nðr; tÞ. However, the exact functional Vxc does not
only depend on the current density, nðr; tÞ, but, in general, the depen-
dence is also on the density profile at earlier times, nðr;~tÞ; 0 � ~t � t.
At the same time, most current implementations neglect this
“memory” effect and use an adiabatic approximation (e.g., adiabatic
LDA, ALDA), ~t ! t which leads to systematic errors. In Eq. (35), we
also indicated that, at a finite temperature, Vxc carries a temperature
dependence which was discussed in detail before, see Sec. III.

C. Microscopic quantum hydrodynamic equations for

dense plasmas

Following Ref. 89, we now derive the microscopic QHD (MQHD)
equations, starting from the time-dependent Hartree equations (32)
and (33). To this end, we simply convert each orbital solution,
/iðr; tÞ ¼ Aiðr; tÞe

i
�hSiðr;tÞ, into an individual pair of amplitude and

phase equations,86,89 for i ¼ 1;…;N ,

@ni
@t

þr � ðviniÞ ¼ 0; (36)

@pi
@t

þ ðvi � rÞpi ¼ �rðUtot n½ � þ Vxc n½ � þ QiÞ; (37)
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QiðrÞ ¼ � �h2

2m

r2
ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p

ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p ; (38)

where ni ¼ A2
i and pi ¼ rSi, and we introduced a short notation for

the total potential energy, Utot ¼ V þ UH. This system of MQHD
equations is fully equivalent to TD-DFT and, for Vxc ! 0, it exactly
coincides with the time-dependent nonlinear Hartree (quantum
Vlasov) equations.40,229 Moreover, it was shown in Ref. 89 that this
approximation, in linear response, is exactly equivalent to the random
phase approximation (RPA or the linearized quantum Vlasov equa-
tion). In particular, the linearized MQHD equations then yield the cor-
rect plasmon spectrum and the correct screening of a test charge – in
contrast to the standard QHD (see below).

D. Derivation of the QHD equations fromMQHD

To convert these microscopic equations into a single pair of den-
sity and momentum equations (QHD), a suitable averaging over the
orbitals is necessary which we denote by a “bar,”

�nðr; tÞ ¼ 1

N

X

1

i¼1

f
eq
i niðr; tÞ; (39)

�pðr; tÞ ¼ 1

N

X

1

i¼1

f
eq
i piðr; tÞ; (40)

�Qðr; tÞ ¼ � �h2

2mN

X

1

i¼1

f
eq
i

r2
ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p

ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p ; (41)

where the orbitals are weighted by the Fermi function. Here, �n is inter-
preted as the mean orbital probability density. In Ref. 85, the authors
assumed that all orbital amplitudes are equal whereas, in Ref. 86, it
was assumed that one can substitute

X

1

i¼1

f
eq
i

r2
ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p

ffiffiffiffiffiffiffiffiffiffi

niðrÞ
p ! r2

ffiffiffiffiffiffiffiffiffi

�nðrÞ
p

ffiffiffiffiffiffiffiffiffi

�nðrÞ
p : (42)

Finally, in Ref. 89, it was demonstrated how the QHD equations can
be derived without uncontrolled assumptions, and here we briefly
recall that approach.

In order to take the orbital average of the MQHD equations
(36)–(38), we express each of the orbital quantities in terms of their
averages and fluctuations,

ni ¼ �n þ dni ;

pi ¼ �p þ dpi ;

Ai ¼ �A þ dAi;

and take into account that the average of products of two orbital quan-
tities is given by

aibi ¼ �a � �b þ dai � dbi ; (43)

where, in addition to the product of averages, there appears a correla-
tion function. Note that the averaging of the Bohm potentials, Eq.
(41), has to be done with care because the orbital depending densities
enter at two places and we have to apply relation (43), with the result

�Q ¼ Q1 �n½ � þ QD: (44)

Here, the first term is just the Bohm potential from the single-particle
case with the density replaced by the mean density, ni ! �n (this is

what was used in Refs. 85 and 86) corresponding to Eq. (42), and the
second term is the deviation which is presented below, in Eq. (48).
With this, we can perform the averaging of the MQHD equations
(36)–(38), and obtain the QHD equations that contain three correla-
tion functions that we denote by Jnp, Jpp, and Q

D,

@�n

@t
þr � ð�v � �nÞ ¼ Jnp; (45)

@�p

@t
þ ð�v � rÞ�p ¼ �r Utot þ Q1 �n½ � þ QD

� �

þ Jpp ; (46)

Jnp ¼ � 1

m
r � ðdpidniÞ ; Jpp ¼ �ðdvi � rÞdpi ; (47)

QD � �h2

2m�n
dAi � r2dAi þ O

dAi

�A

� �2
 !

: (48)

The function Jpp contains the correlations of the fluctuations of the
momentum field.

Another formulation of the QHD equations, that is closer to clas-
sical hydrodynamics, is obtained if, instead of the mean orbital density
�n and the mean momentum �p, we consider the density nðr; tÞ and the
current density jðr; tÞ, defined in terms of the orbital quantities ni and
ji ¼ ni vi, as

86,230

nðr; tÞ ¼ 2
X

i

fi niðr; tÞ; (49)

jðr; tÞ ¼ 2
X

i

fi jiðr; tÞ; (50)

where a factor 2 was included to account for the two electron spin pro-
jections. Using the definitions for n and j, we can further define a
mean velocity field, uðr; tÞ ¼ jðr; tÞ=nðr; tÞ which differs from the
mean velocity �v ¼ �p=m that was defined above, cf. Eq. (40).

The dynamical equations for n and j follow from Eqs. (36)–(38).
They read as (see also Ref. 230)

@n

@t
þr � j ¼ 0; (51)

@j

@t
þr � j� j

n

� �

¼ � n

m
rUtot n½ � � 1

m
r �P; (52)

wherePðr; tÞ appears as a “pressure” tensor,

Pðr; tÞ ¼ 2
P

i fi ni mðvi � uÞ � ðvi � uÞ� �h2

4m
r�r ln ni

� �

:

(53)

The first contribution arises from fluctuations of the orbital velocity
fields, while the second term is due to the microscopic Bohm potential,
i.e., due to the curvature of the orbital amplitudes. Note that the corre-
lation function Jnp appearing in Eq. (45) is contained in the definition
of the current density and does not appear explicitly in Eq. (51).
Analogous equations have been discussed in Ref. 230, see also Refs.
231 and 232.

E. Plasma oscillations in MQHD and QHD

An important test for the QHD and MQHD models is the result
for electron plasma oscillations (Langmuir waves) in the limit of the
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weak external field (linear response). Here, we consider the simplest
case of a spatially homogeneous weakly non-ideal electron gas (inter-
actions are included only via the Hartree mean field, whereas exchan-
ge–correlation effects are neglected) at zero temperature, i.e., the
statistical weights f

eq
i reduce to unity, for �i � EF , and zero otherwise.

Considering first the MQHD equations, Eqs. (36)–(38), we apply
a harmonic monochromatic excitation, /1ðr; tÞ � e�ixtþiq�r, and line-
arize niðtÞ and piðtÞ around the unperturbed solution. Finally, the
density response is computed via orbital averaging and Fourier trans-
formation, with the result given by Eq. (55). Second, we consider the
QHD equations (51) and (52), which already contain the orbital aver-
aging. Here, in order to make further progress, an approximation for
P is required. If we approximate the tensor by the Fermi pressure and
the Bohm term [with the density nðr; tÞ],

Pðr; tÞ � pF nðr; tÞ½ �I� �h2

4m
nðr; tÞr �r ln nðr; tÞ; (54)

linearization of these equations and Fourier transformation yields the
plasmon dispersion for the case of D¼ 1, 2, 3 dimensions,233 given by
Eq. (56).

x2
MQHDðqÞ ¼ x2

pl þ
3v2Fq

2

Dþ 2
þ ð1� d2;DÞ

�h2

4m2
q4; (55)

x2
QHDðqÞ ¼ x2

pl þ
v
2
Fq

2

D
þ �h2

4m2
q4; (56)

where we introduced the Fermi velocity via EF ¼ mv
2
F=2. Note that

the plasma frequency depends on the dimensionality of the system.
Let us discuss this result. First, we observe that the MQHD-

dispersion (55) exactly coincides with the zero temperature limit of the
RPA result presented in Fig. 7. In particular, the small-q (large-q) limit
given by the first (third) term in Eq. (55) is correct. However, compar-
ing with the QMC results (red curves in Fig. 7), the MQHD dispersion
at intermediate wave numbers, 1� q=qF � 3, strongly overestimates
the oscillation frequency. This is due to the neglect of correlation
effects in the present calculation. These effects can be restored by
including a proper expression for the exchange–correlation potential
in the MQHD equations.

Due to the agreement of the MQHD dispersion with the RPA,
we can use it to test the accuracy of the QHD model. Note that the
QHD model is—by construction—less accurate than MQHD because
it involves an orbital averaging and thus, a loss of resolution of small
length and energy scales. First, we observe that the small-q limit is cor-
rect. The large-q limit, on the other hand, is correct for 1D and 3D sys-
tems, but it is incorrect for 2D quantum plasmas. Third, the behavior
at intermediate wave numbers (second term proportional to q2) is cor-
rect in 1D. In 2D, the QHD yields a coefficient 1/2, whereas the correct
one is 3/4. Similarly, in 3D, the QHD result (1/3) deviates from the
MQHD result (3/5). Therefore, high-frequency electronic plasma
oscillations (x 	 xpl) are correctly reproduced only in one-
dimensional quantum plasmas.

Going back to the QHD equations, it is easy to verify that the ori-
gin of this incorrect coefficient, as compared to the RPA (MQHD)
result, is the Fermi pressure term. To recover the correct coefficient of
the q2 term in the dispersion (56), the pressure has to be multiplied by
a factor �a that was reported in Ref. 88: for example, for a 3D plasma,
the Fermi pressure that appears in Eq. (54) has to be multiplied by a

factor �a ¼ 9=5. Note that this value applies only to small wave num-
bers, whereas for large wavenumbers, q  2kF , it will approach the
value 3/5.88

F. Screened ion potential fromMQHD and QHD:

Influence of electronic correlations

After having discussed the high-frequency plasma oscillations,
we now turn to the frequency range x � xpl . This is of prime impor-
tance, e.g., for ion acoustic oscillations and for the screened potential
in a quantum plasma. In fact, screening effects replace the Coulomb
potentialQ/r by the potential

UðrÞ ¼
ð

d3q

2p2
Q

q2�ðq;x ¼ 0Þ e
iq�r; (57)

where the dielectric function contains the quantum plasma properties
and is taken in the static limit. The screened potential for quantum
plasmas that improves the conventional Yukawa (or Thomas-Fermi)
model has been actively studied in recent years, e.g., Refs. 135,
234–237. For example, in Ref. 234 the authors predicted, using a QHD
model that, in a quantum degenerate plasma in thermodynamic equi-
librium, the electrostatic potential of an ion would be attractive. Their
result is shown in Fig. 11 by the blue line and exhibits a shallow mini-
mum (depth approximately 5meV) at about 6 Bohr radii (about 2.5
interparticle distances). Tests with DFT simulations that can be
regarded as benchmarks235,238,239 revealed that no such minimum
exists. The reason for the unphysical predictions of the QHD model
was clarified in Ref. 135: the coefficient of the Bohm term in the QHD
equations (45) and (46) turns out to be incorrect for applications to
low-frequency excitations. Compared to its value at high frequencies,
x 	 xpl (which we use as a reference, c ¼ 1), it has to be reduced by
almost an order of magnitude (c ! 1=9) to reproduce the correct
MQHD (RPA) result. Two screened potentials that contain the correct
factor c ¼ 1=9 are included in the plot as well and do not exhibit the
minimum and show good agreement with the full (nonlocal) RPA
screened potential.135 The only difference is that these potentials

FIG. 11. Screened potential of a proton in a quantum plasma, for rs ¼ 2:3 and
T¼ 0. Full black line: RPA result showing Friedel oscillations. Red and green lines:
potential of Refs. 236 and 87, respectively. Blue line (SE): attractive potential of
Ref. 234 where the Bohm term is used with a prefactor c ¼ 1 that is in conflict with
the MQHD (RPA) result, cf. Fig. 12. For the effect of electronic correlations, see
Fig. 13. Reprinted with permission from Moldabekov et al., Phys. Plasmas 22,
102104 (2015). Copyright 2015 AIP Publishing.
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cannot resolve the Friedel oscillations. Note that the correction factor
c depends on temperature which is shown in Fig. 12.

Let us now investigate the effect of electronic correlations (effects
beyond RPA) on the screened potential. Here, we consider two
approximations for the static local field correction G(q) that lead to a
correlated dielectric function appearing in formula (57). The first is
the standard STLS (Singwi–Tosi–Land–Sj€olander) approximation and
the second, the exact results for G(q) obtained from our QMC simula-
tions, cf. Sec. III B, where we used the machine learning representation
of Ref. 171. The two results are shown, together with the uncorrelated
RPA result, in Fig. 13. There, we present the screened potential of a
proton in a dense quantum plasma in the WDM regime, at rs ¼ 2 and
h ¼ 0:5 which is close to the parameters of Fig. 11, the main difference
being the finite temperature. The first effect of correlations is a signifi-
cantly stronger screening (more rapid decay of the potential), com-
pared to the RPA case.136 In addition, we observe that the STLS
potential strongly deviates from the QMC result not only quantita-
tively but even qualitatively: it overestimates screening and develops

an unphysical attractive part (negative minimum) at intermediate dis-
tances (see the subplot in Fig. 13).136

As was explored in Ref. 3, this unphysical behavior of the STLS
approximation leads to additional restrictions on its applicability for
two-component plasmas with non-ideal ions. Note that, in general,
the screening is not exponential3 and, in the case of strongly coupled
ions, deviations from the RPA screened potential may be quite large
and have a significant impact on the structural and dynamical proper-
ties of the ion component in a dense plasma.3,240 Given the overall
good accuracy of STLS for thermodynamic quantities, cf. Sec. IIIA,
these problems for the screened potential are an unexpected result.
This is a similar artifact, as was observed for the QHD screened poten-
tial with the wrong Bohm term in Fig. 11. This observation underlines
the high importance of ab initio QMC results, in particular for the
local field correction. The QMC potential presented in Fig. 13 is a pre-
liminary result, and a systematic analysis for a broad range of parame-
ters in the WDM range is an important task for future work.

G. Ion-acoustic modes in a quantum plasma

Let us now turn to ion-acoustic oscillations in a quantum plasma
that have been studied by many authors. For example, Schmidt et al.
gave a hydrodynamic derivation of the dispersion relation and the
dynamic structure factor.241 Haas and Mahmood222 used Euler fluid
equations for the ions, neglecting the ionic pressure term, and the
QHD equations for the electrons with the Bohm potential with the
correct factor c, in the low frequency long-wavelength limit (see Fig.
12), to study low-frequency waves in a two-component plasma. They
derived the following dispersion for ion-acoustic waves:

x2ðkÞ ¼ c2s k
2 �

x2
pi 1þ Aðc; csÞk2
� �

x2
pi þ c2s k

2 1þ Aðc; csÞk2½ � : (58)

Here, Aðc; csÞ ¼ c�h2=ð12memic
2
s Þ represents the quantum electron

correction due to the Bohm term, and cs ¼ ðkBT=mi Li3=2ðzÞ=
Li1=2ðzÞÞ1=2 is the ion sound speed of an ideal quantum plasma written
in terms of the polylogarithmic function Li�ðzÞ of the ideal electron
fugacity z. In the limit of strong electron degeneracy, the sound speed
is given by cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EF=ð3miÞ
p

.
The dispersion of the ion-acoustic wave is sensitive to the proper-

ties of the surrounding electrons via screening of the ion potential,
Eq. (57), and to ionic correlations, depending on the coupling parame-
ter Ci. This is illustrated in Fig. 14 where the QHD result (58) is com-
pared to the data from the molecular dynamics (MD) simulation of
ions at Ci ¼ 15; rs ¼ 1:5, and h ¼ 0:1. The MD data was obtained
using the screened ion potential (57)with �ðq;x ¼ 0Þ in RPA.240 As
discussed above, in linear response, the RPA (MQHD) description of
electrons is more accurate than QHD with the standard Bohm poten-
tial and serves as a benchmark. The first observation from Fig. 14 is
that the QHD result for the dispersion, Eq. (58), strongly deviates
from the MD data for all wave numbers, because the sound speed of
an ideal plasma is being used. A much improved behavior is found if
the sound speed fitted to the MD data at small wave-numbers is
inserted into Eq. (58). The resulting dispersion (black dashed curve)
agrees well with the MD data for all wavenumbers, ka� 1:0. The fail-
ure at a larger wavenumber is not surprising because the standard lim-
itation of the fluid approaches that we will discuss in Sec. VH. To
summarize, our analysis reveals that the functional form (58) of the

FIG. 12. Prefactor of the Bohm potential for low-frequency long-wavelength excita-
tions, as a function of the degeneracy parameter. c changes from 1/9, at T¼ 0, to
1/3, at a high temperature. Dashed line: high-frequency limit of c. Reprinted with
permission from Moldabekov et al., Phys. Plasmas 22, 102104 (2015). Copyright
2015 AIP Publishing.

FIG. 13. Screened potential of a proton in a quantum plasma, for rs ¼ 2:0 and
h ¼ 0:5, similar to Fig. 11, but here with different electronic local field corrections
G(q). Full black line: RPA result [GðqÞ 
 0]. Blue dashed line: potential computed
using G(q) in the STLS approximation. Red short-dashed line: G(q) from QMC,
using the machine-learning representation [cf. Sec. III B], presented in Ref. 171.
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dispersion is reasonable which is promising for further applications of
the QHD approach to two-component plasmas, taking into account
electronic and ionic non-ideality effects.

H. Limitations and further improvement of QHD:

Nonlocal and exchange–correlation effects

The general validity limits of quantum hydrodynamic models
have been discussed in a variety of papers, e.g., Refs. 86, 235, and 242.
Most importantly, similar to a classical plasma, a sufficient condition
for the applicability of a hydrodynamic description is that the consid-
ered length scales are larger than the screening length, e.g., Ref. 243. In
a quantum plasma. this is the Thomas-Fermi length, kTF, which leads
to the criterion

kkTF ¼ 2

ð3CqÞ1=2
k

kF
� 1: (59)

In the weak coupling limit, Cq � 0:1, this leads to the restriction
k� 0:03kF . Previously, it was found that the above condition is not
always necessary, i.e., the hydrodynamics in many cases applies also to
length scales smaller than the screening length, for classical plasmas,
see, e.g., Ref. 243. For correlated quantum plasmas, it was found that
correlation effects reduce the screening length,3,136,240 cf. also Fig. 13,
which supports the same conclusion that QHD should be valid on
scales below kTF.

Of course, a further extension of the validity range can be
achieved if the coefficients in the QHD equations are adjusted using
information from the MQHD equations (kinetic theory). For example,
it was shown in Ref. 88 how to properly choose the QHD parameters
for a large wavenumber, k� 2kF . Moreover, tests against the MQHD
(RPA) results, discussed in Sec. VE, allow us to correct the prefactors
in the QHD equations for the high-frequency and low-frequency
limits.

Thus, even if the correlation effects are neglected (Vxc ! 0;
Jnp ! 0; QD ! 0), it is clear that there exists no universal result for
the parameters in the QHD equations that would apply to arbitrary
situations. Instead, depending on the frequency and wave number of
the excitation, the coefficients in front of the Fermi pressure and of the
Bohm term vary, and the results are also dependent on the tempera-
ture and the system dimensionality:

�PF ! �aðx; q;H;DÞ �PF ; (60)

Q1 ! cðx; q;H;DÞQ1: (61)

The values of �a and c for the important limiting cases of high and low
frequency, as well as high and low wave number are known analyti-
cally, even at a finite temperature.88 Thus for these situations, reliable
simulations are possible. The reason for this frequency and wave num-
ber dependence of the coefficients is the fact that the kinetic theory
(RPA) polarization (density response) function P

RPA has different
long wavelength limits for different frequencies, limq!0 P

RPAðq;xÞ.
When this is converted into local hydrodynamic equations via orbital
averaging, the result is different for high and low frequencies,
respectively.

It is possible to avoid this problem by introducing a more general
nonlocal expression for the QHD potential that was derived in Ref. 88.
Here, we summarize these results starting from the RPA and, in
addition, including exchange–correlation effects that we link to the
dynamic local field correction for which we have obtained ab initio
results via QMC simulations, cf. Sec. III B. The main idea behind non-
local quantum hydrodynamics is to require88 that the QHD polariza-
tion function equals to the polarization function that follows from
the kinetic theory or TD-DFT (MQHD), i.e., PQHD 
 PLR . The deri-
vation of the QHD equations presented in Sec. VD gives a strict justi-
fication for this requirement.

Let us return to the QHD momentum equation (46), consider-
ing zero vorticity, and introduce the total potential l½nðr; tÞ� that
contains ideal and exchange–correlation contributions (first and
second terms),

@�p

@t
þ 1

m
ð�p � rÞ�p ¼ �rl nðr; tÞ½ �; (62)

l nðr; tÞ½ � ¼ lid nðr; tÞ½ � þ lxc nðr; tÞ½ � þ e/ðr; tÞ; (63)

whereas the last term is due to the total field – the sum of the external
field as well as mean field (Hartree) contributions which is the solution
of Poisson’s equation, i.e., e/ ¼ Utot. The force field l is defined by
the functional derivative of the grand potential,88

l nðr; tÞ½ � � e/ðr; tÞ ¼ dX nðr; tÞ½ �
dnðr; tÞ ; (64)

where X ¼ Xid þ Xxc, is the sum of an ideal and exchange–correla-
tion part that will be specified below.

In equilibrium (current-free case), Eqs. (62) and (64) reduce to
the Euler-Lagrange equation

dX n0ðr; tÞ½ �
dn0ðr; tÞ

þ e/0ðr; tÞ ¼ 0; (65)

where the subscript “0” indicates the equilibrium case. Assuming a
weak perturbation,88,244 the force becomes

FIG. 14. Dispersion of ion-acoustic oscillations of nonideal ions (coupling parameter
Ci ¼ 15) in a weakly correlated quantum plasma (rs ¼ 1:5;H ¼ 0:1). Symbols:
MD simulation of ions interacting via a screened potential (57) using the RPA
dielectric function.240 Solid straight line: acoustic mode from the MD data; red
dashed line: QHD result (58) of Ref. 222 using the sound speed of an ideal quan-
tum plasma; and black dashed line: dispersion (58) where the sound speed is fitted
to the long-wavelength limit of the MD simulations.
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rl nðr; tÞ½ � ¼ r
ð

dr0
d2X n½ �

dnðr; tÞdnðr0; tÞ

�

�

�

�

n¼n0

n1ðr0; tÞ; (66)

where n1ðr; tÞ ¼ nðr; tÞ � n0ðrÞ, with jn1=n0j � 1.
Equations (62)–(66) and the requirement that the QHD density

response agrees with the kinetic theory results in linear response,
PQHD 
 PLR , give

88

F
d2X

dnðr; tÞdnðr0; tÞ

�

�

�

�

n¼n0

" #

¼ � 1

P0
LRðk;xÞ

; (67)

1

P0
LRðk;xÞ

¼ 1

PLRðk;xÞ
� 1

P
0ðxÞ ; (68)

where we introduced the modified linear response polarization, P0
LR

from which the long-wavelength limit at finite x, P0ðxÞ ¼ mk2=
x2n0, is being subtracted, and F denotes the Fourier transform to fre-
quency and wavenumber ðk;xÞ space. Considering first the case of
ideal quantum electrons, wherePLR ¼ PRPA, we have

F
d2Xid

dnðr; tÞdnðr0; tÞ

�

�

�

�

n¼n0

" #

¼ � 1

P0
RPAðk;xÞ

: (69)

Equation (69) yields a non-local potential, Eq. (66), and allows, among
others, to find the correction factors �aðx; q;H;DÞ and cðx; q;H;DÞ,
Eqs. (61) and (60), in various limiting cases.88

Consider now the general case of nonideal electrons,
rs� 1;Ci� 1, cf. Sec. II. This requires including the exchange–corre-
lation contribution to the grand potential which can be done by using
approximations for the exchange–correlation potential, Vxc, from
DFT. A simple ground state expression in the local density approxima-
tion was introduced to QHD in Ref. 245) and has been used in a num-
ber of subsequent papers, e.g., in Ref. 246. A second strategy that is
closer to the topics discussed in this paper is to directly use the ab ini-
tio input from QMC. This is indeed possible via the dynamic local field
correction Gðq;xÞ, that was computed in Sec. III C,88

F
d2Xxc

dnðrÞdnðr0Þ

�

�

�

�

n¼n0

" #

¼ �~vkGðk;xÞ: (70)

Equations (62)–(64), (69), and (70) represent a closed set of equations
which is exact in the weak perturbation case, i.e., jn1=n0j � 1 and can
be summarized in one generalized nonlocal momentum balance
equation,88

@�pðr; tÞ
@t

¼ �reu1ðr; tÞ � r
ð

dr0 n1ðr0; tÞ
ð

dk

ð2pÞ3
dx ei k�ðr�r0Þ�xt½ �

"

� � 1

P
0
RPAðk;xÞ

� ~vkGðk;xÞ
� �

��

�

�

�

n0

; ð71Þ

whereu1ðr; tÞ ¼ uðr; tÞ � u0ðrÞ. This is a remarkable result that con-
tains all relevant limiting cases and assures the highest accuracy possi-
ble via a link to the quantum kinetic theory and ab initio input from
QMC.

Let us discuss the limitations of the result (71). The main
assumption in the derivations above is the validity of linear response,
i.e., jn1=n0j � 1. If this is not satisfied, Eqs. (62)–(64), (69), and (70)
can still be used, but the accuracy will be largely defined by the form of

the functional X½n�, e.g., see, Refs. 247 and 248, and the results will be
not reliable. This concerns, in particular, applications to nonlinear
oscillations and waves in quantum plasmas. In this case, the linear
response result, PLR , has, in principle, to be replaced by solutions of a
nonlinear kinetic equation. Another case, that is beyond the scope of
Eq. (71), is very rapid external excitation. In this case, the distribution
function may be far from a Fermi function f eq, giving rise to a strongly
modified plasmon spectrum in quantum plasmas, e.g., Refs. 249 and
250, similar to the case of classical plasmas. The relevance of nonequi-
librium plasmas under warm dense matter conditions was studied,
e.g., by Gericke et al.79 For these situation, a nonequilbrium quantum
kinetic theory is required that yields the time-dependent density
response, �eqðq;x; tÞ221 and local field corrections, Geqðq;x; tÞ which
assumes an equilibrium form in which the distribution function is
replaced by a nonequilibrium function, f eq ! f ðtÞ. However, even
this approach may be inappropriate if the excitation is on the scale of
the plasma period or faster, t�2p=xpl . In that case, the formation of
the screening cloud and of the plasmon spectrum proceeds on the
timescale of the excitation, and a true nonequilibrium theory for the
density response functions is required, cf. Ref. 40 and the references
therein.

VI. CONCLUSIONS AND OUTLOOK

In this article, we have presented an overview on the recent simu-
lation results for warm dense matter. First, we have presented the ther-
modynamic results for the degenerate electron component,
considering the warm dense uniform electron gas, that are based on
ab initio quantumMonte Carlo simulations. The results include highly
accurate parametrizations of the exchange–correlation free energy and
results for the static local field correction G(q). Furthermore, we pre-
sented ab initio results for dynamic quantities, including the dynamic
local field correction Gðq;xÞ, the dynamic structure factor Sðq;xÞ,
and the dynamic density response vðq;xÞ. These results can be further
extended to other dynamic quantities that are of high relevance for
current warm dense matter experiments. Moreover, the static and
dynamic local field corrections are of key importance as the input for
other models and simulations methods, including quantum hydrody-
namics and density functional theory. DFT today is the only approach
that is eventually capable of covering the entire WDM range including
electron-ion plasmas as well as the condensed matter phase. These
simulations give access to time-dependent properties: in
Born–Oppenheimer MD, the electrons adiabatically follow the ions. In
contrast, in time-dependent DFT, a real (non-adiabatic) time-
dependence of electrons and ions is described.

However, DFT is notoriously inaccurate in treating ionization
energies, band gaps, and electronic correlation effects, in particular
under WDM conditions. Here, the ab initio input from QMC
can substantially improve the simulations. One such input is the
exchange–correlation free energy that has been used to improve the
local density approximation, cf. Sec. IIIA. While the finite-temperature
effect on the LDA equation of state turned out to be just on the order
of a few percent, this seems to bring the results significantly closer to
the QMC simulations of dense plasmas, cf. Sec. IV. Even more promis-
ing are the QMC data for the static and dynamic local field corrections
that provide a highly valuable input for improved exchange–correlation
kernels of TD-DFT and QHD, cf. Secs. IIIC and VH.
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At the same time, the present versions of DFT and TD-DFT are
not able to describe thermalization and electronic correlation effects,
such as Auger processes and double excitation. These processes
require a kinetic description in the frame of quantum kinetic theory or
nonequilibrium Green function (NEGF). As an example, we mention
the modeling of laser-plasma interaction, including inverse brems-
strahlung heating, harmonics generation, e.g., Refs. 82, 224, and 225,
and laser absorption during shock compression of matter.252

However, both NEGF and TD-DFT are extremely computationally
costly and, therefore, are currently limited to short length and time
scales. Larger length and time scales are accessible with simpler
approaches, such as DFT-MD (cf. Sec. IV) or the quantum Boltzmann
equation.40 A qualitative summary of the length and time scales that
can be described by the different methods is given in Fig. 15.
Therefore, we also include molecular dynamics with quantum poten-
tials (semiclassical MD) which is applicable when the electronic quan-
tum dynamics are not important (for additional simulation
approaches and references, see the Introduction). We also indicated
the possibility to extend these simulations to larger length scales by
means of parallelization, whereas longer time scales can only be
achieved, in some cases, by acceleration concepts, e.g., by combination
with analytical models; for a discussion, see Refs. 251, 253, and 254.

Thus, there is still a big gap between the length and time scales
that are accessible by microscopic simulations and the scales that are
relevant in experiments. Here, a reliable fluid theory for fermions that
is similarly advanced and successful as in classical plasmas such as the
QHD studied above, could serve as the missing link. As we have
pointed out, the orbital averaging involved in deriving the QHD equa-
tions prevents this model from resolving small length and time scales.
This means fast processes, in particular related to the thermalization of
the electron distribution, as well as small length scales on the order of
the Bohr radius or the Thomas-Fermi screening length cannot be
resolved. For these effects, more advanced methods such as DFT and
quantum kinetic theory have to be used (see below). At the same time,
the relative simplicity of the QHD equations allows one to extend

them to large length scales and propagate them to long times where
the aforementioned approaches cannot be applied. Thus, QHD could
be a very useful tool that is complementary to other methods. This sit-
uation is indicated qualitatively in Fig. 15.
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