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Ab Initio Studies of the Interactions in Van der Waals Molecules 

1 Introduction 

Van der Waals molecules are complexes of  molecules (or atoms) which are not held 

together by chemical bonding, as "normal"  molecules, but by weaker Van der Waals 

forces. One of the main reasons to study experimentally the structure and spectra of 

Van der Waals molecules 1~ is to extract (rather detailed) information about the 
Van der Waals interactions between the constituent molecules, information which can 

be used for a better understanding and description of the properties of  molecular 

gases, liquids and solids. For small molecules, up to about ten light atoms, even more 

detailed information about these Van der Waals interactions 1 can presently be obtain- 

ed from ab initio calculations, i.e. directly from the approximate solution of 

Schr6dinger's equation by variational or perturbational methods. The accuracy of 

the results is still a matter of concern, since the interactions are very small 

relative to the molecular total or (internal) binding energies and calculational 
errors which are larger than the Van der Waals binding energies are easily 

introduced. The collaboration between theory and experiment is here very useful: the 

experiment can serve as a check on the accuracy of the calculations. On the other 
hand, theoretical results can help in the interpretation of  the spectra. Thus, 

experiment and theory can both be improved and the combined experience for small 

molecules can lead to physically justified, empirically parametrized model potentials 

for molecules larger than those for which the ab initio calculations are feasible. 

Several books and review articles 2-1a~ are concerned with Van der Waals inter- 
actions. In the present survey, we shall first describe which are the interaction 

mechanisms that hold Van der Waals molecules together and we shall concentrate 

on the dependence of  these interactions on the orientations of  the constituent 

molecules (at longer and shorter distances, sect. 2). Then, we outline some ab initio 
methods enabling reasonably accurate quantitative calculations of  these interactions 

and we discuss possible sources of  errors (sect. 3), some of which can be serious. 

Next, in section 4, we look at some results of  ab initio calculations and their bearing 

on the structure and dynamics of Van der Waals molecules, after first dealing with 

some problems occurring in the representation of the ab initio results by analytical 

model potentials. The final section 5 describes the effect of  intermolecular interactions 

on some properties of  Van der Waals molecules other than the energy, and the 

quantitative calculation of these properties. Specifically, we discuss the interaction 
dipole moment and the interaction induced change in the polarizability, which are 
of  importance for the intensities in infrared absorption and (inelastic) light scattering 

(Raman spectra); these are connected with the inter- and intramolecular vibrations in 
Van der Waals molecules. 

We shall compare our (ab initio) results with experimental data, but we shall not 
deal in this paper with empirical or semiempirical determinations of  Van der Waals 
interactions, since these are extensively described in the other surveys 1-13). 

In many texts, the name Van der Waals interactions in reserved for the attractive tong range forces 
between (neutral) molecules and, often, one only includes the leading R -6 term in the inter- 
action energy; we use the name in a broader sense, meaning all the attractive and repulsive 
interactions between chemically non-bonding molecules (cf. sect. 2). 
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2 Mechanisms of Van der Waals Interactions; 

Distance and Orientationai Dependence 

The forces between the dosed shell molecules in their electronic ground states (which 
are the constituents of most Van der Waals molecules studied at present) are of 
Coulombic origin. By this we mean that they originate from the Coulomb operator, 

describing the interaction between the electrons and nuclei in the complex. Even for 

(light) open-shell molecules, such as NO or 02 , the interactions between the magnetic 
spin and orbital momenta are expected to be smaller by several orders of magnitude 
than the electrostatic forces 14). Relativistic (retardation) effects can be neglected for 
the distances of interest in Van der Waals molecules TM. Therefore, the system of 
interacting molecules can be described by the time-independent non-relativistic 
Schr6dinger equation. Practically always, when no electronic excitations or chemical 
reactions are considered, one can solve this Schr6dinger equation in the Born-Oppen- 
heimer approximation, i.e. one first obtains an effective potential for the nuclei by 
solving the equation for the electronic motion in the clamped nuclei approximation and 

then one calculates the nuclear (vibrational and rotational) states in this potential. 
Finally, in most work on intermolecular forces the rigid molecule approximation is 

made, i.e. it is assumed that the forces holding the nuclei together within one molecule 
are so much stronger than the intermolecular forces that the intramolecular and the 
intermolecular nuclear motions can be decoupled. Looking for example at ethylene 
(C2I-L) molecules (sect. 4), the frequencies of the internal vibrations range from 
3100 cm -1 (C--H stretch) to 810 cm -~ (out of plane bending), while we expect the 

C2H4--C2H 4 vibrations in a Van der Waals molecule to lie below 150 cm -1. 

2.1 Distance and orientationai dependence 

Consider two rigid molecules A and B, both of arbitrary shape. Let R = (R, 5)  

= (R, ®, ~) be the vector pointing from the center of mass of A to the center of mass 

of B. The coordinates of i~ are measured with respect to a space-fixed frame. Let the 
orientation of molecule A be described by the Euler angles --~A = (~A' [3A'YA)' which are 
the angles associated with an (active) rotation of the molecule from an initial position 
in which a reference frame fixed on A is parallel to the space-fixed frame, to its 
present position. Similarly, the orientation of B is determined by the Euler angles 

~B = (¢tB, ~B, 7B). The interaction energy between A and B is most generally 

described by the following expansion 15,16). 

AEAB (~A, ~B, R) = ~,, AEA(R) A^(~A , ~a, f~) (I a) 
A 

where A---(LA, KA, LB, KB, L) is the combination of "quantum numbers" 
applicable to the system A--B of interest, se table 1. The angular functions are 
defined as: 

AA(O)__ A, O)~ B, ~) ~--- ALA, KA, LB, KB, L(O)A, --O)B, ___~) 

(LA LB L )  DLAA, KA(O)A) , DMB, KB(~B)LB * C~(~). (lb) 
"~--'MA,,..n, M~_ M A M B  - -  
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Table 1. Angles and quantum numbers specifying the orientational dependence of the interaction 
energy AE m, formula (1) 

A B angular coordinates" volume of quantum numbers b 
(-mA, ~B, ~ )  angular A 

coordinate 
space a 
V 

general general aA, ~A, ~/A' %, I~S, ~B, O, O 256n 5 
molecule molecule 
l inea :  general %t, I~A, %, 13~, 2tB, O, ~ 128r: 
molecule molecule 
atom general %, I~n, ~/e, ®, ~ 321t3 

molecule 
linea# l inea:  cx^, 13A, %, ~B, O, • 64~ 3 
molecule molecule 
atom linear" %, I~B, O, * 16n 2 

molecule 
atom atom O, • 4n 

LA, KA, L~, K S, L 

L A, I m, K s, L(K A = 0) 

Ls, K s (L A = K A = 0, 
L = L e) 
L A, L B, L (K  A = K S = 0) 

L B (L A = K A = K s = 0; 
L = LB) 
- ( L A  = I%,  = L ~  = Ks 
= L = 0 )  

One can choose a special coordinate system such that, for instance, ® .= * = % = 0. So one 
needs a maximum of 5 (internal) angles in order to fix the (relative) orientations of the molecules 
in a dimer AB. This reduces the volume V by a factor of 8a 2 (or 4n in the atom--atom case) 

b From the behaviour of the angular functions (1 b) under inversion of the total system, it follows 
that the summation ( la)  over the quantum numbers A can be restricted to even values of 
(L^ + L B + L). If the molecules A or B have finite symmetry groups, A can be further restricted. 
For instance, if they have a center of inversion only terms with even L A or L e contribute. I fA  and B 
are identical molecules one can derive that: 

LA+LB 
AELB. KB, LA, KA, L = (--1) AELA, KA. LB, KB, L • 

Relevant information can be found also in refs) 5) and 37) 
For linear molecules the remaining Euler angles can be chosen such that they coincide with the 
polar angles: 0t A = ~A' 13A -= 0A; % ----- ~B' 13~ = 03 

LA 
T h e  f u n c t i o n s  {DMA, KA(_O)A), M A = - L  A . . . . .  L A, K A = - L  A . . . . .  LA} c o n s t i t u t e  a 

(2L s + 1 ) -d imens iona l  m a t r i x  DLA(o)__A) w h i c h  r e p r e s e n t s  the  r o t a t i o n  _o3 A o f  m o l e c u l e  

A.  T h e  set  o f  these  m a t r i c e s  f o r m s  a (2L A + 1 ) -d imens iona l  i r r educ ib l e  r e p r e s e n t a t i o n  

o f  the  r o t a t i o n  g r o u p  SO(3)  17). In  t he  ac t ive  r o t a t i o n  c o n v e n t i o n ,  w h i c h  we are  us ing ,  

the  r o t a t i o n  m a t r i c e s  a re  g iven  b y  17' ts): 

LA e-i~tAMA LA ' 
DMA ' KA(f.OA) = dMA, KA([~A ) e -I~'AKA (2) 

L A 
w h e r e  dMA" KA(~A) is a W i g n e r  d - f u n c t i o n  17~. T h e  r o t a t i o n  m a t r i c e s  o f  m o l e c u l e  B a re  

de f ined  ana logous ly .  T h e  s y m b o l  M A M a  s t a n d s  for  a 3-j coef f ic ien t  a n d  
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cL(~_) is a Racah spherical harmonic, in the phase of Condon and Shortley, which 

can also be written as a special (K = 0) rotation matrix~7): 

CE(_f~) = ( 4n ~1/2 YE(O, ¢b) = D E, o(~, O, 0). (3) 
\ 2 L  + l J  

This property (3) and the presence of the 3-j symbol in (1 b) makes the angular 

functions scalar, i.e. invariant under rotations of the total system (see Appendix). 

They span the complete space of scalar functions depending on ~A, -rob and _~ due to the 

completeness of  the rotation matrices in the Hilbert space L2[SO(3)] (Peter-Weyl 

theorem19)). The expansion, (1), is most convenient for molecular scattering calcula.- 

tions as well as for the solution of the nuclear motion problem in Van der Waals 

molecules (in terms of coupled translational and rotational vibrations of the rigid 
molecules), since it leads to a maximum separation of variables in the differential 

equations to be solved and it allows the power of angular momentum techniques to be 
employed. 

For linear molecules A and B, where the interaction energy does not depend 

on the Euler angles 7A and 7s, only terms with K A = K B = 0 contribute and one can 
use (3) to obtain a simplified expression for (1) 2°) (see also table 1): 

AEAB (0A, ~A, 0n, Ca, R) -- ~ AELA, Ln, L(R) ALA, 1-13, L(0A, CA' 0B' ~)B' O, O) (4a) 
L A, L B , L 

with angular functions: 

ALA LB' L(0A' ~A' 0B' t~B' O' ~) = '  MA,)'~" ( LA LB ~ ) M B ,  M MA Mn 

LA LB 
× CMA(0A, ~A) CMB(0B, ~B) CE(O, O). (4b) 

I f  one of the molecules, say A, is an atom in an S-state only the terms with 

L A = 0 (L = LB) remain in (1) or (4). The same holds if we want to average over all 
orientations of one molecule, or, equivalently, put one molecule in the "unperturbed" 

rotational J = 0 state. When averaging over the orientations of both molecules, of 

course, only the isotropic contribution AE AB - AEo, o, 0, 0, 0(R) remains. isot ropic -- 
In practical calculations of  the intermolecular interaction potential one often chooses 

a special coordinate system with the z-axis parallel to P, and such that ~B = 0, which 
simplifies the angular functions (1 b) and (4b), while still retaining all the dynamical 
coefficients AEA(R ). This simplification is easily introduced remembering thatlT): 

CE(0, 0) = 6M, o (Kronecker delta), independently of L. (5) 

2.2 Model potentials 

The dynamical coefficients AEA(R), which are functions of the intermolecular distance 
only, fully determine the orientational dependence of the interaction potential. I f  one 
wishes to derive these functions from experimental data one has to replace them by 
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relatively simple parametrized analytical or numerical forms. The simplest and most 
popular ones are: 

a Lennard-Jones 
n - -  6 potential, 

mostly with n = t2: AEA(R) = AAR-" - -  BAR -6 (6) 

a Buckingham 

exp - -6(- -8)  potential: AE^(R) = A A exp (--BAR) - -  CAR -6 - -  DA R - a  (7) 

but many other forms have been used, see the review by Pauly 21). 

In spite of  the simple form of these distance functions and the usual assumption 
that the angular expansion can be truncated after very few terms (for instance, only 

the isotropic and the first anisotropic LA, L a =1 = 0 terms), the number of parameters 
is mostly too large and these parameters are too strongly interdependent in affecting 

the measured properties, for a fully experimental determination of these parameters to 
be possible. Only for very simple systems such as atom-diatom systems 22-27) or 

atom-tetrahedral molecule systems a~) the experimental data could be used to yield a 

parametrized anisotropic potential o f  the form (1) and even there it appeared 
advantageous to extract part of the parameters 29'3m from ab initio calculations. 
For  other molecular systems only isotropic potentials 2 are known TM, mostly in simpli- 

fied forms such as (6) or (7). 

Therefore, if one needs an anisotropic potential one often includes only specific 
anisotropic contributions, e.g. the molecular quadrupole-quadrupole interaction 32~, 

making the ad hoc assumption that all other anisotropic terms are small, or one 

invokes model potentials with fewer parameters which are intrinsically anisotropic. 
Examples of  the latter are: 

- - t h e  atom-atom potential, which assumes additive pair-wise isotropic inter- 
actions between the atoms p and q belonging to the different molecules 

(rpq are the atom-atom distances): 

t A  eB 

AEAa = 2 ~ AE(rpq) (8) 
P q 

with AE(rpq) being, for instance, a Lennard-Jones potential (6) or a Buckingham 

potential (7) (with A = 0). 
- -  elliptical scatings of  isotropic molecule-molecule potentials 3a-36), for instance, 

a Buckingham exp - -  6 potential (7) for A = 0 with the parameters A o and 

C O being simple function of  the angles ~A and _o~. (9) 
The specific approximations which tie at the basis of these model potentials 

have to be justified, however, and they are not necessarily physically realistic. 
Actually, the truncated angular expansion of the potential (1), with parametrized 

functions AEA(R) is a model potential also, which has to be verified. 
Model potentials of the form (8) and (9) implicitly contain all the higher angular 

terms in (1) (with L A, 1_~ up to infinity). Since the angular functions form an 

2 For atomic systems this is of course all one needs. Especially in the case of rare gases the 
(isotropic) potentials are known quite accurately TM. 
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orthogonal set, one can explicitly calculate the dynamic coefficients AE A for any 
known potential AE AB by integrating over all angular coordinates: 

AEA(R) = V-I(2LA + 1) (2L a + 1) (2L + 1) (AA(_O.)A, --(Z)B, --~) I AEAB(~A, --O3B, R)) 

(10) 

with A A being the angular expansion functions (lb) and V the total volume 
of the angular coordinate space, see table 1. In general, this integration must be 
carried out numerically; for specific model potential AE AB analytical expressions 
have been derived 36-38~, using angular momentum techniques. 

2.3 Contributions to the Interaction Energy 

Although the intermolecular forces which we consider here are all of electrostatic 
origin (in the broad sense used in the first paragraph of this section), we can 

distinguish different mechanisms which contribute to the interaction energy, and to 
other properties of Van der Waals molecules as well (see sect. 5). Let us denote 
the ground state electronic wave functions of the isolated (closed shell) molecules 
A and B by [0 A) and l0 B) and the corresponding "unperturbed" electron density 
distributions by 0 A and Qg. The excited eigenfunctions of the molecular hamil- 
tonians H A and H B we denote by I aA) and I bB) with corresponding eigenvalues 
EAa and EbB. For the interacting system we write the perturbation operator V AB as: 

V AB = H - H A - H B 

~A ~B ZiZj 
= Z Z , (11) 

i j ri j  

the electrostatic interaction between all particles, electrons and nuclei, with charges 
Z i and Z~, belonging to A and B respectively. 

2.3.1 Electrostatic; Long Range Multipole Interactions, Penetration Effects 

The first order, electrostatic, interaction energy is defined as: 

(1) (0AOB[ vAB A AB B AEelec. = [ 0AOB) = SSQo V Oo d~ A d~ B (12) 

which corresponds with the classical Coulomb interaction energy between the 
unperturbed molecular charge clouds. If these charge clouds do not overlap 
we can make a multipole expansion of this Coulomb energy or, equivalently, 
of the interaction operator V AB 39 --41). 

vAB= ~, (__t)'AF(ZlA+21B+I)!] ',2 1 
,A.,.oo J R-'A-'"- 

IA IB IA+IB 
( IA IB IA q- IB'~/ CImA+IB(f~) QmA(rA)QmB(rB)" (13) × Z Y. Z " ' ^ "  " " "  

mA=-I  A mB=-I  B m=-IA-1B m A  m B m 
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The multipole operators are here defined as spherical tensors tT) 3. 

CA 
Q 2 A ( f A )  = ~ Z "IA/"~IA / ~  __itiA~.,mA (0iA. , ~ iA)  , (14)  

and analogously for B, in local coordinate systems of the molecules A and B 
respectively, which are paral!el to the global space fixed coordinate system. 
Multipole moments are defined (and calculated) in a molecular (body fixed) 
frame, however, and therefore it is convenient to convert the multipole operators 
to this frame also. The frames of the molecules A and B are rotated by the angles ~A 

and _o B with respect to the space fixed frame and we can use the following pro- 
perty of the spherical multipole tensors (and the unitarity of the rotation ma- 
trices) t7) 

-,A n 1~, r~'~, ~co-'~ 
Q m A  = ~"~mAJ'-"mA,mA ~'-A / 

mA 

~. ~ ("~ IA 1~ IA ,, [,-.x "~* 
",< m~ L,'mA, mA~WA) (15)  

m A 

where QlmA are the multipole operators defined in the molecular frame of A and 

the t )~  A are the ones appearing in the expansion (13). The moments on B trans- 
form analogously. Substituting this relation into the multipole expansion (13) 
and this expansion into (12), the expression for a~,~,c.'=(1) immediately fits into the 
general expansion formula, (1). The dynamic coefficients in (1) obtain the closed 

form: 

A•:(1) L~muit. 
L A , K A, L B, K B, L 

( 1)LA [(2L A + 2LB+ 1) !11 /2  

X "~ D - L A - L B - I / n A I N L A I  A 0 B LB 0 B 
'aLA+LB, L "  \ ~  t.<KAI 0 > < [QKB I > ,  

(16) 

which represents the interaction between the K A component of a permanent 
multipole moment (2LA-pole) on A and the K B component of a permanent 2LB-pole 

• - L A - L B - I  . . 
on B, varying as R with distance. 

For real molecules A and B the charge clouds have exponential tails so that 
there is always some overlap and the expansion (16) is an asymptotic series 43'44). 

(1) Still, for the long range the multipole approximation to AEelec ' can be quite 
accurate, if properly truncated (for instance, after the smallest term). For shorter 
distances, the penetration between the molecular charge clouds becomes significant, 
the screening of the nuclei by the electrons becomes incomplete even for neutral 
molecules, and the power law for AEet~c .~t) is modified by contributions which 
increase exponentially with decreasing R. These penetration contributions we 
define as: 

(1) (1) - -  AE2)ult. (17) AEpen.  = AE¢I . . . .  

3 F o r  re la t ions  wi th  Car tes ian  tensors ,  see ref. 42). 
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~1~ calculated according to (12) using with the "exact" electrostatic energy AEeiec" 
the exact interaction operator (11), and (1~ AE~, .  obtained by summing an appropriate 
number of multipole interaction terms (16). A simple illustration of the occurrence 
of these penetration interactions is given by the example of two rare gas atoms, 

-~1)  is not, if the where ~mult.A~O) is exactly equal to zero (term by term), while zar%~,c. 
charge clouds penetrate each other. 

2.3.2 Induction, Dispersion; Multipole Interactions, Penetration Effects 

The second order interaction energy, according to Rayleigh-Schr6dinger pertur- 
bation theory is given by: 

KoAo n IvAn[ aAbn)12 
AEC2) = ~ (18) 

a,b,O.O E o  A + Eo  B - Ea A _ EbB 

Higher order terms can be defined as well, but what little experience is available 
has taught us that they are generally smaller by at least an order of magnitude. 
Still, they can be important if we look at specific effects such as the non-pairwise 
additive components to the interaction energy in Van der Waals trimers or 
multimers (cf. the last part of this section). In the second order summation over 
excited states (18) we can separate three different contributions: 

AE (2) = ~ ..- 
a, b ~: 0 , 0  

= E ... + Y. - . .  + Y . " "  
a = 0  a * 0  a=l:0 
b- '#0  b = O  b * 0  

= A 1 2 ( 2 )  . A I 3 ( 2 )  A l ~ { 2 )  
~ i n d .  B "~- ~ i n d .  A "~- t ' a L ' d i s p .  " (19) 

It is easy to see that the first term corresponds with the classical polarization 
(or induction) energy of molecule B in the electric field of the electronic charge 
distribution Q0 A plus the nuclei of A, the second term with the induction energy 
of molecule A in the field OfQo a plus the nuclei of B, while the third term, the dispersion 
energy, has no classical equivalent. 

For the long range we may again substitute the muttipole expansion (13) for 
V ̂ B and the rotation relation of the multipole operators (15), but, in contrast with 
the first order multipole interaction energy, the resulting expression does not 
immediately correspond with the general formula, (1). After recoupling the spherical 
tensors .1), the simple orientational dependence of (1) is recovered, however, and 
we find the following expressions for the dynamic coefficients*5): 

At, (2)  
IZ ' ind.  A ,  m u t t ,  

L A,  K A , L B, K B, L 

..... LA, LB, L -IA-IX-mn-lh-2 

~, - 1/2 C.IA" iX. 1B, l h R  
r 

I A ,  I~ ,  I n , I B 

B I~ B L B 
x ~t(tA. tX)LA, KA[(0~IQ_IBIoB > ® <0 IQ_ t0 >]K., (20) 

10 
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f o r  AEind. B a n d :  a n  a n a l o g o u s  e x p r e s s i o n  (2) 

LA, L L t t A Ehq;p'~' . . . .  It. = ~2.., - -  ?" , B , ,  D - I A - I A - I B - I B -  2 
"~1 A, 1 A, 1 B, IB x~ 

L A, K A, L B, K B, L I A, 1 A, IB, 1 B 

x ..oE Eo + E0 ) - '  

× [ ( 0  A IQ'AI a A) ® (a  A IQ'kl 0^>I~ 

× [<o B IQ_'Bt bB> ® <b B IQ'hl 0B>]L~ (21) 

The irreducible (spherical) mult ipole polarizabilities are defined as ,i.,,2). 

- ® < a  IQ_ l0 >]KA" (22) ~(IA, I;)LA, KA~--- 2 2 (E2 EOA) - '  [<0AIQ'AIaA> A 1 x A LA 

a * O  

The symbol  [ .®.] s tands for an  irreducible tensor  p roduc t  46) between two sets 

o f  tensors _T 1 = {T~; m = --1 . . . . .  1} and _T r = {Tr , ;  m '  = --1' ,  . . . .  l '}: 

[TI~)Tv] L = E ZmXm,T' Tv (l, m, l ' ,  m ' l L ,  M) (23) 
m, m p 

with (1, m,  1', m '  I L, M)  being a C lebsch-Gordan  coefficient. The purely algebraic 

coefficient ~ occurr ing  in (20) and  (21) is lengthy but  s t ra ightforward to calculate:  

I 1 ,'2 y L  A, L B , L 
, ¢ = (--1) IA+I~ (21A + 21B + 1)! (21A + 21~ + 1) t 

IA, IA, IB, I~ (21A) ! (21~) ! (21S)! (21~) ! 

X (2L A + 1) 1/2 (2L B + 1) 1/2 (2L + 1) t/2 (l A + ]B, 0, l A + IB, 0 [L ,  0) 

IA IA 

x 1B 1~ , (24) 

A+IB l k + l ~  

the expression between curly brackets being a Wigner  9-j symboP  7). F o r  linear 

molecules all tensor  componen t s  in (20), (21) and  (22) with K A ~ 0 and  K B 4= 0 

are zero and,  moreover ,  the pe rmanen t  momen t s  in (20) vanish for m B, m~ 4= 0 

(in a b o d y  fixed frame with the z-axis a long the molecular  axis). The  resulting 

formulas,  which have been presented in ref. 2°), are simpler*. 

4 The expressions (16), (20) and (21) are easily related to the more standard form of the muitipole 
expansion: 

AI~(I,  2) ~" C~nl. 2) R - n  
t..mulL 

n 

which becomes, for anisotropic interactions: 

(t,2) AEmult.(~^, ~e' R) = ~ C~ 1' 2)(~^, ~e, ~-~ R-" 
n 

by collecting all terms in the series (1) with L A + L B + 1 = n in first order, (16), and all terms 
with 1A + 1~ + 1B + 1~ + 2 = n in second order, (20) and (21). In the second order one can 
restrict the summations to (1A + i~, + LA) even and (1 s + 1~ + L B) even. 
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Again, for the short range, the second order energy contributions, (18), (19), 
calculated with the exact operator V AB (I1) start to deviate from the R power 
series expansions, (20) and (21), and we can define the penetration effects: 

A•:(2) . . (2)  A~(2) (25) 
t - q n d ,  pen,  ~ /Al2"ind.  - -  ~ a ' ~ i n d .  m u l t .  

d i s p .  p e n .  d i s p .  disp.  mult.  

which increase exponentially with decreasing R. 

2.3.3 Exchange 

Another effect, one which becomes dominant for the intermolecular forces at 
shorter distances, is the exchange effect, related to the required antisymmetry of the 
(exact) many-electron space-spin wave function under electron permutations (Pauli 
postulate, Fermi-Dirac statistics). In Rayleigh-Schr6dinger perturbation theory, 

which works with product functions, la A) IbB), that are only antisymmetric with 
respect to the electron permutations within the subsystems A and B, this effect 
is not explicitly taken into account. Still, the total perturbation series, if it con- 
verges, will sum up to the exact wave function and the corresponding exact energy 
including exchange effects. Although it has been shown on simple model systems that 
this actually holds in practice 47), convergence to the correct permutation symmetry 

is reached only in very high orders of perturbation theory. Moreover, there is the 
problem that the "exact" wave function of the system to which the Rayleigh- 
Schr6dinger series starting with l0 A) 10 B) converges, cannot obey the Pauli prin- 
ciple due to an incorrect symmetry in the spatial electron coordinatesaa'4s); so, 
it does not correspond to a physical state of the system (in case of more than two 
electrons). 

Therefore, one would like to modify (symmetry adapt) the normal Rayleigh- 
Schr6dinger perturbation theory such that the exchange effects are explicitly 
included in the lower order interaction energy expressions. This symmetry adap- 
tation can be achieved by means of a projection operator, the antisymmetrizer A, 
that, operating on any N-electron space-spin function (N = N A +  NB), makes 
this function antisymmetric under electron permutations. Furthermore, one must 
adapt the wave functions to the total spin operator. Using the relation between 
the electron spin functions, carrying representations of the group SU(2), and the 
irreducible representations of the permutation group SN, projectors A s can be 
defined 49) that yield directly eigenfunctions of the total spin operator S 2 or their 
spin-flee equivalents s°'sl). Moreover, if the total interacting system AB contains 
spatial symmetry operations under which the products 1a A) [b B) are not invariant, 
A s can be combined with operators that project the desired spatial symmetry 
as well. 

It is not possible, however, to simply project the product functions la A) Ib B) 
with AS and then to use these functions in Rayleigh-Schr6dinger perturbation 
theory, for two reasons. First, the projected functions A s la A) Ib B) are not eigen- 

functions of the unperturbed hamiltonian H o = H A + H B since H o, which cor- 
responds to a certain assignment of electrons to each subsystem A or B, does not 

12 



Ab Initio Studies of the Interactions in Van der Waals Molecules 

commute with A s. The total hamiltonian of the interacting system H = H o + V AB 

does commute with A s , however, leading to the relation: 

[A s, Ho] = [V A", As] * 0 .  (26) 

This relation shows how the action of the antisymmetrizer can mix different orders 

in perturbation theory. Secondly, the projected functions AS]0 A) t0 B) do not 
form an orthogonal set in the antisymmetric subspace of the Hilbert space 
L2(R3N); if we take all excited states fa A) and Ib B) in order to obtain a complete 
set la A) Ibm), the projections As la ̂ )  [b B) form a linearly dependent set. Expanding 

a given (antisymmetric) function in this overcomplete set is always possible, but the 

expansion coefficients are not uniquely defined. How the different symmetry 

adapted perturbation theories that have been formulated since the original treat- 
ment by Eisenschitz and London in 193052), actually deal with these two problems 
can be read in the following reviews: s3-56). Usually, the first order interaction 

energy, including exchange effects, is defined by: 

AE (1) = (0AoB[ AS vAB IoA0 B) 

<OAOBI As IoAoB, ) (27) 

which, for two hydrogen atoms, corresponds with the Heitler-London interaction 

energy. The second and higher order energies (and the first and higher order wave 

functions) have different definitions in the different formalisms, however, which 
is related to the non-uniqueness problems mentioned above (non-uniqueness in 

the orders of  perturbation and in the expansion coefficients of the perturbed wave 
functions). 5 To our opinion, preference to one or the other formalism should only 

be given on practical grounds: which perturbation expansion converges fastest, 

i.e. includes as much as possible the exchange contributions in the lower orders 
already; which expressions are easiest to evaluate. Theoretical and numerical 
comparisons can be found in the literature 54-ss). Actually, none of the second 

order exchange energies has been quantitatively calculated up to now for systems 
larger than two beryllium atoms s9). The first order exchange energy can be 

defined as follows: 

Jz ..... AE (1) (28) ~___ - -  /~.E~elec" 

with AE (1) and LX~E,elee ' • r~(l) given by (27) and (12), respectively. 

2.4 Interactions from Supermolecule Calculations 

Because of the formal and practical problems with symmetry adapted perturbation 

theory, one mostly invokes variational methods applied to the total energy of  the 

s Physically, one can think of rather specific second order effects caused by the exchange "forces". 
For instance, the Pauli exchange repulsion between two closed shell systems leads to an outward 
polarization of the electron clouds which lowers this exchange repulsion. This energy lowering, 
which may be called exchange-induction energy, has indeed been found in variational calculations. 
The mathematical expression for this effect is not unique, however. 

13 
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interacting system AB, thus performing so-called supermolecule calculations. The 
methods are usually the standard (ab initio) methods used also for calculating 
energies and wave functions of normal molecules 6°), for instance the Hartree-Fock 
(SCF)--LCAO method possibly extended with Configuration Interaction (CI), 
Multi-Configuration (MC) SCF or Many-Body Perturbation'Theory (MBPT). 
Since these methods work with fully antisymmetrized wave functions, all exchange 
effects are taken into account, but due to the fact that the total hamiltonian 
commutes with the antisymmetrizer A s we avoid all the theoretical problems 

plaguing perturbation theory. The interaction energy is obtained by subtracting 

the subsystem energies: 

A E A B  = E A a  - -  E A  - -  E B (29) 

and the first order interaction energy is usually defined as: 

A~I~ = (AS0AOBt H }AS0A0 B) __ EA __  Ea (30) 

<AS0A0 B i AS0AOB> 

with E A = <0AI H A t0 A I>, EB = <0Bt H a 10a>- 

It is easily demonstrated, using the commutation relation (26) and the idempotency 
of the (hermitean) projector A s, that this definition of AE tl~ is identical to the 
perturbational definition (27) of AE ¢~ if the separate molecule wave functions 
I0 A) and 10B> are exact eigenfunctions of H A and H a. For approximate molecular 

wave functions occurring in practical calculations, AE tx~ and A~ ~ are different, 
although for some approximations e.g. wave functions near the Hartree-Fock limit 
the deviations may be very small 61~. Also higher order interaction energies can be 
defined in a variational supermolecule treatment by making a perturbation expansion 
of the secular problem 62}. If the supermolecule wave function is expanded in 
terms of antisymmetrized products AS laA> tbS>, as in the multistructure Valence 
Bond method 6a), the second (and higher) order energies become identical, for the 
long range, to the perturbational contributions (20), (21). 

Such a correspondence cannot be found, if we use, for instance, the SCF--LCAO 
method with molecular orbitals delocalized over the entire supermolecule. Only 
indirect partitionings of the interaction energy are possible then, on the basis of 
different calculations with and without allowing delocalization and by component 
analyses of the wave function 64~ (e.g. looking at the admixture of excited and/or 
ionic states to the "starting function" A s 10A> 10a>). One must be cautious with 
such partitionings since they are basis set dependent. So, for instance, what has 
been called the charge transfer stabilization energy, or the charge resonance energy 
in case of identical subsystems A and B, is a second order overlap effect which can 
very well be interpreted 6s) as the effect of charge penetration on the induction and 
dispersion interactions. Moreover, if the basis sets used in supermolecule calcu- 
lations are too small, one finds contributions to the interaction energy which 
are artifacts of the calculation. An effect which is well known by now is the basis 
set superposition error 66), i.e. the energy lowering of each subsystem in a limited 

basis due to the admixture of basis functions centered on other subsystems. This 
is a purely mathematical effect, which automatically occurs in any variational 
supermolecule calculation where one allows electron delocalization. In some cal- 
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culations a large part of the "charge transfer stabilization energy" should probably 
be ascribed to this artifact. 

Another important (theoretical) point to note in supermolecule calculations is 
that the independent particle (SCF) model applied to the supermolecule AB 
includes all first order and the second order induction contributions to the inter- 
action energy, correctly accounting for exchange, but not the second order dispersion 
contribution. The latter can be considered as an intermolecular electron correlation 
effect. In principle it can be obtained from supermolecule CI (or MCSCF, or MBPT) 
calculations, but in practice one must be very cautious again. Especially when using 
delocalized wave functions, the intermolecular correlation energy may easily get lost 
in the intramolecular correlation energy, which is typically hundred times larger. 
The basis set superposition error which occurs on the CI level 67'6a) as well as on 
the SCF level 63'66) and which gives a distance dependent energy lowering, must be 
separated from the physical interaction contributions. Practical consequences of 
these problems will be discussed in the next section. 

2.5 Additivjty 

The question how well the different contributions to the interaction energy in a 
composite system are additive can be asked on three different levels. First one may 
ask this question with respect to the different components (electrostatic, induction, 
dispersion, exchange) of the intermolecular (A--B) potential. If  they were all 
calculated by standard (Rayleigh-Schr6dinger) perturbation theory using the same 
interaction operator V AB they would be exactly additive. Usually the "long range" 
contributions (electrostatic, induction, dispersion) are obtained from Rayleigh- 
Schr6dinger perturbation theory, (mostly with the multipole expansion for vAB), 
but the exchange effects are neglected then. In symmetry adapted perturbation 
theory the latter appear as modifications of the electrostatic, induction and 
dispersion energies; they can be additivety separated by using definitions such as 
(28) for the first order exchange energy. In practice, the exchange contributions are 
mostly obtained from supermolecule calculations, together with electrostatic and 
induction energies in supermolecule SCF, or together with the electrostatic energy 
in AE (1~ (30). Then one can ask whether it is allowed to add dispersion (and in- 
duction) energies, calculated by second order perturbation theory. In other words, 
how large are the exchange-dispersion and exchange-induction energies? Are these 
not partially included in the supermolecule treatment already? And, if one uses 
the multipole expansion for the second order energies, how important is the 
additional neglect of the second order penetration energy (25)? The few data 
available for very small systems such as  He254'69' 70~ a n d  Be259J indicate that these 
second order exchange and penetration energies, in contrast with their first order 
counterparts (see section 3), are not very important (less than about 10% of the 
total second order energy) at the Van der Waals minimum. 

The second additivity problem concerns the question whether the interaction 
potential in Van der Waals trimers or multimers (or molecular solids or liquids) 
is a sum of pairwise intermolecular (A--B) potentials. This question can be con- 
sidered for each component of the interaction energy. The (first order) electro- 
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static energy is exactly pairwise additive• The dispersion energy has a three-body 
component which appears in third order of perturbation theory (the Axilrod-Teller 
triple-dipole interaction 5), but which is only a few percent of the pair energy for 
distances of interest. The induction energy is not at all pairwise additive; the 
electric fields _F A and _F B originating from molecules A and B can be added, but 
the second order polarization energy of a third molecule C contains mixed (three 
body) terms of the type --1/2FA~F B which can be of equal size as the quadratic 
terms. In many Van der Waals molecules the total induction energy is small, 
however, compared with the dispersion energy. The (relative) error introduced in 
the pairwise addition of exchange energies is of the order of the intermolecular 
overlap integrals; calculations on He 3, Ne 3 and Ar371) show that it is small at the 
Van der Waals minimum. This intermolecular additivity problem is more ex- 
tensively discussed by Margenau and Kestner 5), by Murrell s) and by Claverie TM. 

The third additivity question which is sometimes asked, regards the possibility 

of representing an intermolecular interaction potential as a sum of (isotropic) 
atom-atom potentials (8) (or bond-bond potentials). Not much is known about 

this question, since most of the atom-atom potentials used in practice are purely 
empirical. We consider this question in section 4 for C2H4--C2H4 and N2--N 2 
interactions on the basis of our information from ab initio calculations. Especially 
the exchange interaction can deviate from pairwise (atom-atom) additivity, which 
is not surprising as the intramolecular overlap integrals are considerable (of the 
order of 0.5, while the intermolecular overlap integrals are typically 0.01 at the Van 

der Waals minimum. 

3 Quantitative Ab Initio Calculations 

In this section we discuss the most important problems occurring when one wants 
to make quantitative calculations of the different interaction energy components• 
These components have been defined in the previous section for two molecules, 
denoted by A and B. We shall outline some practical methods for the calculation 
of pair interaction energies• 

3.1 Methods 

3.1.1 Molecular Wave Functions and Properties 

The first requirement in both perturbational and variational calculations of the 
interaction energy, is the knowledge of the "unperturbed" molecular ground 
state energies, F_~ and Eo a, and the respective wave functions, I 0A) and [013). For 
many-electron systems A and B these are necessarily approximate. If the approximate 
wave functions 10 A) and l0 B) are to be used in calculating reasonably accurate first 
order interaction energies according to the expressions (12), (16), (27) or (30) they 

• I A must be of sufficient quality to yield good multlpole moments, (0AI Qm~, I 0A) and 
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(0BI Q~. 10B); and, especially for the short range contributions, (17) and (28), the 
molecular charge distributions must be accurate in the intermolecular overlap 
region. For most (closed shell) systems reasonable accuracy (up to 10 or 2 0 ~  
error) in the interaction energies can be obtained with ab initio Hartree-Fock 
MO-LCAO or Roothaan wave functions TM (single configuration functions, for 
closed shells single Slater determinants), provided one chooses good bases of 
atomic orbitals (AO's). These bases must be flexible especially in the outer regions 
of the molecules which determine the intermolecular overlap and which are 
weighted rather heavily in the multipole moments, particularly the higher ones. 
The same, or maybe an even more pronounced, sensitivity for the outer regions is 
exhibited also by the second order properties. Rules for selecting such bases are 
given in refs. 69'74-76). The calculation of the required molecular electronic and 

nuclear interaction integrals and the solution of the Hartree-Fock LCAO equations 
can be performed routinely by any of the standard molecular SCF programs 6°), 
usually based on Gaussian type AO's. The calculation of molecular wave functions 
and properties beyond the Hartree-Fock level (CI, MCSCF 6°), MBPT 77)) is not 

a routine job yet, and the application of such wave functions to the evaluation of 
intermolecular interaction energies is even more difficult. The calculation of the 
molecular multipole moments can be carried out with the properties packages 
that go with some of the molecular wave function programs, up to octupole (1 = 3) 
or hexadecapole (1 = 4) moments, or with special programs for higher 1 values 7s). 
The lower multipole moments are sometimes available from experiment also. 

3.1.2 Isotropic Long Range Interactions (Second Order) 

In first order the isotropic long range interactions vanish, except when the molecules 
have charges (monopoles, 1 = 0). The next problem in a perturbation calculation 
of the interaction energy without intermolecular exchange is that in the second 
order energy, (18) or (21), and in the polarizability, (22), occurring in (20), one 
has to perform an infinite summation over the complete set of excited states 
I aA) IbB). The majority of the work 6) on the estimation of this second order sum 
over excited states has been done in the multipole expansions, (20), (21), (22), where 

• • • (2) the matrix elements occurring m the numerator of AE , (18), separate into 
A 1A A B IB B 

products• of monomer transition moments: (0 I QmA la ) and (0 I Qm~ Ib ). We 
summarize and illustrate the available ab initio mefhods for calculating the iso- 
tropic dispersion energy coefficients (and polarizabilities). These coefficients can 

be obtained from (21) by substituting L A = K A = L a = K B = L = 0 (cf. sect. 2): 

At:(2) Z~disp., muir. E (~ R - 2 1 A - 2 1 B -  2 
~_. - -  ~ 2 1 A +  21B+ 2 -~  

isotropie IA'IB isotropie 

(31a) 

and the multipole expansion coefficients are given by: 

1 (21A + 21B) v 
C2,A+2t.+2-- " E E ( EA-  EA +EbB-Eoa) -1 

isotropic 4 (21A) ! (21B) I • a*O b:kO 

A A- × ( E  a _ Eo ) 1 (EbB I~B'~-I  f 0 A a A f O B b  B 
- -  ~ 0 1  ~1A "1B ' 

(31b) 
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Note that the mixed-pole terms (1~ # 1 A o r  1~ 4= IB) have disappeared. The ~"  are the 

rotationally averaged 2~-pole oscillator strenghts: 

1 

fl°"= 2(21 + 1) -1 ~ ( E . -  Eo)l(O[Q~[n)[ 2. (32) 
m =  - 1  

Let us introduce the moments of ' the oscillator strength distribution 79-8~). These 

are defined as: 

S~(k) = ~, ( E , -  Eo) k f 0 ,  (33) 
t a :~O 

The isotropic (L A = K a -- 0) fA-pole polarizability of molecule A (cf, (22)) can 

be written as such a moment: 

~lA = S~A(--2). (34) 
isotropic 

The simplest (Uns61d) approximation s2~ to the summations occurring in the 

expressions, (31), (33) and (34), is made by assuming that the excitation energies 
(Ea A --  E A) and (Eb B --  E B) can be replaced by constant average excitation energies 
A a and AS. In this manner, one obtains for the (Uns61d) polarizability (34): 

~A = S~(--2) = (AA3 -1 S,A(--1 ) (35) 
isotropic 

and one can avoid the summation over excited states In) by using the closure 
relation (sum rule): 

Sl(--1 ) 2(21 + 1) -1 ~ l' t = [(0 [QmQml 0) - t(0 [Qkl 0)[2] , (36) 
m 

The multipole coefficients in the dispersion energy (31) can now be written as: 

1 (21A + 21B)! AAA B 
CZlA+21B - -  4 (21A)! (218)! A A q- A B 0t~A aUlB (37) 

i s o t r o p i c  isot  rt  i so t r .  

which, for 1A = 1B -- 1, is just London's wall-known approximate expression for 
C683). Often, one assumes that the average excitation energies A can be replaced 
by empirical quantities, for instance the first molecular ionization energies. It is 
this latter assumption which has given the Unsrld approximation a rather bad 
reputation, since the results can be wrong by a factor of 2 (except for two 
hydrogen atoms where the error is less than 10 ?/o). 

It is also possible to make ab initio calculations of the A's, however, and at 
the same time to improve the Uns61d scheme by assuming that the A's are 
dependent on the indices 1, labelling the multipole operators (2-poles) associated 
with the excitations. Such a non-empirical Uns61d scheme has been proposed by 
Mulder et al. 75'84"s5). The average excitation energy is defined as the ratio: 

A, = S,(--1)/S,(--2) (38) 

and the moments S~(k) are calculated for each molecule by considering all 2~-pole 
excitations in a finite basis set. The A~'s are then substituted into (35) and (37) and the 
moments S~(--I) are computed from the sum rule expression (36), which holds 

18 



Ab Initio Studies of the Interactions in Van der Waals Molecules 

exactly for exact wave functions. An advantage of this approach is that the ratio 

(38) appears to be rather insensitive to the quality of  the basis set; the use of the 

sum rule (36) effectively corrects for the incompleteness of the basis. 

Similar to this non-empirical Uns61d method is the generalized Kirkwood 
method s6-s9) in its one-parameter version. Here A~ is defined as: 

A 1 = SI(0)/SI(-- 1) (39) 

but the use of  spectral representations (stuns over excited states) is completely 

avoided by replacing both moments Sl(0 ) and Sl(--1) by their sum rule expressions, 

(36) for Sl(--1). For example, in the dipole case we have the Thomas-Reiche-Kuhn 
sumrule 8°) for $1(0 ) : 

$1(0 ) = N (number of  electrons in the molecule) (40) 

Using the Hylleraas variation principle 8°'9°) with the (Kirkwood 91)) single para- 

meter trial function ~.Q1 m 10) or with multi-parameter functions, it has been 

proved86.89) that this method yields rigorous lower bounds to the dispersion multi- 

pole coefficients (31 b) calculated from the (frequency dependent) polarizabilities 
via the Casimir-Polder formula 6'92). This work, especially its recent extensions 

to larger sets of moments Sl(k) yielding both upper and lower bounds to the 

dispersion coefficients 88), can be considered as an extension of the (semiempirical) 
methods by Langhoff, Gordon and Karplus 93), Pack et al. 94) and Meath et al. 9s). 

These authors have estimated dispersion energy coefficients from experimental 
oscillator strength distributions 9s) and optical refractivity data 93'94). This has 

yielded quite accurate results, but the experimental data required are only 
available for the dipole transitions, and so the application to higher moments 
must be based on ab initio calculations (cf. ref. 96) for rare gas dispersion inter- 
action coefficients). 

The most direct way to approximate the infinite summations occurring in (31), 

(33) and (34), is to replace them by finite summations over "effective excited states" 
69, 97, 98). In other words, the exact oscillator strength distributions of the molecules 

consisting of some delta functions for the discrete levels and a continuum for the 
ionized states, is replaced by a finite set of  delta functions. 6 The completeness of these 

"effective excited states" can be tested by checking the sum rules for the moments 

Sl(k ) (33) and the Hylleraas variation principle can be invoked again to optimize 

the effective excited state wave functions (using a trial function which is a finite 
linear combination of such functions). Just as is the case for the ground state wave 

functions 10) one can in principle represent these excited states In) at different 
levels of approximation, starting from Hartree-Fock LCAO (single configuration) 

wave functions and then correcting for the electron repulsion (correlation). The 
use of well-correlated wave functions (large CI expansions) becomes extremely diffi- 
cult for molecules, however, if one has to describe all the excited states [n). 
Even at the Hartree-Fock LCAO level the calculations are already time-consuming, 
since one has to use large AO bases including atomic polarization functions in 

6 The pseudo-state method of Margoliash et al.  99) and the very simple Dalgarno refractivity scheme 1°°) 
for calculating molecular C 6 dispersion coefficients can be considered as empirical versions of this 
approach. 

19 



Ad van der Avoird et aL 

order to make the excited states In) satisfy the sum rules to a reasonable accuracy 2°' 
74,7s~. The calculation of the molecular transition moments (0[ Q~ In) is relatively 
easy 7s). 

3.1.3 Anisotropic Long Range Interactions 

Some of the ab initio methods described in the previous section have been ex- 
tended to the anisotropic interactions between molecules. For instance, the non- 
empirical Uns61d method, has been used 75"84'a5~ with (ab initio calculated) average 
excitation energies A~, m that depend not only on the order 1 of the multipole 
operator associated with the excitations, but also on its components m. The method 
which explicitly calculates the "effective" excited state functions [a A) and [b B) 
has been applied 2°'75" lo~ to the anisotropic long range interactions, expressions (20) 

and (21). An advantage of the latter method is that the functions la A) Ib B) can 
be used also in the "exact" formula for AE t2), (18), where the multipole expansion 
is avoided, and, thus, charge penetration effects are included in AEt2). 7 Even one 
can take (higher order) exchange effects into account in a variational treatment on 
the basis of the antisymmetrized states A la A) [ba) 63). 

Knowing the molecular permanent multipole moments and transition moments 
(or "closure moments" derived from sum rules, such as (36)), the computation 
of the first and second order interaction energies in the multipole expansion 
becomes very easy. One just substitutes all these multipole properties into the 
expressions (16), (20), (21) and (22), together with the algebraic coefficients (24) 
(tabulated up to R - t°  terms inclusive in ref. 2°~, in a somewhat different formS), 
and one calculates the angular functions ( lb)  for given orientations of the 
molecules. 

3.1.4 Intermediate Range Interactions 

If one wants to calculate not only the long range part of the interaction potential, 
but also the region including the Van der Waals minimum, one must account for 
short range charge penetration and exchange effects. Charge penetration is in- 
cluded by evaluating the expressions (12) and (18) with the exact interaction 
operator V AB, which requires the computation of very large numbers of electronic 
and nuclear interaction integrals. Although this computation can be performed 
with any of the standard integral programs for molecular calculations 6°), it is a 
(computer) time-consuming job, especially as it has to be repeated for each dimer 
geometry. (In contrast with the multipole calculations where we have to repeat 
only the computation of the angular functions for each orientation of the molecules 
in the dimer.) Some time can be saved by modifying the standard programs so as to 

7 This could equally be done by making a spherical wave expansion for V AB, as proposed by 
Koide 1°2~, but his method for calculating AE ~z~ is practical only for atoms. 

s Although ref. TM is concerned with linear molecules, this table is also complete for the general case 
of arbitrary molecules. 
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restrict the calculation to only those interaction integrals occurring in (12) and (18). 

Even this advantage is lost if one wishes to include exchange effects in the first, 

(27) or (30), or higher order interaction energies. The number of  integrals becomes 

the same as in a full (supermolecule) calculation of  the interacting system, AB. 

Moreover,  one has to solve the supermolecule SCF, or  CI,  or  MCSCF,  or MBVr ,  

or  C E P A  problem 6°) or to calculate the different interaction contributions in 
(exchange) symmetry adapted perturbation theory 53-56}. To date, such calculations 

are possible only for very small molecules, that  is, if one does not want to make 

severe restrictions on the size o f  the basis sets or  to invoke approximate calculation 

schemes (e.g. the Extended Htickel 1°3}, C N D O  1°4) or  Gordon-Kim l°s~ method), 

which mostly lead to such a dramatic loss o f  accuracy that the calculated inter- 

action potential looses all physical significance. Some typical computer timings 

for different steps in the calculation o f  the N z - - N  2 interaction potential are given 

in table 2. Before showing some illustrative results we discuss a few more points 

o f  practical importance. 

Table 2. Typical computing times (CPU minutes) on IBM 370/158 (IBM 370/158 -~ CDC 6400 
Univac 1110) for the N2--N 2 interaction potential surface 1°1" 136} 

Interaction energy," Long range 
including penetration interaction energy ~ 
and exchange (multipole expansion 

up to R -1° terms 
inclusive) 

Integrals 100-200 Multipole (transition) 3 
moments 

AE (~) (eqn. 30) 10 AE~t., ^ (eqn. 16) 
AE ~2} (eqn. 18), 15 (55) b AE~,.. ^ (eqns. 20, 21) 
no exchange 

125-225 min. 
Has to be repeated 
for each point on the 
potential surface 

0.01 
15 (30) b,o 

18 min. 
Potential surface cari be 
generated by calculating 
A^(~A, (91, •), 
(eqn. 1 b) 

a Monomer AO basis set of 72 primitive/50 contracted GTO's (9s, 5p, 2d/4s, 3p, 2d); integral time 
depends on distance R 

b Monomer basis of 70 contracted GTO's ((basis a) + I f) 
Reduced to 0.02 min. in the Uns61d approximation 

In  any (variational) supermolecule calculation which allows unconstrained mixing 

of  basis functions centred on different molecules we obtain the so-called basis set 

superposition error (BSSE), the energy lowering of  each subsystem by the addition 

of  basis functions localized on other subsystems, (cf. sect. 2). This energy lowering 

is dependent  on the dimer geometry and strongly resembles the shape o f  the 
physical interaction potential63'67); it is purely a numerical artifact, however, due 

to the fact that the monomer  bases are not complete yet. The error occurs in 
principle at the SCF level 63'66) and, again, at the CI level 67'6s'1°6). One can 

reduce this error by using sufficiently large and well balanced orbital bases at the 

SCF level and configuration bases at the CI  level, so as to reach the Hartree-Fock 
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limit and the exact non-relativistic limit in the energies of  the subsystems. At the 

SCF level this has now been done for dimers of small molecules (H2), or atoms 

(He, Ne), up to the point where the BSSE is small compared with the interaction 

energy. At the CI level even with very large CI expansions for very small systems, 

such as He--H21°7), the estimated error in the (ground state) correlation energy is 

still of the same magnitude as the Van der Waals well depth. At the SCF level one 
has proposed an approximate method ~°s~ to correct for the BSSE. The energies 
of  both monomers A, E AtB~, and B, E BtA~, are calculated in the AO basis of  the 
total dimer AB. These energies are then subtracted from the dimer (SCF) 

energy E Aa in order to obtain the corrected supermolecule interaction energy 

(cf. expression (29)): 

AE Aa = E AB __ EAtB) __ EB(A) (41) 

This procedure has been the9retically justified 1°9) and it appears to work numerically 

reasonably well 1°9"11°~ if the basis sets are not too badly chosen. At the CI level 

similar, though somewhat more complicated, procedures have been proposed 6s' 

~06. ~ 1 ~, but there is less experience available yet as to their numerical performance. 

A practical way to avoid contamination of the intermolecular correlation energy 
(which corresponds with the dispersion interaction) with geometry dependent 
intramolecular contributions which are numerical artifacts (for an analysis, see 

ref.H2t), "is to express the CI wave functions in terms of orbitals localized on t h e  

monomers. By selecting the configurations one can then calculate the inter- 

molecular correlation energy separately (in a CI or MCSCF or MBPT or CEPA 

calculation). For example, the multistructure VB method 63) is such a CI expansion 

with configurations A la A) Ib s)  that are built from singly excited Hartree-Fock 
functions la A) and Ib B) and so they only contribute to the intermolecular correlation 

energy (according to Brillouin's theoremH31). Actually, one should use correlated 
monomer wave functions, ta A) and IbB), or, in other words, include the coupling 

terms between intra- and intermolecular correlations. This has been done for very 
small systems: H e - - H e  114"54), He--H2115), H2--H2116); it reduces the depth of 

the calculated Van der Waals well by about 10~  in these systems. In other 

systems (Be, Mg, Ca atoms) where the monomer correlation energy is relatively 

large because of a quasi degenerate ground state and hence a single configuration 
wave function is a bad description, it has been found 117) that the effect of using 

correlated wave functions on the long range dispersion coefficients, C6, Cs, C:o , 
can be considerable. It is important then HT~ to "correlate" both the ground 
state 10) and the excited states In) and the calculation of the full interaction po- 
tential becomes extremely difficult for all but the smallest systems. 

3 . 2  I l l u s t r a t i v e  R e s u l t s  

We now show some representative results which illustrate the applicability Qf 
different methods for computing the intermolecular potential. We start with the 

long range part by looking at the first and second order multipole series (16), (20) 
and (21). The lowest term(s) in the first order series can be easily checked by 
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c o m p a r i n g  the  ( ab  in i t io )  ca l cu l a t ed  m u l t i p o t e  m o m e n t s  ( l is ted fo r  m a n y  m o l e c u l e s  

in  refs. 11s'119~) w i t h  e x p e r i m e n t a l  o n e s  t h a t  a re  a v a i l a b l e  (usual ly  o n l y  t he  d ipo le  

m o m e n t ,  s o m e t i m e s  the  q u a d r u p o l e  a n d  ve ry  rare ly ,  s u c h  as for  N2 ~°~), e s t ima tes  

fo r  the  nex t  h i g h e r  m o m e n t ) .  F o r  the  l ead ing  s e c o n d  o r d e r  d i s p e r s i o n  t e r m  C6 R - 6  

( a n d  fo r  t he  d ipo le  po l a r i z ab i l i t y  ~ o c c u r r i n g  in the  l ead ing  i n d u c t i o n  t e r m )  re l iab le  

semi -empi r i ca l  va lues  a re  a v a i l a b l e  (on ly  t he  i s o t r o p i c  ones ,  m o s t l y  f r o m  re f rac t iv i ty  

d a t a  93,94'I00) a n d  f r o m  op t i ca l  spec t ra ,  y ie ld ing  d ipo le  osc i l l a to r  s t r e n g t h  d is t r i -  

butions95)).  T h e s e  c a n  be  u sed  as  a s t a n d a r d  fo r  t he  a b  in i t io  m e t h o d s ,  whi le  t he  

l a t t e r  h a v e  the  g rea t  a d v a n t a g e  t h a t  t he  h i g h e r  coeff ic ients  a n d  the  a n i s o t r o p y  c a n  

be  c o m p u t e d  as well. T h e  h i g h e r  d i s p e r s i o n  coef f ic ien ts  m o s t l y  q u o t e d  in t he  

l i t e ra tu re ,  so far,  h a v e  been  o b t a i n e d  f r o m  a s ingle  h a r m o n i c  osc i l l a to r  m o d e l  

5,120,12t). T h i s  m o d e l  h a s  b e e n  r e p o r t e d  96'122't23) to  u n d e r e s t i m a t e  C s a n d  C10, 

howeve r ,  t he  m o r e  so  f o r  molecu le s  o f  i n c r e a s i n g  sizet24't25k A m o r e  s o p h i s t i c a t e d  

Table 3. Isotropic dispersion energy coefficients C 6 and ratios Cs/C 6 and C~o/C 6 (in atomic units) 
for various methods, described in the text 

Ab initio Empirical ~ Single-A 
Uns61d a 

Uns6td" Kirkwood b 

Oscillator model 

Fontana" Amos and 
Yoffe f 

C 6 NH 3 83.5 90.2 89.08 74 90,9 
CH 4 135 158 129,6 118 142 (133) 
N20 394 294 184.9 --  - -  
C2H 4 341 334 --  - -  321 (357) 
C3H 6 713 789 630.8 --  738 
C6H 6 2670 2617 --  --  2300 

Cs/C 6 NH 3 23.3 25.2 25.6 (19.0) 11.9 12.4 
CH 4 31.5 33.0 35.4 (23.3) 9.8 14.4 (14.1) 
N20 33.3 37.1 41.2 (25.3) --  - -  
C2H,~ 46.7 --  --  --  14.5 (17.5) 
C3t ~ 60.7 64.2 64,6 (33,0) - -  14.5 
C6H # 93.6 --  - -  - -  18.1 

Clo/C 6 NH 3 672 692 726 (427) 174 188 
CH 4 1109 1123 1282 (626) 118 252 (241) 
N20 1369 1546 1776 (696) --  - -  
C2H a 2265 -- - -  - -  260 (398) 
C3I-I 6 3589 3842 3905 (1211) --  260 
C6H 6 8345 --  - -  - -  428 

° Results from refs. s4~ for C2H4, sS~ for C6H 6 and 12sa~ for NH 3, CH 4, N20 and C3H 6 

b Results from refs. 12sa) for NHa, CH4, N20 and Call6,12sb) for C2I-I~ and C6H 6 calculated accord- 
ing to the method of ref. s6~ 
Accurate results from empirical dipole oscillator strength distributions for NH 3, N20 and CH495~; 
results for C3H 6 according to the Datgarno refractivity scheme ~°°) from ref. 12s~) 

a Results from ref.12s~) calculated with A~ = A 2 = A 3 (equal average energies for dipole, quadrupole, 
octupole excitations); values in parentheses if the original single-A Uns61d method is used as in 
ref. 123) with the sum rule (36) replaced by (42) 

e Results from ref. t21) 
f Results from ref) TM for NH 3, CH 4 and C2H4; results in parentheses and those for C3H 6 and 

C6H 6 from ref. ~29~. In both references the actual bond oscillator model values for C s and C~0 were 
scaled upward by factors of 2 and 4, respectively; these scaled results are presented in the table 
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oscillator model has been introduced by Amos and Yoffe 126), who assigned different 
oscillators to different bonds in the molecule. A method to estimate ratios 

Cs/C 6 and C10/C6 first used by Margenau for H - - H  and He--He 127~ has been 
revived by Starkschall and Gordon 123) in an application to rare gas atoms. This 
method is essentially identical with the Uns61d method mentioned above, but it 
assumes equal average excitation energies for the dipole, quadrupole and octupole 
transitions (A 1 = A 2 = A3). Recently, numerical values have been computed with 
this "single-A Uns61d" method for a number of molecular systems: CH4, NH3, H20, 
HF, (for ref. see12S)). In table 3 we compare the results obtained from these 

simplified models with results from the ab initio Uns61d and Kirkwood methods 
described above and with the accurate empirical data (for C 6 only). For C 6 the 
agreement is reasonable, except for N20 (for more details, see ref?2s~). The ratios 

Cs/C 6 and C~0/C 6 are much smaller, however, in the oscillator model and in the 
singte-A Uns61d method than in the ab initio Uns61d and Kirkwood schemes. 
These discrepancies are explained in ref. 12s~ as being largely due to further approxi- 

mations made in the bond oscillator and single-A Uns61d models. In the original 
single-A Uns61d scheme 123~ the sum rule expression (36) is replaced by 

S,(-  1) = 2(21 + 1) -1 (01~. r~l 0>, (42) 
i 

thus neglecting significant terms. If these terms are included 12s~ the single-A 

Uns61d method yields ratios Cs/C 6 and C10/C6 which are slightly larger than the ab 
initio Uns61d values. In the bond oscillator model terms in C a and C10 are 
ignored which originate from the translation of the multipole operators from 
the molecular center of mass to the local bond origins. This causes the unexpected 
result, observed in refs. 126" t29) that the ratios Cs/C 6 and Clo/C 6 hardly depend on the 
size of the molecules. When these translation terms are included the bond oscillator 
model gives somewhat more realistic C s and Clo values, the remaining discrepancies 
being due to the shortcomings of the harmonic oscillator model itself. The 

ratios Cs/C 6 and Clo/C 6 obtained with the ab initio Uns61d and Kirkwood methods 
are probably rather accurate; they might be more reliable even than the absolute 
C 6 values 12s). The insensitivity of the Uns61d method to the size of the basis (in 
contrast with the methods that explicitly include the excited states) is clearly 
displayed in fig. 9 of ref. 75~. Results calculated for H22°~, N21°1~, C2H2 s'~), 
(aza)benzene(s) s4,sS~ by this method are quite satisfactory even for rather small 
bases. This figure and fig. 1 in this review also show the importance of the mixed- 

pole (1A 4:1A or 1B 4:16) terms in the dispersion coefficients (21) higher than C6; 
they cause the higher dispersion terms to be much more anisotropic than the first 
term2O, lol k 

After looking at the individual terms, we illustrate (on the example of  two 
parallel ethene molecules) the convergence of the multipole series as a whole, in figs. 2 
and 3, for the first order (electrostatic) and second order (dispersion) energies (16) 
and (2t), and we compare the truncated multipole expansions with the unex- 
panded results, (12) and (18). The Van der Waals minimum in the isotropic 
potential lies at about R = 4.5 ,A. (8.5%). For large distance, R = 6.35 ,A, (12%), the 
multipole expansion accurately converges to the exact result, although the first 
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Fig. 1. Orientational dependence of the dispersion (multipole) interaction energy between two pyra- 
zinc molecules at R = 10% (from ref.S*)). Different 2'-pole contributions to eqn. (21) are labelled 
by (1AI~.; 1BI~); quadratic terms: 1A = 1~, ! B = 1~; mixed pole terms: 1A 4= 1A or 18 4= 1~ 

term alone is in error by 25 and 10 %, for the electrostatic and dispersion energies, 

respectively. At  R = 4.75 A (9%) the higher terms in the multipole series are even 

more important  (the errors in the first term are 49 and 12 ~) ,  but the series seems still 

convergent up to the point where we have truncated. At R = 3.2/~ (6%) the results 

clearly exhibit divergence o f  the series. Although the usual procedure o f  truncating 

the series after the smallest term and, possibly, a partial inclusion of  this term 13°-132) 

might give a crude estimate o f  the size of  the interactions, it does not look very meaning- 

ful when the divergence starts already that early in the series. An  alternative 

procedure o f  using damping functions 133) in order to correct the multipole series for 

charge penetration effects might work better, but  one should realize that such 
damping functions probably have to be term and system dependent 134" 13s); then, they 

could only be obtained by actually evaluating the penetration effects and their use 

is not  very helpful. We must warn for cases (a trivial one is the rare gas a tom-atom 

interaction) where the multipole expansion does seem to converge, while the sum still 
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Fig. 2. Ratio of the multipole ex- 
panded (eqn. 16) and the unexpand- 
ed electrostatic energy (eqn. 12) 
for two parallel ethene molecules 
(from ref.TS)). Different multipole 
expansion lengths are shown 

deviates from the unexpanded result, due to charge penetration. Such cases have been 

found for molecules also (see, for instance, fig. 4 for N2--N2). 
If we look specifically at the anisotropic (LA, L B 4= 0) terms in the intermolecular 

potential, the convergence of the second order multipole expansion is slower 
than for the isotropic terms. This is caused by the strongly anisotropic mixed-pole 
(1 4= 1') contributions, which occur in the higher dispersion and induction multipole 
terms but not in the first term. This is illustrated in fig. 1 for the dispersion energy 
in the pyrazine dimer (C4N2H4) 2. Fig. 5 shows that for the N 2 dimer the total aniso- 
tropy in the dispersion energy is comparable in size with the (purely anisotropic) 
electrostatic multipole interaction energy. The anisotropy is even stronger (relatively) 
in the induction energy, but the total induction energy is much smaller than the 
dispersion energy for the molecules we have considered: H2, Nz, CzFL, benzene, 
azabenzenes, which have zero or small dipole moments. 

After the long range interactions, we now consider explicitly the behaviour of the 
overlap (penetration, exchange) contributions to the interaction potential, particularly 
in the region around the Van der Waals minimum. In fig. 4 we have plotted these 
terms, together with the first and second order multipole interactions, as a function of 
distance for two parallel N2 molecules, and in fig. 5 as a function of the molecular 

orientation at R = 4 A. (The Van der Waals minimum in the isotropic N2--N 2 
potential lies at R = 4.1 Ala6)). The distance dependence is typical for closed shell 

molecules: with decreasing R we observe an attractive first order Coulomb inter- 
action caused by charge penetration and a repulsive first order exchange interaction. 
Both increase exponentially, but the (Pauli) exchange repulsion dominates the 
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Fig. 3. Ratio of the multipole expanded 
(eqns. 20, 21) and the unexpanded dis- 
persion and induction energy (eqn. 18) 
for two parallel ethene molecules (from 
ref.75~). Different multipole expansion 
lengths are slaown 

penetration attraction by a factor of 5 to 10. The distance where these contributions 
begin to modify significantly the long range multipole interactions usually lies around 
the Van der Waals minimum: for N2 it is slightly outside this minimum (which lies, for 
two parallel molecules at R = 3.6 A), for H2 it is slightly inside 137). This depends on 
the diffuseness of the electron clouds, how far they protrude from the nuclear frame- 
work, as reflected, for instance, by the sign of the molecular quadrupole moment 138). In 
the second order (dispersion and induction) energy the overlap effects are considerably 
smaller than in first order. In fig. 4 we see that they happen to be practically negligible 

for this particular (parallel) N 2 - N  2 orientation; in other orientations they are some- 
what larger. In fig. 5 we observe that the overlap contributions, although always 
repulsive, are the dominating anisotropic terms at distances around the Van der Waals 
minimum (or shorter). This will be reflected in the structure of the Van der Waals 

molecules (el. sect. 4). 
An interesting subject we may comment upon is the interaction between (planar) 

molecules with conjugated ~-electron system (e.g. aromatic molecules). It is some- 
times argued that these molecules show a particularly strong dispersion attraction 
because of the large in-plane polarizability of the n-electrons. In a series of 
ab initio calculations for benzene and several azabenzenes 84"s5), Mulder et al. 
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Fig. 4. Different contributions to the interaction energy between two parallel N 2 molecules; ab initio 
results from refs t°~' 136) 
AE(e~e)c., eqn. (12), 
An(1)~mu,., eqn. 06), sum of complete R -n terms for n = 5, 7, 9 
AE t1~, eqn. (30) 
AE (2) -- Al~(2) eqn. (18) ~elec.~ 
Al:(2)~mult., eqn. (21), sum of complete R-" terms for n = 6, 8, 10 
Short range penetration, AE~)n eqn. (17), and exchange, (l) A E ~ .  eqn. (28), effects become visibly 
important with decreasing R (in" first order) 

have found however, (in contras t  with earlier estimates 139'1~) and semi-empiri- 

cal calculations 141)) that  also the perpendicular  n-polarizabil i ty is far from negligible. 

Moreover ,  it appeared that  for none of  the polarizabi l i ty  components  the n-electron 

contr ibut ion  really dominates  over the contr ibut ion from thecr-skeleton. Also in deter- 
mining the long range dispersion coefficients the n-electrons are certainly not  dominant  

(less than 23 ~o o f  C6) for this class of  molecules aS). Fo r  larger molecules (naphthalene, 

anthracene,  etc.) the relative n-contr ibut ion is expected to be somewhat larger, 
though 8s). 
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Fig. 5. Orientationai dependence of different long range (multipole) and short range (exchange 
+ penetration) contributions to the N2-N 2 interaction energy, at R = 4A, from ref. 136). Orientations 
are described by the angles 0A, 0a, i f ^ -  dpa, see table 1. Curves generated by the spherical 
expansion(4) an d by the atom-atom fit (8) of the "ab initio" potential are shown 

4 Structure of  Van der Waals  Molecules  

I f  we wan t  to predic t  the s t ructure,  the  stabil i ty and  the  v ib ra t iona l  and  ro ta t iona l  

spectra  o f  Van  der  Waa l s  molecules ,  we have  to k n o w  the comple t e  in t e rmolecu la r  

potent ia l  as a func t ion  o f  the  in t e rmotecu la r  distance(s)  and  the  molecu la r  or ien ta -  

t ions.  F o r  rare gas d imers  3t~ and for  s o m e  rare gas a t o m - d i a t o m i c  molecu le  (e.g. 

H 2, HC1) systems ra ther  detai led i n fo rma t ion  a b o u t  the  po ten t ia l  is avai lable  f rom 
exper iment  1, 22 -27, 14-2, 143), f r o m  ab  ini t io  ca lcula t ions  115,124,125,1~, 145) o r  b o t h  29' 3o) 
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The latter systems have only two internal degrees of  freedom, however, (in the rigid 

molecule approximation) and the rare gas dimers have just a single one, of course. 
Some ab initio studies have been made of molecular Van der Waals (or hydrogen 
bonded) systems with more internal coordinates 119), but mostly they concern only 

specific points or one-dimensional cuts (e.g. distance curves for fixed molecular 
orientations) of  the potential (hyper) surface. One exception is the case of the 

simplest molecular dimer (HE) a, which has been studied in detail, both ab 
initi0116,124,125,146,147) and experimentally 26'148-154). Another exception form the 

two Van der Waals molecules, (C2H4) z and (Nz)2, of which the complete potential 
surfaces have been obtained in our institute 63' 75, ~55,201,136~ via ab initio calculations. 

The N z - - N  a potential, in particular, has been the subject of much previous (semi-) 
empirical work156k The dimers (N2) 2 158,159) and (C2H4) 2 160,161) have been investi- 

gated experimentally too, but even for (N2) 2 where the IR spectrum is known 158), 

the structure could not be inferred from the experiments yet. Although we have not 

carried out the second step in the Born-Oppenheimer scheme, the solution of the 

nuclear motion, we shall, on the basis of  our calculated potentials, make some 

remarks about the equilibrium structure, the binding and the internal molecular 
mobility in the Van der Waals molecules (N2) 2 and (C2H4)2. These remarks may be 
confronted with new experiments which are certainly to be expected in the near 

future. 

4.1 Analytical Representation of the Intermolecular Potential; 

Fitting of the Ab Initio Results; Atom--Atom Potentials 

For all but the very smallest systems, (such as HeH~- 162) and even there it is very 

expensive), it is not possible in practice to calculate the full potential surface, with a 
grid fine enough that it can be directly used for solving the (nuclear) dynamical 

problem in Van der Waals molecules (or for scattering calculations). Moreover, such 

a numerical potential would not be convenient for most purposes. Therefore, one 

usually represents the potential by some analytical form, for instance, a truncated 
spherical expansion (1) or another type of model potential (cf. sect. 2). The para- 
meters in this model potential can be obtained by fitting the ab initio results for a 
limited set of intermolecular distances and molecular orientations. Since we have 

encountered some difficulties in this fitting procedure which we expect to be typical, 

we shall describe our experience with the (C2H4) 2 and (N2) 2 cases in some detail. 
At the same time, we use the opportunity to make a few comments about the conver- 
gence of the spherical expansion used for (N2) 2 and about the validity of the 

atom-atom model potential applied to both (C2H4)2 and (N2)2. 

4.1.1 (C2H4) 2 

For this dimer the interaction potential has been calculated 155, 757 for 8 different orien- 

tations of the two molecules, for 3 distances around R = 4.8 A (9%) including (first 
order) exchange and penetration effects and for 8 distances from R = 6.4 to 

10.6A (12 to 20%) in the multipole expansion. Second order overlap effects 
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(penetration and exchange) were neglected. The number of orientations (8) is 

far too small (the system has 6 internal coordinates, 1 distance and 5 angles, and 

it needs all 5 quantum numbers, L A, K a, LB, KB, L, to qualify its angular functions 

(1 b)) to make a spherical expansion (1) of the interaction potential, even if one assumes 

that this expansion could be truncated after L A, L B = 2 terms. Some simplified model 

potential had to be adopted in order to reduce the number of  fitting parameters. 
Wasiutynski et al. 155) have chosen an atom-atom potential (of the exp-6-1 type): 
1. because it has relatively few parameters, 

2. because it is easy to use in lattice dynamics calculations for the molecular crystal, 
and 

3. because there is a considerable amount of work on hydrocarbons based on 

empirically parametrized atom-atom potentials la3.166) (from crystal heats of  

sublimation and structural data). The ab initio results could be used to check both 
the atom-atom model and its empirical parametrization. 

At first, it was tried to optimize all the atom-atom parameters simultaneously by 

a best fit to the total ab initio interaction energies, but this procedure led to highly 
correlated fit parameters with no well-defined optimum. Then, the ab initio interaction 

energy was separated and three independent fits were made: 

(i) the electrostatic (multipole) interaction energy (16) calculated up to R -7 terms 

inclusive was fitted by an atomic point charge model. If  the point charges are 

fixed on the nuclei (which leads to a single independent charge parameter for the 

C2H 4 molecule) the fit is bad (root mean square deviation 23 ~o) especially for 

some C2H 4 orientations. If  we extend the model to 4 parameters by allowing 

the charges to shift away from the nuclei the fit is much better (r.m.s.d. 

3.6~o). 
(ii) the dispersion (multipole) energy (21) truncated after R -s  terms was fitted by an 

r - 6  atom-atom potential. This went quite well (surprisingly well, if we consider 

the incorrect asymptotic angular behaviour of  the r-6 atom-atom potential 37, 167)), 
but an averaging constraint had to be imposed on the C - - H  parameter, in order 
to avoid high correlation. The final fit, with only two independent parameters, 

had a r.m.s.d, of  7.1 ~.  The induction energy, which is very small relative to 
the dispersion energy, was neglected. 

(iii) the overlap (first order penetration and exchange) energy, (17) and (28) calculated 

from (30), was fitted by an exponential atom-atom potential. The electrostatic 
penetration energy was separated from the electrostatic multipole energy (i), 

since the atom-atom (point charge) model cannot acount for penetration effects. 

It was added to the exchange energy which has about the same exponential 

distance dependence. It is this distance dependence, which was actually found in 
ab initio calculations ~45't55'168~, that justifies the use of an exponential 

atom-atom repulsion, rather than an r -n type. Just as in (ii) one had to put 

averaging contraints on the C - - H  parameters and, moreover, the H - - H  repulsion 
parameters had to be determined by comparing specific dimer geometries where 
the energy differences are mainly caused by H - - H  contacts. The final fit (with 
4 independent parameters) is still rather unsatisfactory (r.m.s.d. 33 ~o). 

The different contributions to the interaction potential are displayed in figs 6, 7 and 8, 
for 8 different orientations of  the CzH 4 molecules in the dimer. ~[hese figures clearly 
illustrate the quality of the atom-atom model in representing the orientational de- 
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Fig. 6. Electrostatic multipole expanded interaction energy between two ethene molecules for 
8 different orientations at R = 12% (ab initio results from refs,75"155)), Fits (9 and ® are atom-atom 
(point charge) model fits to the ab initio data; O is a fit with the charges shifted from the nuclei, 
(~ has the charges fixed on the nuclei. Also indicated is an empirical atom-atom potential; for details 
see ref. 155) 

pendence of  the interaction potentials; they also contain some empirical a tom-atom 

potentials for comparison. 
We can draw the following conclusions. For  the dispersion (multipole) interaction 

energies the atom-atom model works reasonably in the (C2H4) z case, (and in other 
cases, too:  benzene, azabenzenes167)). Also the electrostatic (multipole) energy can be 

well represented by an atom-atom (point charge) model, if the point charges are 

allowed to shift away from the nuclei, (or if one adds extra point charges169)). 

For  the overlap energy the deviations from the ab initio results are much stronger. 

This might be due to deviations from pairwise additivity (cf. sect. (2), the intra- 

molecular overlap between the atomic orbitals is considerable, ---0.5). But also it can 
be caused partly by the anisotropy of  the atom-atom interactions. Both effects are 

related to the chemical bonding within the molecules which is ignored in the atom- 

a tom model. Actually, one can observe from the ab initio results 155~ that the C - - C  

overlap repulsion has a longer range (corresponding to a smaller negative exponent) 

in the direction perpendicular to the C2H 4 plane than in the other directions. This is 
due to the relative diffuseness of  the n-clouds. Fortunately, a deviation of  33 ~o in the 

overlap energy does not have such a drastic effect on the potential surface as it may  
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Fig, 7. Dispersion multipole interaction energy between two ethene molecules for 8 different 
orientations at R = 12% (ab initio results from refs. 75' 155)). Fit 0) is an atom-atom fit to the ab 
initio data. Also indicated are two empirical atom-atom potentials; for details see ref. 15s~ 

seem. The overlap repulsion depends very steeply on the intermolecular distance. 

A large deviation in the repulsive energy will cause a much smaller change in the 

equilibrium distance and not too much of  a change in the depth of  the Van der Waals 

well. 
The a tom-a tom potential fitted to the ab initio data gives fairly realistic results 155) 

for the equilibrium structure ~7°) (unit cell parameters  and molecular orientations in 

the cell), the cohesion energy 17n and the phonon  frequencies of  the C2H 4 molecular  

crystal. The latter have been obtained via both  a harmonic  and a self-consistent phonon  
lattice dynamics calculation I s s, 172) and they were compared  with IR  173) and R a m a n  174~ 

spectra. About  some of  the empirical hydrocarbon a tom-a tom potentials 164~, which 

are fitted to the crystal data, we can say that  they correspond reasonably well 

with the ab initio results (see figs. 6, 7, 8), their main defect being an underest imate of  

the electrostatic multipole-multipole interactions. 

4.1.2 (N2) 2 

In this system the long range (multipole) interaction energy has been calculated 1°1) 
directly in the form of  a spherical expansion (4): electrostatic R - s ,  R -  7 and R -  9 terms, 
formula (16), dispersion R -6, R -8, R -1° terms, formula (21) and induction R -s ,  
R - l o  terms, formula (20). The  multipole moments  used in the electrostatic energy 
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Fig. 8. Short range (exchange + penetration) interaction energy between two ethene molecules for 
8 different orientations at R = 8a 0 (ab initio results from ref.ls5)). Fits O and ® are atom--atom fits 
to the ab initio data, with and without constraints for the C--H parameters. Also indicated are two 
empirical atom--atom potentials; for details see ref. 155) 

agree rather well with the experimental data available, but the calculated dispersion 

coefficient C 6 is considerably larger (25 70) than the accurate semi-empirical value 95). 

Also the anisotropy in C 6 and in the dipole polarizability ~ are somewhat  overestimated 

with respect to experiment. We believe this to be due to the use of  Hart ree-Fock wave 
functions for the N 2 monomers  (the AO basis was sufficiently large and flexible). 

Employing the accurate semi-empirical data for C 6 and ~ in combination with the ab 

initio results, better estimates are given for the dispersion coefficients C6, Cs, C10 and 
their anisotropic componentsl°lL We shall refer to these values as " ab  initio". The 

induction energy is very small and can be neglected relative to the dispersion energy 

just as for  (C2H4) 2. 
In first instance, the overlap (penetration and exchange) energy has  been computed 

(in first order, from expression (30)) for 6 different orientations of  the two N 2 mole- 
cules and 5 distances 136). Also the second order penetration contribution (25) was 
computed  (for 10 of  the 30 dimer geometries), but this contribution is small relative 
to the first order penetration contribution and it has been neglected. In principle, 

these ab initio data should be sufficient to calculate (for each R) 6 coefficients 

AEL A, La, L(R) in the spherical expansion (4). Alternatively one can obtain all 

(independent) terms up to L A, L B = 2, i.e. (L^, L 8, L ) =  (0, 0, 0), (2, 0, 2), 
(2, 2, 0), (2, 2, 2), (2, 2, 4), f rom the data for 5 orientations and use the 6 th orientation 

for a check on the truncation error. The results of  this procedure were completely 
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unsatisfactory, however. Berns et al. .36~ have found that the procedure of  calculatin:o 
a certain number  of  spherical expansion coefficients AELA ' LB ' L from the interaction 

energies AE AB computed for an equal number  of  Orientations (--~A, --~B, --fl) is 

numerically not  very stable. Instead, they have proceeded, after some experimenta- 

tion, by calculating the expansion coefficients of  the (ab initio) overlap energy directly 

f rom expression (10), using a suitably chosen numerical integration procedure over the 

angular coordinates --~A, ~B, --fl (0A' 0B and qb A are sufficient in this case). This 
involved the ab initio calculation of  the first order energy (30) for 105 different 
orientations of  the two N 2 molecules, in order to obtain the first 18 (independent) 

dynamic coefficients in the expansion (4). This was done for one distance, 

R = 3 A, well inside the Van der Waals minimum (at R = 4.1 A) of  the isotropic 

potential. It  was found that  the coefficients AELA ' %: L indeed decrease with increasing 
L x, L B; for fixed L A, L s they increase with increasing L. Some of  the highest coeffi- 

cients calculated (for LA, L B = 4,4 and 6,2) were less than 1 ~ o f  the isotropic 

coefficient AE0.0. o. It  can be concluded that  the series (4) converges, but that  some of  

the higher terms are still important .  Truncat ion o f  the series after L A, L B -- 2,2 leads 

to an error o f  16~o, truncation after L A, L B = 4,4 to 2~o error. Next,  it was 
decided, on the basis of  the ab initio results for 6 distances and 6 orientations, to 

represent all the coefficients AELA" %, L(R) up to LA, L B = 6,2 by the same exponential 

function of  R. This caused a somewhat  larger error  (7 ~ ) ,  but it is certainly not  a bad 

(first) approximation.  The results, in combinat ion with the long range results, yield a 

reasonable fit o f  the calculated N 2 - N  2 interaction potential (see figs. 9 and 10). 
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Fig. 9. Total interaction energy between two N 2 mol~ules at 6 different orientations, described 
by the angles 0A, 0B, ~PA. "Ab initio" results and spherical expansion (4) of these results from 
r e f .  ~36) 
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Fig. 10. Orientational dependence of the Van der Waals minimum in the N2--N 2 interaction 
potential. The well depth AE,i,. and equilibrium distance Rmi,. were obtained by varying R for 
each orientation 0A, 0B, ~A(~B = 0). "'Ab initio" results, spherical expansion (4) and atom-atom 
fit (8) of these results from ref. 136) 

Another  approach,  which was taken by Berns et al. 136) was to fit the "ab  initio" 

interaction energies (for 6 distances and 6 orientations) by an a tom-a tom potential. 

This was again done term by term, just as for (C2H4) 2. The electrostatic (multipole) 
energy (i) was fitted by a 3 parameter  axial point charge model;  average error 6.5 7oo. 
The dispersion (multipole) energy (ii) was fitted by a 2 parameter  r -6  potential;  average 

error 6.3 ~ (including a slight shift of  the origin away from the nuclei; without this 
shift the error was 9.7~o). The overlap (penetration and exchange) energy (iii) was 
represented by an exponential a tom-a tom repulsion with 2 parameters  (the op t imum 
origins lie practically on the nuclei, in this case); average error 9.2 ~ .  The resulting 

a tom-a tom potential  t36) appears  to describe the angular dependence of  the N 2 - N  2 
"ab  initio" potential surprisingly well (see figs. 5 and 10), also for the 105 orientations 

calculated (at R = 3 A). I t  is striking that the a tom-a tom model works much better 
for N 2 - - N  2 than for C2H4--C2H 4, especially for the overlap energy. Maybe this is 

due to the lone-pair electrons in N 2 balancing the effects of  chemical bonding. The 
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properties of the N 2 crystal a and 7 phases t56' ~57~ (equilibrium structure, cohesion 
energy, phonon frequencies) are very well described 136'175~ by this atom-atom 

potential. 

4.2 Potential Sudaces of Van der Waals Molecules; (Nz) ~ and (C2H4) 2 

We have studied the potential hypersurfaces for the Van der Waals dimers (N2) 2 and 

(C2H4) 2 by varying all the independent internal coordinates (in the rigid molecule 

approximation, 3 angles for (N2) 2, 5 angles for (C2H4) 2 and the distance R in both 
cases). It  is of  course not possible to present the complete surfaces pictorially; we 

have displayed in figs. 9 and 10 some typical cuts through the surface of (N2) 2. 
Expecially fig. 10 contains much information since the distance was varied to find the 

energy minimum AEmin. for each orientation (0 A, 0 B, dpA ). In the figs. 4 and 5 and 
6, 7 and 8 the different contributions ("long range" (i) and (ii) and "short range" 

(iii), see the previous paragraph) to the interaction energy are plotted. It  is not possible 

to indicate very pronounced minima in the surfaces. For (N2) 2 we have found one 

absolute minimum at AEmi,. = 1.5 kJ/mol in the crossed structure 0 A = O n = dpA 

= 90 °, R = 3.5 A; for (C2H4) 2 we have found two equally deep minima at AEmi~: 
-- 5.0'kJ/mol, one for a staggered parallel structure with R = 3.93 A the other for a 
skew structure with R = 3.87 A (see table 4). The potential surfaces are rather flat 

around these minima, however, and many other possible structures exist with a 

binding energy higher than 80% of  AE~in. Therefore, we expect the N z and C2H 4 
molecules in the dimers to make rather wide angular oscillations (librations) in some 

directions. For instance, the barrier for a complete rotation over ~b A in the N 2 dimer 

with 0 A = 0 B = 90 ° is about 0.2 kJ/mol (13 ~ of  AEmi~. )'with practically no variation 
of the equilibrium distance (see fig. 10) (the rotational constant of  free N z is 

2.0 cm-1 = 0.024 k J/tool). At somewhat higher temperatures where the dimer is still 
stable, (in some cases maybe at zero temperatures already) these oscillations will 

go over into (weakly) hindered rotations. In other directions, rotations of  the 

molecules are strongly hindered; the dimer must almost dissociate before such a 

rotation becomes possible. (e.g. the rotations through the orientation 0 A = 0 B = dpA 

= 0 ° in the N 2 dinaer, fig. 10). The solution of the dynamical problem for the nuclei 
may be not an easy job. Neither the model of  almost free rotors, which works 
very well for the (H2) 2 case ls4~, nor the harmonic (or weakly anharmonic) oscillator 

model, which works reasonably well in molecular crystals, may be applicable. In this 
sense, the problem is comparable to that of the plastic phases in molecular 
crystals, such as the 13-phase of  solid N 2. 

Leaving aside this dynamical problem, we can make some further remarks about 
the equilibrium structure of  Van tier Waals molecules. Some attempts have been 

made to predict this structure from the molecular properties, multipole moments, 
polarizabilities, which are reflected in the long range interactions (electrostatic, 
dispersion). Other authors 16~'1~6~ have assumed that the equilibrium structure of  

Van der Waals dimers resembles the structure of  nearest neighbour pairs in mole- 
cular crystals. The latter approach could possibly be justified by packing considerations 
(short range repulsion). An example of  the first approach is the prediction of  a 

T-shaped (0 h = 90 °, 0 B = ~A = 0°) equilibrium structure for the N2-dimer, mainly 
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Table 4a. Most stable dimer structures: N2--N 2 

R (A) 0A ~ On ~ ~pA ~ AE (kJ/mol) 

dimer ~ 3.64 90 ° 90 ° 90 ° 1.35 
¢t--N 2 crystal ¢ 
neighbour pair 3.99 (4.04 d) 90 ° 35 ° 55 ° 1.05 
y--N 2 crystaV 
neighbour pair 3.79 (3.98 d) 90 o 42 ° 90 ° 0.94 

Angular coordinate system with O = • = ~B = 0°, see table I 
b Minimum in the potential energy surface, neglecting the effects of nuclear motion. Full minimum 

search was done with the atom--atom potential, fitted to the "ab initio" results 136) 
c Experimental crystal structures, see ref. 156~, AE calculated with the atom--atom potential 136) 
d Rm~," obtained with the atom--atom potential t36) for fixed (crystal) orientations 

on the basis of  attractive quadrupole-quadrupole interactions 15s~. Addition of  the 

anisotropic dispersion interactions 1°~ and, even, of  the short range repulsion in an 

approximate modeP 77~ gives further support for the stability of  this T-shaped N 2 - - N  2 

structure, but this also suggests another possible structure of  equal stability, the 

staggered parallel one (0 A = 0 B ~- 45 °, d~ A = 0°). A related approximate model which 

includes the short range repulsions ~7a~ leads to different predictions, however. Now 

that we have calculated both the (anisotropic) long range and short range contributions 

more quantitatively, we can make some more definite, although not final, statements 

on this matter. 
In  fig. 5 we see that, indeed, the T-shaped and the staggered parallel structure 

have maximum electrostatic attraction. The dispersion energy is most favourable, of  

course, for the linear structure. For  distances in the neighbourhood of  the (isotropic) 

Van der Waals minimum the (short range) exchange repulsion is the dominant ani- 

sotropic term, however. Since it increases very steeply when the molecular charge 

clouds start to overlap (especially in the linear structure 0 k = 0 B = ~A = 0°) ,  it 
determines to a large extent the distance of  closest approach of  the molecules. If,  

for a given orientation the long range interactions are not maximally attractive 

(when compared with other orientations, for equal distance R), but the molecules can 

approach each other closely, the Van der Waals well may still be relatively deep. 

This is, for instance, what happens for the crossed structure (0 A = 0a = ~b A = 90 °) 

of  the N2-dimer. In general, one can observe this role of  the short range repulsion 

from fig. t0, where the well depth AEmin. shows a strong (negative) correlation with 

the equilibrium distance Rmin.. The same phenomenon has been found for the C2H 4- 

dimer: maximum binding energy (table 4) occurs for the dimer structures with the 

smallest Rml,. Only when the short range repulsion is not very sensitive to a change of  

orientation (for instance, the rotation over d~ A in the N2-dimer with 0 A = 0 B = 90 °, 
see fig. 5), the long range interactions (in this case, the electrostatic interactions, 

even though they are repulsive) can still be important in determining the equilibrium 

structure. 
This crucial role o f  the short range repulsions (closest packing) for the dimer 

structure may suggest that the structure of  nearest neighbour pairs in the molecular 
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Table 4b. Most stable rimer structures; C2H4--C2H 4 

R (A) 0" q~ %~ [~B ~ YB" AE (kJ/mol) 

dimer b 3.93 49 ° 27 ° 0 ° 0 ° 0 ° 5.01 
dimer b 3.87 560 14 ° --59 ° 45 ° --59 ° 5.05 
C~H 4 crystal ° 
1 st neighbour pair 4.07 (4.07 d) 61 ° 13 ° 0 ° 0 ° 0 ° 3.89 
C2H 4 crystal ° 
2 na neighbour pair 4.44 (4.50 a) 54 ° 7 ° --47 ° 96 ° 47 ° 2.52 

Angular coordinate system with ~A = 13̂  = YA = 0°; %, l~a, 7B Euler angles as defined in ref.18~; 
molecular axes: C--C = y-axis, C2H:plane = xy-plane 

b Lowest minima in the atom--atom potential energy surface, fitted to the ab initio results lss~ 
Experimental crystal structure from ref) TM, AE calculated with the atom--atom potential ~55~ 

d Rm~," obtained with the atom--atom potentiaP 55~ for the fixed (crystal) orientations. 

crystal indeed forms a good indicat ion for the structure of  the Van der Waa l s  

dimer. This is suppor ted  by one of  the stablest C2H 4 dimers,  the one with the 

staggered paral lel  structure, which resembles rather  closely one o f  the neighbour  

pairs  in the crystal.  The other  most  stable C2H 4 dimer  and,  also, the crossed N 2 dimer  

deviate more  strongly from the crystal  neighbour  cofifigurations, however (see 

table 4). And,  in fact, it is not  obvious,  even if  only packing considerat ions 

determine the structure, that  the op t imum packing in a crystal where each 

molecule is surrounded by several neighbours  must  correspond with opt imal ly  packed 

dimers. The crystal neighbours should not  have too  unfavorable  pair  energies, though, 

and  we have checked on our  (C2H4) 2 and (N2) 2 potent ial  surfaces that  this is not  the 

case (see table 4). 

Summarizing this section on the potent ial  surfaces o f  (N2) 2 and (C2H4) 2 we try 

to make  a few concluding remarks  which may be more  generally applicable.  

Clearly, this generalization, if  valid at all, is restricted to Van der Waa l s  complexes 

composed o f  molecules which have zero or  small dipole moments  (excluding, for  

instance, hydrogen bonded  systems), where the dispersion energy is the dominan t  

cohesive contr ibut ion.  Sometimes, these complexes have been called Van der Waals  

molecules in the proper  sense. We expect the N 2 and C2H 4 dimers to be typical  

examples o f  such complexes. The equil ibr ium structure is, in first instance, determined 

by minimal  short  range repulsions (packing, steric hindrance considerations).  I f  

these al low several ra ther  closely packed structures with little differences in energy, 

then the long range anisotropic  interactions (both electrostatic and dispersion) will 

determine the lowest energy configuration.  The  balance between the different at t ract ive 

and repulsive contr ibut ions can be very subtle, however, and there may be several 

compet ing dimer configurat ions with a lmost  equal binding energies. (Such as 'we have 

found both  for (N2) 2 and for (C2H4) 2.) It  becomes very hard  then to predict  the stablest 

structure, even on the basis of  ab  initio calculations, (More  approximate  model  

calculations are completely useless in this respect). Moreover ,  one has to take into 

account  the (nuclear) dynamical  problem. Only in combinat ion  with experimental  

informat ion the calculations may  provide conclusive answers about  the structure o f  

Van der Waals  complexes. F o r  instance, the technique of  molecular  beam deflection 1s9) 
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is sensitive to the dipole moment of a Van der Waals molecule (cf. sect. 5). One of the 
calculated stablest structures of the C2H 4 dimer, the staggered parallel one, has a 
vanishing dipole moment because of symmetry. For the skew structure this is not the 
case. So, the experiment, if it is sufficiently sensitive, could discriminate between these 

structures. For the N 2 dimer the stablest structure we have calculated, the crossed one, 
has zero dipole moment, but so has the staggered parallel one, which we find only 
slightly higher in energy. Here, the absence of a dipole moment is not sufficient to 
decide which structure is more favourable and additional experimental information is 
needed to check our result. On the other hand, the experimental data alone are mostly 
not sufficient to obtain a detailed potential surface for Van der Waals molecules; the 
ab initio results, wherever they can be obtained, are very helpful for interpreting 

the experimental observations. 

5 Some Properties of Van der Waals Molecules 

5.10rientationai Dependence 

In the very same way as the Born-Oppenheimer approximation allows the definition 

of a potential energy surface for a Van der Waals molecule, it enables, too, the 
concept of an interaction tensor field. This is a field dependent on the relative 
coordinates of the monomers and transforming as a tensor under rotation of the 
complex as a whole. (The potential energy surface is an example of a rank zero 
interaction tensor field). In the case of tensor fields it is also convenient to base 

the theory on irreducible tensors and to use an expansion in terms of a complete set 

of functions of the five angular coordinates describing a Van der Waals dimer. 
The generalization of the scalar-valued angular functions (1 b) to arbitrary rank J 

is: 

A~.N(_~A, _OaB, R) = )-'. (LA, MA; LB, M~; L, MIJ, N) 
M A , M B, M 

LA * D LB /,. ~* cL(~)  (43) 
X D M A  ' KA(0,)A) MB ' KB~,~B / 

where the generalized Clebsch-Gordan coefficient is given by 
+k  

(LA, M A ; L ~ , M B ; L , M ] J , N ) =  ~ (LA, MA;LB, MBI),,~t)0,,I~;L, MIJ, N). (44) 
p . = - k  

The set {A~,NIN = - - J  . . . . .  +J} transforms cogrediently to the set of spherical 
harmonics of order J. Using 

(LAMA;L,MB;LMI00)=(LA L B L )  M A Ms ( -  1) LA-LB+L (45) 

we indeed find the expression (1 b) as a special case of (43), apart from a sign. 
An irreducible interaction tensor ®J of order J can be expanded as: 

O~(O)A, O)_a, R) = (2J + I) -'/2 ~ TJ(R) Ak, N(~A, O)--B, ~) ,  
A 

(46) 
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where A is the set of quantum numbers defined in table 1. Because of the Wigner- 

Eckart theorem the expansion coefficients T~,(R) (reduced matrix elements) are in- 

dependent of the magnetic quantum number N. 
It is possible to apply the multipole expansion and perturbation theory in order 

to derive long range expressions for T~(R), thus relating this quantity to monomer 

properties. A simple example of  such a procedure can be found in the appendix of 
ref. 179), where the induction contribution to the dipole moment (J = 1) of  an 

arbitrary Van der Waals dimer has been evaluated. 

Because not much is known experimentally about general interaction tensors, and 

especially not about their long range behaviour, we will not pursue this line of  
approach, but rather give a brief review of the existing work which has concentrated 

on two different tensors: the pair dipole (order 1 tensor) and the pair polarizability 

(order 2 plus order 0 tensor). 

5.2 Interaction Dipole Moments 

The dipole moment of  a Van der Waals dimer consists in principle of  three contribu- 

tions: the dipole moments of the two monomers and the interaction dipole 
moment. In the usual Van der Waals molecules the interaction dipole is in the order 

of 0.1 D 159~ which for a large part arises from induction. That is, permanent 

moments on the one monomer induce a dipole moment on the other. Obviously, this 

effect is absent in the case of a dimer consisting of two noble gases. Here the 
interaction dipole moment is an order of  magnitude smaller and is largely due to the 
short range effects exchange and penetration ls°~. 

The measurement of interaction dipoles by beam deflection lsl) gives an indication 

of the structure of the Van der Waals molecule. A recent example is given by Howard 

and coworkers 182~, who experimentally established that the interaction dipole of  
(CO2) 2 is less than 10 -2 D. Since it has sometimes been suggested 159'183) that 

the dimer is a T-shaped complex (a favourable configuration for quadrupole- 

quadrupole interaction, see above), they estimated the induction contribution to the 
dipole moment for this conformation (at R = 4.1 A) and found 0.18 D for this 

value. So they conclude that the dimer has most likely a staggered parallel 
configuration, which is in accordance with recent ab initio calculations :s4). 

Another experimental source for interaction dipoles is the measurement of  pressure 

induced absorption xsS). Strictly speaking this effect does not belong to the realm of Van 

der Waals complexes, because one measures here infrared radiation absorbed by 

unbound complexes. But since much can be learned about Van der Waals interactions 
from an interpretation of the data, we briefly review the work in this area. 

First it should be noted that most of the experimental work on infrared absorption 

of gas mixtures has been restricted to cases where the constituent molecules themselves 
are not infrared active, Much work has for instance been done on mixtures of  
noble gases 186) and noble gases with  H2 t87~. Noble gas mixtures show a broad band 

centered around 100 cm -1. This is due to absorption by the translational motion of 

two unlike atoms relative to their joint center of  mass. The same kind of  translational 
band has also been measured in H2-noble gas mixtures lsT'lss) and pure H 2 1as) 
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Also rotational bands, with transitions lying in the region from 370 to 8t0 cm -1, 

have been observed lss). It is parenthetically interesting to note that the study of the 

translational band in (Hz) 2 and H 2 -  He is of astrophysical interest, as the greenhouse 
effect on the outer planets is believed to be largely due to the translational band of 
these two dimers 189). (The temperature at the surface of these planets is about 

150 °K ~ 100 cm-1). In the case of gases containing hydrogen one also observes the 

fundamental v = 0 ~ I band. This transition becomes (weakly) allowed under the 

influence of the interaction with the collision partner. 
Much effort has been put into the explanation of the spectral line shapes 19°~, but it 

seems that the definite theory has yet to be established. In the meantime one can extract 
useful information from the first few moments of the spectral density, by applying the 

elegant theory developed by Van Kranendonk 191) and Poll and Van Kranendonk 19z). 

This theory relates the first moment to the derivative of the dimer dipole moment 

with respect to the intermolecular distance. The zeroth moment yields information 

about the square of the dipole moment, As this review is not the place to go 

extensively into the Van Kranendonk theory, we only note that, once the intermo- 
lecular potential surface and the interaction dipole field are known, - -  for instance by 

ab initio calculations - -  it is relatively easy to compute the moments of the 

spectral density. Since these are directly observable, the experiment of pressure 

induced absorption may serve as a check on the correctness of ab initio calculations, 
not only of the interaction energy, but also of the interaction dipole. 

The first ab initio calculations on interaction dipoles were performed by Matcha 
and Nesbet ~93). They considered the systems HeNe, HeAr and NeAr as "super- 

molecules" and did ordinary Hartree-Fock-LCAO-SCF calculations in the range 

R = 2.0 to 5.5a o. Because of the Hartree-Fock approximation they did not obtain 

the dispersion contribution to the dipole moment (cf. sect. 2), but only exchange, 

penetration and overlap-induction contributions. Their ab initio dipoles could be 

fitted quite well by a single exponential, which supported the assumption made ear- 

lier by Van Kranendonk 191). 

Later Byers Brown and Whisnant considered in detail the importance of dispersion, 
first theoretically 194) by deriving Uns61d type expressions for the leading R -7 terms 

and subsequently numerically for Hell  and Helle. (In the case of Helle the atomic 
contributions add up to zero, of course). At around the same time Lacey and Byers 
Brown 19s~ considered also exchange and penetration contributions (in first order of  

perturbation theory) in addition to dispersion. They considered HeNe, HeAr, NeAr 

and ArKr in the range 4.0-9.0%. Since the collision induced absorption is largely due 
to complexes with intermolecular distances close to the scattering diameter O "196~, 

it is interesting to compare the values of  the exchange dipole and the dispersion 
dipole at R = ~, (although the long range approximations which lead to the disper- 
sion values are subject to serious doubt at such a short distance). Lacey and Byers 

Brown find that, except for HeNe the two contributions have opposite sign and that 
the dispersion dipole is about an order of magnitude smaller than that due to 
exchange. 

Recent calculations by Berns et al. 179~ show that also for the He--H2 system the 

dispersion contribution is small. At long range it is completely dominated by induction, 

at short range by overlap effects. The calculations of Berns et al. have been performed 
by the VB approach mentioned above 63). No perturbation theory or multipole expan- 
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sion was applied, although the VB method makes it poSsible to interpret the results 

in the usual long range terms plus exchange and penetration. In this manner it was 
found that the VB contribution which corresponds in the long range to the R -7 

dispersion term completely failed to have an R -7 dependence from 3.7A (7%) 
inward. This was surprising as the corresponding VB induction term kept its R -4 

behaviour, predicted by long range theory, to much shorter distances. In any case, 
these VB calculations have shown that a very good description of the interaction 

induced dipole of the Hel l  2 complex requires only the inclusion of first order exchange, 
charge cloud penetration and - -  as the only second order term - -  induction. 

Since all these terms are accounted for in the supermolecule SCF approach such an 
approach seems to be ideally suited for routinely obtaining accurate dipole moments. 
However, when such calculations were undertaken in our institute 196) a (somewhat 

unexpected) difficulty arose. Interaction dipole moments appeared to be much more 

sensitive to the basis set superposition error than interaction energies, and hence large 
and well balanced basis sets had to be employed. It may well be that inadequate basis 

sets form the source for the unreliability of the Matcha-Nesbet results 193) at larger 

R-values. 
However, once one is aware of  the problem the basis set superposition error can 

easily be checked by a ghost molecule treatment 63' 1o8-110) Proceeding in this manner 

it was found 196) that the spectral moments computed from the SCF results for 

Hel l  z led to good agreement with the available experimental data. The outcome of 
the ab initio calculations also suggested parameters in the analytic representation of 

the dipole moment, which in a few respects differed considerably from those used so 

far in the interpretation of the experiments. When these new parameteres will indeed 

prove to describe the experiment better than the existing ones, it wilt be yet another 
example of  how the interplay of  ab initio calculations and experimental work can be 

useful. 

5.3. Pair polarizabilities 

The influence of Van der Waals interactions on the polarizability of interacting 
molecules manifests itself in deviations from the Clausius-Mosotti equation 197~, 
in the Kerr effect 198) and in collision induced light scattering 199), Although measure- 

ments of these effects are all performed on bulk systems in thermodynamical 

equilibrium and not on Van der Waals molecules per se, we will nevertheless say a 
few words about pair polarizabilities, because, just as in the case of the collision in- 

duced IR absorption, much can be learned about Van der Waals interactions from the 

comparison of experimental and computational results. 
In a pioneering paper 2°°~ Jansen and Mazur established the quantum mechanical 

basis for the effect of molecular interactions on the polarizability of spherical atoms. 
Using long range theory (no intermolecular exchange, Rayleigh-Schr6dinger pertur- 

bation theory and only the first term in a multipole expansion of the intermolecular 
interaction) they derived an expansion of the pair polarizability as a power series in 
R - I .  The first two terms (in R ° and R -3) are the same as those obtained from classical 
electrostatics, the quantum mechanical effect of dispersion appears in the third (R -6) 

and higher terms. In a subsequent paper 197) Mazur and Jansen applied their result to 
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the dielectric constant appearing in the Ctausius-Mosotti equation, making a virial 
(density) expansion of this constant. They showed that the dielectric constant 
depends on the trace of the pair polarizability tensor, or rather, on the change in this 
trace caused by varying R. So, the dielectric constant provides information about the 
isotropic (J = 0) part of the polarizability tensor. (It is interesting to note that the depo- 
larized Raman intensity depends on the anisotropic (J = 2) part of the polarizability 
tensor, and hence it is also experimentally convenient to separate the polarizability 
tensorinto irreducible components.) When later dielectric second virial coefficients 
B~ were measured 201,2°2j for He, Ne, Ar, Kr, H 2 and N2, it was found that the 

results predicted by long range theory were considerably at variance with the 
experimental findings. It was therefore suggested 2°1~ that short range effects could 
not at all be neglected. And indeed, a finite field Hartree-Fock supermolecule calcu- 
lation on He 2, (including exchange and penetration) 2°a) yields B~ = --0.093 cm 6 mol -2 
at room temperature, compared to the experimental result B~ = - - 0 . 0 6  + 0.04. 
(The long range result has a positive sign, indicating that long range theory 
predicts the isotropic polarizability ~ to increase with decreasing distance R, whereas 
Qt decreases 2°3) in the range of physical interest.) 

Other ab initio calculations on the Hartree-Fock level of B~ for He z 204-206) also 

gave good agreement with the experimental results at room temperature, but at 4 °K 
a serious disagreement between theory and experiment appeared, which cannot be 
explained by approximations in the calculations. It has been suggested that 
the experimental data at 4 °K have to be reinterpreted 2°4). Recent ab initio calcu- 
lations including correlation 2°7~ give B~ = --0.06 cm 6 mol-2 at 322 °K; so this value 

is now firmly established, experimentally as well as theoretically. 
Whereas the dielectric constant probes essentially the R-dependence of the 

isotropic polarizability, the collison induced depolarized Raman scattering depends 
on the increment in the anisotropy of the polarizability with varying R. Depolarized 
Raman scattering of noble gases has first been observed by MacTague and Birn- 
baum 2°8~ in 1968, and later investigated for many gases 2°9). Very recently also pola- 
rized Raman intensities have been measured for Ne 2 210, 211) and He 2 212,213) 

It is remarkable that short range forces, such as exchange and penetration, seem 
to have much less influence on the anisotropic than on the isotropic part of the 
polarizability. This has been observed in the interpretation of Raman data 213) as well 
as in the results of ab initio calculations including correlation 2°7). 

Several calculations of the polarizability tensor of noble gas dimers have been 
made 214-216) which do include charge penetration, but not exchange. The work by 
Oxtoby and Gelbart 214) is based on the concept of polarizability density. However, 
as pointed out by Sipe and Van Kranendonk 217), this concept, borrowed from 
macroscopic dielectric theory may lead to erroneous results for moments of order 
higher than 1. Similar criticism has been raised by Buckingham and coworkers 216~, 
who have introduced instead a model based on perturbed (by the external field) atomic 
charge densities. They have calculated the collision induced polarizabilities of He 2 
and Ar 2, without exchange, and have found an anisotropy which is in excellent 
agreement with recent experimental data for He 2 213) exhibiting again that exchange 
does not affect the anisotropy much at distances of physical interest. 

Finally, it must be pointed out that theory and experiment are not yet in complete 
agreement with regard to the trace of the pair polarizability of He 2. The most 
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complete quantum chemical treatment to date 2°v), one including correlation, is not 
fully consistent with recent polarized Raman data 213), which is surprising, since less 
complete (Hartree-Fock level) quantum chemical treatments 2°a'2~'21s) account 

very well for the observed data 21a). Thi~ is the more surprising as the correlation 
calculations give complete agreement with the experimentally determined second 
dielectric virial coefficient B~, whereas the calculations on the Hartree-Fock level 
are here offby about 30 % (see above). An explanation for this discrepancy can perhaps 
be found in the fact that B~ depends linearly on the trace of the polarizability tensor, 
whereas the polarized Rarnan intensities are proportional to the square of this trace. 
Hence the two experiments constitute different tests on the trace. In the case of Ne 2 
there is still considerable disagreement between experiment 211) and ab initio calcula- 
tions 218~, for the isotropic as well as for the anisotropic parts of the polarizability. 
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6 Appendix 

Proof of the invariance of the function Aa(ooA, ~-s, O_) 

Consider a molecule with orientation ~1 - {~1, I]t, 71 }. When we rotate this molecule 

over the Euler angles _~, the set of Euler angles _o3 2 describing the new orientation 

of  the molecule, may be obtained from the matrix equation: 

R(_o.)2) = R=((o) R(_oO, (A1) 

where _R(.) ~ SO(3) stands for a 3 x 3 rotation matrix. 
The Wigner D-matrices, defined in equation (2), belong to the Hilbert space 

L2[SO(3)]. With a rotation _o3 of the molecule one can associate an operator I~(_~) on 

this Hilbert space by defining: 

R(_~) DL(~2) = DL(_o,) (A2) 

(This is Wigner's convention.) Realizing that DL(.) is a short-hand notation for 

D_r(R_(.)), and recalling that _D is a representation of SO(3), we find, invoking (A1), 

~.(~) DL(_~) = DL(o)-'D'-(o2) (A3) 

or: 

DW,M(~) DM,,K(_~2)- 
M ~ 

(A4) 
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F rom (A4) we draw the important conclusion that every column of  a D-matrix 

is an irreducible tensorial set of  order L, transforming contragrediently to the set of  

spherical harmonics of  the same order. Indeed, if we take K = 0, and use that17): 

Dh.o(~, 13, 3') = Ch([]a)*, (A5) 

we find the complex conjugate o f  the usual transformation equation for spherical 

harmonics. 
The Wigner 3j-symbol is often defined as the coefficient coupling a product of  three 

irreducible tensors (of the same variance) to an invariant 46). Invoking this definition, 

it immediately follows that the function AA(_~ A, 98, ~)  is an invariant. 

However, a more explicit p roof  is obtained by rotating the D-matrices and the 

spherical harmonics appearing in the definition (1 b) of  AA(~ A, -~B, -~) by using Eq. A4, 

and subsequent application of  the following relation17): 

( L A  La L ) LA LB L (LA LB LM) (A6) 
M~ M~) M' = ~" DM-~'MA(Oa--)DMB'Ma(--O'))DM"M((0) MA Ma 

MA, MB, M 

This shows that rotation of  the dimer over _o leaves the function AA(O.)A, _OB, ~) 
invariant. 
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