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Electronic transport properties of warm dense matter, such as electrical/thermal 

conductivities and nonadiabatic stopping power, are of particular interest to geophysics, 

planetary science, astrophysics, and inertial confinement fusion (ICF). One example is 

the α-particle stopping power of dense deuterium–tritium (DT) plasmas, which must be 

precisely known for current small-margin ICF target designs to ignite. We have 

developed a time-dependent orbital-free density functional theory (TD-OF-DFT) method 

for ab initio investigations of the charged-particle stopping power of warm dense matter. 

Our current dependent TD-OF-DFT calculations have reproduced the recently well-

characterized stopping power experiment in warm dense beryllium. For α-particle 

stopping in warm and solid-density DT plasmas, the ab initio TD-OF-DFT simulations 

show a lower stopping power up to ~25% in comparison with three stopping-power 

models often used in the high-energy-density physics community.  

PACS numbers: 52.25.Fi, 52.25.Tx, 52.65.-y 
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 Electronic stopping of swift ions by materials has been studied since the 

beginning of the 20th century [1–3]. The process is relevant to many applications, 

including biomedical imaging [4], ion therapies [5], radiation protection [6], material 

damage [7], and many astronomical processes such as stellar and disc accretion [8]. One 

specific example is the α-particle stopping power of dense deuterium–tritium (DT) 

plasmas [9–11], where an uncertainty of ~20% in stopping power could lead to a ±50% 

variation in the energy required for ignition [12]. Accurate stopping power is therefore a 

key component for hydrodynamic modeling of ICF, astrophysics, and other fusion 

processes.  

 A combination of simplified models, analytical limits, and semi-empirical 

approaches have historically determined the stopping-power of materials [11,13–16]. For 

low-temperature or high-density systems, first-principles methods based on a quantum 

mechanical treatment of the electrons provide accurate static, transport, and conductive 

properties. These methods include finite-temperature density functional theory (DFT)-

based quantum molecular dynamics (QMD) [17–22], path-integral Monte Carlo [23–25], 

and quantum Monte Carlo [26]. In particular, the Kohn–Sham (KS) orbital-based DFT 

method has been extensively used to calculate transport properties for various materials, 

including both ionic and electronic transport in the time-independent formalism 

[18,19,22,27–36]. In addition, the Kohn–Sham time-dependent DFT method has recently 

been applied to x-ray Thompson scattering (XRTS) [37] and the stopping power of 

materials well below the Fermi temperatures (TF) [38]. 
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Strong many-body coupling and quantum electron-degeneracy effects play 

essential roles in determining material properties in the WDM regime [39-45], which 

renders the traditional plasma-physics models no longer valid. Ab initio approaches 

which can treat crossover regimes, without system specific corrections, are thus highly 

desirable. Unfortunately, extending the Kohn–Sham DFT approach beyond TF becomes 

computationally difficult because of the large number of occupied eigenstates required. 

For example, recent stopping-power experiments [46,47] performed with warm dense 

plasmas (T > TF) present particular difficulties. Despite these and other experiments [48–

50], as well as theoretical studies [14-16,51–53], a stringent test of stopping-power 

models with first-principles simulations in the WDM regime remains elusive. 

 In this Letter, we offer a prescription to extend DFT methods for stopping power 

to high temperatures and densities through a time-dependent orbital-free (OF) 

formulation. In addition, we introduce a current-dependent (CD) dynamic kinetic energy 

functional that can initiate dissipation critical to near Bragg peak stopping power. We 

verify this method by calculating the proton stopping power of warm-dense Be targets 

recently determined by well-characterized experiments [46]. We then compare our results 

with predictions from three stopping-power models, Li–Petrasso [11] (LP), Brown–

Preston–Singleton [14,15] (BPS), and RPA Dielectric Function [16] (DF), for both the Be 

experiment and the proposed α-particle stopping in DT.  

The orbital-free formalism [54] is based on the original idea of DFT, that is, the 

total free-energy of a multi-electron system can be written as a functional of electron 

density Fe [n(r)]. We define a “collective orbital” ψ(r) as |ψ(r)|2 = n(r), where n(r) is the 

total electron density. Note that the introduction of the single “orbital” rather than density 
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is for numerical convenience. Using the normalization constraint,  ( ) 2 d ,Nψ =∫ r r  for N 

total electrons we can minimize the free-energy functional with respect to ψ(r), through 

( ) ( ){ } ( )2
e d 0.F nδ μ ψ δψ− =⎡ ⎤⎣ ⎦ ∫r r r r  The Lagrange multiplier, μ, is the chemical 

potential of the system. The minimization procedure yields a nonlinear Schrödinger-like 

equation of the form Hψ(r) = μψ(r), with the “chemical-potential operator”, H, defined 

as: 
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with FTF the Thomas–Fermi (TF) kinetic-energy functional and Fxc the exchange-

correlation energy (XC) functional, usually determined in a local density approximation 

[55]. The third and fourth terms in Eq. (1) describe potentials from electron–ion and 

mean-field electron–electron Coulomb interactions, respectively. The Laplacian operator 

arises from the minimization of the von Weizsäcker term [56]. We refer to this 

Hamiltonian as TFW. 

 To extend the OF formalism to time-dependent interactions, we introduce the 

velocity field, u(r), or current, J(r) ≡ n(r)u(r), as an additional variable. The time-

dependent “collective orbital”, ( ) ( ) ( ),, , ,iS tt n t eψ ≡ rr r  contains the information from 

the scalar velocity field, ∇S(r) = u(r). The “orbital” for all electrons is only a function of 

electronic density and velocity, which define the time dependent electronic system 
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according to the Runge-Gross theorem and the continuity equation. As an analog to the 

time-dependent Schrödinger equation, the TD-OF-DFT equation can be written as 

 ( ) ( ) ( ) ( )2
eff dyn

, 1 , , ,
2

t
i V t V t t

t
ψ

ψ
∂ ⎡ ⎤= − ∇ + +⎢ ⎥∂ ⎣ ⎦

r
r r r   (2) 

with the nonlinear effective potential defined in Eq. (1), given an instantaneous electron 

density, ( ) ( ) ( )eff eff ,, .n tV t V= rr r  To capture the low-frequency (ω), long-wavelength 

(q), current response we introduce a CD dynamic kinetic energy potential (functional 

derivative): 
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derived from the inverse dynamic Lindhard susceptibility. F is the Fourier transform 

operator, and J%  is the Fourier-transformed current. KF(r,t) is a generalized Fermi 

momentum which depends on the time-dependent density, KF(r,t) = [3π2n(r,t)]1/3. For 

plasmas with a high degeneracy parameter, 2/ 2 / ,F B FT T k T kθ ≡ =  a temperature 

dependence is required in the TF and the CD functionals. We replace the zero-

temperature TF functional with the TF-Perrot functional [57] and introduce a scaling 

function for the CD functional: 

 ( ) ( ) ( )
1/

dyn dyn, , 1 , , , , 0 .
bbV t T a t T V t T⎡ ⎤= + Θ =⎢ ⎥⎣ ⎦

r r r   (4) 

Parameters a = 2.865 and b = 1.8 are determined from fitting the inverse finite 

temperature Lindhard susceptibility over a range of temperatures and densities [58]. We 

define a generalized degeneracy parameter that depends on the time-dependent density 
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( ) ( )2
F, , 2 , .Bt T k T KΘ =r r t  This approach yields the dynamic analog to the development 

of static (ω = 0) kinetic energy functionals [59,60]. If the TF, XC, and CD functionals in 

Eq. (1) are ignored, then Eq. (2) is equivalent to the Madelung equation [61]. More 

generally, Eq. (2) is an extended quantum-hydrodynamics formulation [58,62–66]. 

 For the periodic systems considered, we can solve Eqs. (1)–(4) using a split-

operator method [67] for both the background plasma and the projectile. We then 

calculate the stopping power as the average force on the projectile [38]. Note that the TD-

OF-DFT method is all-electron and all-ion, treating the electronic structure of the whole 

system with the same level of theory. No “partial-charge” or “bound vs free” electrons 

need to be defined for the projectile or bulk ions. We use a range of 64 to 1024 atoms in a 

periodic rectangular box (2–32:1:1) of up to 130-Å length along the long side, depending 

on the projectile velocity. Box size, grid density, and time step are converged in our 

calculations. Additionally, for high projectile velocities, p F p ,k mv   we calculate the 

electron–ion force in real space since image effects can become substantial even for the 

large box sizes.  

 We first simulate the recent stopping-power measurement in warm dense Be [46]. 

The experiment was conducted on OMEGA with a 532-μm-long solid Be plug, 

isochorically heated by x rays produced by a laser-irradiated Ag-coated CH tube. A 

typical temperature of kBT ≈ 32 eV is inferred from XRTS in a similar experimental setup 

[68]. A D3He-filled glass capsule is imploded to generate the ~15-MeV protons as the 

charged-particle source for probing the warm dense Be target. Once the protons passed 

through the Be target, the spectra of decelerated protons were recorded. At this condition 

(ρ = 1.78 g/cm3 and kBT = 32 eV), the Be plasma is in its fluid phase [69] with 
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degeneracy and coupling parameters of θ ≈ 2 and 0.3Γ  . To start our TD-OF-DFT 

calculation we randomly take snapshot of the Be plasma as the initial condition, then 

launch the energetic testing proton to move across it. To illustrate, we show in Fig. 1 the 

time-dependent electron densities on the x–y plane containing the proton (E0 = 1 MeV). 

The high-density “red spots” represent the locations of the background Be ions, while the 

proton (marked by the arrows) moves toward the +x direction.  

 We first examine the general effect of our CD functional on stopping power near 

the Bragg peak. In Fig. 2(a), we compare the energy-dependent stopping powers of Be 

for the CD (Vdyn ≠ 0) and the TFW (Vdyn = 0) methods, averaged over multiple initial 

positions. At velocities near the Bragg peak, the plasma degeneracy plays an important 

role. We observe that the TFW shows a complete loss of electronic stopping power at low 

velocities. The CD result shows a linear electronic stopping power at low velocities, 

which is qualitatively observed in theoretical and experimental stopping-power spectra 

[11,13,47,70,71]. At velocities significantly higher than the Bragg peak velocity, the 

TFW and CD results begin to converge. As the proton traverses the plasma, it 

accumulates asymmetric electron density around itself with higher density behind the 

proton and some small-density perturbation waves excited in front. This asymmetric 

electron charge distribution provides a “drag” force that slows the proton, this being the 

dominant mechanism for high-velocity stopping. The CD potential creates an effective 

“viscosity” that dampens the oscillations. Physically, this dampening is caused by 

electron-hole excitations [58], not explicitly representable in an orbital-free approach, but 

implicitly affected by the CD functional. In the supplemental materials [72], a movie of 
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the real-time electron dynamics is shown comparing the TFW and CD approaches for a 

proton energy of 0.1 MeV.  

 Launching TD-OF-DFT runs with different proton energies ranging from 2 to 15 

MeV, we obtain the proton stopping power of the warm dense Be plasma. The converged 

results are shown in Fig. 2(b). For each energy point, we have statistically averaged over 

20 snapshots from different plasma configurations. The error bar in Fig. 2(b) 

characterizes the variation from the 20 runs. Our results are compared to the three 

stopping-power models of LP [11], BPS [14,15] as described in Ref. 15, and DF [16] as 

described by Eqs. (1) and (16) of Ref. 16, all with full electron density. We found that 

neither screening of the projectile charge nor applying a classical cutoff improved the DF 

results. For the experimentally accessible energy range, we provide a more-detailed 

comparison in the inset of Fig. 2(b). The stopping power calculated by TD-OF-DFT is 

slightly lower than predictions of the LP model (blue solid line) and the BPS model (red 

dashed line) by ~5% and ~11% respectively, and higher than predicted by DF (orange 

dash-dotted line) by ~20%. To directly compare with experimental measurements, we 

take the stopping-power results from TD-OF-DFT calculations and compute the energy 

spectrum after the protons have traversed the 532-μm Be target. The spectral 

comparisons between calculations and experiments are made in Fig. 2(c). The proton 

source from the experiment is centered at ~15 MeV, as shown by the black dashed line in 

Fig. 2(c). After passing through the Be target, the protons are downshifted to a lower 

energy peaked near E ~ 12.2 MeV. For visual clarity we only plot the TD-OF-DFT, LP, 

and BPS spectra. The measured downshifted spectrum (purple long dashed line) is in 

good agreement with the TD-OF-DFT calculation (within ~20 keV), while both LP and 



9 

BPS models predict somewhat larger downshifts than experiment. Namely, the proton 

peaks predicted by LP and BPS models are further downshifted by ~100 keV and ~200 

keV, respectively, than both the experiment and the TD-OF-DFT calculation.  

 As a further example, we consider α-particle stopping in warm-dense DT 

plasmas. To ultimately obtain experimental verification of stopping-power models, a 

uniform and well-characterized DT target is needed. The platform for integrated 

implosion may not be ideal due to its inhomogeneity. On the other hand, we would like to 

have stopping-power studies relevant to hot-spot and compressed DT-shell conditions in 

ICF. A possible solution is to scale the warm solid-density targets to have similar 

coupling and degeneracy parameters to those of ICF ignition targets. To this end, we 

envision a 50-μm-thick solid DT slab (ρ = 0.25 g/cm3) that can be isochorically heated to 

kBT = 10 eV by laser-produced soft x rays (similar to the Be case). XRTS techniques 

[68,73,74] can be used to measure the plasma temperature. At these conditions, we have a 

degeneracy parameter θ ≈ 2.4 and coupling parameter Γ ≈ 0.6, which are close to the 

compressed DT-shell condition in ICF targets. With a DT-filled exploding-pusher target 

implosion, the α-particle source can be generated separately for the stopping-power 

measurements. Bearing such an experimental scenario in mind, we have performed our 

TD-OF-DFT calculations with α-particle energies ranging from 0.025 to 4 MeV. 

 The simulation results are shown by Fig. 3(a), in which the LP, BPS, and DF 

models are also compared with our TD-OF-DFT calculations. The detailed comparisons 

are shown in the inset of Fig. 3(a), which indicates the stopping power from TD-OF-DFT 

calculations is smaller overall than LP, BPS, and DF models by ~16%, ~25%, and ~15% 

respectively. The TD-OF-DFT results predict greater stopping power than all the models 
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near the Bragg peak. For such moderately coupled and partially degenerate plasmas, 

many-body effects become more difficult to account for in analytical models. Similar to 

the Be case, we also plot the spectral comparisons in Fig. 3(b) for the downshifted α 

particles. The α-particle source (yellow bars) has a central energy of E0 = 3.5 MeV with a 

thermal width of ΔE ≈ 200 keV. The downshifted α-particle spectra predicted by the LP 

model (blue) and the BPS model (red) peak at Edown ≈ 1.6 MeV and Edown ≈ 1.3 MeV, 

respectively. In contrast to these model predictions, our TD-OF-DFT calculations (green) 

give a downshifted peak at Edown ≈ 1.8 MeV. These large differences (ΔEdown = 200 to 

500 keV) between the stopping-power models and TD-OF-DFT calculations may readily 

facilitate experimental verifications since they significantly exceed the current 

experimental energy resolution (ΔE ~ 20 to 50 keV).  

 In summary, we have presented a time-dependent orbital-free density-functional-

theory formulation to investigate charged-particle stopping power of warm-dense 

plasmas. We developed a current dependent functional critical to describe the near-peak 

stopping power. Our comparison to recently measured downshifted spectra of energetic 

protons passing through the warm dense beryllium plasma  agrees to within ~20 keV, 

while the LP and BPS models somewhat overestimated downshift by ~100 keV and ~200 

keV, respectively. Moreover, our TD-OF-DFT calculations indicate that the α-particle 

stopping power of warm dense DT is less than the LP, BPS, and DF models by ~15% to 

25% in the ICF-relevant regime. A possible experimental scenario has been identified, 

that is, to use a solid DT slab (ρ = 0.25 g/cm3) isochorically heated by laser-produced 

soft x rays to kBT = 10 eV. Such a target can have the similar coupling/degeneracy 

condition of the compressed DT shell in ICF ignition targets. If verified by well-
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characterized experiments, the lower stopping power of warm dense DT predicted by 

TD-OF-DFT simulations can have significant implications on current low-margin ICF 

target designs. These results can readily facilitate additional experiments to further 

validate/advance our knowledge of transport properties of warm dense matter existing in 

planetary cores, astrophysical objects, and ICF.  
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Figure captions 

 

FIG. 1. Snapshots of electron densities in a zoomed window on the x–y plane from TD-

OF-DFT simulations (with CD) of a 1-MeV proton traveling through a warm dense Be 

plasma of kBT = 32 eV and ρ = 1.78 g/cm3. 

 

FIG. 2. (a) A comparison of TD-OF-DFT calculated proton stopping power by a kBT = 

32 eV and ambient-density Be plasma, with (CD) and without (TFW) current dependent 

dynamic potential, from a single MD snapshot and averaged over initial projectile 

positions; (b) the TD-OF-DFT calculated proton stopping power in high velocities (away 

from the Bragg peak) in comparison with three stopping-power models of LP [11], BPS 

[14,15] and DF [16]; and (c) comparisons of the downshifted proton spectra among the 

experimental measurements [46], predictions of LP and BPS models, and the TD-OF-

DFT calculations. 

 

FIG. 3. (a) The α-particle stopping power of warm dense DT plasmas (ρ = 0.25 g/cm3 

and kBT = 10 eV) predicted by TD-OF-DFT calculations (green circles) in compared to 

the LP, BPS and DF models. (b) The calculated downshifted spectra of α particles 

passing through the 50-μm DT slab at the same warm dense condition from both TD-OF-

DFT simulations (green) and the two stopping-power models (red and blue). 
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FIG. 1. Snapshots of electron densities in a zoomed window on the x–y plane from TD-
OF-DFT simulations (with CD) of a 1-MeV proton traveling through a warm dense Be 
plasma of kBT = 32 eV and ρ = 1.78 g/cm3. 
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FIG. 2. (a) A comparison of TD-OF-DFT calculated proton stopping power by a kBT = 
32 eV and ambient-density Be plasma, with (CD) and without (TFW) current dependent 
dynamic potential, from a single MD snapshot and averaged over initial projectile 
positions; (b) the TD-OF-DFT calculated proton stopping power in high velocities (away 
from the Bragg peak) in comparison with two stopping-power models of LP [11], BPS 
[14,15] and DF [16]; and (c) comparisons of the downshifted proton spectra among the 
experimental measurements [46], predictions of LP and BPS models, and the TD-OF-
DFT calculations. 
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FIG. 3. (a) The α-particle stopping power of warm dense DT plasmas (ρ = 0.25 g/cm3 
and kBT = 10 eV) predicted by TD-OF-DFT calculations (green circles) in compared to 
the LP, BPS and DF models. (b) The calculated downshifted spectra of α particles 
passing through the 50-μm DT slab at the same warm dense condition from both TD-OF-
DFT simulations (green) and the two stopping-power models (red and blue). 

 


