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Abstract
In this work, we study theoretically the elastic properties of the orthorhombic (Pnma)
high-pressure phase of IV-B group oxides: titania, zirconia and hafnia. By means of the
self-consistent SIESTA code, pseudopotentials, density functional theory in the LDA and GGA
approximations, the total energies, hydrostatic pressures and stress tensor components are
calculated. From the stress–strain relationships, in the linear regime, the elastic constants Ci j

are determined. Derived elastic constants, such as bulk, Young’s and shear modulus, Poisson
coefficient and brittle/ductile behavior are estimated with the polycrystalline approach, using
Voigt–Reuss–Hill theories. We have found that C11, C22 and C33 elastic constants of hafnia and
zirconia show increased strength with respect to the experimental values of the normal phase,
P21/c. A similar situation applies to titania if these constants are compared with its normal
phase, rutile. However, shear elastic constants C44, C55 and C66 are similar to the values found
in the normal phase. This fact increases the compound anisotropy as well as its ductile behavior.
The dependence of unit-cell volumes under hydrostatic pressures is also analyzed. P–V data,
fitted to third-order Birch–Murnaghan equations of state, provide the bulk modulus B0 and its
pressure derivatives B ′

0. In this case, LDA estimations show good agreement with respect to
recent measured bulk moduli of ZrO2 and HfO2.

Thermo-acoustic properties, e.g. the propagation speed of transverse, longitudinal elastic
waves together with associated Debye temperatures, are also estimated.

1. Introduction

Oxides of group IV show a common group of properties such
as corrosion resistance and high hardness. Their high dielectric
constants make them potential material for the development of
dielectric gates of sub-micrometer CMOS transistors.

On the other hand, the elastic properties are related to
the fundamental quantities of the solid such as interatomic
potentials, phonon spectra and equations of state, in addition to
specific heat, thermal expansion, Debye temperature, melting
point and Grüneisen parameters. The response of the crystal
to external forces characterized by bulk modulus B , shear
modulus G, Young’s modulus E and Poisson’s coefficient ν

can be determined from the elastic constants Ci j . The ductile–
brittle properties of materials are also closely related to the
response to shear along slide planes, and is affected by the

changes from contributions to the total energy caused by these
deformations. The shear elastic constants C44, C55 and C66

provide information regarding the bonding properties between
adjacent planes of atoms and the anisotropic character of
bonds. They are, therefore, useful in determining the structural
stability of the crystal. Accurate experimental determinations
of elastic constants need large pure single crystals which,
in the case of many ceramics, are difficult to obtain. Thus
ab initio theoretical studies which provide elastic properties
of single and polycrystals are appropriate. A very important
application is the knowledge of biaxial stresses caused by the
epitaxial growth of thin films on a given substrate, as in the
case of deposition of oxides, different to SiO2, on silicon [100]
wafers, used in the electronics industry. These stresses can be
calculated by the knowledge of the biaxial elastic constants and
heterostructure lattice mismatch. In the case of HfO2, ZrO2
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and TiO2 such ab initio calculations in the high density phase
Pnma are scarce [1, 2] in the literature.

At room temperatures and at pressures above 30 GPa,
zirconia and hafnia are transformed into an orthorhombic
structure of cotunnite type named OII (spatial group
Pnma) [3–11], which is quenched after decompression,
with an equilibrium volume of 120.6 Å

3
and 118.6 Å

3
,

respectively [12]. Recently, it has been reported that a
cotunnite structure in titanium oxide, currently the hardest
naturally known oxide, has been obtained. This phase
is synthesized at 48 GPa and 1900–2100 K with lattice
parameters a = 5.162 Å, b = 3.074 Å and c = 5.942 Å,
and a volume of 94.28 Å

3
, and is one of the least compressible

and toughest polycrystalline materials reported [13]. The
aim of this work is to characterize the mechanical behavior
represented by the elastic constants of the single-crystal Pnma
phase. In order to compare the mechanical properties measured
in ceramics of polycrystalline nature, we use Voigt–Reuss–Hill
approximations [14–16].

In low symmetry systems, elastic constant calculations
are scarce. This is due to the fact that, in addition to highly
accurate methods able to evaluate small energy differences
and/or the direct stress calculation, an appreciable number of
small symmetry breaking distortions is required to determine
a complete set of independent elastic constants. These,
moreover, are increased as the system symmetry is reduced. In
the cases therefore studied, with orthorhombic structure, there
are a total of nine Ci j .

ZrO2 and HfO2 oxides are also currently investigated as
dielectric or structural thin films, in which they are epitaxially
grown over substrates such as metals or monocrystalline Si. In
such a process, lattice mismatch can compromise the stability
of the film. Therefore it is necessary to know the elastic
constants beforehand, so that the film stresses due to biaxial
deformations can be estimated.

2. Details of calculations

The SIESTA code [17] is used in this paper to calculate
total energies, atomic forces and stresses solving the
electronic quantum-mechanical equations using the density
functional approach in the local density approximation (LDA)
parametrized by Ceperley–Alder [18] and the generalized
gradient approximation (GGA) of Perdew–Burke–Ernzerhof
(PBE) [19]. The interaction between electrons and core ions
are simulated through separable Troullier–Martins [20] norm-
conserving pseudopotentials. The basis set is constructed
with pseudoatomic orbitals (PAOs) of Sankey–Niklewski type,
generalized to include multiple-zeta decays which are used to
represent the valence wavefunctions.

We have generated the atomic pseudopotentials for the
atoms entering in each compound. In the case of the Hf
atom, we found that it is not necessary to include the Hf 4f
shell in the valence set to achieve reliable results even in the
more demanding case of the volume collapse of the cotunnite
phase (the atomic volume decreases by 13%) (see [21, 22]).
However, we found it is important to include partial core
correction to Zr and Hf pseudopotential generation in order

to find reliable equilibrium volumes with different basis sets.
Thus, we have generated the atomic Zr pseudopotentials
using the [Kr] 5s2 4d2 atomic configuration and for Hf
pseudopotentials the [Xe4f14]6s2 5d2 atomic configuration.
The cutoff radii selected for both atomic pseudopotentials were
2.7, 2.9 and 2.25 au for the s, p and d orbitals, respectively.
For oxygen we have used 1.15 au for the s and p channels and
0.8 au for the d and f channels, respectively, and for Ti the 1.7,
1.6 and 1.6 au for the s, p and d channels, respectively. The
Ti pseudo-atom is represented by a +2 ionized ion, in which
valence set electrons are in a 3s2 3p6 3d2 configuration. This
set together with an added channel of 4s2 electrons provide
12 electrons in the compound’s electronic structure. In order
to improve simplicity and efficiency, these pseudopotentials
are transformed according to the methodology prescribed
by Kleinman–Bylander [23] (see [21, 22]). To obtain the
elastic constants, the equilibrium structural parameters for
these oxides in the cotunnite phase were initially found
by minimizing energy, through atomic coordinates and cell
relaxations. The Kohn–Sham eigenstates were expanded in
a numerical orbitals basis set. Our calculations are based on
extensive testings we previously developed with the SIESTA
code [21] in HfO2 phases utilizing different basis sets: double-
zeta (DZ), double-zeta polarized (DZP), single-zeta (SZ) and
single-zeta polarized (SZP) and with different degrees of
atomic orbital confinement. In that work [21], the best
compromise between precision and efficiency was found with
the utilization of the SZ base in hafnia if it is combined
with pseudopotentials in which metal atoms include partial
core corrections. These findings also apply here to the ZrO2

compound and in the case of Ti if its 3p electrons are included
in the valence set. This SZ base and LDA have shown
that they provide reliable results in the search of structural
parameters as well as in relative energies in the treatment of
polymorphic hafnia, zirconia and titania. A detailed study in
HfO2 polymorphs [21] shows its capabilities in the description
of enthalpies and other structural parameters, e.g. atomic
coordinates and cell parameters when compared to other first-
principle calculations [22, 24]. In that study [21], and also
found here, it shows that structural parameters (axes lengths
and equilibrium volumes) and bulk modulus calculated in the
Pnma phase using SIESTA with SZ and DZ basis sets differ
by less than 1% and 3%, respectively. A uniform spatial grid
equivalent to a plane wave cutoff energy of at least 900 eV
was used here to project the charge density and calculate
the exchange, correlation and Hartree potentials. All GGA
calculations here shown are developed with the DZ basis set.
Integrations in first BZ were performed using equi-spaced 50–
75k-point grid.

The SIESTA method allows the calculations of total
energies to be carried out in crystalline structures with arbitrary
symmetries, and it includes stress tensor calculations, as
detailed in [17].

In the present work, to obtain the nine independent Ci j

elastic constants, the stress–strain curves were found in several
crystallographic directions in the Pnma crystalline phase,
using a set of strains as described in [25].

During the simulation, each stress–strain curve was de-
termined by uniformly increasing the amount of deformation,
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and allowing the relaxations of all internal atomic coordinates
by means of the conjugate gradient (CG) technique.

The relaxation process was carried out until the forces
on each atom and cell pressures were below 0.04 eV Å

−1

and 0.1 GPa, respectively. Each system was deformed
starting from the minimum energy configuration. From
our understanding, this is the first time that elastic constant
determinations have been presented for the TiO2 oxide in
the Pnma phase with a first-principles method that utilizes
a localized basis to represent the valence electrons. These
elastic constants were previously estimated in ZrO2 and HfO2

with the empirical model potentials (EMP), fitted to elastic and
vibrational properties of the three ambient pressure zirconia
lattices by Mirgorodsky–Quintard [12], the ZrO2-Pnma phase
studied by Lowther [36] and we also show here an advance
of the work [27] developed on TiO2 with the accurate all-
electron ab initio code NFP-LMTO [28, 29]. In this last
case, the Ti atom was studied with the help of the frozen
overlapped core approximation (FOCA) approach, in which
the 3p6 semicore electrons are kept frozen in the core while
its wavefunction tails are allowed to interact with neighboring
atoms. Therefore, 3s2, 3d2 electrons were included in the
valence set. This electronic configuration was applied to
the very well characterized TiO2 in the fundamental rutile
structure, and it was shown to be a proper selection in the
calculation of equilibrium volume, lattice constants, elastic
stiffnesses and bulk modulus. These physical constants are in
agreement with theoretical and experimental values (see [33]
and references therein). Extensive studies on TiO2 by Muscat
et al [33] have shown that its structural parameters are well
accounted for with all-electron linear combination of atomic
orbitals and LDA (CRYSTAL-98 code, LCAO-LDA) as well
as pseudopotentials, plane waves and LDA approximations
(PW-LDA), if, in the case of the utilizations of the Ti
pseudopotential, short core Ti atoms are utilized. Our tests
of SIESTA-LDA in the TiO2 rutile structure have shown
that a, b, c cell parameters and bulk modulus agree with
previous accurate ab initio calculations to 1% (cell axes) and
5%, respectively. The utilization of NFP-LMTO-LDA code
improves a little, providing 0.5% and about +5% accuracy
with respect to a, b and c at B = 230 GPa measured by neutron
diffraction and x-ray methods [34], respectively.

3. Procedure for the elastic constant determinations

The orthorhombic Pnma phase, denoted cotunnite, belongs
to the group IV-B oxides and has three lattice parameters a,
b and c, with Bravais lattice vectors (a, 0, 0), (0, b, 0) and
(0, 0, c). This structure is shown in figure 1. By applying
a small set of deformations, the stress components directly
calculated by the code are associated with the corresponding
stress components determined by the linear relation between
stress–strain provided by the elasticity theory.

The stress tensor components are related to the strain
tensor elements through the generalized Hooke’s law, which
can be expressed as [30]

σi j = Ci jklεkl ⇒ σi = Ci jε j ⇒ −→σ = ̂C−→ε . (1)

Figure 1. Pnma (cotunnite) unit cell. Dark gray balls denote metal
atoms. A, B, C and D denote the atoms shown in charge density
maps of figure 6.

(This figure is in colour only in the electronic version)

In the second equation we use Voigt’s notation, replacing
xx, yy, zz, yz, xz, xy by 1, 2, 3, 4, 5, 6, in which σi is a stress
tensor element i = 1 − 6. ε j is a strain tensor element j = 1,
6. Ci j is an elastic constant matrix element i = 1, 6; j = 1, 6.

The stiffnesses matrix of a orthorhombic system is
given [31] by nine independent elastic constants:

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

The stiffness constants C11, C22, C33 are obtained by
inducing uniaxial deformations to the crystalline axes a, b, c,
respectively. To keep lattice anharmonicities low, seven to nine
values of εi within the −0.02 to 0.02 range are used. Since
σ = Cε, the Ci j are calculated by taking the linear part of a
third-order polynomial used to fit the σi , εi data.

For this set of distortions, the volume does not stay
constant and Hooke’s law becomes as follows:

σ1(ε1) = C11ε1, σ2(ε2) = C22ε2, σ3(ε3) = C33ε3.

(3)
For the following group of constants (C44, C55, C66),

we induce a set of shear deformations ε that maintain the
volume, following [25, 35]. Under these conditions, Hooke’s
law becomes

σ4(ε) = C44ε4. (4)

The last group of constants (C12, C13, C23) are indirectly
determined by applying constant volume deformations:

σ1(ε) = C11ε − C12ε (5)

in which ε is an small deformation. C12 is obtained from
equation (5) whereas C11 is calculated by the first equation of
the set of equation (3).
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Figure 2. Pressure–volume relationships ab initio calculated with SIESTA code within the LDA and GGA approach. All cell parameters and
atomic coordinates were relaxed after the application of pressure. Bulk moduli and its pressure derivatives were obtained by a fitting to a
third-order P–V Birch–Murnaghan equation [39].

4. Simulation results and discussions: structural and
elastic properties

In hafnia, the initial lattice parameters and atomic coordinates
were taken from previous theoretical or available experimental
data [36]. Then cell parameters and atomic coordinates
are fully relaxed by the conjugate gradient technique. The
final structural data are listed in tables 1, 2 and 3. The
calculated volumes with LDA are 31.18, 30.22 and 23.81 Å

3

for HfO2, ZrO2 and TiO2, respectively. In turn, the same
values calculated with GGA are 32.07, 33.47 and 25.38 Å

3

for HfO2, ZrO2 and TiO2, respectively. These values are close
to the experimental ones and previous theoretical calculations
with the state-of-the-art ab initio methods. As can be seen
in tables 1, 2 and 3, our calculated volumes with SIESTA-
LDA are in better agreement with experiments than those
calculated with the SIESTA-GGA approach. In the case of
TiO2, our NFP-LMTO calculation gives an equilibrium volume
of 23.24 Å

3
, in slightly better agreement with respect to the

experimental volume, 23.017 Å
3

([26]).
In TiO2, a, b and c axes calculated by the SIESTA-LDA

approach, show good agreement (error bars below 2%) with
experimental data (see table 1), although in this compound
NFP-LMTO-LDA seems to be a better approximation (error
bars below 1%). In turn, SIESTA-GGA provides increased
a and b axes which depart by 4 and 5%, respectively, from
experiments. Consequently, the equilibrium volume increases
by about 10%. All calculated internal coordinates agree fairly
well with experiments and previous calculations by Dewhurst
and Lowther [26].

In ZrO2, a, b and c axes’ lengths and equilibrium volumes
calculated with SIESTA-LDA show good agreement with
available experimental data [4, 7] and previous theoretical
assessments [36, 26, 37] (table 2). Although our equilibrium
volume calculated with GGA is increased by 10%, as the
previous case of TiO2, the internal atomic coordinates agree
well with previous theoretical estimations (table 2).

In the last case of HfO2, our calculated a, b and c
axes’ lengths and volumes with the SIESTA-LDA approach

Table 1. Equilibrium structural parameters for Pnma-TiO2.

Orthorhombic
(TiO2)

SIESTA-
LDA

SIESTA-
GGA

NFP
LMTOa LDAb Experimentalc

V0(Å
3
) 23.812 25.38 23.239 26.14 23.017

a (Å
3
) 5.10 5.33 5.12 5.259 5.163

b(Å
3
) 3.059 3.17 3.025 3.145 2.989

c(Å
3
) 6.097 5.99 6.01 6.322 5.966

Ti(x) 0.274 0.238 0.244 0.2527 0.264
Ti(y) 0.25 0.25 0.25 0.25 0.25
Ti(z) 0.106 0.114 0.119 0.1063 0.1110
O1(x) 0.365 0.366 0.36 0.3611 0.346
O1(y) 0.25 0.25 0.25 0.25 0.25
O1(z) 0.4125 0.431 0.428 0.4212 0.422
O2(x) 0.027 0.041 0.027 0.0137 0.012
O2(y) 0.75 0.75 0.75 0.75 0.75
O2(z) 0.344 0.336 0.337 0.3472 0.325

a Reference [27].
b Reference [26].
c Reference [6] and references therein.

are in very good agreement with available experimental
data [4, 38] as well as previous theoretical calculations [22, 37]
(tables 1–3).

Elastic properties under hydrostatic pressures were also
studied in detail with the SIESTA code and in the LDA and
GGA approximations. In figure 2(a), we show the numerical
pressure–volume curves for TiO2, ZrO2 and HfO2, resulting
from the application of pressures between −4 and 16 GPa,
where cell parameters (angles and axes lengths), as well as
internal atomic coordinates, were allowed to relax at each
pressure. The data were fitted to a Birch–Murnaghan third-
order nonlinear P–V equation ( [39]) which provides the
following bulk moduli B0 and pressure derivatives B ′

0: B0 =
341 GPa, 335 GPa and 336 GPa, and B ′

0 = 3.85, 3.36 and 5.35
for TiO2, HfO2 and ZrO2, respectively.

In figure 2(b), the pressure–volume relations are shown.
They are calculated using similar procedures to figure 2(a), but
with the GGA approach. In this case, we found changes in the
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Table 2. Equilibrium structural parameters for Pnma-ZrO2.

Orthorhombic
(ZrO2)

SIESTA-
LDA

SIESTA-
GGA GGAa LDAb LDAc Experimentald Experimentale

V0(Å
3
) 30.225 33.47 30.859 29.4125 30.57 30.58 30.16

a(Å
3
) 5.61 5.77 5.61 5.71 5.59 5.620 5.5873

b(Å
3
) 3.285 3.45 3.347 3.25 3.34 3.347 3.3298

c(Å
3
) 6.55 6.71 6.5658 6.34 6.55 6.503 6.4847

Zr(x) 0.247 0.246 0.246 0.251 0.247 0.262
Zr(y) 0.25 0.25 0.25 0.250 0.25 0.250
Zr(z) 0.113 0.112 0.113 0.109 0.118 0.109
O1(x) 0.3633 0.360 0.36 0.364 0.360 0.35
O1(y) 0.25 0.25 0.25 0.250 0.25 0.25
O1(z) 0.421 0.426 0.425 0.422 0.429 0.45
O2(x) 0.030 0.0264 0.024 0.021 0.028 0.04
O2(y) 0.75 0.75 0.75 0.75 0.75 0.75
O2(z) 0.335 0.34 0.338 0.328 0.333 0.33

a Reference [37].
b Reference [36].
c Reference [26].
d Reference [7].
e Reference [5].

Table 3. Equilibrium structural properties of HfO2 in the Pnma phase.

Orthorhombic
(HfO2)

SIESTA-
LDA

SIESTA-
GGA GGAa LDAb LDAc Experimentald Experimentale

V0(Å
3
) 29.05 32.07 29.732 29.89 30.66 29.652 29.68

a(Å
3
) 5.55 5.66 5.553 5.557 5.48 5.5544 5.55

b(Å
3
) 3.25 3.39 3.302 3.293 3.35 3.3070 3.311

c(Å
3
) 6.44 6.67 6.4842 6.531 6.68 6.4572 6.461

Hf(x) 0.247 0.247 0.246 0.245 0.249 0.2461
Hf(y) 0.25 0.25 0.25 0.25 0.25 0.25
Hf(z) 0.113 0.115 0.112 0.115 0.115 0.1104
O1(x) 0.360 0.346 0.359 0.359 0.360 0.3591
O1(y) 0.250 0.250 0.25 0.250 0.250 0.25
O1(z) 0.426 0.431 0.426 0.426 0.425 0.4256
O2(x) 0.022 0.016 0.024 0.025 0.022 0.0245
O2(y) 0.75 0.75 0.75 0.750 0.750 0.75
O2(z) 0.339 0.347 0.339 0.337 0.339 0.3388

a Reference [37].
b,c Reference [22] and references cited therein.
d Reference [5].
e Reference [38].

calculated bulk moduli, which drop to B0 = 281 GPa, 248 GPa
and 227 GPa in TiO2, HfO2 and ZrO2, and B ′

0 = 4.8, 3.5
and 4.7 for TiO2, HfO2 and ZrO2, respectively. All cases were
least-squares fitted to a third-order Birch–Murnaghan equation
of state [39].

The GGA approximation was used to calculate the struc-
tural parameters and the compression modulus for comparison
purposes. In this case, overestimation of the structural param-
eters and an underestimation of the compression moduli were
found in ZrO2, HfO2 and TiO2 with respect to the present and
other LDA calculations [21, 22, 37, 40].

Elastic constant results are shown in table 4. In titania, zir-
conia and hafnia, it is found that the uniaxial elastic constants
increase noticeably with respect to the corresponding normal
phases. In TiO2, for instance, comparing our theoretical cotun-
nite structure (LDA) with experimental rutile [41], we find that

CLDA
11 = 688 GPa exceeds significantly CRut

11 = 268 GPa, while
CLDA

33 = 649 GPa is much greater than CRut
33 = 484 GPa. For

ZrO2, on the other hand, our CLDA
11 = 618 GPa again exceeds

the monoclinic (Mon) experimental value CMon
11 = 361 GPa,

CLDA
22 = 510 GPa is greater than CMon

22 = 408 GPa, while
CLDA

33 = 649 GPa doubles CMon
33 = 258 GPa. However, shear

moduli are larger but not quite different with respect to the
normal phases. In TiO2, the calculated CLDA

44 = 129 GPa is
slightly greater than CRut

44 = 124 GPa, while CLDA
66 = 204 GPa

is close to CRut
66 = 190 GPa. In ZrO2 CLDA

44 = 99 GPa
equals CMon

44 = 99 GPa, CLDA
55 = 178 GPa doubles CMon

22 =
81 GPa, while C66 = 174 GPa exceed CMon

66 = 126 GPa
(see [12, 41, 42]). We have to recall that uniaxial elastic con-
stants are related to compound ionicity and the number of oxy-
gen atoms surrounding each metal ion [25]. In HfO2 and ZrO2,
the coordination of the normal, monoclinic P21/c phase is 7

5
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Table 4. Calculated elastic constants of group IV-B: TiO2, HfO2, ZrO2 oxides in the Pnma symmetry, compared with other LDA
calculations and model potential.

Titania
TiO2

Zirconia
ZrO2

Hafnia
HfO2

SIESTA SIESTA NFP- SIESTA PP-PAW Model pot. SIESTA SIESTA Model pot.Elastic constants
(GPa) LDA GGA LMTOa LDA LDAb EMPc LDA GGA EMPc

C11 688 619 646 619 474 463 664 502 477
C22 510 350 475 450 348 400 575 261 415
C33 649 282 635 632 314 429 640 597 446
C12 258 218 250 176 164 165 193 122 172
C13 240 178 229 210 201 193 236 159 202
C23 253 82 283 224 149 249 235 244 151
C44 129 52 148 107 68 31 137 78 31
C55 133 43 203 178 114 113 185 90 117
C66 204 219 246 174 132 126 165 111 132

a Present work.
b PP-PAW [1].
c Empirical model potential [12].

Figure 3. Primitive cell subjected to ε4 shear deformation, side view.
Dark gray circles denote metal atoms.

while in TiO2, rutile structure, it is 6. Both structures increase
its bulk modulus when transformed to the compact, high den-
sity, cotunnite phase, in which the coordination is 9. Since the
bulk modulus B0 depends on uniaxial and biaxial stiffness con-
stants (see the first of equations (6)), high values for C11, C22

and C33, and in C12, C13 and C23 constants, will determine a
high resistance to volume deformation under hydrostatic com-
pression in this phase.

Since the elastic constants corresponding to shear strains
(see figures 3–5) do not increase in value in this high density
phase, this behavior can be seen as increased anisotropy
found in the present system, with orthorhombic symmetry (see
figure 1)

Since monocrystalline samples are difficult to grow in the
sizes necessary for accurate elastic constant Ci j measurements,
there is a shortage of information about them in these high
density phases. On the other hand, experimental results for
bulk moduli can be found, as well as the lattice parameters and
atomic positions.

Considering that a polycrystalline aggregate is a set
of simple monocrystals with a random orientation, the
determination of the stress–strain function can be established
in two extreme cases: by equating any uniform strain in the
polycrystalline aggregate to the external strain value or by
equating the uniform stress to the external stress. The first
scheme is called the Voigt approximation [14] and the latter
is the Reuss approximation [15].

By applying these maximum and minimum cases to our
orthorhombic crystals, an intermediate case can provide results

Figure 4. Primitive cell under ε5 shear deformation, side view.

Figure 5. Primitive cell under ε6 shear deformation, side view.

that are in better agreement with experiments, as done in [25].
Following the methodologies of the cited work along with
energy considerations from Hill [16] for which Voigt and Reuss
equations represent upper and lower bounds of polycrystalline
elastic properties, the bulk modulus B0 and the shear modulus
G0 were estimated as an arithmetic mean of these extremes:

9BV = (C11 + C22 + C33) + 2(C12 + C13 + C23)

15GV = (C11 + C22 + C33) − (C12 + C13 + C23)

+ 3(C44 + C55 + C66)

1/BR = (S11 + S22 + S33) + 2(S12 + S13 + S23)

15/GR = 4(S11 + S22 + S33) − 4(S12 + S13 + S23)

+ 3(S44 + S55 + S66)

6
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Table 5. Theoretical mean values of compression moduli B0, shear elastic moduli G0 and Young’s moduli E0 calculated with the
Reuss–Voigt–Hill formula, the LDA and GGA approximations and compared with available data. All elastic moduli are expressed in GPa.

TiO2 ZrO2 HfO2

SIESTA SIESTA NFP-LMTO FP-LMTO SIESTA PP-PAW SIESTA SIESTA
Polycrystal LDAa GGAa LDAa LDAb LDAa LDAc LDAa GGAa

B th
0 370 221 362 386 ± 10 320 254 354 246

Bexp 431b 332d, 296e, 278f 340g, 312h

G th
0 162 96 163 — 160 112 176 103

E th
0 424 251 425 — 411 293 453 271

a Present work.
b Reference [6].
c Reference [1].
d Reference [4].
e Reference [9].
f Reference [10].
g Reference [7].
h Reference [11].

B0 = BH = (BV + BR)

2
G0 = GH = (GV + GR)

2
(6)

in this case, Si j are elastic compliances, while subscripts V,
R, H denote Voigt, Reuss, Hill approaches. Young modulus
and Poisson coefficient were determined using the following
relations [32]:

E = 9B0G0

3B0 + G0
ν = 3B0 − 2G0

2(3B0 + G0)
(7)

in which E is the Young’s modulus and ν is the Poisson
coefficient.

In table 5, mean values of shear elastic moduli and bulk
moduli with the previously mentioned approximations are
shown compared to experimental results and values obtained
with other theoretical methods. All of our values are assessed
with the polycrystalline approach.

Calculated bulk moduli B0 using SIESTA and the
polycrystalline approximations were: 370, 320 and 354 GPa
for TiO2, ZrO2 and HfO2, respectively, and similar theoretical
values for single crystals, and calculated with pressures of 341,
335 and 336 GPa for TiO2, ZrO2 and HfO2, respectively. These
theoretical values are to be compared with Bexp

0 = 431 GPa for
TiO2 [6], Bexp

0 = 278–332 GPa for ZrO2 [4, 5, 10, 11] and
Bexp

0 = 312–340 GPa for HfO2 [5, 7–9]. In turn, our NFP-
LMTO code provides B th

0 = 362, for TiO2, which is slightly
below previous calculations by another similar code, B th

0 =
386 GPa [6]. However, our B th

0 = 221 GPa calculated with
SIESTA-GGA is much lower than all mentioned theoretical
assessments.

Considering that the shear modulus represents the
resistance to plastic deformation while the bulk modulus
represents resistance to fracture, a high (low) B/G value is
associated with ductility (brittleness). A critical value for the
ductile–brittle transition can be seen in [43] and corresponds
to a value of 1.75. The values obtained here with SIESTA
and LDA are 2.28, 1.92 and 2.01 for titania, zirconia and
hafnia, respectively. Similar values were obtained for TiO2

with SIESTA-GGA: 2.3 and with NFP-LMTO-LDA: 2.22.
However, note that, with SIESTA-GGA, B0 and G0 are
underestimated.

5. Elastic anisotropies

It is well known that induced micro-fractures in ceramics
are due to the anisotropic thermal expansion coefficient as
well as the elastic anisotropy. In structural oxides, the
elastic anisotropy is important in understanding the elastic
properties, hoping to find the mechanisms to improve on
their durability. All the known single crystals are essentially
elastically anisotropic, and an appropriate description of such
behavior is therefore important in science and engineering as
well as crystal physics. The shear anisotropic factor for the
{100} shear planes between the 〈011〉 and 〈010〉 directions is
defined as [25]

A1 = 4C44

C11 + C33 − 2C13
. (8)

For the {010} shear planes between 〈101〉 and 〈001〉 directions
it is

A2 = 4C55

C22 + C33 − 2C23
(9)

and for the {001} shear planes, between 〈110〉 and 〈010〉
directions it is

A3 = 4C66

C11 + C22 − 2C12
(10)

in which the value of one indicate an elastic isotropy, and any
departure from unity corresponds to a certain degree of elastic
anisotropy.

For all of them, SIESTA shows that the most pronounced
anisotropy coefficient was found to be A1, which is, in all
systems, close to one-half. This case corresponds to strains
of the ε4 type, related to {100} slide planes where the elastic
constant is weak, as shown in figure 3. Since A2 and A3 are
closer to unity, all crystals are less anisotropic in that case.

7
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Table 6. Shear anisotropic factors for group IV-B oxides calculated
with LDA and GGA approaches.

TiO2 ZrO2 HfO2

SIESTA NFP-LMTO SIESTA SIESTA SIESTA
Constants LDA LDA LDA LDA GGA

A1 0.60 0.72 0.52 0.66 0.40
A2 0.81 1.49 1.13 0.99 0.97
A3 1.20 1.59 0.94 0.77 0.86

In TiO2, we have performed a similar LDA calculation
with the all-electron NFP-LMTO code, in which the core of
both Ti and O atoms are treated in different ways with respect
to the pseudopotential approach. In this last case, the core
electrons of the Ti atom are kept frozen and allowed to overlap
with neighboring atoms (FOCA approach). We have found
good agreement between both methods, SIESTA and NFP-
LMTO: table 4 shows that uniaxial and biaxial elastic constants
agree (in a 10% error bar) although for shear elastic constants
C55 and C66 the differences are more pronounced. In spite of
this, table 5 shows remarkable agreement between the averaged
values of B th

0 , G th
0 and E th

0 for both methods. However, the
difference in G th

0 is amplified in the shear anisotropy factors
shown in table 6. Therefore, extreme care has to be taken in
this case and should need revision in future work.

In a cubic crystal, the linear bulk modulus is the same
for all directions and therefore only the shear anisotropy is
enough to describe the elastic anisotropy. However, in the
orthorhombic crystal, the elastic anisotropy arises from the
linear bulk anisotropic modulus added to the anisotropic shear.
The anisotropy in bulk modulus along the a axis (Ba) and the
c axis Bc with respect to b (Bb) can be expressed as

ABa = Ba

Bb
= α and ABc = Bc

Bb
= α

β

respectively (11)

where α and β are constants defined as

α = (C11 − C12)(C33 − C13) − (C23 − C13)(C11 − C13)

(C33 − C13)(C22 − C12) − (C13 − C23)(C12 − C23)

β = (C22 − C12)(C11 − C13) − (C11 − C12)(C23 − C12)

(C22 − C12)(C33 − C13) − (C12 − C23)(C13 − C23)
.

(12)
The compressibility anisotropy factors along crystallo-

graphic axes are shown in table 7 and have been calculated
from equations (11) where α and β are defined in equa-
tion (12). It should be noted that any departure from unity again
corresponds to a degree of elastic anisotropy. In this case, the
largest anisotropy factors correspond to titania and zirconia.

6. Thermoelastic properties

The Debye temperature is an important physical parameter
in solids because it defines a temperature scale for atomic
vibrations and it is related to the solid sound speed, too. One
common method for the calculation of the Debye temperature
(θD) comes from the knowledge of the elastic properties of

Table 7. Anisotropy factor values for hydrostatic compressions
along crystallographic axes. The two columns are calculated from
equations (11) and (12).

ABa (α) ABc (β)

TiO2 1.650 1.480
ZrO2 1.640 1.630
HfO2 1.235 1.330

the material, which is employed to calculate the mean sound
velocity vm and then θDp:

θDp = h̄

kB

[

6π2 N

V0

]1/3

vm (13)

in which h̄ = h/2π , h = Planck’s constant, kB =
Boltzmann’s constant, N = ions number in the unit cell,
V0 = equilibrium volume, vm = mean value of the sound
speed, which is defined by

vm =
[

1

3

(

2

v3
t

+ 1

v3
l

)]− 1
3

(14)

in which vl and vt are the lattice wave velocities with
longitudinal and transverse polarizations, respectively. They
are calculated by the Navier equations from the knowledge of
the shear modulus average G0 and bulk modulus B0:

vt =
√

G0

ρ
, vl =

[

(B0 + 4
3 G0)

ρ

]1/2

. (15)

Since the LDA approach slightly underestimates the
equilibrium cell volume, the mass density is therefore
larger and the resulting sound speed is slightly increased.
The obtained values of the polycrystal Debye temperature
calculated with equation (13) is 897 K for titania, certainly
above the measured value of 790 K for the rutile phase [44]
(this is reasonable because of the higher mass density
and stiffer Pnma phase compared with rutile), while for
HfO2 and ZrO2 we have calculated 549 K and 695 K,
respectively. Predicted sound velocity values together with
Poisson coefficients and Debye temperatures are shown in
table 8. In this table, we also included similar values that we
calculated with the all-electron method NFP-LMTO [28, 29].

The high value of Poisson constant ν is associated with
the increased importance of two-body interatomic forces,
compared to three-body terms, corresponding to bending
forces which are typical of covalent bonds. In HfO2, GGA [22]
and the model potential [12] give values of ν = 0.32 and
0.34, respectively, which are higher than ν = 0.286 given
by LDA, which indicates that LDA-SIESTA enhances the
covalent bonds and their interaction. Figures 6 and 7 show
the electronic charge density differences between LDA and
GGA approaches. Electronic densities around oxygen atoms
are more elongated towards metal ions in LDA (figure 6)
than the almost symmetric density provided by GGA. Besides,
certain covalent interactions between neighboring oxygen
atoms can be seen. From tables 4, 5 and 8 we found

8
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Figure 6. Pseudo valence charge densities contour map of HfO2, ZrO2 and TiO2 with LDA, which correspond to the plane containing the four
atoms A, B, C and D of figure 1. Contour step is equal to 0.005 electrons Å

−3
and charge densities inside oxygen and Ti atoms are not shown,

because they are cut above 0.1 electrons Å
−3

.

Table 8. Calculated Poisson coefficients, transverse, longitudinal mean sound speeds and Debye temperatures θD for group IV-B oxides of
the polycrystal. Unless noted, all calculations were done with LDA.

TiO2 ZrO2 HfO2

Properties SIESTA NFP-LMTOa SIESTA SIESTA SIESTA-GGA EMPb

ν 0.31 0.304 0.27 0.288 0.32 0.34
vt (m s−1) 5436 5350 4985 3999 3215 2815
vt (m s−1) expc 5500
vl (m s−1) 10 327 10 078 9016 7339 6229 5717
vl (m s−1) expc 10 300
vm (m s−1) 6078 5976 5554 4461 3599 3161
vm (m s−1) expc 6900
θD (K) 904 899 765 603 483 306
θD (K) expc 790

a Reference [27].
b Empirical model potential, see [12].
c Measurements in rutile [44].

Figure 7. An example of pseudo valence charge densities contour
map of HfO2 calculated with SIESTA-GGA, which corresponds to
the plane containing the four atoms A, B, C and D of figure 1.
Contour steps are equal to 0.005 electrons Å

−3
and charge densities

inside oxygen atoms are not shown, for example, because they are

cut above 0.1 electrons Å
−3

.

a remarkable agreement in the elastic properties between
SIESTA and NFP-LMTO in TiO2. Both methods give
very similar elastic constants, sound speeds and Debye

temperatures. Covalent bonds can be seen in figure 6, in
which the anisotropic shape of oxygen atoms comes from their
sp hybrids pointing towards neighboring metal atoms. This
shape in the electronic distribution somewhat explains the high
value of shear moduli compared to pure ionic compounds. In
terms of interatomic potentials, this covalency increases the
magnitude of three-body terms, bending stiffness and shear
modulus and consequently reduces the Poisson coefficient. We
have to recall that pure ionic compounds, like KCl for instance,
show a very low shear modulus, and C12 almost equal to C44,
satisfying the Cauchy relation C12 = C44, which is based on
a model where bending forces are neglected. On the other
hand, for comparison, we mention that the Au metal shows
a high Poisson coefficient (0.42), a fact that gives to this
material a very malleable behavior. In contrast, the excellent
covalent material, diamond, shows a small Poisson coefficient
of 0.14. If we take the average between these extreme cases,
we get a value of η = 0.28, which gives B/G = 1.75,
the recognized boundary value between brittle and ductile
behavior.

Charge transfer from Ti to oxygen atoms (given by the
modified Mulliken populations, δQO = −0.63 and δQTi =
1.3 in units of |e|) is consistent with the electronegativity of

9
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oxygen. This amount of charge transferred is similar in all
materials studied here.

Since TiO2 is the less studied material in the group in
its Pnma phase, we complete the present description using
the GGA-PBE approach implemented in SIESTA code. The
elastic properties of TiO2 inspected with this treatment for
the electronic exchange correlation underestimate all elastic
constants, with one exception, C66. This is also seen in
the bulk, shear and Young modulus, in which the averaged
B0 drops from 370 GPa (LDA) to 221 GPa (GGA), G0 is
lowered from 162 GPa (LDA) to 96 GPa (GGA) and the Young
modulus E decays from 424 GPa (LDA) to 251 GPa (GGA).
Averaged B0 estimated with NFP-LMTO is 362 GPa which is
somewhat closer to the 386 GPa found in previous FP-LMTO
calculations ([6]). However, even when these LDA values are
in an error bar of 20 GPa, all of them are more than 40 GPa
below the measured B0 = 431 GPa (and, because of this
very high value, claimed to be the hardest known oxide) by
Dubrovinsky et al [6]. The wide dispersion between theory
and experiment suggests that a new measurement of the bulk
modulus of Pnma-TiO2, under extreme conditions may need
to be performed.

7. Conclusions

We have studied the hardest phase (cotunnite) of the group IV-
B oxides TiO2, ZrO2 and HfO2. After the atomic positions
and crystal axes parameters are ab initio fully relaxed with
the SIESTA code, the stress tensor is calculated for a set
of prescribed small distortions Then the components of the
elastic constant tensor are determined. Most cases were
studied with LDA and GGA-PBE approaches. To the best
of our knowledge, there are no previous experimental data
related to the measurement of the nine Ci j elastic constants
of the Pnma structure. Therefore our values are a prediction.
We also show here calculations of elastic constants of TiO2-
Pnma, with the NFP-LMTO and LDA to DFT. Structural
and elastic properties of TiO2 calculated with this all-electron
method agree with the pseudopotential-based SIESTA code.
Polycrystal elastic constants, like Young’s modulus E , Poisson
coefficients ν and bulk moduli B0, are also estimated. We find
in all materials that stiffnesses calculated with LDA are very
high, Young’s moduli are greater than 400 GPa and Poisson
constants range between 0.27 and 0.30. This fact suggests
that the mechanical properties of these oxides, in the cotunnite
structure, have an intermediate behavior between brittle and
ductile. These mechanical properties are similar, for instance,
to cubic tungsten, which shows similar elastic constants and
Poisson coefficients to the presently studied oxides. Therefore,
the high bulk modulus B0 together with the high shear modulus
G0 may suggest the possible utilization of these compounds as
structural as well as dielectric materials.

The use of pseudopotentials and LDA approaches, in the
three compounds, slightly underestimate lattice parameters, but
give B0 in fair agreement with available experimental data.
In the case of ZrO2, the theoretical averaged bulk modulus
BLDA

0 = 320 GPa is between the measured values of B0 =
278 and 332 GPa. In contrast to this situation, calculations

with GGA at P = 0 GPa overestimate lattice parameters
but underestimate both B0, G0 and increase the values of
the B/G quotient. Consequently, Poisson constant values
are greater than 0.3. In this case, the resulting material is
theoretically predicted to be more ductile than brittle. The
underestimation of B0 using GGA is of the order of 80–
100 GPa, with respect to LDA and to experimental data but
departures can be higher than 150 GP with respect to recent
experiments at high pressures in TiO2 [1]. Further, our charge
density contour maps show that the present GGA description
enhances the ionic character of the metal–oxygen bonds of
the studied compounds. It is interesting to note that averaged
values of B0 in both LDA and GGA approaches predict that the
stiffest material is TiO2, followed by HfO2 and ZrO2, which
coincides with experimental evidence.

Elastic anisotropies estimated with LDA under hydrostatic
pressures show that a and c axes are stiffer than the b axis
by 20–60%. This behavior is in agreement with recent
measurements in ZrO2 made by Ohtaka et al [11], where
the b axis is more pressure-dependent than the a and c
axes, respectively. Therefore, the ionic character for planes
perpendicular to the b axis is greater than in the other two
directions.

Thermoelastic properties like Debye temperature are also
predicted, and can be considered of value for future research
in the estimation of specific heat and atomic amplitude
of vibration as a function of temperature. However, new
experimental searches which attempt the determination of
elastic constants, sound wave propagation speed and Debye
temperatures for these compounds in the Pnma phase will be
highly appropriate.
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[5] Haines J, Léger J M, Hull S, Petitet J P, Pereira A S,

Perottoni C A and da Jornada J A H 1997 J. Am. Ceram.
Soc. 80 1910

[6] Dubrovinsky L S, Dubronvinskaia N A, Swamy V, Muscat J,
Harrison N M, Ahuja R, Holm B and Johansson B 2001
Nature 410 653

[7] Degreniers S and Lagarec K 1999 Phys. Rev. B 59 8467
[8] Ohtaka O, Fukui H, Kunisada T, Fujisawa T and

Kikegawa T 2001 Phys. Rev. B 63 174108
[9] Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K,

Utsumi W, Irifune T, Kuroda K and Kikegawa T 2001
J. Am. Ceram. Soc. 84 1369

10

http://dx.doi.org/10.1103/PhysRevB.73.134110
http://dx.doi.org/10.1088/0953-8984/20/04/045213
http://dx.doi.org/10.1103/PhysRevB.48.9205
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08822.x
http://dx.doi.org/10.1038/35070650
http://dx.doi.org/10.1103/PhysRevB.59.8467
http://dx.doi.org/10.1103/PhysRevB.63.174108


J. Phys.: Condens. Matter 21 (2009) 015501 M A Caravaca et al

[10] Ohtaka O, Fukui H, Funakoshi K, Utsumi W, Irifune T and
Kikegawa T 2002 Int. J. High Pressure Res. 22 221

[11] Ohtaka O, Andrault D, Bouvier P, Schultz E and
Mezouar M 2005 J. Appl. Crystallogr. 38 727

[12] Mirgorodsky A P and Quintard P E 1999 J. Am. Ceram. Soc.
82 3121

[13] Mattesini M, de Almeida J S, Dubrovinsky L, Dubrovinskaia N,
Johanson B and Ahuja R 2004 Phys. Rev. B 70 212101

[14] Voigt W 1928 Lehrbuch der KrystallPhysik (Leipzig: Teubner)
[15] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[16] Hill R 1952 Proc. Phys. Soc. A 65 349
[17] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J,

Ordejon P and Sanchez-Portal D 2002 J. Phys.: Condens.
Matter 14 2745

[18] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.

77 3865
[20] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[21] Caravaca M A and Casali R A 2005 J. Phys.: Condens. Matter

17 5795
[22] Kang J, Lee E C and Chang K J 2003 Phys. Rev. B 68 54106
[23] Kleinman L and Bylander D M 1982 Phys. Rev. Lett.

48 1425
[24] Zhao X and Vanderbilt D 2002 Novel Materials an Processes

for advanced CMOS: Proc. 2002 MRS Fall Mtg vol 745
ed M I Gardner, J P Marı́a, S Stemmer and S de Gendt
p 7.2.1

[25] Ravindran P, Fast L, Korzhavyl P A, Johansson B, Wills J and
Eriksson O 1998 J. Appl. Phys. 84 4891

[26] Dewhurst J K and Lowther J E 2001 Phys. Rev. B 64 014104
[27] Casali R A, Ponce C A and Caravaca M A 2008 unpublished

[28] Methfessel M, van Shilfgaarde M and Casali R A 2000
Electronic Structure and Physical Properties of Solids: the
Use of the LMTO Method (Lecture Notes in Physics vol 535)
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