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Ab initio surface free energies of tungsten with full account of thermal excitations
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The surface free energies of seven different facets of tungsten (W) are obtained up to the melting point with
full account of all the relevant thermal excitations; in particular, thermal atomic vibrations, electronic excitations,
and their mutual coupling. The latter is done using ab initio molecular dynamics simulations coupled with the
thermodynamic integration technique. In this way, the calculations contain almost no error but the one related to
the used exchange-correlation functional, which makes the results truly first principles. The obtained results are
compared with previous quasiharmonic calculations for the surface free energies of W and experimental data.
The anharmonic contribution is, as expected, important for open surfaces at high temperatures, which leads to a
temperature dependence of the surface energy anisotropy. The calculated Wulff shapes and surface energies are
in excellent agreement with experimental data close to the melting point, where the crystalline structure of the
surface layers is destroyed by a dramatic mobility of the atoms there.
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I. INTRODUCTION

Experimentally, surface energies of solids can only be mea-
sured at temperatures close to the melting point, and thus
high temperature data from calculations are the only way to
connect calculations to experiments [1]. Such calculations are
in general a nontrivial task due to the necessity to account for
all the relevant thermal excitations and their coupling.

The most important contribution from the thermal lattice
vibrations can be accounted for within the quasiharmonic
approximation (QHA), which has been previously used in
a number of ab initio surface energy calculations at finite
temperature [2–6]. However, while the QHA is reasonably ac-
curate for most defect-free bulk systems, it misses anharmonic
contributions. These contributions can be quite substantial,
especially at high temperatures in systems with open defects.
For example, defect formation energies of vacancies [7,8]
and stacking faults [9] show strong temperature dependencies,
which are not properly captured by the QHA. A strong anhar-
monic contribution has also been obtained for Al surfaces in
modeling with classical potentials [10].

Recently, a methodology for accurate account of the fully
anharmonic contribution to the surface free energy from ab
initio molecular dynamics (AIMD) has been developed and
applied to the TiN(001) surface [11]. The methodology is
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based on the two-staged upsampled thermodynamic integra-
tion using Langevin dynamics (TU-TILD) method [8,12].

In the specific case of TiN, the commonly used QHA
breaks down already for the bulk, making it necessary to
use methods fully accounting for the presence of thermal
lattice displacements, such as the TU-TILD method, to ob-
tain any realistic properties, including surface free energies,
at finite temperatures above 900 K. For the TiN(001) sur-
face, however, the contribution from the surface anharmonic
vibrations to the surface free energy turned out to mostly
cancel that of the bulk, so that the net dependence on tem-
perature of the TiN(001) surface free energy was relatively
weak.

The latter is also partly due to the specific geometry and
composition of this surface, which is nonpolar with strong
bonding between the Ti and N atoms. However, it is obvious
that anharmonic effects are going to be different for different
surfaces, leading to different temperature dependencies of
their free energies, affecting also the temperature dependence
of their anisotropies.

In this paper, we study such temperature dependencies of
the surface free energies and their anisotropies for W using the
previously developed thermodynamic integration method for
surfaces based on AIMD simulations [11]. W is a technolog-
ically important system, for which there exists experimental
information for surface energies and their anisotropies at high
temperature [13–15].

The surface free energies of W and their anisotropies have
also recently been determined in ab initio QHA calculations
by Scheiber et al. [6]. Although their obtained Wulff shapes
are in qualitative agreement with experiments, some features
are missing. The method to obtain the QHA results in Ref. [6]
was to “rescale” the atomic positions with the bulk thermal
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expansion, without reoptimization of surface relaxations, as
motivated in Ref. [3].

Such a rescaling is not needed in AIMD, which eliminates
this assumption in our study in addition to the accurate ac-
count of the fully anharmonic contribution. Further, AIMD
simulations allow us to take into consideration the coupling of
vibrational and electronic excitations in W, which is already
quite strong at temperatures half of the melting point (about
1600 K) and increases rapidly with temperature as has been
demonstrated by Zhang et al. [16] in calculations for the bulk.

II. METHODOLOGY

A. Surface free energy

The methodology used here in essence follows that used in
Ref. [11]. Adjustments to the method are stated in this section,
and for convenience, a short description of the method is also
given in the following.

We use the slab technique to determine the surface free
energy of the (hkl ) facet, γhkl (T ), according to

γhkl (T ) = Fhkl (aT , T ) − Fbulk(aT , T )

2AT
, (1)

where Fhkl (aT , T ) and Fbulk(aT , T ) refer to the Helmholtz free
energies of the “(hkl )” slab and bulk with the same number of
atoms, for the lattice constant aT and temperature T , and AT

is the surface area of the slab. The factor of 1
2 accounts for the

two alike surfaces in the slab calculation. The lattice constant
aT is the equilibrium one for the bulk, aeq(T ), at the given
temperature and at zero pressure. For the slab geometry, aT

fixes the two lateral dimensions within the surface plane. In
the remaining dimension perpendicular to the surface plane,
the interplane distances are in practice usually shifted for a
few surface layers, but then converge to their bulk value in the
middle of the slab as the slab thickness is increased. Here, a
thickness of around 20 Å was estimated to be enough.

The Helmholtz free energy for bulk or slab can be adiabat-
ically decomposed into the following contributions:

F (aT , T )=E (aT ) + F el(aT , T ) + F vib(aT , T ), (2)

where E denotes the conventional 0 K total energy of the sys-
tem, F el the thermal-electronic-excitation contribution for the
static lattice, and F vib the vibrational free energy of the lattice,
obtained here either in the QHA or in the fully anharmonic
form using the TU-TILD method. When calculated with the
latter method, the vibrational free energy F vib contains the
(adiabatic) coupling between one-electron excitations and lat-
tice vibrations.

To determine an accurate thermal expansion at zero
pressure required to fix aT , the full free energy surface,
Fbulk(V, T ), as a function of volume, V , and temperature, T ,
is calculated for the bulk including the same contributions as
above,

Fbulk(V, T )=Ebulk(V ) + F el
bulk(V, T ) + F vib

bulk(V, T ). (3)

The thermal expansion is determined through the minima with
respect to volume on this surface. In our implementation,
we perform a Legendre transformation of Fbulk(V, T ) to the
Gibbs energy surface Gbulk(P, T ), where P is the pressure,
from which the equilibrium volume is obtained through the

derivative with respect to pressure. Other equilibrium ther-
modynamic properties of the bulk, e.g., the heat capacity at
constant pressure, are accessible from Gbulk(P, T ) as well. As
already stated, the surface free energy is given at P = 0, and
all the results for the bulk are also given for P = 0.

To calculate the full vibrational free energy including the
anharmonic contribution, a modified version of the original
TU-TILD method [8,12] is used:

F vib = F Einst + F Einst→MTP + F MTP→DFT, (4)

where

F Einst→MTP =
∫ 1

0
dλ1〈EMTP − EEinst〉λ1 , (5)

F MTP→DFT =
∫ 1

0
dλ2

〈
EDFT

low − EMTP〉
λ2

+ 〈�E〉UP. (6)

Further, F Einst is the free energy of an optimized Ein-
stein crystal; EEinst, EMTP, and EDFT

low are the energies of a
particular atomic configuration calculated for the Einstein
crystal, with a moment tensor potential (MTP) [17], and with
low-converged density functional theory (DFT) parameters,
respectively; 〈· · · 〉λ denotes a thermodynamic average for a
particular coupling constant λ and at a certain temperature and
volume/lattice constant; finally, the term 〈�E〉UP is obtained
within free energy perturbation theory and accounts for the
difference in free energy between the low- and high-converged
DFT calculations.

III. COMPUTATIONAL DETAILS

A. Bulk

To get the bulk properties from AIMD for bulk W, we used
the projector augmented-wave (PAW) method [18] as imple-
mented in the Vienna ab initio Simulation Package (VASP)
[19,20]. For the exchange-correlation energy functional we
used the generalized gradient approximation in the PBEsol
parametrization [21].

The choice of this functional is dictated by two facts: (1)
it accurately reproduces the ground state properties of W;
in particular, its equilibrium lattice constant [22] and bulk
modulus, which is important for account of the vibrational
contribution, and (2) it is supposed to be accurate for surfaces
[21]. Thus, if the used simulation methodology does not in-
troduce additional errors, the simulation results are expected
to be a benchmark for surface energies and its anisotropies
in W.

We used the W PAW potential as provided with VASP

version 5.4.4, including only the 6s and 5d electrons in the
valence band. (Note that several previous theoretical investi-
gations [6,16] used different potentials with the semicore 5p
electrons or 5p and 5s electrons included in the valence band.)
Our tests have shown that it yields bulk properties close to
the PAW potential with both the 5p and the 5s electrons in
the valence band, and almost the same surface free energies
due to error cancellation (at 3695 K the effect is less than
5 meV/Å2).

Throughout this study, we used a plane wave energy cutoff
of 300 eV for the low-converged calculations, and 500 eV for
the high-converged calculations. For bulk, the integration over
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the Brillouin zone was performed using only the � point (low
converged) or using a 5 × 5 × 5 k-point grid determined ac-
cording to the Monkhorst-Pack scheme [23] (high converged)
for a supercell based on a 4 × 4 × 4 expansion of the cubic
bcc unit cell with two atoms. This supercell contains 128
atoms. If another supecell size was used, the k-point grid was
scaled correspondingly.

The self-consistent field approach [16] within finite-
temperature DFT [24] was used for thermal electronic
excitations, also including adiabatic coupling to vibrations
during molecular dynamics (MD) runs. For obtaining the 0 K
equilibrium volume, energies were fitted to a Vinet equation
of state [25].

The MLIP software [17] was used to train a bulk MTP
to low-converged DFT MD for a larger 6 × 6 × 6 supercell
with 432 atoms for bulk at 3695 K and five different vol-
umes spanning the thermal expansion. In these training MD
runs, thermal electronic excitations were excluded and the
Methfessel-Paxton scheme [26] of order one was used for
integraton over the k points, with a smearing of 0.2 eV. The
maximum radius used in the MTPs was 5 Å. For the bulk
MTP a level 16 potential was used, with a radial basis size of
eight. The level is a degreelike hyperparameter controlling the
number of MTP parameters [17], which in the present work
was equal to 125 for the bulk MTP. The energy root-mean-
square error (RMSE) and force RMSE for the bulk MTP were
1.7 meV/atom and 0.10 eV/Å, respectively.

For the thermodynamic integration from Einstein solid to
the bulk MTP, F Einst→MTP

bulk , also the larger 6 × 6 × 6 supercell
was used. In this way, the most important dynamic contri-
butions are captured at the level of the bulk MTP, while
the 128-atom supercell used for integration from bulk MTP
to DFT, F MTP→DFT

bulk , is significantly less demanding com-
putationally, only providing a maximum error due to the
smaller size of 2 meV/atom at 3695 K and a = 3.225. At
lower temperatures/smaller volumes, this error is significantly
smaller.

For the MD in the thermodynamic integration, Langevin
dynamics [27] was used with a dampening parameter of
0.01 fs−1. The van Gunsteren–Berendsen algorithm [28] was
used for integration of the equations of motion. A time step of
2 fs was used in the thermodynamic integration, in which each
MD run lasted for 50 000 time steps. In the thermodynamic
integration of F Einst→MTP

bulk , a dense set of λ1 values (typically
26) was used. One thermodynamic integration was performed
for each point on a mesh of five volume times 13 temperature
points.

For the computationally heavier AIMD to get F MTP→DFT
bulk , a

less dense mesh with five temperature points was used instead.
For this term, also the λ2 values were less dense, using five
λ2 = {0, 0.15, 0.5, 0.85, 1}. To optimize statistics, two MD
runs initiated with different random seeds were used at each
λ2 value, keeping the number of MD steps to a minimum
(500 steps, excluding equilibration of 3000 steps with MTP).

Finally, the resulting potential energy surface was fitted to
[11]

F vib
bulk(V, T ) = h̄

2
ω(V ) +

n∑
i

kBT ln

[
1 − exp

(
− h̄ωi(V )

kBT

)]
,

(7)

TABLE I. Supercell sizes used for the slabs. The larger ∗-marked
slab was used for F Einst→MTP

110 .

Facet Size Number of atoms

(100) 6 [010] × 6 [001] × 6 [100] 432
(110) 4 [1̄10] × 4 [001] × 4 [110] 256
(110)∗ 4 [1̄10] × 6 [001] × 4 [110] 384
(111) 4 [1̄10] × 5 [01̄1] × 4 [111] 480
(210) 3 [1̄20] × 5 [001] × 3 [210] 540
(211) 3 [1̄20] × 5 [01̄1] × 3 [211] 540
(310) 2 [1̄30] × 6 [001] × 2 [310] 480
(320) 2 [2̄30] × 6 [001] × 2 [320] 624

where ω(V ) is expanded in a polynomial in V up to second
order and ωi(V ) polynomials in V up to third order. n was set
to two.

B. Slab

We investigate five surface facets previously shown to be
stable [6,29]: (100), (110), (111), (211), and (310). Among
these is the (100) facet which has a known surface recon-
struction [30,31] that was also considered in this work. In
addition, two more facets were considered, the (210) and
the (320) facets, due to their potential to be stable at higher
temperatures. The slab sizes were chosen to be close to 20 Å
in all three dimensions. This corresponds approximately to the
dimensions of the bulk supercell (six times a). The dimensions
chosen are presented in Table I.

As shown previously [11], the integration of Eq. (6) con-
verges earlier with respect to supercell size. A test calculation
showed that at 2000 K the difference was below 1 meV/atom.
Therefore, for the (110) slab, Eq. (6) was performed with the
smaller cell, while Eq. (5) was performed with a larger cell,
the 4[1̄10] × 6[001] × 4[110] slab.

In principle, Fhkl (aT , T ) needs to be calculated only along
the thermal expansion of the bulk [aT = aeq(T )]. Previously,
however, to increase numerical stability and to be able to
easily account for changes in the thermal expansion (induced,
e.g., by accounting for thermal contributions from the elec-
tronic system), we extended the mesh of investigated lattice
constants at each temperature [11].

In this study, on the other hand, we had to optimize
computer time due to the large number of facets calculated.
Therefore, we calculated Eq. (6) [Fhkl (aT , T )MTP→DFT] only
along aT , as this was the most computationally expensive part.
However, Eq. (5), Fhkl (aT , T )Einst→MTP was still calculated on
a mesh similar to what was done for the bulk.

The latter calculations were computationally cheap, but
also necessary to have on a mesh of in-plane lattice dimen-
sions. The point is that because of the increasingly large
mobility of the surface atoms above 2000 K, the integration in
Eq. (5) from the Einstein solid could not be converged. There-
fore, an integration over temperature had to be performed
from 2000 up to 3695 K at the level of the auxiliary MTP
for each slab/facet,

FT1
T1

= FT0
T0

+ ∫ 1/T1

1/T0
d 1

T 〈EMTP〉. Note that
the reason for this is that the Einstein model uses reference
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TABLE II. MTP errors for bulk and the slabs. The errors are
specified for the finally used training sets and potentials.

Facet Energy RMSE (meV/atom) Force RMSE (eV/Å)

Bulk 1.7 0.10
(100) 8.6 0.19
(100)lev20 3.3 0.13
(110)lev20 2.3 0.12
(111) 4.5 0.15
(210) 3.1 0.14
(211) 3.5 0.13
(310) 4.4 0.15
(320) 3.0 0.14

positions, while the integration of Eq. (6), on the other hand,
does not suffer from this problem.

In these MD runs for integration over temperature the time
step was 0.5 fs, and they ran for 200 000 steps, for tempera-
tures from 2000 to 3700 K in steps of 25 K, for the same five
in-plane lattice constants as used in the integration from the
Einstein solid.

Further computational details specific to the contributions
to Fhkl (T ) are provided in the following; however, only if
they differ from the respective bulk calculations; otherwise we
refer to the parameter settings given for bulk in Sec. III A.

For each slab/facet, a separate MTP [“(hkl ) MTP”] was
fitted to optimize the TU-TILD slab calculations. To train the
(hkl ) MTPs we utilized active learning [17,32] through ad-
ditional MD “training simulations.” The training simulations
required initial potentials, which were trained to DFT MD
simulations for each (hkl ) slab, in the same way as the bulk
MTP was trained. The training simulations were done for all
used temperatures �2000 K and in-plane lattice constants
(using different initial seeds) and over a time span of 15 ps
to ensure that the trained MTPs were stable and accurate. (In
total, more than 6 ns per slab/facet were run in the training
simulations.)

The levels of the (hkl ) MTP parameters were adjusted such
as to obtain a reasonable error (lower than 5 meV/atom) for
the trained MTPs. This meant that potentials of level 20 were
needed for the (100) and the (110) facets, while a level of 16
was enough for the rest. With the given basis size of eight this
corresponds to 329 (level 20) and 125 (level 16) parameters.
The errors for MTP potentials in terms of energy and force
are presented in Table II. Note, however, that the errors do
not affect the accuracy of the AIMD results; rather, a smaller
error indicates that the thermodynamic integration in Eq. (6)
converges faster, and the computational effort is decreased.

A mesh of five in-plane lattice constants times six tempera-
ture points from 500 to 2000 K was used for the calculation of
F Einst→MTP

hkl . The other parameters were set as for the respec-
tive bulk calculations. The reference positions around which
the Einstein contribution was calculated were chosen as the
unrelaxed positions corresponding to those of ideal bulk.

In calculating Eq. (6) for the slabs, F MTP→DFT
hkl , we used a

5 × 5 × 1k-point mesh for the high-converged parameters. To
optimize the computational load, we used a parametrization of
the temperature dependence obtained for five temperatures for
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FIG. 1. Relative thermal expansion for bulk W from fully anhar-
monic calculations (black), the QHA (yellow dashed) and QHA plus
static thermal electronic excitations (yellow). We also show results
from earlier calculations with the QHA by Scheiber et al. [6], as well
as experimental data from White and Minges [33] and Dubrovinsky
and Saxena [34].

F MTP→DFT
100 . The obtained parametrization form was then used

for all the other surfaces, but adjusted for each surface using
the results for three different temperatures. The adjustments
had simple dependencies on temperature, and Eq. (6) could in
this way be obtained with fewer calculations.

Finally, all the contributions to the slab free energies were
combined at aT up to the melting temperature, Tm = 3695 K,
for each facet. Then, the surface free energies were calculated
including all relevant contributions according to Eq. (1).

IV. RESULTS AND DISCUSSION

A. Bulk thermal properties

The 0 K lattice parameter obtained here was 3.145 Å. This
is slightly smaller than the value obtained with the PBEsol
functional by Haas et al. [22], which is practically the same
as the experimental one 3.160 Å. This difference is due to
the W PAW potential used here, with only six electrons in
the valence shell. Nonetheless, the calculated thermal expan-
sion is in excellent agreement with experimental data as is
demonstrated in Fig. 1 where the relative thermal expansion
is shown obtained in fully anharmonic AIMD simulations
together with QHA results calculated here and previously [6].
For the QHA results, we also show the contribution from
electronic excitations.

There is a small difference between our QHA results and
those of Scheiber et al. [6], which can be due to several rea-
sons, such as, for example, the supercell size (which the QHA
can be sensitive to), the difference in the used PAW potential,
or other computational parameters. We note, however, that
there is also a slight difference between the effect of ther-
mal electronic excitations (“+el”) in these two calculations,
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FIG. 2. The calculated temperature dependence of the adiabatic
bulk modulus and isobaric heat capacity. The results are compared
with experimental data for the bulk modulus from Lowrie and Gonas
[35], Featherston and Neighbours [36], Qi et al. [37], and Bolef
and De Klerk [38], and for the heat capacity from Cezairliyan and
McClure [39] as well as from a CALPHAD assessment by Gustafson
[40].

probably caused by whether its volume dependence is consid-
ered or not.

In any case, the results from AIMD are in an excellent
agreement with the experimental data from Refs. [33,34]
shown with red and purple crosses and pluses, respectively.
While the QHA results deviate above around 2500 K, the
AIMD results agree all the way up to close to the melting
temperature.

The calculated heat capacity also shows an excellent agree-
ment with experimental data as can be seen in Fig. 2. The bulk
modulus is slightly higher than the experimental values, as
expected from a slightly smaller lattice parameter. However,
as discussed in Sec. III A, it practically does not affect the
surface free energies, which deviate less than 5 meV/Å2 at
the melting point.

B. Surface free energies

Figure 3 shows the surface free energy of the seven dif-
ferent facets considered (100, 110, 111, 210, 211, 310, and
320) as functions of temperature, in the range of 500–3695 K,
which is above the Debye temperature of 383 K [41,42].
The solid lines are the results of the fully anharmonic DFT
calculations for each facet, respectively, including the thermal
electronic contribution coupled with thermal atomic move-
ments at the corresponding temperature. These results can
be compared with the corresponding results from Ref. [6]
obtained in the QHA, except for the (210) and (320) surfaces
which were not considered there.

The agreement between the fully anharmonic and QHA
results is excellent at temperatures up to 2000 K, despite
the difference in methodology. Above 2000 K, the results
start to deviate especially for the more open surfaces, such

as (111) and (310), and this deviation increases with tem-
perature. So, around 2500 K, the surface free energies in
the fully anharmonic calculations decrease significantly faster
with temperature than their QHA counterparts.

It is interesting that the initial spread of the surface energies
at 0 K becomes much smaller close to the melting point. The
reason for that will be discussed below. The important point
here, however, is that our results are in very good agreement
with experiments for the liquid state assessed and performed
by Paradis [14]. In particular, the surface free energy of the
close packed (110) facet is practically on top of the range
of experimental surface energies. Let us note that there also
exists other experimental data assessed by Tyson [1]; however,
these are for temperatures between 1300 and 2030 K, and
the spread of this data is very large and we therefore do not
include it here.

1. Thermal excitations’ contribution

Returning to the difference between fully anharmonic and
QHA results, it is clear from Fig. 3 that the difference depends
on the facet. For example, for the (110) facet, the anharmonic
effects and thermal-electronic-excitation coupling to the vi-
brations cancel those of the bulk, so that their contribution to
γ110 is very small even up above 2000 K, and it essentially
follows that obtained with only the QHA and thermal elec-
tronic excitations for the static ideal lattice (from Ref. [6]).
In contrast, these contributions are not small for the (100)
facet, and the difference γ100 − γ110 is lowered by 13% even
at 2000 K, as compared to the QHA from Ref. [6]. In terms of
anisotropy, γ100/γ110 is lowered from 1.145 for the QHA, to
1.124 in this study. Likewise, γ310 is lowered in a similar way.

To demonstrate the origin of this different behavior, we
extract adiabatically decomposed contributions to the surface
free energies corresponding to Eq. (2), further dividing γ vib

into

γ vib = γ qh + γ ah + γ el-vib, (8)

representing contributions from the QHA, anharmonicities,
and thermal-electronic-excitation coupling to vibrations, re-
spectively, for different facets. With the QHA results from
Ref. [6], and our calculations of γ el, and γ vib with and without
thermal electronic excitations accounted for, all contributions
can be determined. The results for one more open facet,
(100), and for the most close packed (110) facet are shown
in Table III, at two different temperatures: one intermediate,
2000 K, and at Tm = 3695 K.

Note, however, that the static thermal electronic contri-
bution, just as the force constants in the QHA, depends on
the reference positions used for F (aT , T )QHA/el. Therefore,
whether one uses 0 K relaxed reference positions or, for
example, positions scaled with the thermal expansion, can
make a considerable difference (see also, e.g., Ref. [10]). This
is especially important at large aT (corresponding to high
temperature) where the relaxation at 0 K is pronounced.

The γ qh values in Table III are for slabs with some lay-
ers relaxed at aT =0 K and then rescaled to aT and will be
referred to as semirelaxed. For consistency, we present γ vib

contributions based on semirelaxed reference positions, as
well as results where γ el was based on relaxed positions for
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FIG. 3. Surface free energies for the facets investigated from 500 to 3695 K (solid lines) together with the QHA results from Scheiber et al.
[6] (dashed lines). The lower rightmost subfigure contains our results for all facets, as well as experimentally measured surface free energies
for liquid W. The experimental data was reported by Paradis et al. [14]. The scale and limits of all subfigures are the same.

comparison at 3695 K, as the difference is especially large
there. We will, however, in the rest of the analysis below,
consider only the semirelaxed results.

From the values in Table III for (100) it can be seen
that at 2000 K, γ el

100 is −3.4 meV/Å2. By comparing AIMD
results with and without thermal electronic excitations, the

TABLE III. Contributions to the (100) and (110) surface free
energy at 2000 and 3695 K, in meV/Å2. γ qh is taken from Ref. [6].
The values inside parentheses are for relaxed reference slabs.

Term 2000 K 3695 K

(100)
γ qh [6] 229.0 188.0
γ ah −4.9 −27.8 (−20.5a)
γ el −3.4 −19.2 (−11.9a)
γ el-vib 0.5 5.3 (−2.0a)

(110)
γ qh [6] 201.8 174.5
γ ah −0.8 −26.2 (−22.0a)
γ el −3.9 −24.4 (−20.1a)
γ el-vib 0.4 10.9 (6.7a)

aFrom γ el obtained with a relaxed reference slab.

contribution to γ100 in that case is around −3.0 meV/Å2. The
difference between these two values, i.e., γ el-vib, is negligible,
and we can thereby account our lower γ100, compared to
the QHA results, to explicit anharmonic vibrations. Likewise,
γ el-vib

110 is small.
So, even though the thermal-electronic-excitation coupling

to vibrations have previously proven to be strong in bulk W
from about half the melting temperature [16], we can see that
at 2000 K the coupling effect is essentially the same at the
surface, and the net γ el-vib is not large enough to influence the
surface free energy.

In terms of anharmonic vibrations, γ ah
100(2000 K) =

−4.9 meV/Å2, which is noticeable. For the (110) facet
at the same temperature, the difference from the previous
QHA results is close to zero and the effect of explicit an-
harmonic vibrations is small in this surface, just as in the
bulk.

At higher temperature, there is a significant increase in the
electronic-vibrational coupling effect for the (110) surface,
that increases γ110. The effect on γ100, however, is not at all
that large. So, while γ ah at 3695 K is of similar magnitude
for the (110) facet as for the (100) facet, γ el-vib differs and
contributes to the stronger temperature dependence of γ100.
Thus, both γ ah and γ el-vib contribute to different extents at
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FIG. 4. View of MTP MD trajectories at 2000 K (top) and 3000 K (bottom) from the (100), (110), and (111) slabs projected onto the (001),
(001), and (01̄1) planes, respectively. The more anharmonic nature of the vibrations of the atoms at the (100) and the (111) surfaces is clearly
visible. The gray lines indicate the ideal lattice positions in the direction normal to the surface. The trajectories were shifted so that the surface
atoms are at approximately the same z coordinate.

different temperatures, and both are important for a correct
description of the surface free energies at high temperatures.

2. Surface thermal disorder

In order to investigate this further and get a more clear
picture of what happens with the surface structure at ele-
vated temperatures, projected atomic trajectories from MTP
MD runs (capturing the major parts of the anharmonic vi-
brations) at 2000 and 3000 K are obtained and plotted in
Fig. 4. Although at 2000 K the overall crystal surface structure

is well preserved, the thermal displacements of the atoms
in the surface layers are noticeably larger than those in the
bulk, especially for the (100) and (111) facets [note that
the (100) surface is unreconstructed at this temperature],
where the atomic movement parallel to the surface becomes
quite pronounced.

At 3000 K, which is still about 700 K below the melting
point, the surface structure becomes quite disordered showing
signs of premelting in the case of the more open (100) and
(111) surfaces. Comparing with the results for 2000 K, one
can notice an appearance of W atoms in adatom positions, i.e.,
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FIG. 5. View of MTP MD trajectories at 3695 K from the (111) and the (310) slabs projected onto the (01̄1) and the (001) planes,
respectively. The trajectories of the surface atoms are clearly covering several lattice sites, as well as sites outside the lattice, on top of the slab.
The gray lines indicate the ideal lattice positions in the direction normal to the surface. The trajectories were shifted so that the surface atoms
are at approximately the same z coordinate.

above the surface layer, which also means creating vacancies
in the surface layer. It is also clear that the more open surfaces
become more disordered compared to the close packed (110).
Obviously, at this temperature and above, the QHA should
break down, and this is the origin of a strong deviation from
a linear decrease of all the surface free energies at around
3000 K.

At the melting temperature, the trajectories of atoms of
not only surface but several subsurface layers become diffuse.
This can be clearly seen in Fig. 5, where we show atomic
trajectories for the (111) and (310) facets at 3695 K. For both
surfaces, the atomic displacements in several surface layers
are larger than the nearest neighbor distance, which indicates
an extremely high atomic mobility leading to an appearance of
new “adlayers”—even two in the case of the (310) facet—and
surface premelting (we do no study this effect in this work,
since it requires the use of much larger supercells for a proper
quantitative modeling).

Such a high degree of atomic disorder at the surface clearly
shows that the crystalline character at the surface is either
greatly reduced, or already broken, for the more open surfaces
at high temperatures. The picture of atoms vibrating around
mean positions breaks down, and a correct modeling of the
surface free energy at this temperature requires going beyond
the QHA. This increasingly large disorder also explains why
the surface energy anisotropy decreases with temperature and
that the surface free energies approach that of the structurally
disordered liquid state.

C. Equilibrium crystal shape

To be able to visualize the impact of the change in surface
free energy as well as compare to earlier calculations, we
construct Wulff shapes based on the surface free energy at
a given temperature. The resulting shapes, constructed and
visualized using the WULFFPACK software [43], are presented
in Fig. 6 for 500, 1000, 2000, and 3000 K. One can notice
that the (210) and the (320) facets whose surface free en-
ergy was not considered earlier are present in the resulting
shapes from 1000 K and up. Further, the (111) and (211)
surfaces are more stable than previously suggested. This is
in close agreement with the particle shapes that can be seen
in Ref. [6].

At 500 K, as expected from its low surface free energy
(see Fig. 3), the (110) facet occupies the most surface area.
The (211) facet comes next, and we see also (310), (111), and
(100). At higher T the (100) surface occupies more and more
area, at the expense of (310), while (111) and (211) remains
relatively constant. Between 500 and 1000 K the (320) facet
appears between the (110) and (310) facets, but is at even
higher temperatures, between 2000 and 3000 K, exchanged
for the (210) facet. There is an interval around 2600 K where
both the (210) and (320) surfaces are present.

V. SUMMARY

We have used AIMD coupled with the thermodynamic
integration technique to determine surface free energies of
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FIG. 6. Wulff construction for surface free energies at 500, 1000, 2000, and 3000 K.

seven different facets which include all the relevant ther-
mal excitations with a high degree of accuracy, so that the
remaining errors can mostly be attributed to the PBEsol
exchange-correlation energy functional used in this work.
The high-temperature results for the surface free energies
and surface energy anisotropies are in good agreement with
experimental data.

The analysis of thermal-excitation contributions shows
that anharmonic vibrational effects become substantial close
to about 3000 K, i.e., 80% of the melting point, and
they are significantly more pronounced for more open sur-
faces, leading to a decreasing surface energy anisotropy with
temperature. At the same time, the surface energy of the
most close packed (110) facet, shows a surprisingly sim-
ilar dependence in our anharmonic calculations compared
to earlier QHA calculations by Scheiber et al. [6], devi-
ating only from around 2500 K and up to the melting
point.

The analysis of atomic trajectories between 2000 K and
the melting point indicates a dramatic increase of the mobility
of atoms in the surface layers starting from 3000 K. The
surface atoms can spend substantial time in adatom positions,
creating corresponding vacant sites in the surface layer. This
effect becomes very strong at the melting temperature, where
the crystalline surface structure is almost destroyed in several
surface layers.
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