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The massively parallelized full-potential linearized augmented plane-wave bulk and film pregrarifor
first-principles calculations in the context of density functional theory was adapted to allow calculations of
materials with complex magnetic structures—i.e., with noncollinear spin arrangements and incommensurate
spin spirals. The method developed makes no shape approximation to the charge density and works with the
continuous vector magnetization density in the interstitial and vacuum region and a collinear magnetization
density in the spheres. We give an account of the implementation. Important technical aspects, such as the
formulation of a constrained local moment method in a full-potential method that works with a vector mag-
netization density to deal with specific preselected nonstationary-state spin configurations, the inclusion of the
generalized gradient approximation in a noncollinear framework, and the spin-relaxation method are discussed.
The significance and validity of different approximations are investigated. We present examples to the various
strategies to explore the magnetic ground state, metastable states, and magnetic phase diagrams by relaxation
of spin arrangements or by performing calculations for constraint spin configurations to invest the functional
dependence of the total energy and magnetic moment with respect to external parameters.
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[. INTRODUCTION lem can be treated almost independently, almost like two
nonmagnetic calculations.

Noncollinear magnetism in general and incommensurate The first self-consistent noncollineab initio calculations
spin-density waves in particular are complex magnetic strucfor periodic solids—e.g., Refs. 3—5—applied the so-called
tures which exist in a variety of systems. They often occuratomic sphere approximatiofASA) to the magnetization
for topologically frustrated antiferromagnets, such as antiferdensity. In this approximation everywhere inside each
romagnets on a triangular lattice, disordered systems, eVigner-Seitz sphere the magnetization density is spherically
change bias systems, and molecular magnets, or for systerf¥mmetric and the direction is kept the sarfoellinean.
which exhibit either competing exchange interactions suctPnly interatomic noncollinearity between the magnetic mo-
as, for example, for fcc Fe, the lanthanides, and multicomme”ts at.dlfferent atomlc s'ltes was al!qwed in these calcula-
ponent magnets—e.g., LaMBe,—or exhibit competition tions. Th|s_ is Con5|stent_ with the intuitive picture that each
between exchange and spin-orbit interactions as fg, atom carries a magnetic moment and these moments and

Noncollinear magnetism occurs in spin-glass systems and iwe'r d|rect|qns differ only between the atoms. Such ”.‘etho.ds
) : . . . ._are very suitable to describe the interatomic noncollinearity
domain walls and is natural for spin fluctuations at finite

temperaturd of close-packed systems. There are, however, problems
' . . hich call h i h f ap-
In 1972, von Barth and Hedinintroduced the spin- which call one to go beyond the atomic sphere type of ap

. : . proximation. One of those problems is the neglect of the
polarized density functional theofDFT). Already at that 5 atomic noncollinearity, which occurs, for example, due

time, the key quantity of the theory, the magnetization denyq, the competition of the exchange interaction and spin-orbit
sity, was introduced as a continuous three-dimensional vectGgteraction in systems with large relativistic effects. A second
field without any limitation to its local direction. Thus it ¢jass of problems arises if one deals with noncollinear mag-
included already the treatment of Complex magnetiC StrUCnetism in Systems with low Symmetry orin fa|r|y open struc-
tures. Although noncollinear magnetism is a widespread phewres for which the atomic sphere approximation is known to
nomenon, even today by far the majority of ab initio  be less suitable and often provides results with insufficient
methods available are restricted to collinear magnetic sysaccuracy. Very recently several grofip¥ developed fully
tems. This restriction has the advantage that the Hamiltoniaonconstrained noncollineab initio programs that treat the

is diagonal in spin space. This does not only save a hugmagnetization density as a continuous vector field.

amount of computer time, but it also greatly simplifies the The aim of the present work is to introduce a noncollinear
implementation of magnetism into an existing non-spin-ab initio method developed on the basis of the full-potential
polarized program, because the spin-up and spin-down prolinearized augmented plane-wavELAPW) concept. It is
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designed to study complex magnetic structures in systemspirals, the local spin-relaxation method, and the constrained
with low symmetries, open geometries, or reduced dimenlocal moment method, into a bulk and film FLAPW program,
sions. It allows for total energy and force calculations towe have developed a unique tool to investigate noncollinear-
simultaneously optimize the atomic and magnetic structurdty in bulk and in particular at magnetic surfaces, in thin
We adopted a “hybrid” approach, treating the magnetizationfilms and low-dimensional magnets in general.

density(as well as the charge density and potetigithout Compared with nonmagnetic or collinear magnetic calcu-
any shape approximation and treating the magnetization O|e,?@tions the com_putational .effort of non.coIIinear calculations
sity as a continuous vector field everywhere, except withirfS €normous. Since the spin-up and spin-down problems can-
nonoverlapping spheres around each atomic site. For trandfot be solved separately anymore, the size of the Hamil-
tion metals the noncollinearity in these spheres is expected t@nian matrix that has to be diagonalized doubles. In addi-
be small, and we show that this indeed is a very good apt_|on, also for calcglatlons of structures Wlth_ inversion
proximation for these systems. This is already anticipated ii§ymmetry the matrix becomes complex Hermitian rather
the concept of assigning a direction to the magnetic momerhan real symmetric. In most cases the noncollinear magnetic

of a specific atom. Several strategies are implemented to degiructures have a lower symmetry, and thus large irreducible
with a large class of complex magnetic states. Brillouine zones, and have often also a larger unit cell con-

An arbitrary magnetic configuratiofi.e., a chosen ar- taining more atoms than the collinef_;lr configura_tion. Small
rangement of directions of local magnetic momerigsin ~ €nergy differences between competing magnetic states re-
general not a stationary state of the magnetic system. Requifiire calculations with high computational precision and re-
ing that the magnetic moments assemble in a prescribed cofYiré thus a very good sampling of the Brillouin-zone inte-
figuration means to constrain the phase space of possib@@ls by choosing a large number kfpoints. Therefore,
solutions. Within the framework of DFT such a constraint isnoncollinearab initio calculations represent a cutting edge
taken into account by a set of Lagrange parameters. Theroblem in supercomputing. Wlthout_ a parallelized version
Lagrange parameter represents a “constraining force” off the program and access to massively parallel supercom-
magnetic constraint field applied to the magnetic moments oputers most calculations of realistic systems are prohibitively
the atoms to keep the system in the desired magnetic co®lOW- _ _ .
figuration. We have implemented the constrained local mo- The principles of noncollinear magnetism, the constrained
ment method in a “full-potential” program that works with !0cal moment method, and spin-spiral calculations are de-
the vector magnetization density. We will show in Sec. I Bscnbeq in $ec. . Practlc_al aspe(_:ts of the calculations are
that this implementation allows us to test the functional formth€n given in Sec. Ill, which also includes tests of the con-
of the energy and magnetization with respect to externaptrained local moment and the spin-spiral method. The
parameters—i.e., the angles specifying the directions of thinplementation of noncollinear magnetism in the FLAPW
local magnetic moments around the atom—and compare tH@€thod is finally described in the Appendix.
results with model Hamiltonians. We note that this approach
is very powerful, as deviations from the anticipated forms of Il. METHOD
the energy as a function of these external parameters can lead
to important and far-reaching conclusioris?

The constraint fields can also be interpreted as a torque The energy functional of a general magnetic system can
which can be used to persue adiabatic spin dynafit8Ve  be expressed in two ways. It can be written as a functional of
did not follow this line. Instead we have implemented a spin-the charge densityy and the magnetization density vector
relaxation method which allows us to find and test localfield m or as a functional of the Hermitian>22 density
minima spin structures after a constraint on a given spirmatrix p. The two formulations are completely equivalent.

A. Noncollinear magnetism

structure is released. The density matrix is defined by the following equation:
An important class of noncollinear configurations is spiral
magnetic states or spin spirals. These are configurations 1 1/ n+tm, me—im,
i =5(nly+o-m)=3 . , 1
where the local moment is rotated by a constant angle from p=5(nlyto-m=3 me+im,  n—m, (1)

atom to atom along a certain direction through the crystal.

Spin-spiral states occur as magnetic ground states ifyherel, is the unit matrix in spin space anslis the vector

nature—e.g., in fcc FéRef. 17, in rare-earth metals, and of the Pauli matrices. We can also define the potential matrix
frequently in multicomponent magnets with competing mag-y in the same way:

netic interactions—e.g., LaMe,.'® Spin spirals can also

be understood_as a mod(_el for magnons or domain_walls. V=VI,+ ugo-B. 2)
When spin-orbit coupling is neglected, a generalization of

the Bloch theorem for spiral magnetic configurations can b&/ contains the external, Hartree, and the exchange-
derived. On the basis of this generalized Bloch theorem, weorrelation potential, averaged over two spin directions in a
have implemented a method that allows us to deal with spinlocal frame of reference where tlzeaxis is parallel to the
spiral states using only the chemical unit cell of the crystalocal quantization axisB comprises the extern& field and
without the need for large superce{Sec. Il Q. Incommen- the exchange field expressed as the difference of exchange-
surate spin spirals can never be described with supercellsorrelation potential, 1[2/,.(T)—Vy(l)], in the local
With the implementation of noncollinear magnetism, spinframe of reference parallel to the local quantization axis.
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Introducingi as a composite index for thevector and state, authors work with more physical quantities such as the den-
i=(k,v), we compare Eq(l) with sity n(r) and the magnetization densityi(r), and with a
spin-independent LAPW basis set extended inside the
N N . .
3 + 3 4 spheres around the atom by spin-dependent local orbitals.
l’l(r)—;1 B (Dla(1), m(f)—izl F(Nod(r), B)  The implementation presented here is based on an alternative
strategy: namely, on the spin-density matrices and on the
and see that the components of the density magrjs, are  standard LAPW basis set using spin-dependent radial wave

given by a very Simple relation in terms of the solutions Offunctionsulo(r) and their energy derivativéﬁo_(r) Supp|e-
the Kohn-Sham equatios = (4 1, i o): mented by spin-dependent local orbitals. The biggest differ-
ence, however, arises from the motivation that most theoret-
* . ical models dealing with noncollinear magnetism are based
Paﬁ':;l Vlathip With a,fel2. ) on the concept of asemiclassicalspin associated with an
atom and a quantum-mechanical description of the interac-
Using the potential matri{Eq. (2)], the Kohn-Sham tion between these spins. The success of these models—e.g.,
equation for a giverk-point obtains the form the Heisenberg model—and the usefulness of calculational
ab initio methods that—like the augmented spherical-wave
(ASW) method—neglect all intra-atomic noncollinearity mo-
b=e.t,. () tivated us to develop a “hybrid” method that assumes a col-
linear B field in the vicinity of the atomic nuclei and a con-
The kinetic energy part of the Hamiltonian is diagonal in thetinuous vectorB field in the interatomic region and in the
two-dimensional spin space. It is only the off-diagonal partvacuum.
of the Hermitian 22 potential matrix that couples the two  Therefore, inside nonoverlapping spheres centered around
components of the Pauli spingk, . If the B field is collinear,  the atoms the off-diagonal elements of the potential matrix
the spin coordinate frame can always be chosen such that thieat enters the Kohn-Sham equatit® are assumed to be
B field points in the spire direction. zero in the local coordinate frame of this atom. In this local
Since the density functional theory was first proposedframe, the magnetic moment of atomthen points in the
different parametrizations of the exchange correlation energgirection and this direction can then, in the global frame, be

€xc have been suggested in the local spin-density approximaspecified by a directior; . In a normal calculation these
tion (LSDA) and also in the generalized gradient approxima-gjrections are not input quantities but have to be determined

tion (GGA). These parametrizations have been developedgit.consistently. Alternatively, in a “constrained” calcula-
and mostly used for collinear calculations. Due to the local

1 1 Aa 3
character of the LSDAg, . depends only on the magnitude tion (see next schdnthgeM S can be. u;ed as.external pa
o X . rameters to the calculation. As we will give evidence below,
of the magnetizatiofie,.= ex(n,|m)]. Hence, there is no the noncollinear magnetism ofd3transition metals at sur-
reference to any direction and the LSDA can equally be 3Ptaces and in open sgtructures is an example of weak intra-
plied to collinear and noncollinear systems. All that needs to P p

be done is to locally calculate and|m| and memorize the :;[é)én'lﬁengtnocgilcl;nsearr\g}rléTzﬁ:gﬂ){?(@ ézsvgﬁl:;ﬁcalgzﬁ e|Int-0
local direction ofm, since the exchange-correlati@nfield P ' yP

always has the same direction as the magnetization. Af’[etrhe average of the spin density of the sphere except in re-

this step the standard parametrizations can be applied. gons close to the sphere boundary whenr) is already

contrast, in the generalized gradient approximation the enyizM@ll- Since in the FLAPW method muffin-tin spheres are

ronment of a point in space does enter the formulaegr used which are significantly smaller than volume filling

through the gradients of the densities. In general, the grad?tomIC spheres and since the choice of the sphere radii is

ents ofn, m,, m,, andm, have to be considered. The most lexible to a certain degree, but definitely smaller than half

: N the nearest-neighbor distance, a “hybrid” method in which
wide spread parametrizations are, however, developed f full tization densi is treated without sh
collinear calculations and hence consider only the gradient € tull magnetization e”S'W.‘(r) IS treated without shape
of the scalar quantities andm. Therefore, these parametri- approximation and as a continuous vector field in the inter-

: : A : : stitial region and in the vacuum, while inside each muffin-tin
zations are in principle not applicable to a noncollinear sys- here we onlv allow for one direction of maanetization that
tem. In practice, the GGA can be used in an approxim::xtgp re w y afllow for rectt gnetizatl
way, because the contribution of the gradient of densjty enters the determination of tfifield,

Vn, is more important than the gradients of the magnetiza- ) -

tion m. There are two possible quantities to feed into the m(r), interstitial and vacuum,
parametrization in replacement of the gradientroh a col- m(r)= me(r)&%,, muffin-tin spherea, (6)
linear calculation:(i) the gradient of the magnitude of the

magnetization vector field |m| and (i) the z component of

the gradient of the magnetization vector field projected ontshould provide excellent results. The notation here applies to
the local direction of the magnetization. We will discuss thethe FLAPW in bulk and in the film geometfy;?® where the
differences between the two possibilities in Sec. Il B 4.  space is partitioned into a film of finite thickness, consisting

Noncollinear magnetism has already been implementedf an interstitial region and muffin-tin spheres and two
into a FLAPW code by Nordstro and co-worker§ These  semi-indefinite vacuum regions on both sides of the film. The

N

#2
- — V2| +
[ om? 12tV
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continuous vector-field description in the interstitial regionNotice that for all sphere-averaged quantities only the spheri-
describes to a large extent the intra-atomic magnetism of;al part of the magnetization density is needed, which makes
e.g., 3 metals. The exchange fieB! is also expressed ac- the quantities easy to calculat are Lagrange multipliers.
cording to Eq.(6). The intra-atomic noncollinearity ah in Physically, they are transverse constraining fields acting in
the sphere for thi8 field is also known, but not used in the the directione? , B®=B¢ . Minimizing Eq. (7) with respect
construction of thes field. to an electronic state yields the Kohn-Sham equations, which

A detailed account of the implementation of this formal- cqntains inside the muffin-tin sphetean additional poten-
ism in the FLAPW method is given in Appendix A.1. All

results in the present work have been obtained within the

scalar relativistic approximation; i.e. the spin-orbit coupling V.= pugo-BY, (10
(SOQ is neglected. .

which is always perpendicular tey,. By means of the
Hellmann-Feynman theorem the changg of the energy

. . . . due to a directional changee, is given by the classical
With the exception of high-symmetry states, like the fer-result gdey is g y

romagnetic, antiferromagnetic, or other collinear magnetic

tat n rtain cl f spin-spiral stat n rticular QAR A A

ﬁaes,a d a certain class of spin-spiral states and particula dE=— ugM{ (&) B2(E) - de; (11)
inear superpositions of several particular spin-spiral states,

in general an arbitrary magnetic configuration given by a sefhe difference vectodé,‘(,] is perpendicular té& 49

of local (atomig magnetization directiongey,} is not an The effectiveB field BE;; that enters the muffin-tin part of
extremum or a stationary solution of the total energy functhe Hamiltonian is given byhere, B,,; is set to zero for
tional E[n(r),m(r)]. The constrained density functional simplicity)

theory developed by Dederictet al!® provides the neces-

B. Constraint

sary generalization to deal with arbitrary magnetic Be(r) = B;fc[n(r),m”(r)]éﬁjI +B%e"
configurations—i.e., configurations where the orientations of R R R
the local moments are constrained to nonequilibrium direc- =By (r)eytBel =B (r)eg(r). (12
Eéc[):?r) n\:\ﬁ)'{gg?]ne a  generalized energy functlonalm order to calculate the exchange correlatidfield By (r)

’ ’ after the magnetization density is calculated from the wave
- ~ functions, the magnetization density is projected onto the
E[n(r),m(r)|{ey}] prescribed local quantization aé and we obtairmf (r).

Since the exchange correlati@field is calculated from the

projected magnetization density, th# field is collinear.

However, when a constraining field is added, the resulting

effective B field Bg(r) is again a continuous noncollinear

:E[n(r)vm(r)]+MBE B(C:r'{Ma_MHa} vgctor fielfj in the muffin-tin spheres, with pointwise local
a directionseg(r),

=E[n(r).m()]+ps 2, BS-((m*)—&(ehIm”))

= a ppa . B« o Ba"a
E[n(r),m(")]+ pa 2 BY-M, v ()= DD+ BIES 13

{[Bio(n]?+ (B2
which consists of the energy functional of the unconstrained . N ~
systemE[n(r),m(r)], extended by a constraint, which en- different fr%r1211 thg local ‘quantization axﬁ\’jI Stocks and
forces that the directioM/M< of the local (integrated co-workerg®?! noticed this problem. They introduced an ap-

magnetic moment; i.e., the magnetization density averageBroximation that the constraint fielB; is anr-dependent
over the muffin-tin sphere of atom, (m®) functional, rather than a constant, which has the same func-

tional form as the exchange correlatioB field BY

N u 5 =ce*BY(r), where the scaling facta” replaces8“ as the
(mH=M =fMTam(r)d r ®  parameter to be determined. The constrainBigields B
that enter are often rather small and the approximation sug-
is parallel to the prescribed directicef, and thus ensures 9gested by Stocks and co-workers might be a very good one,

that the local moments have no componets normal to ~ although we have not further investigated that. On the other

the directions®. &% for anv atomM¢ is the component of hand, due to the introduction of the dependence in the
o €L y I P constraining fields, the approximation introducepassibly

M* parallel toey; . M is the projection of the local moment smga)) inconsistency between the constraining fields and the
of the muffin-tin spherer onto defining Eq.(7). A much stronger constraint condition than
those discussed so far would be to demand that the magne-
3 tization densitym(r) be parallel tce$, in every point inside a
m(rd>r. (9 . : M ; ,
T muffin-tin sphere. This constraint would result in a constraint

(&5l =i =& Mg [
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field that depends on the position in the muffin-tin sphere., - DA
Maybe the approximation of Stocks and co-workers catches E‘; \i i ? i
already this aspect. N\ '

In an actual constrained local momé@t_M) calculation
n(r), m(r), andB¢ have to be determined self-consistently.
n(r) and m(r) are calculated in the usual self-consistency
cycle. At the same time the local constraint fieBfshave to

.
be adjusted, until the constraint conditionm®) 7
— el (el |m*)=0 is fulfilled. At the end of such a calculation M/O}T) }1) /O AP’O \Q\“
we obtain the self-consistent densities and a set of local con

straint B fields that make the integrated magnetization per- Ji
pendicular to the local spin quantization axes vanish in lv

each muffin-tin sphere. The total energy of the system is
given by the constrained energy functional, Ef). SinceB¢

is always perpendicular tef;, the extra contribution to the g1 1. (Color onling. Four examples of spin-spirals with spin-
total energy isfyr«BS-m(r)d®. However, the effectiv®  rotation axis perpendiculdupper two and parallellower two) to
field that enters the Hamiltonian in the muffin-tin sphere ofthe spin-spiral vectoq. For each case two spirals with angles of
atom « is given by Bg(r) =By(r) + Bg,(r) +BS. There- 9=m/2 and 9=n/4 between the magnetic moment and rotation
fore, the above contribution to the total energy cancels witlexes are shown.

the contribution of the constraint field to the kinetic energy. . . . . -
Thus, the constraint field does not enter the expression fdrof MOre than one magnetic atom in the unit cell, in addition
the total energy explicitly, but it enters implicitly through the w0 its basis vectorr,, an additional atom-dependent phase

eigenvalues; and through the self-consistent densities. ¢ appears in the above equation. Nevertheless, the magnetic

Demanding that the perpendicular component of the locainoments of all atoms have to rotate around the same axis. To

momentM¢ vanish is not the only way to formulate a con- distinguish from the longitudinal spin-density waves, spin

straint to the direction of the local moment. There are severa?p?ralS are also frequently called helical magnetic structures,
alternatives. A formulation that differs only formally from Spiral spin-density waves, or frozen magnons. The origin of

the constraint of Eq(7) is to require that the cross product the last term is that a spin ;plral quks I'k.e a snapshot ofa
o~ iSh M & has th tude < but single magnon at a f|>$ed time. Spin-spiral calculations can
M*®Xey vanish. ey has the same magnitudeMs' but  harefore be used to simulate the effect of temperature on a

is perpendicular t{. Using this constraint the additional magnetic system in the adiabatic approximation, in particular
term in the energy functional for each atom would beat very low temperatures, when magnons with long wave-
Bg- (M“Xey). Applying the Hellmann-Feynman theorem length dominate. Another possible application of spin spirals
we find that the change of the energy is given #f  is the simulation of domain walls including the calculation of

= — ugM®- (B¥x def)). Therefore, the constraint field can the formation energy. Without the application of the general-
be interpreted as a torque acting on the magnetic moment, #§€d Bloch theorem the investigation of such magnetic struc-

the spirit of the derivation of Antropoet al51 tures requires very large unit cells. Since the spin spiral is an
The detailed formulation of constraints in the FLAPW €Xact solution of the classical Heisenberg modeT at0, it
method is given in Appendix A.2. is believed that they cover a large and important part of the
phase space of possible spin states. Thus among all possible
C. Spin spirals magnetic states, spin spirals are the next relevant class of

spin states besides the high-symmetry magnetic states—i.e.,
the ferromagnetic, antiferromagnetic, or ferromagnetic con-
[ﬂgurations. Though there are many possible applications for
gpin-spiral calculations, it was the discovery of a spiral
ground-state structure in fcc irbhand 4 metal$? that gave

rise to many theoretical studié$®

A magnetic structure with momenhd that are rotated by
a constant angle from atom to atom along a certain directio
of the crystal is called a spin spiral. This can be described b
the propagation vector of the spin spicgl the rotation axis
(which is, in the scalar-relativistic approximation, not fixed
with respect to the lattigeand the relative anglé between Figure 1 shows four examples of spin spirals with spin-

the magnetic moment and rotation axis. Upon translation b¥otation axis perpendiculaupper two and parallel(lower

a lattice vectoR, the magnetic moment of an atom rotatestwo) to the spin-spiral vectoq and different angles between

zﬁ ?r? anglecpn=q~Rf. A?r?urlgli’;g a rolti?]tlo?h?r?unnd PE‘IX'S fthe spin-rotation axis and magnetic moments. When spin-
€ absence of Spin-orbit coupling this 1S not a 10SS Of, ;s coupling is neglected, the two spirals with the sathe
generality, the magnetic moment of an atom having the

. i . . - . in Fig. 1 become completely equivalent. However, the spin
basis veg;toa-”_ n the unit (;elln_(wnh the origin at the lattice spirals with differentd do not become equivalend! is still
vectorR") points in the direction

a well-defined quantity, if SOC is neglected, because the ro-
cogq- (R"+ 7%) + £%)sin 9« tgtion axis is a vecto(qlirectior) in spin space. For systems
- . R4+ ) 4 £%)5in 9 with one atom per unit cell the angi& may be determined
= sin(g-(R+7%)+£%sin : (14 by higher-order spin interactions—i.e., interactions beyond
cosd” the Heisenberg model. For unit cells with more than one
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magnetic atom, conical spin structure8= =/2) can be a A. Unsupported Cr monolayers
consequence of competitive exchange interactions between 14 check our implementation of noncollinear magnetism,

the different atoms. The total enerd(q.{9},{¢"}) de- e performed tests for an unsupported monolayL ) of
pends on the wave vector of the spin spiral, the cone angleg \yith the symmetry and the lattice constant of a monolayer
and the relative phases between the atoms in the unit cely, ihe Ad111) surface. We chose the theoretical LDA Ag
Therefore, the investigation of the minimum of the total ;aice constant of 7.79 a.u. Thepoint set that we employed
energy—i.e., the magnetic ground state—is a search witQ,responds to 180 points in the full two-dimensional Bril-
many degrees of freedom. To stulyas a function ofd“ or  |5in zone. the plane-wave cutoff was set #

&7 further requires a calculation with constraint fields. =33 aul ’Ieading to a basis set with about 130 basin;a%(unc-

A very elegant treatment of spin spirals by first-prinCipleSion per atom, and the muffin-tin radius was chosen as large

calculations is possible when the generalized Bloch,g hossiple =275 a.u. We applied the LDA parametri-
theorem*?° is applied. However, this theorem can only be zatti)m accoler'\?rTlg to Moruzzi Jangrll and Willia?r"?z.

proved when SOC is neglected. For this reason the spin-
rotation axis will always be considered as parallel to the
axis of the spin coordinate frame. Thus, only thgandm,
components are rotated, whihe, does not change. Follow-  In Sec. Il A we described our way of implementing non-
ing Sandratski® we can define a generalized translatifn ~ collinear magnetism with a “hybrid” approach that uses a
that combines a lattice translation and a spin rotation. Applycontinuous vector magnetic field in the interstitial and
ing a generalized translation fds yields vacuum region that smoothly connects the collinear intra-
atomic B fields inside the muffin-tin spheres. While the po-
TH(r)d(r)=U(— qR")H(r + RMUT(— gR"U(— gR") tential matrix V has—in the local frame of a muffin-tin
sphere—no off-diagonal elements, the density magriis
X(r+R"Y=H(r)U(—gR" ¢(r+R"), generally nondiagonal in spin space and, therefore, still de-
(15) scribes a continuous intra-atomic noncollinear magnetization
density. Since the basis functions inside a muffin-tin sphere
whereU(gR") is the spin-1/2 rotation matrix: are coupled to the plane waves of the interstitial region, the
influence of theB field outside influences the charge and
magnetization density inside a muffin-tin sphere. This can

1. Intra-atomic noncollinearity

—igf2
n e _0 " now be used to estimate the intra-atomic noncollinearity and
UGRD=| o €*2]. ¢=qR" (160 helps—if there is any—to adjust the size of the muffin-tin
spheres so that all noncollinear effects are well outside the
spheres.

In analogy with the proof of Bloch’s theoréfit follows that

the eigenstates can be chosen such that We calculated an hexagonal unsupported monolayer of Cr

for the in-plane lattice constant of the Ad1) surface. The
o magnetic state was chosen to be the 120&INtate, where
Top(k,r) =U(—qR") gk, + R") =e'* Rk, r). all magnetic moments have a relative angle of 120° and the
(17 unit cell is the3x 3 R30° unit cell containing three at-

This lati fh lized Bloch th . . oms. This state is the solution of the classical Heisenberg
IS formufation of the generaiized bloch theorem IS equiVay,,je for antiferromagnets in nearest-neighbor approxima-
lent to the statement that the eigenstates of the Hamiltoni

b itten in the form Affon. In our calculations this state also had the lowest total
can be written in the for energy compared to all states that are allowed as solutions of
the Heisenberg model in the next-nearest-neighbor

‘ e*ig-rp(k,r) approximatiort® From Fig. 2 we see that in a sphere cen-
Pk,r)=e'k" q , (18  tered around the nucleus up to a radius of 2 a.u. the magne-
e '2'G(k,r) tization density remains fairly collinear. In the usual calcula-

tions we use muffin-tin radii of 2.1-2.3 a.u.; therefore the
where F(k,r) and G(k,r) are functions with translational approximation of a collinear description within the muffin-
periodicity—e.g., F(k,r +R") =F(k,r). We will give the tin sphere can be expected to be a good one for these sys-
formulas that arise in the implementation of spin spirals intems. Hobbs and Hafriérfound a similar behavior for Cr on
the FLAPW method in Appendix A.3. Cu(111) with a full vector-magnetization density description.
Moreover, using different muffin-tin radii we have the pos-
sibility to check the quality of our approximation as will be
lll. APPLICATIONS shown in Sec. Il B 5.

In this section we show examples of the calculation of the For (magnetig high-symmetry state@@.g., in this case the
noncollinear magnetism on two systems: an unsupportebieel state or spin spirals withy==/2 and all collinear
hexagonal monolayer of Cr and bulk Fe in both a bcc and étate$ the average direction of the magnetization within a
fcc structure. The concepts of Sec. Il were implemented ifmuffin-tin spherex, (m®), will be in line with the direction
theFLEUR code, a realization of the FLAPW metHdd®suit-  of the B field, %, and the magnetic state denotes a stationary
able for bulk and film systems. state to the solution of the Kohn-Sham equations. But gen-
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FIG. 2. Fully noncollinear output magnetization density of a
U.ML S t.he 120 Ne.”\l st.ate.. L'ght(d‘jirk). areas |nd!catg ' uct — upgMy By (open circlegis plotted as a function of the applied
gions of low (high) magnetization; arrows indicate the direction of rpendiculaB field (BL). The triangles show the perpendicular
the magnetization density. The Cr atoms are located in the center (%Ecal maanetic momem)j(\q.“)
the dark hexagons and are surrounded by touching muffin-tin g X7

spheres.

FIG. 3. The total energy differendsolid circleg and the prod-

whereM( ,y andB( ) are the respective components of the

era”y, if the directionséa do not Specify such a h|gh_ local OUtpUt magnetization and the Inpﬂtfleld within the
symmetry state{m®) will be no longer in line withe® and  SPherex in the local spin coordinate frame. Note that also, in

this effect can be used to “relax” the directions of the mag-Ed- (19), o is the spin of atoma in its local frame of

netic moments as will be shown in Section 11l B 1. reference and is, therefore, either purely spin fip ¢r spin
down (|).
2. Cr: Constraint In a test calculation, we used a unit cell containing two

atoms according to the inset of Fig. 3. The magnetic mo-

local ¢ method d the ch f the tof ents of the two atoms are aligned with a relative angle of
ocal moment method we compared the change of the 1o 0°, so that the configuration consists of alternating rows of

energy fo'r small constraining fields with the energy calcu- atoms with moments pointing, e.g, in tyendx directions,
lated in first-order perturbation theory. We performed non'respectiv ely
self-consistent calculations, setting the constraint field to dif- From a self-consistent calculation without a constraint

E:%rr?gitstgr?tllue?n Qﬁgﬁyg} d;atzgrathﬁg d Csigfllatg]rgeg diiﬁ:;field we obtained small perpendicular moments of about
. ny. o pp . Perp b.lZuB inside the muffin-tin spheres. The direction of the
B fields inside each muffin-tin sphere, using the implemen-

tation for constrained local moment calculations. We triedperpendicular moments is shown in the inset of Fig. 3, indi-
' cating the tendency of the system to evolve into a state of

fields with different magnitudes, which were smaller than the ternating antiferromagnetic rows. The local spin coordinate

constraint field necessary to make the perpendicular mome ame of each atom was chosen such that the perpendicular

in the respective muffin-tin sphere vanish. Such fields repres sment points along the axis of the local frame. Starting

zzgtog fhn;glrl pttr%]réuerﬁztrlon;;f;f;gnsg:tggwgnezr;;t-eoLdnere[:r)a rrtgéfrom the self-consistent charge and magnetization densities
y 9y P \?/e performed non-self-consistent calculations where we ap-

,f.md pelrturbe? Sﬁ/ stems Is dgl\{[e? by :chteh sum var tk?e deXpetCtrETied a perpendicular field also in tixairection and with the
ion values of all occupled stales ol the UNperturbed systerg, o magnitude in each muffin-tin sphere. Figure 3 shows

with the perturbation term of the Hamiltonian. If we write change of the enerdize., sum of the single-particle en-

the contribution to the Hamiltonian due to the perpendicular, . . . . :
field within the local spin coordinate frame as ergies as a function of the applied perpendicuBrfield

(solid circles. For very small fields this energy difference is
in excellent agreement with the energy difference calculated
in first-order perturbation theoropen circleg according to
Eqg. (20). But already for fields as small as 20 me) (for

As a first test of the implementation of the constrained

fi-d i
Hypra= — 4BOga, - qar[BEx+5gM0*)iBE ],

. o 1 for o*=T, comparison, the average exchange correlat®riield is
with sgno“)= (19 L A
-1 for o%=], about 2500 meVjkg inside the muffin tinsthe result of the
) _ o perturbation theory starts to deviate from the calculated en-
we find that the energy difference is given by ergy. In first-order perturbation theory the effect of the

change of the eigenfunctions due to the perturbation is ne-

glected. As a measure for that change we can take the output

perpendicular moment of the calculation, which is also

shown in Fig. 3(solid triangle$. It can be seen thauly

_ _MBE (MEBE+ M;VB; , (20) decreases I_inearly with increasing field. At a fielq .of abput
@ 60 meV/ug it has already decreased to half its original size.

AB=—pe2 | WD) B+ oyB)) g (n)dr
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Hence, the first-order perturbation theory is only accurate for |
very smallB fields below 20 meVjg . = -

As we have pointed out in Sec. Il B, the local constraint 5 -100~ -
fieldsB; have to be determined self-consistently—e.g., using.fé
an iteration scheme. Thus, after each iteration or set of itera= -200- -

400 ‘ : .

-500 - e ; =

tions that converges(r) andm(r), a correctiolAB to the &
current estimatd¢;,, needs to be determined: E 300 .
- - (p
cout=BeintABC. (21) @ Q

Naturally, we expecAB¢ to be proportional to the perpen-
dicular magnetic moment in the spheld,’= [\;to{m(r)
—e’[e*-m(r)]}d%. The proportionality factor should be o0 ,
chosen such thaB¢ approaches the self-consistent value 0 /2 U
quickly, but does not overshoot. In principle, it would be best Angle of local moment ¢

to knowdM {/dB¢ , but this quantity is not easily accessible.
However, if we assume that rotatirBg;; by some angle
rotatesM“ by the same angle, we arrive at the following
choice for the correction to the constraint field:

FIG. 4. The total energy of an UML Ck1l) with the lattice
constant of Ag111) as a function of the relative angleof the local
moment. The plot contains the results of two calculations with dif-
ferent muffin-tin radii ofRy+=2.75 a.u.(solid symbol$ and Ryt
=2.0 a.u.(open symbols Shown are the calculated total energy
relative to the ferromagnetic energgircles and the product of the
local moment and constraifd field, — ugM|(¢)Bc(¢) (triangles
and — ug/M|(¢)Bc(¢)de (squares
where M?= [,7m(r)d>r is the integrated magnetic mo-
ment in the muffin tin andBg;;) is the average effectivB  Hellmann-Feynman theorem, E@l1), can be integrated,
field in the sphere. All quantities on the right-hand side areyielding an equation for the energy difference between the
output of a self-consistency iteration. To generalize this forferromagnetic state and a state with anglebetween the
mula and to improve the convergence we can add a scalingiagnetic moments:
factor B.:

MY

ABg=—|(Bg :
c |< eff>||Ma|

(22

M E(9)—E(6=0)=—puo | Mi(e)Blo)de. (29

. (23
L

ABZ=—Bc|(Bgip|

) ) The result of the test calculation is shown in Fig. 4. We
Our test calculations show that for systems where the size Gfyst concentrate on the results obtained for a muffin-tin ra-

the local momentM“| does not change much wi8, the  gjus of 2.75 a.u., denoted by the solid symbols. The graph

constraint field af‘d de”_s“_ies can be converged Simu“aéhows the calculated total energf)( difference (solid
neously, and the linear mixing of the former does not inter-

: o - circles, the product— ugM|(¢)Bc(¢) (solid triangleg, and
fere with the Broyden mixing scheme applied to the latter. : : :
As a second test we compared the calculated total ener ipe integral of the latter quantisolid squares The energy

- ’ ) Becreases with increasing angle. It shows a cosinelike behav-
[E, according to Eq(7)] to the energy obtained from the jor as expected from the nearest-neighbor Heisenberg model
constraintB fields using the Hellmann-Feynman theorem ex-for an antiferromagnetic material. The shape of the
pressed in Eq(11). Equation(11) can be used to calculate — usM|(¢)Bc(9) curve is dominated bB.(¢). M(¢) is

the energy difference between two magnetic states by agmost constant. It changes only within a range of
integration over a path of magnetic configurations that CONZ. 115—4.2u5 . M|(¢) also changes very littidess than 1%
nects the two states. This method has been used by Oswai$m a calculation with the constraint field switched off to a
etal® to calculate the energy difference between a ferrogonstraint calculation. The symmetric magnetic states—
magnetic and an antiferromagnetic state df-iBpurity  ferromagnetic and antiferromagnetic—represent extrema of
dimers in Cu, Ag, and Pd. We chose again the UML Cr/tne total energy. Hence, they are stable magnetic solutions.
Ag(11]) system as in the previous paragraphs, using theonsequently,  the  constraint  field—and  thus
same computational parameters. As starting and fimalg- —ugM|(¢)Bo(p)—is zero for ¢=0 and ¢=m.

netic states we consider the ferromagnetic and a row-wise_MBM”((p)Bc((p) is a continuous function that reaches a
antiferromagnetic configuration. Rotating one of the two at-j,aximum at an intermediate angle slightly smaller tha®.

oms in the unit cell, as illustrated in the inset of Fig. 4, yields  The integral— 1/ M(¢)B.(¢)de exhibits the same be-

a path of magnetic states connecting the initial and finahayior as the total energy, but has a slightly smaller magni-
states. This path is described by a single parameter, the angigje than the calculated total energy difference. At the final
¢. If ¢ is changed by an infinitesimal stelp, the change of  (antiferromagneticstate the two curves differ by about 9%.
the direction of the local momenle is always parallel to the We suspect that this might be due to incomplete-basis-set
local constraint fieldB¢ in such a configuration. Now the corrections. The Hellmann-Feynman theorem is based on the
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fact that the functional derivative of the total energy with  fcc or y-Fe has been extensively studied for many years.
respect to thécomponents of thedensity(matrix) vanishes, One of the reasons for the large experimental and theoretical
SE/5p=0, becausg is already the ground-state density andattention this system has attracted is the Invar properties of
minimizesE. Therefore, only the explicit dependence of thealloys based ony-Fe. This interest has been renewed by
energy on an external parameter has to be taken into accoupgutron diffraction experiments by Tsunodawho found
when differentiating the energy with respect to the parametethat the ground state of-Fe most likely consist of a noncol-

In our case this parameter is the direction of the local modinear, spiral magnetic structure. This discovery stimulated
ment. However, in methods like the FLAPW method theMany noncollinearab initio investigations by different
basis set depends on the external parameters. The corf@dthors 1233541 The large amount ofib initio data on

sponding corrections are called the incomplete-basis-set Coiz-l_:els_pmlsplrals make this an |geal test jyitem for a Sp'”'l
rections. Such corrections play an important role in the caiSPIral implementation. Here we have used the experimenta

culation of the atomic force® In fact, in atomic force Cu lattice constant 6&=6.82 a.u., since thg-Fe has been

calculations the incomplete-basis-set corrections are usual und for Fe in a Cu matrix. Atetragonal unit cell containing
even larger than the Hellmann-Feynman force. Recently. © atoms was qsed: In Sec. Il B 3<q)qlnt set corresponQ—

. .' ing to 1120k points in the full three-dimensional Brillouin
Grotheer and Hamle have derived an expression for the zone (BZ) and two different plane-wave cutoff
incomplete-basis-set corrections to the torque acting on the P max

=3 -1 1 ; _

localized magnetic moment8.They have performed calcu- _isArfgna::.tLij(.)nsangrlléét‘ro?ﬁu.regocrercetisvpeolndwgréouig;n'?hilga?ciIa-

lations similar to that presented in Fig. 4 on bcc Fe and foung. b » esh Y: ' )
ions of Secs. llIB4 and IlIB5 were performed with

- o ;
that the corrections are about 2% of the size of thek—point sets corresponding to 56¥2points in the full BZ

Hellmann-Feynman torque. - v Y
The basis function of the FLAPW method in the intersti- and pIa_nle—wave cgtoffs d(m.?x_ 42au.”, 46au, and
0 a.u. ~ for muffin-tin radii of 1.9 a.u., 2.1 a.u., and 2.3

tial region are plane waves. Thus, the basis set is independeﬁt .
o A . a.u., respectively.

of the local quantization axis* in that region. Hence, chang-

ing the muffin-tin radiiRy,+ should have an effect on the size 1. Relaxation of the magnetic moments

the incomplete-basis-set corrections. To gain an indication

whether the incomplete-basis-set corrections are the cause gf v obtained f \vina the Kohn-Sh i L
the difference between the calculated total energy differenc ensity obtainéd from solving the konn-sham equations 1S in
general noncollinear inside the muffin-tin spheres. Of course,

and the energy difference obtained from the Hellmann-

Feynman theorem, we have repeated the calculation with in our method this information about intra-atomic noncol-
much smaller muff1in tin radius oR.-=2.0 a.u. instead of inearity is lost again after the construction of the potential
= MT_ . . .

2.7 a.u. With this choice the volume covered by the muffin-matrix that assumes thB is collinear inside the muffin-tin

tin spheres is reduced by more than 60%. The result of thispheres and points in the directieh In the self-consistency
second calculation is also shown in Fig. 4 by the open symcycle we can either “constrain” the direction of the magnetic
bols. The product-ugM|(¢)B.(¢) is changed consider- moments so that the average direction of the magnetization,
ably. The energy difference calculated from the Hellmann{m¢), is parallel toe® or “relax” the direction of the mag-

Feynman theorem is now about 6% too large; i.e., thenetic moments by adjustingf in the direction of m<) until

deviation has changed sign and its magnitude has becon@@mma)_ Using the latter procedure, we have a tool to de-

smaller. This result supports the idea that the deviation is dLﬁeErmine the magnetic ground state or a local metastable state

to the incomplete-basis-set corrections. However, to deﬂbf a system within a chosen unit cell.

r]itely settle this point, calculations inclu.ding thesg correc-~ | Slch a calculation we also apply the approximation of a
tions would be necessary. Such calculations remain a fuwr@ollinear magnetization density inside each muffin-tin

roject. - S
proJ spherem(r)=m“(r)ey ; only the directionsy, [and conse-
quently m®(r)] are relaxed. In order to relax the magnetic
B. bulk Fe configuration it is necessary to calculate the tGitategratedl
perpendicular output magnetization

As we described in Sec. Il A 1, the output magnetization

Stocks and co-worket®?! chose bcc Fe to test their
implementation of constrained local moment calculations.
Also Grotheer and Fanle** used the same test system for <mf,out>:Mf|out:J m ou(r)dr (25
their implementation of the incomplete-basis-set corrections MTa
to the Hellmann-Feynman torque on the magnetic moment o~ @ Cantinra® (1) — (a1 @
Therefore, we repeated the test for bcc Fe using the San?n ng't'c;thgMHﬁu'\tﬂ' aTh|e z:tu;%::thdlsri?;lodrﬁf)étrs n((')vr';qgﬁt
geometry as Stocks and co-workers. In particular, we use rom”'?ﬁg inptiogirect‘i‘grt{tthe orientation of the spins at }c/he
the same LDA lattice constant @f,=5.27 a.u. Ouk-point ~
set corresponds to 201@oints inat%e full three-dimerﬁ)sional beginning of the iteration steip &, For the next iteration
Brillouin zone. The plane-wave cutoff was set K., 1+1, the input directiore’;,( "% is changed independently
=4.0 a.u. ! leading to a basis set with about 80 basis func-from the charge density and the size of the magnetizations,
tions per atom. We chose a muffin-tin radius Byt  [M{ o, or [M{'5,. In our implementation the parameters
=2.25a.u. describing the orientation are the azimuthal and polar angles
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2 Q and a further 15 iterations are needed basically to converge
those quantities. After 20 iterations both the densities and
directions are converged. This shows that by separating the
orientational degrees of freedom of the magnetic moment
from the charge density and the size of the magnetization
during the iteration progress, the convergence of the orienta-
tion of spins can be accelerated considerably.

/4

2. bce Fe: Constraint

angle between spins (@)

To compare with the constraint results of Stocks and co-
0 : ‘ ‘ : workers we started with an unconstrained calculation of bcc

0 S 10 4 15' 20 Fe. In such a calculation the magnetization density is pro-

number of iteration jected onto the local quantization axé$ inside the muffin

FIG. 5. Relaxation of the spin direction of a Fe atom in bulk bec tins after each iteration; i.e., the perpendicular magnetic mo-
Fe. The evolution of the angle between the magnetic moments of mentM{ is neglected. Although these calculations can be
two Fe atoms is shown as a function of the number of the selfconverged to a stable solution, the result is not self-consistent
consistency steps. in the sense that the direction of the output magnetic moment

. _ N _is not equal the direction of the input momesg,, .+ €
¢ and 0, respectively. We used straight mixing to determine _ ~,

the input orientation for the next iteration step: For example,
the anglee®(*1) being used in the next iteration is chosen
as

The results of the bcc Fe calculations are presented in Fig.
6. Panel(b) contains the parallel magnetic momeviy(¢)
(open diamonds and the perpendiculatoutpud moment
a,(i+1)_ 4 _ a,(i) a,(i) M, (¢) (open triangles Our results are not in agreement
e’ == BleinH Beau” 26 with those of Stocks and co-workers. In particular, we find
where 8 is a mixing parameter. The choice of the mixing that the moment decreases strongly, by more than 50%, when
parameter for the angles crucially determines the speed df is rotated towards the antiferromagnetic state. Stocks and
convergence and has to be adapted to a specific system. Carg-workers obtain a very similar magnetic moment for the
vergence of the charge and magnetization density and tHerromagnetic state. However, in their study the moment var-
directions can be done simultaneously; i.e., after each selfes only within a range of 18z—2.2u with the rotation.
consistency iteration of the densities a new set of angles i©ther authors also found a strong reduction of the moment in
determined. The mixing scheme and the mixing parameterthe antiferromagnetic state. For example;bka*? found a
are chosen independently for the densities and directiongnoment that is even slightly below in the antiferromag-
However, when a Broyden mixing scheme is used for thenetic configuration for the same lattice constant. Moruzzi and
densities, the Broyden “memory” has to be deleted regularlyMarcug® obtain a reduction from 2.34; (ferromagnetit to
(every 10 iterationswhile the directions are still changing 1.75«g (antiferromagnetic Their moments are larger in
quickly. both configurations, because they used a lattice constant of
As an example we calculated the relaxation of the aggle ay,=5.48 a.u.—i.e., 4% larger than in our calculation.
between the magnetic moments of two Fe atoms in the bcc Another difference between our results and those of
unit cell starting from a canted spin structure=90°). As  Stocks and co-workers is the size Mf, (¢). These authors
sketched in Fig. 5 the spin directions of the corner atoms arepecify the difference between the input and output angles of
kept fixed. The self-consistent determination of the relativehe local moment rather thab, . They find a maximum
ground-state angles between these two atoms was started whfference of about 25°. The size of the magnetic moment
ing a converged charge density for this particular relativefor that angle is about 25, which means thai ;| must be
starting angle. Then the variation of the orientation is carriechbout 0.%g. This value is much larger compared to the
out as described above. We us@e 1.0, which means that maximumM , of 0.37ug that we found. Finally, Stocks and
the mixing is 100% for the directions of local the moments.co-workers obtain a maximum constraint field of about
The evolution of the anglep with the number of self- 0.23 Ryjug at 90°. We also find the maximum at 90°, but
consistency steps is shown in Fig. 5. As we expecton- the our value of 0.029 Ry/g is almost a factor of 10
verges towards 0° to yield the ferromagnetic solution. Selfsmaller. However, Fig. 6 shows that the energy difference
consistency of the densities and directions is obtained imalculated from the Hellmann-Feynman theorem using
about 25 iterations. B.(¢) [panel(a), solid squarekis in fair agreement with the
For Co, not shown here, we overrelaxed the directions otalculated total energy differendpanel (a), solid circleg.
the moments by using=3.0, which means that the mixing The Hellmann-Feynman result underestimates the energy
is even more than 100% for the directions of the local mo-difference between the ferromagnetic and antiferromagnetic
ments. The convergence of the orientation is very fast andtates by about 13%. Pan@) also contains the calculated
the ferromagnetic state is reached after only 5 iterations. Dutotal energy of the unconstrained calculati@pen circles
to the fast change of the directions, the charde) and  Naturally, the energies calculated with and without constraint
magnetization densityn,(r) are not converged anymore are equal for the ferromagnetic and antiferromagnetic con-
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5 2 T FIG. 7. Total energy and magnetic moment as a function of the
Angle of local moment ¢ spin-spiral vectorg. The plot shows results of the two different

implementations of the spin spirals) cutoff enforced according to
|G+ K|<Kax (0Open symbols (i) |G+ kF q/2| <K pax (solid sym-
bols). The solid square represents the energy of the layered antifer-
romagnetic solution calculation carried out with the collinear pro-
gram.

culated total energies and magnetic moments for spin spirals

with q vectors along the lin€' X are shown in Fig. 7. A spin

spiral with aq vector at thd™ and X points corresponds to a

ferromagnetic and a layered antiferromagnetic configuration,

respectively. The results agree with those of previous calcu-

lations: We find the minimal energy for @ vector of about

g~0.59"X. The minimizingqg vector, the shape of the en-

| ergy curve, and, in particular, the magnetic momenydfe

0 2 n vary strongly with the lattice parameter: For Wigner-Seitz
Angle of local moment ¢ radii of 2.66 a.u. 4=6.81 a.u.) and smaller, Uhét al?

_ found around thel’ point a low-spin solution, while for
FIG. 6. (a) The total energy of bcc Fe as function of the angle OfWigner-Seitz radii of 2.67 a.u.a=6.83 a.u.) and larger, a

the local moment. Shown are the calculated total energies relative tﬂigh-spin solution was obtained. The magnetic moments
the ferromagnetic energgircles, the product of the local moment were about 0. for the low- and 2.5 for the high-spin
and the constrair field, — 1M (¢)B(¢) (triangles and integral 0 = yp e .al?tho?ﬁ report a ferrdmggnetic moment of
— 1M (@)B(@)de (squarek (b) Shown are the paraliel mag- Qg at a Wigner-Seitz radius d®ys=2.66 a.u. We

netic momentsM(¢) (diamond$ and the perpendicular moment ST L
M, (¢) (triangles. Both panels contain results of constrairiedlid have found a moment of 14 , which lies within that range.

symbol$ and unconstrained calculatiofspen symbols For the(experimggtal Cu lattice constant, all authors rgport
] ] o . a total energy minimum at @ vector at about 0.6°X, while
figurations, where the constraift field vanishes. For the for smaller volumes a secondocal) minimum aroundq
intermediate angles the total energy calculated with CON=(0.2,0,1.0)2r/a develops.

straint is always larger. We obtained the largest difference of \yi have tested two slightly different implementations of

98 meV at an angle of 105°. Compared to the other tesfye gpin spirals that use different cutoff conditions for the

systems this value is _uncommonly large; e.g., for the Chasis functions: (i) |G+k|=Ka and (i) |G+k¥q/2)

e e ol e <Iyunere is the wave vecior of the augmerted piane
P Jyave (cf. Appendix A.J). Figure 7 presents results for both

Fig. 6. In the region where the magnetic moment decreas | tati il tation® and (ii) denoted b
rapidly as a function of angle, the moment of the constrained"P'éMentations, implementations) and (i) denoted by

calculation(solid diamondsis reduced even more strongly °Pen and solid symbols, respectively. Implementatigris
compared to the unconstrained moméapen diamonds expeqted to yield I.ess accuratg energies in pa'rt|cular for large
Other results showed that this seems to be a general trend. $h Ewdgznce for thISI presumption Is founq in Fig. 7. Compar-
situations where the magnetic moments break down rapidiynd for implementatior(i) the results obtained for two differ-
the constraint tends to reduce the moment further, while irent basis-function cutoff&,,, we find that the difference
most other instances the effect of the constraint on the size dfetween the total energies increases with increagwector.
the moment is negligible. The same is true when comparing implementatipnwith
implementation(ii); the difference increases with tlyevec-
tor. Even for the larger cutoff of 4.4 a.Ut implementation

In order to test the spin-spiral implementation we have(i) deviates from implementatiofii). In particular, imple-
performed calculations on thgFe (fcc Fe system. The cal- mentation(i) gives larger total energies. The accuracy of this

Magnetic moment (W)

05 I

3. fcc Fe: Spin-spiral calculations
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improved implementation can be appreciated from the fact

that the total energy coincides for thevector at theX point '§ 1'8_
with the result of a collinear antiferromagnetic calculation <, ¢
(solid square on the right-hand side of the pldo achieve < |

1.4

the same accuracy with implementatiGhit would be nec-

essary to go to even higher plane-wave cutoffs. However,
increasingK max from 4.0 a.u: ! to 4.4 a.u.! means already

an increase of the basis functions per atom from 85 to 1154
which makes the calculation much more time consuming, & _
since the effort of setting up and diagonalizing the matrix =
scales with the number of basis functions to the third power.&"

moments

.Q\ T

Bi.
4. GGA g
We noted in Sec. Il A that, in a noncollinear calculation, X
the gradients of the magnetization densityr), that enter g-vector
the GGA functional can be constructed from the vector mag- _
netization densityn(r) in two different waysii) we can use FIG. 8. The magnetic momenttop) and energybottom of the

the gradient of the absolute value of the vector magnetiza§pin spiral ofy-Fe as a function of thg vector(a) calculated with
tion the PBE(Ref. 49 (open circley and the PW91(Ref. 45 (solid

diamond$ form of the GGA andb) with gradients according to Eq.
am(r)y  alm(r)| (27 (solid diamonds or Eg. (28) (open circles Panel(a) was
— (27) calculated according to Eq27), panel(b) with the PW91 form of
the GGA. The energies are given relative to the energy of the fer-

to evaluate the GGA functional. In this formulation spatial *°Magnetic state.

changes of the magnetization direction are not reflected; e.g., ) ) )
in SSDW calculations of differeng vectors the difference in tected at theX point, but even here the energy difference is
through changes in the absolute value of the magnetizatioor the calculation of the gradient of the magnetization den-
If |m(r)| would stay constant, the contribution of the mag-Sity Vm(r), the most significant difference between these
netization density to the XC potential would be the same fofWo implementations can be expected from regions where
magnetization directior(ji) we can calculate the gradient of Of @ linear behavior of the component wi(r) that changes
the density matrix and project it onto the direction of the Sign, Eq.(27) introduces an artificial minimum in the abso-

trix at r, |Vm(r)|, while Eq.(28) avoids this artifact. Therefore, even

in a collinear structure, the results obtained by the two equa-

ap(r) tions can differ, as can be seen at @oint in Fig. 8.
P u(r) . (29

X ox '

om(r)

el o, Ut

5. Intra-atomic noncollinearity

The latter implementation was also chosen by pfi® In their papers both Kmfle etal®® and Hobbs and
et al*° who investigated the spin-spiral ground stateyefe  Hafner! stress the importance of intra-atomic noncollinear-
by a modified augmented spherical walASW) method ity. With the choice of different muffin-tin radii, we can vary
applying the Perdew-Burke-Ernzerh(®BE) form™ of the  the fraction of space in which the magnetic field is treated as
GGA. Karling and Ergor® used the older PW91 forlh  a vector quantity. From Fig. 2 we see titat least for Cythe
within the atomic sphere approximation. To sort out the dif-closer we come to the nucleus, the smaller the noncollinear
ferences between these two exchange-correlation potentialsifects get. Therefore, we expect that choosing touching
we calculated the energy of fcc Fe with a lattice constant ofnuffin-tin radii (in our fcc Fe example this would correspond
6.70 a.u. as a function of the vector for both forms of the to 2.36 a.u. might create the largest deviations, but with
GGA. The results are summarized in Figa from which  shrinking radii the results should converge rather quickly.
we see that the major difference between the two forms offhe results of these calculations are shown in Fig 9. With
the GGA is the enhancement of the magnetic moments in thehrinking muffin-tin radius, the magnetic moments get gen-
PBE form. In both forms we find two minima of the energy erally smaller(since they are evaluated as the integral of the
at q~0.6I'X andg~0.2 XW. The PBE form tends to sta- magnetization density inside the muffin-tin spheregher-
bilize the former minimum with respect to the latter by 1.5 wise there are no dramatic effects to be observed. Looking at
meV/atom and the energy differences are nowhere largaghe energies, we see that for muffin-tin radii of 2.3 and 2.1
than 5 meV/atom. a.u. the energies differ at most by 1.4 meV/atah the X

The influence of the choice of implementation of the gra-point) while in a comparison of the calculations with muffin-
dients[i.e., according to Eq(27) or Eq.(28)], presented in tin radii of 2.1 and 1.9 a.u. this value decreased to a mere 1.0
Fig. 8(b), is even smaller. The largest difference can be demeV/atom. Keeping in mind that at thépoint all total en-
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moments (uB/atom)

APPENDIX: IMPLEMENTATION OF NONCOLLINEAR
MAGNETISM IN THE FLAPW METHOD

1. Noncollinear magnetism in the FLAPW method

The FLAPW method for collinear calculations uses two
sets of radial basis functions inside the muffin tins for the
spin directions. For each spin direction they are set up using
the spherical part of the corresponding potenwa(r) or
V,(r) and energy parametey, or g, . In the noncollinear
case it is still possible to work with/,(r) andV (r), since
we restrict the magnetization to the local quantization axis.

FIG. 9. The magnetic moment®p) and energybottom of the  Therefore, a local spin-space coordinate frame is introduced
spin spiral of y-Fe as a function of the vector calculated with  with the z axis parallel to the local quantization axié, and
muffin-tin radii of 2.3 a.u(open circle} 2.1 a.u.(shaded squargs Vi are now spin up and down with respect to the local axis.
and 1.9 a.u(solid diamonds The energies are given relative to the Since both the potential and basis functions are set up in
energy of the ferromagnetic state. Note that the magnetic momentgrms of the local spin coordinate frame, the determination of
are quantities integrated within the muffin-tin spheres. The planethe basis functions and calculation of the integrals of these
wave cutoff for these calculations was chosen to keep the product gf,nctions with the Hamiltonian inside the muffin-tin spheres
muffin-tin radius ank .., approximately constari®.6). The PW91 5. completely unchanged. The changes come in when the
(Ref. 43 form of the GGA with gradients according to H@7) was s functions inside the muffin tins are matched to the
used. plane waves in the interstitial region, because the local spin
coordinate frame is rotated with respect to the global frame.
N The FLAPW method uses augmented plane waves as ba-
sis functions. Therefore, each basis function can be uniquely
identified by its wave vecto6 and the spin direction. The
basis functions in the interstitial region are

Energy (meV/atom)

r X w
q-vector

ergy differences are caused by the change of the muffin-ti
radius and the plane-wave cutdfff. also Sec. 11l B 3, we
suspect that most of th@lthough smaljl energy differences
observed in Fig. 9 are not associated with intra-atomic non

collinearity.
T . . . .
Sjostedt and Nordstro™ also investigated the influence @ o(kr)=e ke g, (A1)
of the intra-atomic noncollinearity in this system and found . _
the largest contributions in a region arouger0.3TX. Al- X5 iS & two-component spinor. The indghas been added to

lowing for intra-atomic noncollinearity they find an almost signify that x% is the representation of this spinor in the
linear decrease betwedn and 0.5I'X, while Knopfle et global spin frame. In this global frame thgl are just the
al.*® and (although not for exactly the same volupdars-  regular two-component spinonst(é) and Xi:(g) used
man and Hafnét find a shape similar to Fig. 9. Comparing also in collinear calculations. In difference to collinear cal-
these different calculations, we find it difficult to sort out the culations, in noncollinear calculations, the potential matrix
influences of the different implementations. Staying withinV—and thus the Hamiltonian—is not anymore diagonal in
our approximation we observe that a reduction of the areghe two-dimensional spin space. In the vacuum region, we
covered by the muffin tins by 44% leads to no significantalso use the global spin frame for the representation of the
change of the result. Nevertheless, we want to mention thdiasis functions. Only inside the muffin tin spheres is the
for heavy elementge.g., the actinidés and for all problems  basis set changed, because we use a local spin coordinate
where spin-orbit coupling is importditintra-atomic noncol-  frame, which is rotated with respect to the global frame.

linearity cannot be neglected. Thus, the basis set has the following form:
ei(G+k)ng, int.,
[AS(kpuSl(k,2)+BS(kuSl(k,z) eIy, vac.,
6 o(k,1)= I [ [ I (A2)

2 3 AL (UL 1)+ B (KU (D IYL(P) Xor, MTa,
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wherek is the Bloch vectorG is a reciprocal lattice vector, 2. Constraints in the FLAPW method

L abbreviates the quantum numbérandm, and|| denotes In the local spin coordinate frame the additional contribu-
the components parallel to the surface, if any. At the boundsigp, to the Hamiltonian matrix due to the constraiield in

ary of the muffin-tin spheres, the plane waves are matched {he sphere is purely off diagonal. If we calculate a matrix
to solutions of the(scalar-relativisti¢ radial S_chrdinger element of the HamiltoniafiEq. (19)] with the basis func-
equation u/,(r,e,,) and its energy derivativai (r,e,) tions[Eq. (A2)], we get

=du;,(r,e,)/de via the matching coefficientd and B:

) e Hinre * (0= 2 (¢ alK)|H fyral €8 5a(K)). (AB)
260K =2 0F ok Xoe= 2 2 [ATeulr)

Substituting Eq(A4) yields

+ By el 1YL X (A3)
where the sum is over the local spin directiom$. As a HE % (k) =— g, (Bextsgno®)iBgy)
consequence, when the functions in the sphere are matched o”
to the plane waves at the boundary of the muffin-tin spheres, XL D * Yo T L9 * X ]
each spin direction in the interstitial region is matched to o o
both the spin-up and -down basis functions in the sphere. X@é’, )| 0% a(K)). (A9)

The noncollinearA and B coefficients can be expressed in
terms of the collinear coefficients:
3. Spin spirals in the FLAPW method

ATCK =[(X9)* xS (A4) As suggested by Eq18), the plane wave basis sgEq.
(A1)] used in the interstitial region can be written as
(the same holds for thB coefficient$ with spinors

G, (k) =e(CriEaRny | (A10)
8 U e (0
€ 7003( E) —e '2sin E) where the minus sign i /2 holds for spin up and the plus
Xi%= o |9 S e [ - sign hold for spin down. Inside the muffin tins the changes to
e'?sin<5> e'%os(E) the basis set enter only through the boundary conditions,

since the functions inside the spheres need to be matched to
the plane waves in the interstitial region including the extra
term ¥ g/2 now. Replacing'(¢*X) T py ! (6+k¥d2)1 iy the
matching condition, we find that th& and B coefficients of

(A5)

Here, the angleg andd define the direction of the magnetic
moment of atoma with respect to the global frame. With : . ; )

these relations, the Hamiltonian matrix elements of a noncol? Sp'”'sp'”_i' calculgn_on can be e>_<pressed in t_erms of the
linear calculation can be related to that of a collinear Calcu_correspondmg coefficients of a collinear calculation,

lation, HGS(k), b « «
T A (k) = (D" X JATS(KF Q) (ALD

HE ST = [(X*D* X T [(X°D* X IHE S, (K) and the same holds, of course, for Beoefficients. When
o local orbitals are used in a calculation, care has to be taken to
(AB)  ensure that the local orbital is “attached” to the sa@e

- . . . vector in the majority G+k—qg/2) and minority G+k
and a similar relation holds for the overlap matrix. Since all+q/2) spin channels. Also here combination with the

guantities defined inside the muffin-tin spheres can be relateEDA+U formalism is straightforward and has been used in
to thpse ofa CO”'P%‘F calcula_tlon by apply_lng a spin-rotation, \wination with local orbitals successfully for the determi-
matrix, the combination of this method with local orbif&ls nation of the magnetic ground state of £un contrast to an
antlj t?ﬁ LD{% L:_tfolrmalésrrf‘ IS rather_ stra|ghtfor\|/(var$h_ th ordinary noncollinear calculation the coefficiehEsy. (A11)]

| Q | € Interst Ida' a? ;/acuumurqglor:hwe \t/vor fW' tg € for the two interstitial spin directions differ by more than a
gg_ ?] ‘:Spl? Coot,r, mae rfa;_m?_. S'Eg € tiepH unt_:lt i complex prefactor in the spin-spiral case. Therefore, the very
which “cu Sb ou e (;pu 'r' In_spheres, the Hamiftonian simple relations for the Hamiltonian and overlap matrix ele-
matrix can be set up directly to give ments[Eq. (A6)] do not hold anymore. Instead, the Hamil-
tonian matrix elements have to calculated directly from

’ ! hz
HIGNU'l'53 7 (k) = (V(r(r'®)(G—G/)+ 50’0’ ﬁ(G,_F k)2®(G—G/) ' o' Go
(A?) HMTa (qu)
while the overlap matrix is diagonal in spin space with the :2 <‘pg', Ua(k'Q)ngWMTan ga(k’Q)XZg . (A12)
diagonal elements the same as in the collinear case. o ’ ’
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As a consequence, the numerical effort setting up the contrirot a multiple of w/2, the spiral-spin-density wave is not
bution to the Hamiltonian and overlap matrix from the muf- necessarily a stationary solution and either the ground-state
fin tins is increased compared to an ordinary noncollineacone angle can be determined, or a constraint has to be used.

calculation.
When the cone angl@® [cf. Eq.(14)] of the spin spiral is

The constraining field is then, of course, in itself modulated
by the sameay vector as the spin spiral.
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