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Ab initio treatment of noncollinear magnets with the full-potential linearized augmented
plane wave method

Ph. Kurz and F. Fo¨rster
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

L. Nordström
Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala, Sweden

G. Bihlmayer* and S. Blügel
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The massively parallelized full-potential linearized augmented plane-wave bulk and film programFLEUR for
first-principles calculations in the context of density functional theory was adapted to allow calculations of
materials with complex magnetic structures—i.e., with noncollinear spin arrangements and incommensurate
spin spirals. The method developed makes no shape approximation to the charge density and works with the
continuous vector magnetization density in the interstitial and vacuum region and a collinear magnetization
density in the spheres. We give an account of the implementation. Important technical aspects, such as the
formulation of a constrained local moment method in a full-potential method that works with a vector mag-
netization density to deal with specific preselected nonstationary-state spin configurations, the inclusion of the
generalized gradient approximation in a noncollinear framework, and the spin-relaxation method are discussed.
The significance and validity of different approximations are investigated. We present examples to the various
strategies to explore the magnetic ground state, metastable states, and magnetic phase diagrams by relaxation
of spin arrangements or by performing calculations for constraint spin configurations to invest the functional
dependence of the total energy and magnetic moment with respect to external parameters.
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I. INTRODUCTION

Noncollinear magnetism in general and incommensu
spin-density waves in particular are complex magnetic str
tures which exist in a variety of systems. They often oc
for topologically frustrated antiferromagnets, such as anti
romagnets on a triangular lattice, disordered systems,
change bias systems, and molecular magnets, or for sys
which exhibit either competing exchange interactions s
as, for example, for fcc Fe, the lanthanides, and multico
ponent magnets—e.g., LaMn2Ge2—or exhibit competition
between exchange and spin-orbit interactions as for U3P4.
Noncollinear magnetism occurs in spin-glass systems an
domain walls and is natural for spin fluctuations at fin
temperature.1

In 1972, von Barth and Hedin2 introduced the spin-
polarized density functional theory~DFT!. Already at that
time, the key quantity of the theory, the magnetization d
sity, was introduced as a continuous three-dimensional ve
field without any limitation to its local direction. Thus
included already the treatment of complex magnetic str
tures. Although noncollinear magnetism is a widespread p
nomenon, even today by far the majority of allab initio
methods available are restricted to collinear magnetic s
tems. This restriction has the advantage that the Hamilton
is diagonal in spin space. This does not only save a h
amount of computer time, but it also greatly simplifies t
implementation of magnetism into an existing non-sp
polarized program, because the spin-up and spin-down p
0163-1829/2004/69~2!/024415~15!/$22.50 69 0244
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lem can be treated almost independently, almost like t
nonmagnetic calculations.

The first self-consistent noncollinearab initio calculations
for periodic solids—e.g., Refs. 3–5—applied the so-cal
atomic sphere approximation~ASA! to the magnetization
density. In this approximation everywhere inside ea
Wigner-Seitz sphere the magnetization density is spheric
symmetric and the direction is kept the same~collinear!.
Only interatomic noncollinearity between the magnetic m
ments at different atomic sites was allowed in these calc
tions. This is consistent with the intuitive picture that ea
atom carries a magnetic moment and these moments
their directions differ only between the atoms. Such meth
are very suitable to describe the interatomic noncollinea
of close-packed systems. There are, however, probl
which call one to go beyond the atomic sphere type of
proximation. One of those problems is the neglect of
intra-atomic noncollinearity, which occurs, for example, d
to the competition of the exchange interaction and spin-o
interaction in systems with large relativistic effects. A seco
class of problems arises if one deals with noncollinear m
netism in systems with low symmetry or in fairly open stru
tures for which the atomic sphere approximation is known
be less suitable and often provides results with insuffici
accuracy. Very recently several groups6–12 developed fully
unconstrained noncollinearab initio programs that treat the
magnetization density as a continuous vector field.

The aim of the present work is to introduce a noncolline
ab initio method developed on the basis of the full-potent
linearized augmented plane-wave~FLAPW! concept. It is
©2004 The American Physical Society15-1
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designed to study complex magnetic structures in syst
with low symmetries, open geometries, or reduced dim
sions. It allows for total energy and force calculations
simultaneously optimize the atomic and magnetic structu
We adopted a ‘‘hybrid’’ approach, treating the magnetizat
density~as well as the charge density and potential! without
any shape approximation and treating the magnetization
sity as a continuous vector field everywhere, except wit
nonoverlapping spheres around each atomic site. For tra
tion metals the noncollinearity in these spheres is expecte
be small, and we show that this indeed is a very good
proximation for these systems. This is already anticipate
the concept of assigning a direction to the magnetic mom
of a specific atom. Several strategies are implemented to
with a large class of complex magnetic states.

An arbitrary magnetic configuration~i.e., a chosen ar-
rangement of directions of local magnetic moments! is in
general not a stationary state of the magnetic system. Re
ing that the magnetic moments assemble in a prescribed
figuration means to constrain the phase space of pos
solutions. Within the framework of DFT such a constraint
taken into account by a set of Lagrange parameters.
Lagrange parameter represents a ‘‘constraining force’’
magnetic constraint field applied to the magnetic moment
the atoms to keep the system in the desired magnetic
figuration. We have implemented the constrained local m
ment method in a ‘‘full-potential’’ program that works wit
the vector magnetization density. We will show in Sec. II
that this implementation allows us to test the functional fo
of the energy and magnetization with respect to exter
parameters—i.e., the angles specifying the directions of
local magnetic moments around the atom—and compare
results with model Hamiltonians. We note that this approa
is very powerful, as deviations from the anticipated forms
the energy as a function of these external parameters can
to important and far-reaching conclusions.13,14

The constraint fields can also be interpreted as a tor
which can be used to persue adiabatic spin dynamics.15,16We
did not follow this line. Instead we have implemented a sp
relaxation method which allows us to find and test lo
minima spin structures after a constraint on a given s
structure is released.

An important class of noncollinear configurations is spi
magnetic states or spin spirals. These are configurat
where the local moment is rotated by a constant angle f
atom to atom along a certain direction through the crys
Spin-spiral states occur as magnetic ground states
nature—e.g., in fcc Fe~Ref. 17!, in rare-earth metals, an
frequently in multicomponent magnets with competing ma
netic interactions—e.g., LaMn2Ge2.18 Spin spirals can also
be understood as a model for magnons or domain wa
When spin-orbit coupling is neglected, a generalization
the Bloch theorem for spiral magnetic configurations can
derived. On the basis of this generalized Bloch theorem,
have implemented a method that allows us to deal with s
spiral states using only the chemical unit cell of the crys
without the need for large supercells~Sec. II C!. Incommen-
surate spin spirals can never be described with superc
With the implementation of noncollinear magnetism, sp
02441
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spirals, the local spin-relaxation method, and the constrai
local moment method, into a bulk and film FLAPW program
we have developed a unique tool to investigate noncolline
ity in bulk and in particular at magnetic surfaces, in th
films and low-dimensional magnets in general.

Compared with nonmagnetic or collinear magnetic cal
lations the computational effort of noncollinear calculatio
is enormous. Since the spin-up and spin-down problems c
not be solved separately anymore, the size of the Ham
tonian matrix that has to be diagonalized doubles. In ad
tion, also for calculations of structures with inversio
symmetry the matrix becomes complex Hermitian rath
than real symmetric. In most cases the noncollinear magn
structures have a lower symmetry, and thus large irreduc
Brillouine zones, and have often also a larger unit cell co
taining more atoms than the collinear configuration. Sm
energy differences between competing magnetic states
quire calculations with high computational precision and
quire thus a very good sampling of the Brillouin-zone int
grals by choosing a large number ofk points. Therefore,
noncollinearab initio calculations represent a cutting edg
problem in supercomputing. Without a parallelized versi
of the program and access to massively parallel superc
puters most calculations of realistic systems are prohibitiv
slow.

The principles of noncollinear magnetism, the constrain
local moment method, and spin-spiral calculations are
scribed in Sec. II. Practical aspects of the calculations
then given in Sec. III, which also includes tests of the co
strained local moment and the spin-spiral method. T
implementation of noncollinear magnetism in the FLAP
method is finally described in the Appendix.

II. METHOD

A. Noncollinear magnetism

The energy functional of a general magnetic system
be expressed in two ways. It can be written as a functiona
the charge densityn and the magnetization density vect
field m or as a functional of the Hermitian 232 density
matrix r. The two formulations are completely equivalen
The density matrix is defined by the following equation:

r5
1

2
~nI21s•m!5

1

2 S n1mz mx2 imy

mx1 imy n2mz
D , ~1!

whereI2 is the unit matrix in spin space ands is the vector
of the Pauli matrices. We can also define the potential ma
V in the same way:

V5VI21mBs•B. ~2!

V contains the external, Hartree, and the exchan
correlation potential, averaged over two spin directions i
local frame of reference where thez axis is parallel to the
local quantization axis.B comprises the externalB field and
the exchange field expressed as the difference of excha
correlation potential, 1/2@Vxc(↑)2Vxc(↓)#, in the local
frame of reference parallel to the local quantization ax
5-2
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Introducingi as a composite index for thek vector and state
i 5(k,n), we compare Eq.~1! with

n~r !5(
i 51

N

ci
†~r !I2ci~r !, m~r !5(

i 51

N

ci
†~r !sci~r !, ~3!

and see that the components of the density matrix,rab , are
given by a very simple relation in terms of the solutions
the Kohn-Sham equationci5(c i ,1 ,c i ,2):

rab5(
i 51

N

c i ,a* c i ,b with a,bP1,2. ~4!

Using the potential matrix@Eq. ~2!#, the Kohn-Sham
equation for a givenk-point obtains the form

H 2
\2

2m
¹2I21VJ cn5encn . ~5!

The kinetic energy part of the Hamiltonian is diagonal in t
two-dimensional spin space. It is only the off-diagonal p
of the Hermitian 232 potential matrix that couples the tw
components of the Pauli spinorcn . If the B field is collinear,
the spin coordinate frame can always be chosen such tha
B field points in the spinz direction.

Since the density functional theory was first propos
different parametrizations of the exchange correlation ene
exc have been suggested in the local spin-density approxi
tion ~LSDA! and also in the generalized gradient approxim
tion ~GGA!. These parametrizations have been develo
and mostly used for collinear calculations. Due to the lo
character of the LSDA,exc depends only on the magnitud
of the magnetization@exc5exc(n,umu)#. Hence, there is no
reference to any direction and the LSDA can equally be
plied to collinear and noncollinear systems. All that needs
be done is to locally calculaten and umu and memorize the
local direction ofm, since the exchange-correlationB field
always has the same direction as the magnetization. A
this step the standard parametrizations can be applied
contrast, in the generalized gradient approximation the e
ronment of a point in space does enter the formula forexc
through the gradients of the densities. In general, the gr
ents ofn, mx , my , andmz have to be considered. The mo
wide spread parametrizations are, however, developed
collinear calculations and hence consider only the gradie
of the scalar quantitiesn andm. Therefore, these parametr
zations are in principle not applicable to a noncollinear s
tem. In practice, the GGA can be used in an approxim
way, because the contribution of the gradient of densityn,
¹n, is more important than the gradients of the magneti
tion m. There are two possible quantities to feed into t
parametrization in replacement of the gradient ofm in a col-
linear calculation:~i! the gradient of the magnitude of th
magnetization vector field¹umu and ~ii ! the z component of
the gradient of the magnetization vector field projected o
the local direction of the magnetization. We will discuss t
differences between the two possibilities in Sec. III B 4.

Noncollinear magnetism has already been implemen
into a FLAPW code by Nordstro¨m and co-workers.6,11 These
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authors work with more physical quantities such as the d
sity n(r ) and the magnetization densitym(r ), and with a
spin-independent LAPW basis set extended inside
spheres around the atom by spin-dependent local orbi
The implementation presented here is based on an altern
strategy: namely, on the spin-density matrices and on
standard LAPW basis set using spin-dependent radial w
functionsuls(r ) and their energy derivativesu̇ls(r ) supple-
mented by spin-dependent local orbitals. The biggest dif
ence, however, arises from the motivation that most theo
ical models dealing with noncollinear magnetism are ba
on the concept of a~semiclassical! spin associated with an
atom and a quantum-mechanical description of the inte
tion between these spins. The success of these models—
the Heisenberg model—and the usefulness of calculatio
ab initio methods that—like the augmented spherical-wa
~ASW! method—neglect all intra-atomic noncollinearity m
tivated us to develop a ‘‘hybrid’’ method that assumes a c
linear B field in the vicinity of the atomic nuclei and a con
tinuous vectorB field in the interatomic region and in th
vacuum.

Therefore, inside nonoverlapping spheres centered aro
the atoms the off-diagonal elements of the potential matrixV
that enters the Kohn-Sham equation~5! are assumed to be
zero in the local coordinate frame of this atom. In this loc
frame, the magnetic moment of atoma then points in thez
direction and this direction can then, in the global frame,
specified by a directionêM

a . In a normal calculation these
directions are not input quantities but have to be determi
self-consistently. Alternatively, in a ‘‘constrained’’ calcula
tion ~see next section!, the êM

a ’s can be used as external p
rameters to the calculation. As we will give evidence belo
the noncollinear magnetism of 3d transition metals at sur
faces and in open structures is an example of weak in
atomic noncollinearity. Typicallym(r ) is well localized in-
side the atomic sphere, wherem(r ) is essentially parallel to
the average of the spin density of the sphere except in
gions close to the sphere boundary wherem(r ) is already
small. Since in the FLAPW method muffin-tin spheres a
used which are significantly smaller than volume fillin
atomic spheres and since the choice of the sphere rad
flexible to a certain degree, but definitely smaller than h
the nearest-neighbor distance, a ‘‘hybrid’’ method in whi
the full magnetization densitym(r ) is treated without shape
approximation and as a continuous vector field in the int
stitial region and in the vacuum, while inside each muffin-
sphere we only allow for one direction of magnetization th
enters the determination of theB field,

m~r !5H m~r !, interstitial and vacuum,

ma~r !êM
a , muffin-tin spherea, ~6!

should provide excellent results. The notation here applie
the FLAPW in bulk and in the film geometry,27,28 where the
space is partitioned into a film of finite thickness, consisti
of an interstitial region and muffin-tin spheresa and two
semi-indefinite vacuum regions on both sides of the film. T
5-3
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continuous vector-field description in the interstitial regi
describes to a large extent the intra-atomic magnetism
e.g., 3d metals. The exchange fieldB is also expressed ac
cording to Eq.~6!. The intra-atomic noncollinearity ofm in
the sphere for thisB field is also known, but not used in th
construction of theB field.

A detailed account of the implementation of this forma
ism in the FLAPW method is given in Appendix A.1. A
results in the present work have been obtained within
scalar relativistic approximation; i.e. the spin-orbit coupli
~SOC! is neglected.

B. Constraint

With the exception of high-symmetry states, like the f
romagnetic, antiferromagnetic, or other collinear magne
states, and a certain class of spin-spiral states and parti
linear superpositions of several particular spin-spiral sta
in general an arbitrary magnetic configuration given by a
of local ~atomic! magnetization directions$êM

a % is not an
extremum or a stationary solution of the total energy fu
tional E@n(r ),m(r )#. The constrained density functiona
theory developed by Dederichset al.19 provides the neces
sary generalization to deal with arbitrary magne
configurations—i.e., configurations where the orientations
the local moments are constrained to nonequilibrium dir
tions. We define a generalized energy function
Ẽ@n(r ),m„r …u$êM

a %#,

Ẽ@n~r !,m„r …u$êM
a %#

5E@n~r !,m„r …#1mB(
a

Bc
a
•~^ma&2êM

a ^êM
a uma&!

5E@n~r !,m„r …#1mB(
a

Bc
a
•$Ma2M i

a%

5E@n~r !,m„r …#1mB(
a

Bc
a
•M'

a , ~7!

which consists of the energy functional of the unconstrain
systemE@n(r ),m„r …#, extended by a constraint, which e
forces that the directionMa/Ma of the local ~integrated!
magnetic moment; i.e., the magnetization density avera
over the muffin-tin sphere of atoma, ^ma&,

^ma&5Ma5E
MTa

m„r …d3r , ~8!

is parallel to the prescribed directionêM
a and thus ensure

that the local moments have no componentsM'
a normal to

the directionsêM
a , ê'

a , for any atom.M i
a is the component of

Ma parallel toêM
a . M i

a is the projection of the local momen
of the muffin-tin spherea onto

^êM
a uma&5M i

a5êM
a
•Ma5êM

a
•E

MTa
m„r …d3r . ~9!
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Notice that for all sphere-averaged quantities only the sph
cal part of the magnetization density is needed, which ma
the quantities easy to calculate.Bc

a are Lagrange multipliers
Physically, they are transverse constraining fields acting
the directionê'

a , Bc
a5B'

a . Minimizing Eq. ~7! with respect
to an electronic state yields the Kohn-Sham equations, wh
contains inside the muffin-tin spherea an additional poten-
tial

Vc5mBs•B'
a , ~10!

which is always perpendicular toêM
a . By means of the

Hellmann-Feynman theorem the changedE of the energy
due to a directional changedêM

a is given by the classica
result

dE52mBM i
a~ êM

a !Bc
a~ êM

a !•dêM
a . ~11!

The difference vectordêM
a is perpendicular toêM

a .49

The effectiveB field Be f f
a that enters the muffin-tin part o

the Hamiltonian is given by~here, Bext is set to zero for
simplicity!

Be f f
a ~r !5Bxc

a @n~r !,mi~r !#êM
a 1B'

a ê'
a

5Bxc
a ~r !êM

a 1B'
a ê'

a5Be f f
a ~r !êB

a~r !. ~12!

In order to calculate the exchange correlationB field Bxc
a (r )

after the magnetization density is calculated from the wa
functions, the magnetization density is projected onto
prescribed local quantization axisêM

a and we obtainmi
a(r ).

Since the exchange correlationB field is calculated from the
projected magnetization density, theB field is collinear.
However, when a constraining field is added, the result
effective B field Be f f

a (r ) is again a continuous noncollinea
vector field in the muffin-tin spheres, with pointwise loc
directionsêB

a(r ),

êB
a~r !5

Bxc
a ~r !êM

a 1B'
a ê'

a

$@Bxc
a ~r !#21~B'

a !2%~1/2!
, ~13!

different from the local quantization axisêM
a . Stocks and

co-workers20,21noticed this problem. They introduced an a
proximation that the constraint fieldBc

a is an r -dependent
functional, rather than a constant, which has the same fu
tional form as the exchange correlationB field B'

a

5caê'
aBxc

a (r ), where the scaling factorca replacesB'
a as the

parameter to be determined. The constrainingB fields B'
a

that enter are often rather small and the approximation s
gested by Stocks and co-workers might be a very good o
although we have not further investigated that. On the ot
hand, due to the introduction of ther dependence in the
constraining fields, the approximation introduced a~possibly
small! inconsistency between the constraining fields and
defining Eq.~7!. A much stronger constraint condition tha
those discussed so far would be to demand that the ma
tization densitym„r … be parallel toêM

a in every point inside a
muffin-tin sphere. This constraint would result in a constra
5-4
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field that depends on the position in the muffin-tin sphe
Maybe the approximation of Stocks and co-workers catc
already this aspect.

In an actual constrained local moment~CLM! calculation
n(r ), m„r …, andBc

a have to be determined self-consistent
n(r ) and m„r … are calculated in the usual self-consisten
cycle. At the same time the local constraint fieldsBc

a have to
be adjusted, until the constraint condition̂ ma&
2êM

a ^êM
a uma&50 is fulfilled. At the end of such a calculatio

we obtain the self-consistent densities and a set of local c
straint B fields that make the integrated magnetization p
pendicular to the local spin quantization axesêM

a vanish in
each muffin-tin sphere. The total energy of the system
given by the constrained energy functional, Eq.~7!. SinceBc

a

is always perpendicular toêM
a , the extra contribution to the

total energy is*MTaBc
a
•m„r …d3r . However, the effectiveB

field that enters the Hamiltonian in the muffin-tin sphere
atom a is given byBe f f

a (r )5Bxc
a (r )1Bext

a (r )1Bc
a . There-

fore, the above contribution to the total energy cancels w
the contribution of the constraint field to the kinetic ener
Thus, the constraint field does not enter the expression
the total energy explicitly, but it enters implicitly through th
eigenvaluese i and through the self-consistent densities.

Demanding that the perpendicular component of the lo
momentM'

a vanish is not the only way to formulate a co
straint to the direction of the local moment. There are sev
alternatives. A formulation that differs only formally from
the constraint of Eq.~7! is to require that the cross produ
Ma3êM

a vanish.Ma3êM
a has the same magnitude asM'

a but
is perpendicular toM'

a . Using this constraint the additiona
term in the energy functional for each atom would
Bc

a
•(Ma3êM

a ). Applying the Hellmann-Feynman theore
we find that the change of the energy is given bydE

52mBMa
•(Bc

a3dêM
a ). Therefore, the constraint field ca

be interpreted as a torque acting on the magnetic momen
the spirit of the derivation of Antropovet al.15,16

The detailed formulation of constraints in the FLAP
method is given in Appendix A.2.

C. Spin spirals

A magnetic structure with momentsM that are rotated by
a constant angle from atom to atom along a certain direc
of the crystal is called a spin spiral. This can be described
the propagation vector of the spin spiralq, the rotation axis
~which is, in the scalar-relativistic approximation, not fixe
with respect to the lattice!, and the relative angleq between
the magnetic moment and rotation axis. Upon translation
a lattice vectorR, the magnetic moment of an atom rotat
by an anglew5q•R. Assuming a rotation around thez axis
~in the absence of spin-orbit coupling this is not a loss
generality!, the magnetic moment of an atoma having the
basis vectorta in the unit celln ~with the origin at the lattice
vectorRn) points in the direction

êM
na5S cos~q•~Rn1ta!1ja!sinqa

sin~q•~Rn1ta!1ja!sinqa

cosqa
D . ~14!
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For more than one magnetic atom in the unit cell, in addit
to its basis vectorta , an additional atom-dependent pha
ja appears in the above equation. Nevertheless, the mag
moments of all atoms have to rotate around the same axis
distinguish from the longitudinal spin-density waves, sp
spirals are also frequently called helical magnetic structu
spiral spin-density waves, or frozen magnons. The origin
the last term is that a spin spiral looks like a ‘‘snapshot’’ o
single magnon at a fixed time. Spin-spiral calculations c
therefore be used to simulate the effect of temperature o
magnetic system in the adiabatic approximation, in particu
at very low temperatures, when magnons with long wa
length dominate. Another possible application of spin spir
is the simulation of domain walls including the calculation
the formation energy. Without the application of the gener
ized Bloch theorem the investigation of such magnetic str
tures requires very large unit cells. Since the spin spiral is
exact solution of the classical Heisenberg model atT50, it
is believed that they cover a large and important part of
phase space of possible spin states. Thus among all pos
magnetic states, spin spirals are the next relevant clas
spin states besides the high-symmetry magnetic states—
the ferromagnetic, antiferromagnetic, or ferromagnetic c
figurations. Though there are many possible applications
spin-spiral calculations, it was the discovery of a spi
ground-state structure in fcc iron17 and 4f metals22 that gave
rise to many theoretical studies.5,23

Figure 1 shows four examples of spin spirals with sp
rotation axis perpendicular~upper two! and parallel~lower
two! to the spin-spiral vectorq and different angles betwee
the spin-rotation axis and magnetic moments. When sp
orbit coupling is neglected, the two spirals with the sameq
in Fig. 1 become completely equivalent. However, the s
spirals with differentq do not become equivalent.q is still
a well-defined quantity, if SOC is neglected, because the
tation axis is a vector~direction! in spin space. For system
with one atom per unit cell the angleq may be determined
by higher-order spin interactions—i.e., interactions beyo
the Heisenberg model. For unit cells with more than o

FIG. 1. ~Color online!. Four examples of spin-spirals with spin
rotation axis perpendicular~upper two! and parallel~lower two! to
the spin-spiral vectorq. For each case two spirals with angles
q5p/2 and q5p/4 between the magnetic moment and rotati
axes are shown.
5-5
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magnetic atom, conical spin structures (qÞp/2) can be a
consequence of competitive exchange interactions betw
the different atoms. The total energyE(q,$qa%,$ja%) de-
pends on the wave vector of the spin spiral, the cone ang
and the relative phases between the atoms in the unit
Therefore, the investigation of the minimum of the to
energy—i.e., the magnetic ground state—is a search w
many degrees of freedom. To studyE as a function ofqa or
ja further requires a calculation with constraint fields.

A very elegant treatment of spin spirals by first-principl
calculations is possible when the generalized Blo
theorem24,25 is applied. However, this theorem can only
proved when SOC is neglected. For this reason the s
rotation axis will always be considered as parallel to thz
axis of the spin coordinate frame. Thus, only themx andmy
components are rotated, whilemz does not change. Follow
ing Sandratskii25 we can define a generalized translationTn
that combines a lattice translation and a spin rotation. App
ing a generalized translation toHc yields

TnH~r !c~r !5U~2qRn!H~r1Rn!U†~2qRn!U~2qRn!

3c~r1Rn!5H~r !U~2qRn!c~r1Rn!,

~15!

whereU(qRn) is the spin-1/2 rotation matrix:

U~qRn!5S e2 iw/2 0

0 eiw/2D , w5q•Rn. ~16!

In analogy with the proof of Bloch’s theorem26 it follows that
the eigenstates can be chosen such that

Tnc~k,r !5U~2qRn!c~k,r1Rn!5eik•Rn
c~k,r !.

~17!

This formulation of the generalized Bloch theorem is equi
lent to the statement that the eigenstates of the Hamilto
can be written in the form11

c~k,r !5eik"rS e2 i
q
2 •rF~k,r !

e1 i
q
2 •rG~k,r !

D , ~18!

where F(k,r ) and G(k,r ) are functions with translationa
periodicity—e.g., F(k,r1Rn)5F(k,r ). We will give the
formulas that arise in the implementation of spin spirals
the FLAPW method in Appendix A.3.

III. APPLICATIONS

In this section we show examples of the calculation of
noncollinear magnetism on two systems: an unsuppo
hexagonal monolayer of Cr and bulk Fe in both a bcc an
fcc structure. The concepts of Sec. II were implemented
theFLEUR code, a realization of the FLAPW method27,28suit-
able for bulk and film systems.
02441
en

s,
ll.

l
th

h

n-

-

-
n

e
d
a
n

A. Unsupported Cr monolayers

To check our implementation of noncollinear magnetis
we performed tests for an unsupported monolayer~UML ! of
Cr with the symmetry and the lattice constant of a monola
on the Ag~111! surface. We chose the theoretical LDA A
lattice constant of 7.79 a.u. Thek-point set that we employed
corresponds to 180 points in the full two-dimensional Br
louin zone, the plane-wave cutoff was set toKmax
53.3 a.u.21 leading to a basis set with about 130 basis fun
tion per atom, and the muffin-tin radius was chosen as la
as possible,RMT52.75 a.u. We applied the LDA parametr
zation according to Moruzzi, Janak, and Williams.29

1. Intra-atomic noncollinearity

In Sec. II A we described our way of implementing no
collinear magnetism with a ‘‘hybrid’’ approach that uses
continuous vector magnetic field in the interstitial a
vacuum region that smoothly connects the collinear int
atomicB fields inside the muffin-tin spheres. While the p
tential matrix V has—in the local frame of a muffin-tin
sphere—no off-diagonal elements, the density matrixr is
generally nondiagonal in spin space and, therefore, still
scribes a continuous intra-atomic noncollinear magnetiza
density. Since the basis functions inside a muffin-tin sph
are coupled to the plane waves of the interstitial region,
influence of theB field outside influences the charge an
magnetization density inside a muffin-tin sphere. This c
now be used to estimate the intra-atomic noncollinearity a
helps—if there is any—to adjust the size of the muffin-
spheres so that all noncollinear effects are well outside
spheres.

We calculated an hexagonal unsupported monolayer o
for the in-plane lattice constant of the Ag~111! surface. The
magnetic state was chosen to be the 120° Ne´el state, where
all magnetic moments have a relative angle of 120° and
unit cell is theA33A3 R30° unit cell containing three at
oms. This state is the solution of the classical Heisenb
model for antiferromagnets in nearest-neighbor approxim
tion. In our calculations this state also had the lowest to
energy compared to all states that are allowed as solution
the Heisenberg model in the next-nearest-neigh
approximation.30 From Fig. 2 we see that in a sphere ce
tered around the nucleus up to a radius of 2 a.u. the ma
tization density remains fairly collinear. In the usual calcu
tions we use muffin-tin radii of 2.1–2.3 a.u.; therefore t
approximation of a collinear description within the muffin
tin sphere can be expected to be a good one for these
tems. Hobbs and Hafner31 found a similar behavior for Cr on
Cu~111! with a full vector-magnetization density descriptio
Moreover, using different muffin-tin radii we have the po
sibility to check the quality of our approximation as will b
shown in Sec. III B 5.

For ~magnetic! high-symmetry states~e.g., in this case the
Néel state or spin spirals withq5p/2 and all collinear
states! the average direction of the magnetization within
muffin-tin spherea, ^ma&, will be in line with the direction
of theB field, êa, and the magnetic state denotes a station
state to the solution of the Kohn-Sham equations. But g
5-6
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erally, if the directionsêa do not specify such a high
symmetry state,̂ma& will be no longer in line withêa and
this effect can be used to ‘‘relax’’ the directions of the ma
netic moments as will be shown in Section III B 1.

2. Cr: Constraint

As a first test of the implementation of the constrain
local moment method we compared the change of the t
energy for small constrainingB fields with the energy calcu
lated in first-order perturbation theory. We performed no
self-consistent calculations, setting the constraint field to
ferent values manually, rather than calculating it se
consistently. In other words, we applied small perpendicu
B fields inside each muffin-tin sphere, using the implem
tation for constrained local moment calculations. We tr
fields with different magnitudes, which were smaller than
constraint field necessary to make the perpendicular mom
in the respective muffin-tin sphere vanish. Such fields rep
sent a small perturbation of the system. In first-order per
bation theory the energy difference between the unpertur
and perturbed systems is given by the sum over the expe
tion values of all occupied states of the unperturbed sys
with the perturbation term of the Hamiltonian. If we writ
the contribution to the Hamiltonian due to the perpendicu
field within the local spin coordinate frame as

H MTa
off-d

52mBdsa,2sa8@Bc,x
a 1sgn~sa!iBc,y

a #,

with sgn~sa!5H 1 for sa5↑,

21 for sa5↓,
~19!

we find that the energy difference is given by

DE52mB(
na

E
MTa

cn* ~r !~sxBx
a1syBy

a!cn~r !d3r

52mB(
a

~Mx
aBx

a1M y
aBy

a!, ~20!

FIG. 2. Fully noncollinear output magnetization density of
UML of Cr in the 120° Néel state. Light~dark! areas indicate re-
gions of low ~high! magnetization; arrows indicate the direction
the magnetization density. The Cr atoms are located in the cent
the dark hexagons and are surrounded by touching muffin
spheres.
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whereM (x,y)
a andB(x,y)

a are the respective components of t
local output magnetization and the inputB field within the
spherea in the local spin coordinate frame. Note that also,
Eq. ~19!, sa is the spin of atoma in its local frame of
reference and is, therefore, either purely spin up (↑) or spin
down (↓).

In a test calculation, we used a unit cell containing tw
atoms according to the inset of Fig. 3. The magnetic m
ments of the two atoms are aligned with a relative angle
90°, so that the configuration consists of alternating rows
atoms with moments pointing, e.g, in they andx directions,
respectively.

From a self-consistent calculation without a constra
field we obtained small perpendicular moments of ab
0.12mB inside the muffin-tin spheres. The direction of th
perpendicular moments is shown in the inset of Fig. 3, in
cating the tendency of the system to evolve into a state
alternating antiferromagnetic rows. The local spin coordin
frame of each atom was chosen such that the perpendic
moment points along thex axis of the local frame. Starting
from the self-consistent charge and magnetization dens
we performed non-self-consistent calculations where we
plied a perpendicular field also in thex direction and with the
same magnitude in each muffin-tin sphere. Figure 3 sho
the change of the energy~i.e., sum of the single-particle en
ergies! as a function of the applied perpendicularB field
~solid circles!. For very small fields this energy difference
in excellent agreement with the energy difference calcula
in first-order perturbation theory~open circles! according to
Eq. ~20!. But already for fields as small as 20 meV/mB ~for
comparison, the average exchange correlationB field is
about 2500 meV/mB inside the muffin tins! the result of the
perturbation theory starts to deviate from the calculated
ergy. In first-order perturbation theory the effect of th
change of the eigenfunctions due to the perturbation is
glected. As a measure for that change we can take the ou
perpendicular moment of the calculation, which is al
shown in Fig. 3~solid triangles!. It can be seen thatMx

a

decreases linearly with increasing field. At a field of abo
60 meV/mB it has already decreased to half its original siz

of
in

FIG. 3. The total energy difference~solid circles! and the prod-
uct 2mBMx

aBx
a ~open circles! is plotted as a function of the applie

perpendicularB field (Bx
a). The triangles show the perpendicula

local magnetic moment (Mx
a).
5-7
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Hence, the first-order perturbation theory is only accurate
very smallB fields below 20 meV/mB .

As we have pointed out in Sec. II B, the local constra
fieldsBc

a have to be determined self-consistently—e.g., us
an iteration scheme. Thus, after each iteration or set of it
tions that convergesn(r ) andm„r …, a correctionDBc

a to the
current estimateBc,in

a needs to be determined:

Bc,out
a 5Bc,in

a 1DBc
a . ~21!

Naturally, we expectDBc
a to be proportional to the perpen

dicular magnetic moment in the sphere,M'
a5*MTa$m(r )

2êa@ êa
•m(r )#%d3r . The proportionality factor should b

chosen such thatBc
a approaches the self-consistent val

quickly, but does not overshoot. In principle, it would be be
to knowdM'

a /dBc
a , but this quantity is not easily accessibl

However, if we assume that rotatingBe f f
a by some angle

rotatesMa by the same angle, we arrive at the followin
choice for the correction to the constraint field:

DBc
a52u^Be f f

a &u
M'

a

uMau
, ~22!

where Ma5*MTam„r …d3r is the integrated magnetic mo
ment in the muffin tin and̂Be f f

a & is the average effectiveB
field in the sphere. All quantities on the right-hand side
output of a self-consistency iteration. To generalize this f
mula and to improve the convergence we can add a sca
factor bc :

DBc
a52bcu^Be f f

a &u
M'

a

uMau
. ~23!

Our test calculations show that for systems where the siz
the local momentuMau does not change much withBc

a , the
constraint field and densities can be converged simu
neously, and the linear mixing of the former does not int
fere with the Broyden mixing scheme applied to the latte

As a second test we compared the calculated total en

@Ẽ, according to Eq.~7!# to the energy obtained from th
constraintB fields using the Hellmann-Feynman theorem e
pressed in Eq.~11!. Equation~11! can be used to calculat
the energy difference between two magnetic states by
integration over a path of magnetic configurations that c
nects the two states. This method has been used by Os
et al.32 to calculate the energy difference between a fer
magnetic and an antiferromagnetic state of 3d-impurity
dimers in Cu, Ag, and Pd. We chose again the UML C
Ag~111! system as in the previous paragraphs, using
same computational parameters. As starting and final~mag-
netic! states we consider the ferromagnetic and a row-w
antiferromagnetic configuration. Rotating one of the two
oms in the unit cell, as illustrated in the inset of Fig. 4, yiel
a path of magnetic states connecting the initial and fi
states. This path is described by a single parameter, the a
w. If w is changed by an infinitesimal stepdw, the change of
the direction of the local momentdê is always parallel to the
local constraint fieldBc

w in such a configuration. Now the
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Hellmann-Feynman theorem, Eq.~11!, can be integrated
yielding an equation for the energy difference between
ferromagnetic state and a state with anglew between the
magnetic moments:

E~w!2E~w50!52mBE
0

w

M i~w!Bc~w!dw. ~24!

The result of the test calculation is shown in Fig. 4. W
first concentrate on the results obtained for a muffin-tin
dius of 2.75 a.u., denoted by the solid symbols. The gra
shows the calculated total energy (Ẽ) difference ~solid
circles!, the product2mBM i(w)Bc(w) ~solid triangles!, and
the integral of the latter quantity~solid squares!. The energy
decreases with increasing angle. It shows a cosinelike be
ior as expected from the nearest-neighbor Heisenberg m
for an antiferromagnetic material. The shape of t
2mBM i(w)Bc(w) curve is dominated byBc(w). M i(w) is
almost constant. It changes only within a range
4.1mB–4.2mB . M i(w) also changes very little~less than 1%!
from a calculation with the constraint field switched off to
constraint calculation. The symmetric magnetic state
ferromagnetic and antiferromagnetic—represent extrema
the total energy. Hence, they are stable magnetic soluti
Consequently, the constraint field—and th
2mBM i(w)Bc(w)—is zero for w50 and w5p.
2mBM i(w)Bc(w) is a continuous function that reaches
maximum at an intermediate angle slightly smaller thanp/2.

The integral2mB*M i(w)Bc(w)dw exhibits the same be
havior as the total energy, but has a slightly smaller mag
tude than the calculated total energy difference. At the fi
~antiferromagnetic! state the two curves differ by about 9%
We suspect that this might be due to incomplete-basis
corrections. The Hellmann-Feynman theorem is based on

FIG. 4. The total energy of an UML Cr~111! with the lattice
constant of Ag~111! as a function of the relative anglew of the local
moment. The plot contains the results of two calculations with d
ferent muffin-tin radii ofRMT52.75 a.u.~solid symbols! andRMT

52.0 a.u.~open symbols!. Shown are the calculated total energ
relative to the ferromagnetic energy~circles! and the product of the
local moment and constraintB field, 2mBM i(w)Bc(w) ~triangles!
and2mB*M i(w)Bc(w)dw ~squares!.
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fact that the functional derivative of the total energy w
respect to the~components of the! density~matrix! vanishes,
dE/dr50, becauser is already the ground-state density a
minimizesE. Therefore, only the explicit dependence of t
energy on an external parameter has to be taken into acc
when differentiating the energy with respect to the parame
In our case this parameter is the direction of the local m
ment. However, in methods like the FLAPW method t
basis set depends on the external parameters. The c
sponding corrections are called the incomplete-basis-set
rections. Such corrections play an important role in the c
culation of the atomic forces.33 In fact, in atomic force
calculations the incomplete-basis-set corrections are usu
even larger than the Hellmann-Feynman force. Recen
Grotheer and Fa¨hnle have derived an expression for t
incomplete-basis-set corrections to the torque acting on
localized magnetic moments.34 They have performed calcu
lations similar to that presented in Fig. 4 on bcc Fe and fou
that the corrections are about 2% of the size of
Hellmann-Feynman torque.

The basis function of the FLAPW method in the inters
tial region are plane waves. Thus, the basis set is indepen
of the local quantization axisêa in that region. Hence, chang
ing the muffin-tin radiiRMT

a should have an effect on the siz
the incomplete-basis-set corrections. To gain an indica
whether the incomplete-basis-set corrections are the cau
the difference between the calculated total energy differe
and the energy difference obtained from the Hellma
Feynman theorem, we have repeated the calculation wi
much smaller muffin-tin radius ofRMT52.0 a.u. instead of
2.7 a.u. With this choice the volume covered by the muffi
tin spheres is reduced by more than 60%. The result of
second calculation is also shown in Fig. 4 by the open sy
bols. The product2mBM i(w)Bc(w) is changed consider
ably. The energy difference calculated from the Hellman
Feynman theorem is now about 6% too large; i.e.,
deviation has changed sign and its magnitude has bec
smaller. This result supports the idea that the deviation is
to the incomplete-basis-set corrections. However, to d
nitely settle this point, calculations including these corre
tions would be necessary. Such calculations remain a fu
project.

B. bulk Fe

Stocks and co-workers20,21 chose bcc Fe to test the
implementation of constrained local moment calculatio
Also Grotheer and Fa¨hnle34 used the same test system f
their implementation of the incomplete-basis-set correcti
to the Hellmann-Feynman torque on the magnetic mome
Therefore, we repeated the test for bcc Fe using the s
geometry as Stocks and co-workers. In particular, we u
the same LDA lattice constant ofa055.27 a.u. Ourk-point
set corresponds to 2016k points in the full three-dimensiona
Brillouin zone. The plane-wave cutoff was set toKmax
54.0 a.u.21 leading to a basis set with about 80 basis fun
tions per atom. We chose a muffin-tin radius ofRMT
52.25 a.u.
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fcc or g-Fe has been extensively studied for many yea
One of the reasons for the large experimental and theore
attention this system has attracted is the Invar propertie
alloys based ong-Fe. This interest has been renewed
neutron diffraction experiments by Tsunoda,17 who found
that the ground state ofg-Fe most likely consist of a noncol
linear, spiral magnetic structure. This discovery stimula
many noncollinearab initio investigations by different
authors.5,11,23,35–41The large amount ofab initio data on
g-Fe spin spirals make this an ideal test system for a s
spiral implementation. Here we have used the experime
Cu lattice constant ofa56.82 a.u., since theg-Fe has been
found for Fe in a Cu matrix. A tetragonal unit cell containin
two atoms was used. In Sec. III B 3 ak-point set correspond
ing to 1120k points in the full three-dimensional Brillouin
zone ~BZ! and two different plane-wave cutoffsKmax
54.0 a.u.21 and 4.4 a.u.21 corresponding to 85 and 115 ba
sis functions per atom, respectively, were used. The calc
tions of Secs. III B 4 and III B 5 were performed wit
k-point sets corresponding to 5632k points in the full BZ
and plane-wave cutoffs ofKmax54.2 a.u.21, 4.6 a.u.21, and
5.0 a.u.21 for muffin-tin radii of 1.9 a.u., 2.1 a.u., and 2.
a.u., respectively.

1. Relaxation of the magnetic moments

As we described in Sec. III A 1, the output magnetizati
density obtained from solving the Kohn-Sham equations is
general noncollinear inside the muffin-tin spheres. Of cou
in our method this information about intra-atomic nonco
linearity is lost again after the construction of the potent
matrix that assumes thatBxc

a is collinear inside the muffin-tin

spheres and points in the directionêa. In the self-consistency
cycle we can either ‘‘constrain’’ the direction of the magne
moments so that the average direction of the magnetizat

^ma&, is parallel toêa or ‘‘relax’’ the direction of the mag-
netic moments by adjustingêa in the direction of̂ ma& until
êauu^ma&. Using the latter procedure, we have a tool to d
termine the magnetic ground state or a local metastable s
of a system within a chosen unit cell.

In such a calculation we also apply the approximation o
collinear magnetization density inside each muffin-
sphere,m(r )5ma(r )êM

a ; only the directionsêM
a @and conse-

quently ma(r )] are relaxed. In order to relax the magnet
configuration it is necessary to calculate the total~integrated!
perpendicular output magnetization

^m',out
a &5M',out

a 5E
MTa

m',out
a ~r !d3r ~25!

in addition to M i ,out
a . The output directionêout

a,(i )5(M',out
a

1M i ,out
a )/uM',out

a 1M i ,out
a u at each sitea differs normally

from the input direction~the orientation of the spins at th
beginning of the iteration stepi ) êin

a,(i ) . For the next iteration

i 11, the input directionêin
a,(i 11) is changed independentl

from the charge density and the size of the magnetizatio
uM',out

a u or uM i ,out
a u. In our implementation the paramete

describing the orientation are the azimuthal and polar an
5-9
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w andu, respectively. We used straight mixing to determi
the input orientation for the next iteration step: For examp
the anglew in

a,(i 11) being used in the next iteration is chos
as

w in
a,(i 11)5~12b!w in

a,(i )1bwout
a,(i ) , ~26!

where b is a mixing parameter. The choice of the mixin
parameter for the angles crucially determines the spee
convergence and has to be adapted to a specific system.
vergence of the charge and magnetization density and
directions can be done simultaneously; i.e., after each s
consistency iteration of the densities a new set of angle
determined. The mixing scheme and the mixing parame
are chosen independently for the densities and directi
However, when a Broyden mixing scheme is used for
densities, the Broyden ‘‘memory’’ has to be deleted regula
~every 10 iterations! while the directions are still changin
quickly.

As an example we calculated the relaxation of the anglw
between the magnetic moments of two Fe atoms in the
unit cell starting from a canted spin structure (w590°). As
sketched in Fig. 5 the spin directions of the corner atoms
kept fixed. The self-consistent determination of the relat
ground-state angles between these two atoms was starte
ing a converged charge density for this particular relat
starting angle. Then the variation of the orientation is carr
out as described above. We usedb51.0, which means tha
the mixing is 100% for the directions of local the momen
The evolution of the anglew with the number of self-
consistency steps is shown in Fig. 5. As we expect,w con-
verges towards 0° to yield the ferromagnetic solution. S
consistency of the densities and directions is obtained
about 25 iterations.

For Co, not shown here, we overrelaxed the directions
the moments by usingb53.0, which means that the mixin
is even more than 100% for the directions of the local m
ments. The convergence of the orientation is very fast
the ferromagnetic state is reached after only 5 iterations.
to the fast change of the directions, the chargen(r ) and
magnetization densitym(i)(r ) are not converged anymor

FIG. 5. Relaxation of the spin direction of a Fe atom in bulk b
Fe. The evolution of the anglew between the magnetic moments
two Fe atoms is shown as a function of the number of the s
consistency steps.
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and a further 15 iterations are needed basically to conve
those quantities. After 20 iterations both the densities a
directions are converged. This shows that by separating
orientational degrees of freedom of the magnetic mom
from the charge density and the size of the magnetiza
during the iteration progress, the convergence of the orie
tion of spins can be accelerated considerably.

2. bcc Fe: Constraint

To compare with the constraint results of Stocks and
workers we started with an unconstrained calculation of
Fe. In such a calculation the magnetization density is p
jected onto the local quantization axisêa inside the muffin
tins after each iteration; i.e., the perpendicular magnetic m
ment M'

a is neglected. Although these calculations can
converged to a stable solution, the result is not self-consis
in the sense that the direction of the output magnetic mom
is not equal the direction of the input moment,êout

a Þêin
a

5êa.
The results of the bcc Fe calculations are presented in

6. Panel~b! contains the parallel magnetic momentM i(w)
~open diamonds! and the perpendicular~output! moment
M'(w) ~open triangles!. Our results are not in agreeme
with those of Stocks and co-workers. In particular, we fi
that the moment decreases strongly, by more than 50%, w
it is rotated towards the antiferromagnetic state. Stocks
co-workers obtain a very similar magnetic moment for t
ferromagnetic state. However, in their study the moment v
ies only within a range of 1.9mB–2.2mB with the rotation.
Other authors also found a strong reduction of the momen
the antiferromagnetic state. For example, Ku¨bler42 found a
moment that is even slightly below 1mB in the antiferromag-
netic configuration for the same lattice constant. Moruzzi a
Marcus43 obtain a reduction from 2.34mB ~ferromagnetic! to
1.75mB ~antiferromagnetic!. Their moments are larger in
both configurations, because they used a lattice constan
a055.48 a.u.—i.e., 4% larger than in our calculation.

Another difference between our results and those
Stocks and co-workers is the size ofM'(w). These authors
specify the difference between the input and output angle
the local moment rather thanM' . They find a maximum
difference of about 25°. The size of the magnetic mom
for that angle is about 2mB , which means thatM' must be
about 0.9mB . This value is much larger compared to th
maximumM' of 0.37mB that we found. Finally, Stocks an
co-workers obtain a maximum constraint field of abo
0.23 Ry/mB at 90°. We also find the maximum at 90°, b
the our value of 0.029 Ry/mB is almost a factor of 10
smaller. However, Fig. 6 shows that the energy differen
calculated from the Hellmann-Feynman theorem us
Bc(w) @panel~a!, solid squares# is in fair agreement with the
calculated total energy difference@panel ~a!, solid circles#.
The Hellmann-Feynman result underestimates the ene
difference between the ferromagnetic and antiferromagn
states by about 13%. Panel~a! also contains the calculate
total energy of the unconstrained calculation~open circles!.
Naturally, the energies calculated with and without constra
are equal for the ferromagnetic and antiferromagnetic c

f-
5-10
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figurations, where the constraintB field vanishes. For the
intermediate angles the total energy calculated with c
straint is always larger. We obtained the largest difference
98 meV at an angle of 105°. Compared to the other
systems this value is uncommonly large; e.g., for the
UML we found a maximum difference of only 7.4 meV
Another effect of the constraint can be seen in panel~b! of
Fig. 6. In the region where the magnetic moment decrea
rapidly as a function of angle, the moment of the constrain
calculation~solid diamonds! is reduced even more strong
compared to the unconstrained moment~open diamonds!.
Other results showed that this seems to be a general tren
situations where the magnetic moments break down rap
the constraint tends to reduce the moment further, while
most other instances the effect of the constraint on the siz
the moment is negligible.

3. fcc Fe: Spin-spiral calculations

In order to test the spin-spiral implementation we ha
performed calculations on theg-Fe ~fcc Fe! system. The cal-

FIG. 6. ~a! The total energy of bcc Fe as function of the angle
the local moment. Shown are the calculated total energies relativ
the ferromagnetic energy~circles!, the product of the local momen
and the constraintB field, 2mBM i(w)Bc(w) ~triangles! and integral
2mB*M i(w)Bc(w)dw ~squares!. ~b! Shown are the parallel mag
netic momentsM i(w) ~diamonds! and the perpendicular momen
M'(w) ~triangles!. Both panels contain results of constrained~solid
symbols! and unconstrained calculations~open symbols!.
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culated total energies and magnetic moments for spin sp
with q vectors along the lineGX are shown in Fig. 7. A spin
spiral with aq vector at theG andX points corresponds to a
ferromagnetic and a layered antiferromagnetic configurat
respectively. The results agree with those of previous ca
lations: We find the minimal energy for aq vector of about
q'0.55GX. The minimizingq vector, the shape of the en
ergy curve, and, in particular, the magnetic moment ofg-Fe
vary strongly with the lattice parameter: For Wigner-Se
radii of 2.66 a.u. (a56.81 a.u.) and smaller, Uhlet al.23

found around theG point a low-spin solution, while for
Wigner-Seitz radii of 2.67 a.u. (a56.83 a.u.) and larger, a
high-spin solution was obtained. The magnetic mome
were about 0.6mB for the low- and 2.5mB for the high-spin
state. Other authors36 report a ferromagnetic moment o
about 0.9mB at a Wigner-Seitz radius ofRWS52.66 a.u. We
have found a moment of 1.3mB , which lies within that range.
For the~experimental! Cu lattice constant, all authors repo
a total energy minimum at aq vector at about 0.6GX, while
for smaller volumes a second~local! minimum aroundq
5(0.2,0,1.0)2p/a develops.

We have tested two slightly different implementations
the spin spirals that use different cutoff conditions for t
basis functions:~i! uG1ku<Kmax and ~ii ! uG1k7q/2u
<Kmax whereG is the wave vector of the augmented pla
wave ~cf. Appendix A.1!. Figure 7 presents results for bot
implementations, implementations~i! and ~ii ! denoted by
open and solid symbols, respectively. Implementation~i! is
expected to yield less accurate energies in particular for la
q. Evidence for this presumption is found in Fig. 7. Comp
ing for implementation~i! the results obtained for two differ
ent basis-function cutoffsKmax we find that the difference
between the total energies increases with increasingq vector.
The same is true when comparing implementation~i! with
implementation~ii !; the difference increases with theq vec-
tor. Even for the larger cutoff of 4.4 a.u.21 implementation
~i! deviates from implementation~ii !. In particular, imple-
mentation~i! gives larger total energies. The accuracy of th

f
to

FIG. 7. Total energy and magnetic moment as a function of
spin-spiral vectorq. The plot shows results of the two differen
implementations of the spin spirals:~i! cutoff enforced according to
uG1ku<Kmax ~open symbols!, ~ii ! uG1k7q/2u<Kmax ~solid sym-
bols!. The solid square represents the energy of the layered an
romagnetic solution calculation carried out with the collinear p
gram.
5-11
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P. KURZ et al. PHYSICAL REVIEW B 69, 024415 ~2004!
improved implementation can be appreciated from the
that the total energy coincides for theq vector at theX point
with the result of a collinear antiferromagnetic calculati
~solid square on the right-hand side of the plot!. To achieve
the same accuracy with implementation~i! it would be nec-
essary to go to even higher plane-wave cutoffs. Howe
increasingKmax from 4.0 a.u.21 to 4.4 a.u.21 means already
an increase of the basis functions per atom from 85 to 1
which makes the calculation much more time consumi
since the effort of setting up and diagonalizing the mat
scales with the number of basis functions to the third pow

4. GGA

We noted in Sec. II A that, in a noncollinear calculatio
the gradients of the magnetization density,m(r ), that enter
the GGA functional can be constructed from the vector m
netization densitym(r ) in two different ways:~i! we can use
the gradient of the absolute value of the vector magnet
tion,

]m~r !

]x
← ]um~r !u

]x
, ~27!

to evaluate the GGA functional. In this formulation spat
changes of the magnetization direction are not reflected;
in SSDW calculations of differentq vectors the difference in
the exchange-correlation~XC! potential will enter just
through changes in the absolute value of the magnetiza
If um(r )u would stay constant, the contribution of the ma
netization density to the XC potential would be the same
all q vectors. To account approximately for changes of
magnetization direction,~ii ! we can calculate the gradient o
the density matrix and project it onto the direction of t
magnetic moment; e.g., ifU(r ) diagonalizes the density ma
trix at r ,

]m~r !

]x
←TrH szU~r !†

]r~r !

]x
U~r !J . ~28!

The latter implementation was also chosen by Kno¨pfle
et al.40 who investigated the spin-spiral ground state ofg-Fe
by a modified augmented spherical wave~MASW! method
applying the Perdew-Burke-Ernzerhof~PBE! form44 of the
GGA. Körling and Ergon39 used the older PW91 form45

within the atomic sphere approximation. To sort out the d
ferences between these two exchange-correlation poten
we calculated the energy of fcc Fe with a lattice constan
6.70 a.u. as a function of theq vector for both forms of the
GGA. The results are summarized in Fig. 8~a!, from which
we see that the major difference between the two forms
the GGA is the enhancement of the magnetic moments in
PBE form. In both forms we find two minima of the energ
at q'0.6 GX and q'0.2 XW. The PBE form tends to sta
bilize the former minimum with respect to the latter by 1
meV/atom and the energy differences are nowhere la
than 5 meV/atom.

The influence of the choice of implementation of the g
dients@i.e., according to Eq.~27! or Eq. ~28!#, presented in
Fig. 8~b!, is even smaller. The largest difference can be
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tected at theX point, but even here the energy difference
smaller than 1.2 meV/atom. One should mention here
for the calculation of the gradient of the magnetization de
sity “m(r ), the most significant difference between the
two implementations can be expected from regions wh
the magnetization density changes its sign: then, in the c
of a linear behavior of the component ofm„r … that changes
sign, Eq.~27! introduces an artificial minimum in the abso
lute value of the gradient of the magnetization dens
u“m(r )u, while Eq.~28! avoids this artifact. Therefore, eve
in a collinear structure, the results obtained by the two eq
tions can differ, as can be seen at theX point in Fig. 8.

5. Intra-atomic noncollinearity

In their papers both Kno¨pfle et al.40 and Hobbs and
Hafner31 stress the importance of intra-atomic noncolline
ity. With the choice of different muffin-tin radii, we can var
the fraction of space in which the magnetic field is treated
a vector quantity. From Fig. 2 we see that~at least for Cr! the
closer we come to the nucleus, the smaller the noncollin
effects get. Therefore, we expect that choosing touch
muffin-tin radii ~in our fcc Fe example this would correspon
to 2.36 a.u.! might create the largest deviations, but wi
shrinking radii the results should converge rather quick
The results of these calculations are shown in Fig 9. W
shrinking muffin-tin radius, the magnetic moments get ge
erally smaller~since they are evaluated as the integral of
magnetization density inside the muffin-tin spheres!; other-
wise there are no dramatic effects to be observed. Lookin
the energies, we see that for muffin-tin radii of 2.3 and 2
a.u. the energies differ at most by 1.4 meV/atom~at theX
point! while in a comparison of the calculations with muffin
tin radii of 2.1 and 1.9 a.u. this value decreased to a mere
meV/atom. Keeping in mind that at theX point all total en-

FIG. 8. The magnetic moments~top! and energy~bottom! of the
spin spiral ofg-Fe as a function of theq vector~a! calculated with
the PBE ~Ref. 44! ~open circles! and the PW91~Ref. 45! ~solid
diamonds! form of the GGA and~b! with gradients according to Eq
~27! ~solid diamonds! or Eq. ~28! ~open circles!. Panel ~a! was
calculated according to Eq.~27!, panel~b! with the PW91 form of
the GGA. The energies are given relative to the energy of the
romagnetic state.
5-12
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ergy differences are caused by the change of the muffin
radius and the plane-wave cutoff~cf. also Sec. III B 3!, we
suspect that most of the~although small! energy differences
observed in Fig. 9 are not associated with intra-atomic n
collinearity.

Sjöstedt and Nordstro¨m11 also investigated the influenc
of the intra-atomic noncollinearity in this system and fou
the largest contributions in a region aroundq'0.3 GX. Al-
lowing for intra-atomic noncollinearity they find an almo
linear decrease betweenG and 0.5GX, while Knöpfle et
al.40 and ~although not for exactly the same volume! Mars-
man and Hafner41 find a shape similar to Fig. 9. Comparin
these different calculations, we find it difficult to sort out th
influences of the different implementations. Staying with
our approximation we observe that a reduction of the a
covered by the muffin tins by 44% leads to no significa
change of the result. Nevertheless, we want to mention
for heavy elements~e.g., the actinides6! and for all problems
where spin-orbit coupling is important12 intra-atomic noncol-
linearity cannot be neglected.

FIG. 9. The magnetic moments~top! and energy~bottom! of the
spin spiral ofg-Fe as a function of theq vector calculated with
muffin-tin radii of 2.3 a.u.~open circles!, 2.1 a.u.~shaded squares!,
and 1.9 a.u.~solid diamonds!. The energies are given relative to th
energy of the ferromagnetic state. Note that the magnetic mom
are quantities integrated within the muffin-tin spheres. The pla
wave cutoff for these calculations was chosen to keep the produ
muffin-tin radius andKmax approximately constant~9.6!. The PW91
~Ref. 45! form of the GGA with gradients according to Eq.~27! was
used.
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APPENDIX: IMPLEMENTATION OF NONCOLLINEAR
MAGNETISM IN THE FLAPW METHOD

1. Noncollinear magnetism in the FLAPW method

The FLAPW method for collinear calculations uses tw
sets of radial basis functions inside the muffin tins for t
spin directions. For each spin direction they are set up us
the spherical part of the corresponding potentialV↑(r ) or
V↓(r ) and energy parameter« l↑ or « l↓ . In the noncollinear
case it is still possible to work withV↑(r ) andV↓(r ), since
we restrict the magnetization to the local quantization ax
Therefore, a local spin-space coordinate frame is introdu
with thez axis parallel to the local quantization axis.V↑ and
V↓ are now spin up and down with respect to the local ax
Since both the potential and basis functions are set up
terms of the local spin coordinate frame, the determination
the basis functions and calculation of the integrals of th
functions with the Hamiltonian inside the muffin-tin spher
are completely unchanged. The changes come in when
basis functions inside the muffin tins are matched to
plane waves in the interstitial region, because the local s
coordinate frame is rotated with respect to the global fram

The FLAPW method uses augmented plane waves as
sis functions. Therefore, each basis function can be uniqu
identified by its wave vectorG and the spin direction. The
basis functions in the interstitial region are

wG,s~k,r !5ei (k1G)•rxs
g . ~A1!

xs
g is a two-component spinor. The indexg has been added to

signify that xs
g is the representation of this spinor in th

global spin frame. In this global frame thexs
g are just the

regular two-component spinorsx↑
g5( 0

1) and x↓
g5( 1

0) used
also in collinear calculations. In difference to collinear ca
culations, in noncollinear calculations, the potential mat
V—and thus the Hamiltonian—is not anymore diagonal
the two-dimensional spin space. In the vacuum region,
also use the global spin frame for the representation of
basis functions. Only inside the muffin tin spheres is t
basis set changed, because we use a local spin coord
frame, which is rotated with respect to the global fram
Thus, the basis set has the following form:

ts
-
of
wG,s~k,r !55
ei (G1k)rxs

g , int.,

@As
G~ki!us

Gi~ki ,z!1Bs
G~ki!u̇s

Gi~ki ,z!#ei (Gi1ki)r ixs
g , vac.,

(
sa

(
L

@ALssa
aG

~k!u,sa
a

~r !1BLssa
aG

~k!u̇,sa
a

~r !#YL~ r̂ !xsa, MTa,

~A2!
5-13
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wherek is the Bloch vector,G is a reciprocal lattice vector
L abbreviates the quantum numbersl and m, and i denotes
the components parallel to the surface, if any. At the bou
ary of the muffin-tin spheresa, the plane waves are matche
to solutions of the~scalar-relativistic! radial Schro¨dinger
equation uls

a (r ,« ls) and its energy derivativeu̇ls
a (r ,« ls)

5]uls
a (r ,« ls)/]« via the matching coefficientsA andB:

wG,s~k,r !5(
sa

wG,sa
s

~k,r !xsa5(
sa

(
L

@ALssa
aG,k ulsa

a
~r !

1BLssa
aG,k u̇lsa

a
~r !#YL~ r̂ !xsa, ~A3!

where the sum is over the local spin directionssa. As a
consequence, when the functions in the sphere are mat
to the plane waves at the boundary of the muffin-tin sphe
each spin direction in the interstitial region is matched
both the spin-up and -down basis functions in the sph
The noncollinearA and B coefficients can be expressed
terms of the collinear coefficients:

ALssa
aG,k

5@~xsa
ag

!* xs#ALs
aG,k ~A4!

~the same holds for theB coefficients! with spinors

x↑
ag5S e2 i

w
2cosS q

2 D
ei

w
2sinS q

2 D D , x↓
ag5S 2e2 i

w
2sinS q

2 D
ei

w
2cosS q

2 D D .

~A5!

Here, the anglesw andq define the direction of the magnet
moment of atoma with respect to the global frame. Wit
these relations, the Hamiltonian matrix elements of a non
linear calculation can be related to that of a collinear cal

lation, HMT
G8G(k), by

HMTa
G8s8Gs

~k!5(
sa

@~xsa
ag

!* xs8#* @~xsa
ag

!* xs#HMTasa
G8G

~k!

~A6!

and a similar relation holds for the overlap matrix. Since
quantities defined inside the muffin-tin spheres can be rel
to those of a collinear calculation by applying a spin-rotat
matrix, the combination of this method with local orbitals46

and the LDA1U formalism47 is rather straightforward.
In the interstitial and vacuum region we work within th

global spin coordinate frame. Using the step functionQ,
which ‘‘cuts out’’ the muffin-tin spheres, the Hamiltonia
matrix can be set up directly to give

HINT
GsG8s8~k!5~Vss8Q!(G2G8)1dss8

\2

2m
~G81k!2Q (G2G8) ,

~A7!

while the overlap matrix is diagonal in spin space with t
diagonal elements the same as in the collinear case.
02441
-

ed
s,

e.

l-
-

ll
ed

2. Constraints in the FLAPW method

In the local spin coordinate frame the additional contrib
tion to the Hamiltonian matrix due to the constraintB field in
the sphere is purely off diagonal. If we calculate a mat
element of the Hamiltonian@Eq. ~19!# with the basis func-
tions @Eq. ~A2!#, we get

HMTa
G8s8Gs

~k!5(
sa

^wG8,sa
s8 ~k!uH MTa

off-d uwG,sa
s

~k!&. ~A8!

Substituting Eq.~A4! yields

HMTa
G8s8Gs

~k!52mB(
sa

~Bc,x
a 1sgn~sa!iBc,y

a !

3@~x2sa
ag

!* xs8#* @~xsa
ag

!* xs#

3^wG8,sa
s8 ~k!uwG,sa

s
~k!&. ~A9!

3. Spin spirals in the FLAPW method

As suggested by Eq.~18!, the plane wave basis set@Eq.
~A1!# used in the interstitial region can be written as

wG,s~k,q,r !5ei (G1k7q/2)•rxs , ~A10!

where the minus sign in7q/2 holds for spin up and the plu
sign hold for spin down. Inside the muffin tins the changes
the basis set enter only through the boundary conditio
since the functions inside the spheres need to be matche
the plane waves in the interstitial region including the ex
term 7q/2 now. Replacingei (G1k)•r by ei (G1k7q/2)•r in the
matching condition, we find that theA andB coefficients of
a spin-spiral calculation can be expressed in terms of
corresponding coefficients of a collinear calculation,

ALssa
aG

~k,q!5@~xsa
ag

!* xs#ALs
aG~k7q/2!, ~A11!

and the same holds, of course, for theB coefficients. When
local orbitals are used in a calculation, care has to be take
ensure that the local orbital is ‘‘attached’’ to the sameG
vector in the majority (G1k2q/2) and minority (G1k
1q/2) spin channels. Also here combination with th
LDA1U formalism is straightforward and has been used
combination with local orbitals successfully for the determ
nation of the magnetic ground state of Eu.48 In contrast to an
ordinary noncollinear calculation the coefficients@Eq. ~A11!#
for the two interstitial spin directions differ by more than
complex prefactor in the spin-spiral case. Therefore, the v
simple relations for the Hamiltonian and overlap matrix e
ments@Eq. ~A6!# do not hold anymore. Instead, the Ham
tonian matrix elements have to calculated directly from

HMTa
G8s8Gs

~k,q!

5(
sa

^wG8,sa
s8 ~k,q!xsa

aguH MTauwG,sa
s

~k,q!xsa
ag&. ~A12!
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As a consequence, the numerical effort setting up the co
bution to the Hamiltonian and overlap matrix from the mu
fin tins is increased compared to an ordinary noncollin
calculation.

When the cone angleqa @cf. Eq.~14!# of the spin spiral is
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