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Ab initio vibrational-rotational spectrum of potassium
cyanide: KCN. Il. Large amplitude motions and rovibrational

coupling

Jonathan Tennyson and Ad van der Avoird

Instituut voor Theoretische Chemie, Universiteit Nijmegen, Toernooiveld, Nijmegen, The Netherlands

(Received 29 January 1982; accepted 17 February 1982)

The ten lowest vibrational states of KCN have been obtained ab initio using the close-coupling method of Le

Roy and Van Kranendonk. Fundamental vibrations are found to lie at 114.7 (bending) and 293.0 cm

(K-CN stretch). Comparison is made with previous results obtained using the Watson Hamiltonian for

nonlinear molecules and separating the rotations and vibrations. It is found that this model breaks down for
the higher librations near and above the barrier to inversion. For these states the average geometry of the
KCN molecule shifts towards the linear isocyanide (KNC) structure. Properties of the vibrational states and

the rotational spectrum are analyzed.

. INTRODUCTION

Recent experimental work on the rotational spectrum
of potassium cyanide (KCN) has shown it to have a tri-
angular structure, ''® a result confirmed by ab initio
calculations.®* Furthermore, these ab initio calcula-
tions showed there to be a low barrier (~ 500 ¢cm™)
to inversion at the isocyanide geometry. While one
can expect a few vibrational states to be confined below
this barrier, states which undergo large amplitude vi-
brations across the barrier should be appreciably popu-
lated at moderate vibrational temperatures. The micro-
wave experiments were conducted at 1150 K. In these
experiments rotational transitions from at least 11 vi-
brational states have been observed, ¢ although only
those from the ground state have been definitely as-
signed.

In contrast to the rotational spectrum, there is little
experimental data on the gas phase vibrational spectrum
of KCN. The only direct measurement® observed just
one transition (at 207 cm™) between 200 cm™ and the
C-N stretch at 2158 cm™. An estimate of the inertial
defect from the ground state rotational spectrum placed
the bending mode w, at ~ 157 cm™t.% This is in
fair agreement with the matrix isolation study of Ismail
et al.® who found the K-CN stretch w, at 288 cm™, the
bending mode w, at 139 em™, and the CN stretch w, at
2050 cm™.

In a recent paper, ' henceforth referred to as I,
Tennyson and Sutcliffe predicted that the fundamentals
w, and w, lie at 303 and 120 cm™, respectively. In that
work they solved Watson’s form of the Hamiltonian®
using the method of Whitehead and Handy.® In this ap-
proach the problem is expressed in normal coordinates
expanded about some equilibrium structure. This al-
lows an optimal separation of vibrational and rotational
motions, which is only valid in the limit of small ampli-
tude vibrations. Use of this separation gave good re-
sults for the low lying vibrational states of KCN. This
allowed tentative assignments to vibrational levels to be
made for the observed rotational spectrum of the vibra-
tional excited states.

Of particular interest in KCN is the nature of the vi-
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brational states below, -at, and above the barrier to in-
version, For LiCN, states in which the Li* ion moves
nearly freely about the CN~ ion (leading to a “polytopic”
bondw) have been predicted to predominate in the gas
phase.!” For KCN, there is probably a transition from
low-lying localized librational states to higher hindered
internal rotations, comparable in nature to the orienta-
tional order—-disorder phase transition observed in
alkali cyanide crystals'' (including KCN).

For the higher bending vibrational states near and
above the barrier, which should behave like hindered
internal rotors, one can expect the separation between
vibrations and rotations, that is always used in prac-
tice with Watson’s Hamiltonian, to break down. More-
over, the Watson Hamiltonian for a nonlinear mole-
cule® does not allow for the linear geometries which
occur at the barrier, meaning that any method based
on this Hamiltonian cannot be expected to perform well
for states with significant amplitudes at the barrier.

In this paper, we solve the nuclear dynamics problem
for KCN making no assumptions about the separability
of the rotational and vibrational Hamiltonian. This is
done using the method of Le Roy and Van Kranendonk, *°
which sets up a secular problem within the close-cou-
pling formalism. It uses analytic integrals over a basis
of spherical harmonics (free rotor functions) in the
bending mode, which are coupled to the overall rotation.
This basis should give a better representation of the
hindered rotations or large amplitude librations which

lie above the barrier.

The method has been successfully used to calculate
the spectra of van der Waals molecules, especially
H,—rare gas complexes, '* where the near isotropic
potentials allow almost free rotations in the bending co-
ordinate. The method has recently been reviewed by
Le Roy and Carley. - Carney et al. 14 have reviewed
variational methods for the nuclear dynamics problem.

A related method by Shapiro and Balint-Kurti, '°
formulated in body fixed coordinates, has been used to
obtain the rovibrational spectrum of water with good
results. Although the barrier to linearity in water is
over 12000 cm™, '® expansion of the highly localized

© 1982 American Institute of Physics
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FIG. 1. Potential energy surface for KCN as calculated by
Wormer and Tennyson (Ref. 3). R isthedistancefromthe CN
center of massto K, and 6 the angle R makes with »(CN); 6 =0
for KCN. Starting from the closed contour, the contours lie at
-38964,.4, —38419,4, —37321,8, —-35126,4, —30735.6,
—21954,0, —4390.8, and 30735.6 cm™.

vibrational states with free rotor functions showed
convergence with about ten functions.® This suggests
that for the comparatively “floppy” KCN, free rotor
functions should provide a satisfactory expansion even
for the more localized vibrational states below the bar-
rier. Recently, Kidd, Balint-Kurti, and Shapiro'’ have
used hindered rotor functions to give a faster conver-
gent basis set for water. Although functions of this
type should give a better representation of the low lying
states in KCN, the same set of hindered rotor functions
would not necessarily be appropriate for the states
lying above the barrier. Therefore, we have not used
them.,

By solving the nuclear dynamics problem for KCN
over a range of vibrational states, we hope to gain
insight into the behavior of the molecule as the ampli-
tude of its motion increases. Furthermore, compari-
son with paper I allows an assessment to be made of
two very different methods for the dynamical problem.
In particular, it is possible to check the low lying states
obtained using the method of Whitehead and Handy® and
find where their method ceases to be appropriate.

Il. POTENTIAL SURFACE

In this paper, as in I, we use the analytic KCN sur-
face fitted by Wormer and Tennyson® to their extended
basis SCF calculations, This surface is only two di-
mensional as the CN bond length » was frozen at its
SCF optimized value 1,157 A, Exploratory calculations
by both Wormer and Tennyson® and Klein et al. * found
little coupling in the potential between » and the other
coordinates. Furthermore, the CN stretch, which lies
in the region of 2100 cm™, *'° is well separated from
the other fundamental energies. This suggests that
treating the CN as a rigid rotor should not lead to too
great a loss of accuracy and allows the Wormer-—

Tennyson potential to be used in its original form

6
V(R, 7,, 6) =2 P,(cos8) Vy(R), (1)
A=0

where R=(R,ﬁ) is the vector from the CN center of
mass to the K nucleus and 6 the angle R makes with
the vector r (the CN axis) measured from C. The
coefficients of the Legendre polynomial expansion as
functions of R are given by Wormer and Tennyson. °
Figure 1 shows the potential in the region of the mini-
mum. We note that the geometry at the minimum is
indeed triangular, although the barrier to inversion
through the linear isocyanide (KNC) structure is only
503.9 cm™'. The barrier through the linear cyanide
(KCN) structure is considerably larger. Finally, we
note that the SCF optimized CN bond length is slightly
shorter than that obtained from experiment® or when
extensive configuration interaction is used. '

I1l. METHOD

As the second step in the Born—Oppenheimer approxi-
mation, the Hamiltonian for the atom-rigid diatom nu-
clear problem can be written, after separating out the
center of mass motion, as

;—2—2 82 ) 12 12
e il <8R2 RO Sy S L USSR

in “space-fixed” coordinates.'® In Eq. (2), 1 equals
mamy/ (mg+my), with m, and m, being the atomic and
diatomic masses, respectively;, p, is the reduced mass
of the diatom. The diatom is assumed to have a fixed
bond length 7;. The eigenfunctions of the operators 1°
and j * are spherical harmonics in the angles R and 7,
respectively.

Within the zero-coupling limit, i.e., if V(R, 74, 0)
= V(R), Eq. (2) becomes separable and the eigenfunc-
tions can be written as [R™ x,(R)]Y //(R, T'). X,; are
the solutions of the pseudodiatomic Schrodinger equa-
tion

_}{2 dz 72-2
[Zu gz tUl+1) SuRZ T V(R) — Eqy(n, Z)] X, (R)=0

(3)

and the total angular momentum eigenfunction ‘H‘j',” is
defined as

J
yIMR, r)= D (I, M| ], my I, M=m)Y, () Yy (R),

m==j
(4)
where (J, M | j, m; I, M —m) is a Clebsch—Gordan co-
efficient. '
Solutions of the full Schrodinger equation for the

problem

[H(R, r) - E,]¥ 3" =0 (5)
can be obtained in a basis of zero-coupling functions
giving

v .LM (R3 1‘) ZR-I Z lzyle (R, I') G }rla(R); (6)

j

where
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G = Z a3 X (R (7)
and 2% is the vector of expansion coefficients for the
ath state with total rotational quantum number J.

Lal)
i 2 [ d2+l(l’+1)] i R }
21 Ldr?® R 2L v 1,‘?

where it has been assumed that the potential is expressed as the Legendre expansion of Eq. (1).

?""Z Z Zfl(] ;l’aj

l"

Substituting Eqs (22 and (6) into Eq. (9), multiplying
from the left by YL 71 (R, ¥)* and integrating over all
variables except R yields the so called close-coupled
equations, originally derived for scattering problems
by Arthurs and Dalgarno, %’

'y J) Vo(R) G %%y =0, (8)

This allows the

angular integration over the potential to be performed analytically giving

- 17 -/ ’? ’ ’ .
) 70, I i Lspl i) j"+1'+J ./ <1/ ! 17 ) WY 45 J A ] )(Z A l )%J l 7 %
ARG G 15 D =(=1)7 T+ 1) @57 + 1) (20 +1) (217 +1)] (0 o 0 /o 00/ pif 18

as first shown by Percival and Seaton.®' The symmetry
of fy forces it to be zero unless j'' +Ax+j" and I'" +x + I’
are both even. This causes the secular equations,
which are obtained from Eq. (8) by substituting Eq.

(7) and integrating, and which are already blocked by o/,
to be further block factorized according to whether j’
—[" is odd or even.

The method of Le Roy and Van Kranendonk'® uses nu-
merical radial basis functions X ;(R). These are ob-
tained by the explicit numerical solution of Eq. (3). In
principle, a complete set of radial basis functions may
be obtained for only one value of /, /.., and it is con-
venient to work with a basis generated in this fashion
as it is orthogonal. In the case of KCN, the radial po-
tential is sufficiently deep for X ,;(R) to only weakly
depend on /; we, therefore, worked entirely with /., =0
and henceforth, will drop the second index on X,
Furthermore, the radial potential supports several
hundred bound states and so there is no need to include
functions from the continuum as is necessary for
shallower potentials. %

In their work, Le Roy and Van Kranendonk'? set the
potential V(R) in Eq. (3) equal to Vy(R), the isotropic
potential and first term in an expansion like that of
Eq. (1). Preliminary calculations showed only slow
convergence with a radial basis generated in this
manner. The main problem is that the minimum of
Vo(R) lies at larger R, 2.891 A, than the equilibrium
geometry of Wormer and Tennyson, ® R,=2.675 Al e
stead, a cut through the potential at the equilibrium
angle 6,=105.7° was used, giving V(R)=V(R, 6, v,).
The resulting basis was found to give considerably more
rapid convergence.

IV. CALCULATIONS WITHJ =0

The basis sets outlined in the previous sections are
essentially two dimensional within a given rotational
state (J, M), i.e., the size of the secular problem
increases linearly with both the number of radial func-
tions x , and angular functions 'H‘j’,"' included in the basis.
For our results to be satisfactorily converged, it is
necessary to consider increases in the basis with both
these sets.

Table I shows the effect of increasing the number of
radial basis functions. All x,(R) were included from

l

—

n=0to n,,,, So that the final basis set was made up
using n,..+ 1 radial functions. These functions were
generated by numerically solving Eq. (3) for a grid of
1200 points until E, had converged to within 0.05 cm™
The radial wave functions were found to be insensitive
to either increasing the grid or lowering the conver-
gence threshold. It is clear from Table I that the
radial basis set is very well saturated with »n,

=11 (12 functions), and we took this value for all fur-
ther calculations.

It is not so easy to generate angular basis sets in
such a uniform manner. This is because the ranges
of the summations over 7 and / in Eq. (6) are linked,
they depend on J via the triangular relationships in-
herent in the Clebsch—Gordan coefficient of Eq. (4).
We followed the usual practice'® ' and included in
our basis all possible angular functions which had j
less than or equal to some j,,,. Table II shows the
the convergence of the lowest ten states with =0 and
InCreasing 7max.

It is clear from Table II that convergence is con-
siderably slower for the angular functions than for the
radial problem. Indeed, twice as many angular func-
tions (a total of j,,+1 for J=0) are needed to give con-
vergence similar to that found with »n,,,=11. Even for
J =0, it was no longer possible for us to retain the
whole secular matrix in the computer main store for

TABLE I. Convergence of ground state energy (in cm™) and
lowest nine band origins (in cm™) with radial basis set. All
calculations are for J=0 and jp,,=15.

N max

10 11 12
Ground state — 38861, 1662 — 38861, 1662 — 38861, 166°
Band origin 1 117, 84 117, 84 117, 84
2 221, 21 222,21 222, 21
3 297, 21 297 ;21 297, 21
8! 319, 6 319,06 31:9%:05/
S 394, 75 394, 73 394, 73
6 425, 96 425, 94 425, 94
7 464, 76 464, 42 464, 41
8 528, 69 528, 50 528, 48
9 542, 33 541, 95 541, 92

aEnergy relative to dissociated K* and CN~.

J. Chem. Phys., Vol. 76, No. 12, 15 June 1982
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TABLE II. Convergence of ground state energy (in cm™') and lowest nine band origins (in em™) with angu-
lar basis set. All calculations are for J=0 and n, =11,

——

7 max
15 18 19 22 23
Ground state — 38861, 166 - 38861, 373 — 38861, 391 - 38861, 396 — 38861, 397
Band origin 1 117, 84 116, 21 116, 15 116.10 116, 09
2 222, 21 218, 25 218,11 217,79 217,178
3 297, 21 295, 08 294, 56 294, 30 294, 29
4 319, 67 315, 50 314, 97 314, 59 314, 58
o 394,73 382, 93 380, 59 379. 64 379, 56
6 425, 94 421, 26 421,12 420, 51 420, 45
7 464, 42 451, 38 449, 57 448, 53 448, 42
8 528, 50 500, 36 499, 44 495. 23 494, 90
9 041, 95 532, 92 531, 43 530, 43 030, 40

these high values of j.... We were thus forced to use

a method of iterative diagonalization®*'?* and to obtain
only the lowest (usually ten) eigenvalues. As the secu-
lar matrix was not, in general, diagonally dominant,
convergence of this diagonalization was slow. How-
ever, in some cases, such as in basis set optimization,
a good 1nitial guess to the eigenvectors could be pro-
vided by a previous calculation.

For J=0, the states essentially correspond to the
vibrational levels obtained in paper I. Table II thus
shows the convergence of the vibrational spectrum
with angular basis. The rotational spectrum will not
necessarily exhibit the same properties. The size of
the secular problem grows linearly with the total ro-
tational quantum number J, and thus the level of ac-
curacy that can be attained in the calculations de-
creases with increasing J.

Table III shows the effect of varying the CN bond
length. Compared are results for the SCF optimized
bond length »,=1, 57 A® and the best experimental es-
timate of the vibrationally averaged bond length ¥
-1.71 A from isotopic substitution. %° Clearly, the
longer CN bond length lowers the energy of all states,
This is because the effect of lengthening is to reduce
the separation between rotational states of the CN
diatom. As the experimental CN distance is more
realistic than that of Wormer and Tennyson, the vi-
brational spectrum calculated for 7»;=1.171 A repre-
sents our best estimate.

Analysis of our wave function (see Fig. 2) suggests

that the first and third excited states are the bending SSLhisvork Z8per 2
(wy) and K-CN stretching (w,) fundamentals, the second r/A 1.171 1.157 1,157
excited state being a bending overtone. Our stretch Ground state energy —38862.41 —38861.40 — 38863, 22
at 293.0 cm™ is thus in surprisingly good agreement :
with the matrix isolation value of Ismail et al.,® e LR e Siote S
288 cm™, but our bending fundamental at 114.7 cm™ 4 993 0 204 3 302 7
. -1 e ° e o °
lies 25 cm™ lower than theirs. ASl suggested in I, 4 312.5 314, 6 382, 9
the transition observed at 207 cm™ by Leroi and 5 376.5 379.6 438, 6
Klemperer® could well be the bending overtone. 6 418, 4 420, 5 524, 0
- 7 445, 4 448, 4 588, 3
Table III also compares our results to those ob- 8 490 7 494 9 616. 7
tained in I, using the method of Whitehead and Handy. " 9 7 530, 4

In order to compare absolute energies, it is necessary
to make allowances for the CN stretch zero-point ener-

gy, which does not enter the present calculations as the
CN is treated as rigid. In paper I, a full vibrational
problem was solved and the appropriate CN zero-point
energy was found to be 1064.9 cm™. Including this
shows the previous ground state to be lower in energy
and thus in a variational sense better represented.

However, the excited states of paper I lie higher in
energy than those calculated using the method of
Le Roy and Van Kranendonk.!? This leads to slightly
larger values for the fundamental transitions, namely,
119.7 and 302.7 cm™, compared with 116.1 and
294.3 cm™ found with the same CN bond length in the
current study. This discrepancy is small and the
two methods are clearly in good agreement for these
low lying states.

The same cannot be said for the higher vibrational
states. There is serious disagreement between the two
calculations for the fourth excited and higher states,
with the previous calculations in paper I overestimating
all the transition energies. This suggests that the
higher states in I, although variationally correct, have
little physical significance and it could be argued that
the results of paper I systematically omit certain vi-
brational states.

TABLE III. Comparison of the ground state energies (in cm™)
and J =0 vibrational spectrum (in cm™) for this work (ju, =23)
and paper I. Also shown is the difference between SCF opti-
mized and experimental CN bond lengths 7.

—

This work |

——

526.

e —

3Corrected for 1064.9 cm™ zero-point energy for the CN stretch,

J. Chem. Phys., Vol. 76, No. 12, 15 June 1982
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FIG. 2. The lowest four vibra-
tional wave functions computed

with J =0, The contours link points
where the wave function has 0.3%, 3%,
30%, and 60% of its maximum am-
plitude, Solid curves enclose re-
gions of positive amplitude and
dashed curves regions of negative
amplitude,

FIG. 3. Vibrational wave func-
tions computed for J =0 with
energies in the region of the bar-
rier, Contours are as for Fig. 2.
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TABLE IV, Vibrationally averaged geometric parameters for the J=0 state of the ten lowest

vibrational levels.

i

m—

arccos({cos 6))  arccos({cos® !?) —arccos({cos &) (R-2)~1/2
Eeg) (deg) (A)
Ground state 106, 4 1,3 2,689
1st excited state 110, 4 3.5 2,718
2nd 114,5 9.1 2,749
3rd 109.1 5, 2 2,723
4th 115.5 5.6 2,757
5th 123, 8 7.9 2,817
6th 115.5 6.9 2,765
7th 129, 1 7.4 2, 847
8th 125,1 9.4 2,836
9th 118,1 7.8 2,786
Equilibrium values 105, 7 2,675

Figures 2 and 3 show plots of the lowest eight vibra-
tional states of KCN obtained by numerically evaluating
our wave functions at a grid of points which can then be
linked to give contours. The lowest states, depicted in

Fig. 2, are clearly localized about the KCN equilibrium

structure. They are even harmonic in appearance.
Thus, it is not surprising that for these states the
two methods are in fair agreement.

Figure 3 shows the next four vibrational states.
These states are more delocalized, showing an in-
creasing density in the region of the barrier at the
linear isocyanide structure. It is for this structure
that Watson’s Hamiltonian for nonlinear molecules®
is not valid and, hence, the method of Whitehead and
Handy® breaks down.

The minimum in Wormer and Tennyson’s surface®
lies at —39086.1 cm™ (relative to dissociated K* and
CN’). Because of zero-point energy considerations,
it is difficult to say which is the first state that lies
above the inversion barrier. If the zero-point energy
of the stretching fundamental is assumed constant at

145.6 cm™, then the seventh excited state lies 18 cm"
above the barrier. However, inspection of the curva-
ture of the surface at the barrier suggests a stretching
zero point energy of ~ 166 cm™. This would make

the eighth excited state the first one above the barrier.

1

What is clear from Fig. 3, however, is that states
which lie below the barrier (by up to 70 cm™) show
appreciable density in the classically forbidden region
around the barrier. The Whitehead—Handy method thus
breaks down not just for states which lie above the
barrier, but also for those which show appreciable tun-
neling. This raises the problem of deciding when this
tunneling is significant for a “floppy’” molecule. In

this context we mention the recent work of Bartholomae,

Martin, and Sutcliffe® who, using the Whitehead—
Handy method, explicitly constructed a basis set for
CHj; which could not probe linear geometries. There

1s a danger in such an approach that, while variationally

correct results can be so obtained, they may have little
significance as the wave function is constrained to be
small in physically significant regions of the surface.

In Table IV we present some vibrationally averaged
geometric parameters for the lowest ten vibrational
states. It is clear that, in general, both the average
value of 6 and the amplitude of vibration increases with
vibrational excitation. This results in states which no
longer vibrate about the equilibrium geometry but
about some more linear structure. The vibrationally
averaged value of R also increases with vibrational
excitation. This is because the minimum in the poten-
tial with respect to R lies at larger R values as 6 tends
to 180°, as shown in Fig. 1.

V. ROTATIONAL EXCITATIONS

Table V gives calculated rotational levels for the vi-
brational ground state. These values are obtained by
performing a complete vibration-rotation calculation
for a total angular momentum J and taking the energies
relative to the lowest level in a J =0 calculation. For
J> 0, the calculations are performed in two separate
pieces according to whether odd (o) or even (e) com-
binations 7 — [ contribute. The eigenvalues in Table V
have been labeled accordingly.

It is clear that to within the convergence of our angu-
lar basis [~ 0.005 cm™ for jn..=19 (see Table V)]
there is excellent agreement between the rotational
spectra obtained using the methods of Le Roy and
Van Kranendonk, and Whitehead and Handy. This
demonstrates that, for the ground state at least, the
separation between vibrational and rotational problems
works extremely well. In paper I, use of this separa-
tion allowed rotational states up to J =25 to be calcu-
lated in only a few seconds computer time. Without
this separation, the size of the secular problem makes
calculations with J> 4 prohibitively expensive. This
is because, although secular matrices with dimensions
of order 700 are not large by comparison with today’s
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TABLE V. Rotational levels of the vibrational ground state (in cm™) compared with previous
results (Ref. 7) and experiment (Refs. 2and 25). Theresults for aJ state are givenrelativetoJ =0

and divided into “even’ and “odd” (j —I) blocks (see Sec. III). All calculations are for

r=1.157 A.
Tf Teaz =18 Jmax =19 Paper I Expt.
—-38861,3732 - 38861, 3910 —38863. 2

e 2,3429 2,3544 a..3277 2,0933

1 0 0. 2877 0.2877 0. 2879 0,3158
0 2, 3328 2.,3449 2. 3317 2,1068
e 0. 8631 0. 8630 0, 8636 0. 9378

0 e 2.8980 2,9100 2. 9234 2. 7523
e 9, 0342 9,0319 9, 0430 8. 0839
o) 2,9283 2,9405 2. 8934 2. 1115
O 9, 0341 9,0319 9, 0430 8.0838
e 3. 8064 3. 7421 3. 6387
e 9, 8970 9, 9068 9,0310

3 e 20,1009 20,1308 17. 9496
0 1. 7261 1.:9271 1.8943
0 3. 7460 3. 8020 37195
o) 9, 8972 9. 9066 9, 0315
0 20,1008 20,1308 17. 9496
e 2,8762 2, 8782 351673
e 4, 8762 4, 9735 5. 0096
e 11, 0479 1170581 10, 2950

4 e 21,2510 2132823 1922122
e 355287 39199611 31, 6946
0 4, 9772 4, 8736 4, 8746
0 11, 0475 11, 0586 10, 2936
0 212512 21, 2824 19::2122
0 35. 5289 35, 5961 31,6946

configuration interaction calculations, these matrices

are not diagonally dominant and have few zero elements.

Furthermore, it is necessary to obtain at least the
J+1 lowest eigenvalues. This combines to make the
iterative diagonalization procedure®'** only slowly
convergent,

Table V shows that the calculated and experimental
rotational spectra only agree to within 10%. This prob-
lem was discussed at length in paper I. It 1s associ-
ated with inaccuracies in the abd initio potential energy
surface. In particular, the equilibrium structure ob-
tained by Wormer and Tennyson® differs by 4% in R,
8% in 8, and 1.2% in # from the best experimental val-
ues.?® This was found to be the major cause of the
discrepancy. Changing the CN value to the experimen-
tal value should improve the agreement of certain
transitions, in particular, the so called bH-type transi-
tions, *' but would not change the discrepancy in most
of the calculated transitions.

It is interesting to know how the rotational spectrum
of KCN changes with vibrational state, especially in
view of the shifts in average geometry shown in Table
IV. Table VI shows the J=0—~1(e) transition for the
lowest ten vibrational states. The transition energies
are shown for several levels of calculation, as it is
clear that for the higher vibrational states our angular
basis set is not completely saturated. The oscillations
found for some states are indicative of the fact that in-
creasing j.., alternately stabilizes the J=0 and J=1
states. The results are, however, sufficiently well

converged for trends in the transitions to become
apparent.

Inspection of Table VI shows that the rotational

transitions fall roughly into three groups. In the
first group, comprising the ground and first four ex-

cited vibrational states, the dependence of the rota-
tional splitting on vibrational level is small. This 1s
typical of a molecule undergoing small amplitude vi-
brations.

For the fifth and sixth vibrationally excited states,
the J=0—~1 (e) splitting is about twice that found for
the lower vibrational states. These states mark the
onset of tunneling through the barrier, and as shown
in Table IV and Fig. 3, they are no longer vibrating
about the minimum in the potential energy surface.

Finally, states above and including the seventh vi-
brationally excited state show very large J=0—1 (e)
splittings. The seventh excited state lies at about
the top of the barrier, and thus these higher states
are the ones which undergo hindered rotations across
the barrier. At the barrier the molecule is linear
which causes the moment of inertia in the linear di-
rection to be zero. The trends shown in Table VI for
the J=0—1 (e) transition are thus explained by in-
creasing linearity with vibrational excitation, For
the large amplitude vibrational states, it is not pos-
sible to use a rovibrational separation and, hence, no
comparison can be drawn with rotational spectra ob-
tained using the method of paper I.

J. Chem. Phys., Vol. 76, No. 12, 15 June 1982



J. Tennyson and A. van der Avoird: Vibrational-rotational spectrum of KCN. |l 5717

TABLE VI, J=0—1 (e) transition energies (in cm™!) for the lowest ten vibrational states as a func-
tion of increasing angular basis set. For vibrational spacings see Table III.

Jmax
18 19 20 21 22 23

Ground state 2, 343 2,354 2,350 2,352 2.351 2,351
1st Excited state 2.600 2,566 2,562 2,969 2,564 2.570
2nd 35292 2,850 3. 043 2,961 2,987 2, 980
3rd 2,510 2,901 2,187 2,808 2.819 2,810
4th 3..367 3, 477 3.913 3,417 3,462 3,437
oth 0.225 6. 962 5, 760 6.209 6.019 6.049
Gth 0, 640 o0,111 o, 744 0, 440 0,456 5,486
7th 16, 78 16, 71 14,78 15,09 14,62 14, 67
8th 20,75 15,0 19, 64 18, 75 19, 01 19,00
9th 22,61 20,15 19, 44 19, 23 18,:95 18,93
VI. CONCLUSIONS J. E. Grabenstetter. We would also like to thank Dr.

In this study, we have performed calculations for the
lowest ten vibrational states of KCN. While we obtain
good agreement with previous’ results for localized
states lying around the potential minimum in KCN, we
have found that the method of Whitehead and Handy”
fails for higher states, even some of those which lie
below the barrier to inversion at the linear isocyanide
geometry. For these intermediate states, tunneling
1s found to be significant. Comparison of rotational
spectra shows that for the ground state separation of
the rotational and vibrational problems introduces no
significant error.

Analysis of our higher vibrational states shows that
KCN undergoes large amplitude bending vibrations
(librations or hindered rotations) which are no longer
centered at the equilibrium structure. KCN thus ef-
fectively moves towards an isocyanide structure in its
vibrationally excited states. This is reflected in the
calculated rotational spectra of these states, which
show large changes from those calculated for the
ground state. It would be interesting to see whether
these shifts in the rotational spectrum can be ob-
served experimentally.

Finally, Wormer and Tennyson®’ noted that their
SCF calculated dipole moment could be well repre-
sented by long range theory: by considering the ions
K" and CN~ and their polarizabilities. This should
allow a dipole surface for KCN to be easily fitted.
With this and the wave functions presented here, vi-
brationally averaged dipole moments for each state
and transition dipoles (giving infrared intensities)
could be calculated. As KCN undergoes large amplitude
vibrations, especially in its vibrationally excited states,
one would expect its dipole to be significantly different
from that given for the minimum energy geometry by
Wormer and Tennyson.
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