
ABACUS: A Distributed Middleware for Privacy
Preserving Data Sharing Across Private Data

Warehouses�

Fatih Emekci, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science,
University of California at Santa Barbara

{fatih, agrawal, amr}@cs.ucsb.edu

Abstract. Recent trends in the global economy force competitive enterprises to
collaborate with each other to analyze markets in a better way and make deci-
sions based on that. Therefore, they might want to share their data with each
other to run data mining algorithms over the union of their data to get more ac-
curate and representative results. During this process they do not want to reveal
their data to each other due to the legal issues and competition. However, current
systems do not consider privacy preservation in data sharing across private data
sources. To satisfy this requirement, we propose a distributed middleware, ABA-
CUS, to perform intersection, join, and aggregation queries over multiple private
data warehouses in a privacy preserving manner. Our analytical evaluations show
that ABACUS is efficient and scalable.

1 Introduction

Recent trends in the global economy force competitive enterprises to collaborate with
each other for the purpose of market analysis. One of the most important examples of
such collaboration is data sharing to mine and understand the market trends to be used
in decision making. However, although enterprises are willing to share information with
each other, they do not want to reveal their data. Due to the legal issues and competition
in the market, datasources want to preserve the privacy of their data while sharing them.
For example, consider a scenario consisting of two hotels, H1 and H2, and two airlines,
A1 and A2. Assume hotel H1 wants to offer a new deal to each of its customers includ-
ing hotel and flight expenses based on his/her flight history. Therefore, hotel H1 needs
to learn flight history of its customers from airlines A1 and A2. One method to learn
flight history of customers is that airlines send all of their data to hotel H1 so that hotel
H1 can extract desired information. However, these airlines also work with hotel H2,
which is a competitor of hotel H1, and thus they may not want to send all of their data
to hotel H1. That is because hotel H1 can discover the customers of hotel H2 and try
to attract them. Therefore, if airlines want to work with both hotels, they cannot send
their data to any of these hotels. Similarly, hotel H1 cannot send its data to airlines so
that airlines can extract the information that hotel H1 needs since airlines will discover

� This research was funded in parts by NSF grants IS-02-23022 and CNF-04-23336.

G. Alonso (Ed.): Middleware 2005, LNCS 3790, pp. 21–41, 2005.
c© IFIP International Federation for Information Processing 2005

22 F. Emekci, D. Agrawal, A. El Abbadi

each other’s customers. In order to be able to collaborate, hotel H1 should take its cus-
tomers’ information from airlines in a way that airlines A1 and A2 share their data with
hotel H1 by only revealing common customers (i.e., revealing H1 ∩ A1 to H1 and A1
and H1 ∩ A2 to H1 and A2). By using such a method hotel H1 cannot discover new
customers which may be customers of hotel H2 and also airlines cannot discover new
customers which may be customers of the other airline. In addition to this, hotel H1
may want to know the total amount of its customers’ travel expenses or total expendi-
ture of a customer for its future business decisions and offers. Other enterprises may
be willing to collaborate with hotel H1, if they can preserve their privacy. The essential
operations to perform these collaborations are privacy preserving intersection, join and
aggregation queries. Unfortunately, we cannot use traditional query processing tech-
niques since they do not consider privacy issues. Therefore, there is a need for privacy
preserving query processing and data sharing across multiple private data warehouses.

Data integration and sharing has emerged as an important practical problem from
a data management point of view [3,4,7,8,9]. Techniques used for this purpose com-
monly assume that the data sources are willing to allow access to all their data without
privacy concerns during query processing. This assumption, however, is unrealistic in
real life since most of the time data sources are competing enterprises. There have been
several techniques in the areas of database and cryptography for privacy preserving data
sharing. One of them is to use trusted third parties such that data sources hand over their
data and a third party performs the computation on their behalf [1,10]. The level of trust
may not be acceptable in these methods. Another approach is using secure multi-party
computation where given m parties and their respective inputs x1, x2, .., xm, a function
f(x1, x2, ..., xm) is computed such that all parties can only learn f(x1, x2, ..., xm) but
nothing else [6,7,11]. The computation and the communication costs make this method
impractical for database operations working over a large number of elements.

In this paper, we address the problem of privacy preserving data sharing over mul-
tiple private data warehouses. We propose a distributed middleware, ABACUS, to per-
form intersection, join, and aggregation queries over multiple private data warehouses
in a privacy preserving manner. Privacy preservation means that parties involved in the
query would only be able to learn the query result but nothing else. In addition, we intro-
duce new types of aggregation queries needed in this context and propose efficient tech-
niques to process them. ABACUS operates as a proxy among private data warehouses
and allows users to pose queries over multiple private data warehouses. Our analyti-
cal evaluations demonstrate that ABACUS provides an efficient and scalable scheme to
perform intersection, join, and aggregation queries.

The rest of the paper is organized as follows. Section 2 formulates the problem
and presents the architecture overview. Section 3 describes intersection and join query
processing. Aggregation query processing is discussed in Section 4 and the analysis is
presented in Section 5. The last section concludes the paper.

2 Problem Definition and Architecture Overview

Enterprises gather data from their multiple operational databases into a data warehouse,
which is one the most popular ways of storing data to support decision-making in or-

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 23

Customer_Key

Time_Key
Amount

SALES

CUSTOMERS

LOCATIONS TIMES

Loc_Key, Loc_name Time_Key, Year,...

Loc_Key

Cust_Key, name,.......

Fig. 1. An Example of Star Schema

ganizations. Data warehouse systems or OLAP (Online Analytical Processing) systems
are different than OLTP (On-Line Transaction Processing) systems which are designed
for fast updates. Thus, large enterprises have both OLAP and OLTP systems to support
both an on-line community who expect fast response time for executing transactions and
off-line users who expect to analyze the data in a reasonable amount of time. Most enter-
prises create a large data warehouse, and periodically extract data from OLTP systems
into data warehouse to be able to analyze data without interfering with online users.
Data Warehouses usually use star schema for fast execution of queries over aggregated
data. Star schema has dimension tables and a fact table containing a foreign key for
each of the dimension tables. Furthermore, it is usually not normalized for efficient
query response time since fewer joins, a bottleneck in query processing, are performed.
Figure 1 shows an instance of a star schema with the fact table, Sales, and the dimension
tables, Customers, Times, and Locations. Current commercial data warehouses support
efficient methods to examine data. However, they do not support privacy preserving
data sharing across multiple private data warehouses, which is useful for analyzing the
market instead of a single company’s data.

The problem of query processing across multiple private data warehouses is defined
as follows:

Let D1, D2, ..., Dm be the data warehouses (defined with a star schema) of
a set of m data sources P = {P1, ..., Pm} and q be a query spanning D1
through Dm. The problem is to compute the answer of q without revealing any
additional information to any of the data sources.

Agrawal et al. [2] solved the problem of privacy preserving query processing across
private databases by restricting it to two data sources with some relaxation in an honest-
but-curious environment [6] for intersection and equijoin operations. The honest-but-
curious environment means that parties follow the protocols correctly but keep all mes-
sages sent and received during the course of the query processing. The relaxation reveals
the sizes of the tables or lists in the database to the other party. However, the proposed
technique has two shortcomings: 1) Encryption is a computation intensive operation
which is not suitable for database operations where large numbers of items need to
be processed. 2) It does not support aggregation queries, which are among the most
important queries.

24 F. Emekci, D. Agrawal, A. El Abbadi

ABACUS

Via SQL interface

To other ABACUS Nodes

An ABACUS Node

A Commercial Database

OLTP OLAP

Fig. 2. The architecture of a ABACUS node

In this paper, we propose ABACUS for privacy preserving data sharing across mul-
tiple private data warehouses. ABACUS eliminates the need for third parties by taking
advantage of the star schema and executes intersection, join and aggregation queries in
a privacy preserving manner. In addition, we introduce new types of aggregation op-
erators which are useful in the context of data warehouse and solve them efficiently.
ABACUS also operates in an honest-but-curios environment and it reveals the size of
tables and lists similar to [2].

ABACUS is a distributed middleware operating on top of any commercial database
as shown in Figure 2. It provides a user interface where users can pose queries over mul-
tiple private data warehouses. ABACUS executes queries by running ABACUS nodes
operating on different data warehouses. Each ABACUS node interacts with its data
warehouse via SQL interface supplied by the underlying commercial database. Then,
it contacts other ABACUS nodes and shares its data with them to process queries in a
privacy preserving manner using the protocols proposed in this paper.

ABACUS does not aim to solve the problem of revealing additional information to
a datasource which poses multiple queries and combines their results in order to obtain
additional information about the data. In addition, it does not solve the problem of
data discovery and schema mediation. Solutions to these problems are discussed briefly
in [2] and they could be used in ABACUS.

3 Intersection and Join Query Processing

Intersection and join queries are the two important types of queries supported by cur-
rent commercial databases without privacy concerns. However, in the context of data

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 25

sharing across multiple private data warehouses we need privacy preserving intersection
and join queries. Therefore, we will define the problems of privacy preserving intersec-
tion, and join queries and also show how to solve them efficiently in Section 3.1 and
Section 3.2 respectively.

3.1 Aggregated Intersection

Intersection queries constitute the first step for collaboration over common data items.
For example, a company may need to know other companies’ opinions about its cus-
tomers. For this kind of collaboration, two companies need to find the common cus-
tomers as a first step, i.e., intersection. The intersection of two customer lists can be
found easily unless they do not hesitate to reveal their customers to each other. How-
ever, most of the time companies may not want to reveal their customer lists but only
common customers to each other due to legal issues or competition. To support such
a type of collaboration, a method for privacy preserving intersection where parties can
only learn items in the intersection but nothing else is needed. Therefore, we first define
the problem of finding the intersection of lists in the context of data warehouse while
preserving the privacy called aggregated intersection query processing as follows:

Let L1, L2,..., Lm be the lists containing secret data stored by a set of data-
sources P = {P1, P2, ..., Pm} respectively. For each data source Pi, the prob-
lem is to find all other data sources, Pj , with e ∈ Lj for each item e ∈ Li in
a privacy preserving manner, i.e., if Pj does not have e in Lj , then Pj will not
know e ∈ Li .

Example 1. We illustrate the aggregated intersection problem with an example. Con-
sider three datasources P1, P2 and P3 involved in executing aggregated intersection
query with customer tables T1, T2 and T3 respectively as shown in Figure 3. At the
end of aggregated query processing, datasources will only learn the common customers
they share with other data sources but nothing else. In this example, all data sources
will know 6565 exists in tables T1, T2, and T3. P1 and P2 will also know that 8080 is
common in their tables. Similarly, P1 and P3 will know that 7070 is common in tables
T1 and T3. However, P2 should not be able to know that P1 and P3 have 7070 in their
tables. Similarly, P3 must not know that P1 and P2 have 8080 in their tables.

Our solution to the above problem is based on using one-way secure cryptographic
hash functions. These hash functions are widely used in many real life applications such
as password protection, message authentication, and digital signatures. The examples
of such hash functions include SHA-1, MD4, and MD5 [12]. A simple solution to the
aggregated intersection problem could use one-way hash functions and compare hashed
values of items to determine whether they are the same or not. Basically, data source
Pi computes the hashed list of list Li by computing the hash value of each item in Li.
Then, it sends the hashed list to data source Pj so that it can compare the incoming
hashed list with its own hashed list to find the common items in Li and Lj . According
to this scheme, in Example 1, data source P1 uses a hash function H and sends the list
of hashed values, {H(6565), H(7070), H(8080)}, to P2 and P3. Then, P2 compares
the hashed list with its own hashed list, {H(6565), H(8080)}, and determines that 6565
and 8080 are common. Since the hash function is a one-way hash function, P2 will not

26 F. Emekci, D. Agrawal, A. El Abbadi

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070
8080

T 1

...
......

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

8080

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070

T

T

2

3

E−mail
bj@utz.edu

Costumers

Fig. 3. Illustration of Aggregated Intersection

be able to know 7070 is in L1. This basic solution, however, suffers from the following
two problems: 1) If the domain size is small, then item x whose hash value is H(x)
could be computed by exhaustively searching the whole domain. 2) Hash collisions
might produce inaccurate results.

In the context of data warehouses, data sources usually have more information about
the secret items. For example, all data sources in Example 1 keep name, last name,
phone and address information as well as SSN (Social Security Number) of a customer
in their customers tables. If all of these information is used in hashing, then the domain
will become large. For instance, instead of hashing SSN, a concatenation of SSN, name,
last name, phone and address could be used in hashing, i.e., H(6565|Jack|Brial|6616KRD

XyzZT93090|8909084545) could be used instead of H(6565) for a customer with an SSN
6565. This method allows us to enlarge the domain size and makes exhaustive search
impossible. The aggregated intersection problem is to find the common secret items in
the dimensions tables in the context of data warehouse. ABACUS uses the common
attributes in all of the tables to hash secret items i.e., the values of common attributes
are used instead of a value of a primary key. For example, the attributes SSN, Name,
Surname, Phone, and Address are common in T1, T2 and T3 in Example 1. If 5 attributes
each of which is 10 characters long are used in hashing, the domain size would be
2850 ≈ 2250 which makes exhaustive search impossible.

As mentioned before, hash collisions might result in sharing a secret item which is
not in the intersection. H maps values to | DomH | which is assumed to be arbitrarily
large compare to the intersection size. Let N =| DomH |; in the random oracle model,
the probability that n hash values have at least one collision equals [2]: Pr[collision] =
1 − exp(−n(n−1)

2N
). For 1024 bit hash values and n = 1 million, this probability is 10−295

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 27

[2]. Thus, the solution to expand the domain size minimizes the probability of data
vulnerability by exhaustive search and also helps in reducing the probability of hash
collisions, and therefore, errors in the queries are significantly reduced.

3.2 Aggregated Join Queries

One of the most important query operators supported by current commercial database
systems is the join operator. Privacy preserving join operations have not been previously
considered in database research or in current database management systems. However,
they might be needed in data sharing across private data sources. For example, a com-
pany (e.g. a hotel) might want to know the transaction details of its customers in other
companies (e.g. airlines) in the market to classify them according to their transactions.
For instance, a hotel can identify the customers that travel frequently and offer special
promotions to them. To be able to do this, it needs to join its customers table with other
companies’ sales tables. Since other companies may benefit from this process, they
might be willing to share transaction details. However, during this process companies
are not willing to reveal any information about a customer who is not a customer of
the other company as well as his/her existence. Traditional join query processing tech-
niques cannot be used to process these queries since they do not consider privacy issues.
In order to satisfy these requirements, we propose a new join operator, the aggregated
join query operator, to be used for privacy preserving data sharing across private data
warehouses. We first formally define the aggregated join query processing problem and
then propose a solution.

The aggregated join query processing problem is formally defined as follows:

Assume data source P1 has a dimension table P1.Td and data sources P2, P3, ..,

Pm have fact tables P2.Tf , P3.Tf , ..., Pm.Tf respectively with common attribute
A. Then, the goal is to compute P1.Td � P2.Tf ∪ P1.Td � P3.Tf∪ ∪ P1.Td �

Pm.Tf such that none of the data sources learn any extra information other than
the query result. Query poser P1 will learn only the tuples t such that t ∈ Pi.Tf

for which t.A ∈ P1.Td.A . In other words, Pi shares a list, Lv , of tuples in
Pi.Tf for each value v ∈ Pi.Tf .A with P1 if ∃t ∈ P1.Td such that t.A = v , and
nothing else where i = 2, 3..., m.

We illustrate the problem with an example. Assume the three data warehouses in
Example 1 want to execute an aggregated join query. And assume P1 poses the aggre-
gated join query to find the aggregated join of its dimension table, Customers Table,
with the fact tables, Sales Table, of the other data sources as shown in Figure 4. The
problem is to provide an answer to this query without revealing any additional infor-
mation. For this example, P2 will return the tuples with SSN 6565 and 8080 in its Sales
table without knowing P1 has 7070 in its customers table. Similarly, P3 will return all
tuples with SSN 6565 and 7070 without knowing P1 has a customer with an SSN 8080.
In addition, P1 will not be revealed the transaction details of other customers which are
not in its Customers table, e.g. a customer with an SSN 9090.

ABACUS executes the aggregated join query,
⋃m

i=2 P1.Td � Pi.Tf , in two phases:
Intersection Phase and Join Computation Phase. In the intersection phase, P1 and Pj

compute the intersection of their dimension tables, P1.Td ∩ Pj .Td with the method dis-
cussed in Section 3.1 (i.e., P1 sends a hashed list of its customers so that Pj can know

28 F. Emekci, D. Agrawal, A. El Abbadi

2Sales Table at P

6565 7/21/2004 10

6565 9/27/2004 48

8080 1/1/2004 23

SSN Date Amount

6565 Jack Brial 6616 K Rd. Xyz 93090 ZT 890−908−4545
SSN Name Surname Address Phone

7070
8080

 1Customers Table at P

2Sales Table at P

6565 7/21/2004 10

6565 9/27/2004 48

8080 1/1/2004 23

SSN Date Amount

Sales Table at P 3

6565 7/9/2004 23

7070 2/2/2004 79

6565 9/7/2004 84

SSN Date Amount

9090 2/2/2004 92

Fig. 4. Illustration of Aggregated Join

common customers). Then, Pj sends all tuples t ∈ Pj .Tf where t.A ∈ ΠA(P1.Td∩Pj .Td)
to P1.

During the query processing, no extra useful information gets revealed. In the inter-
section phase, all data sources compute the intersection of the dimension tables and in
the join computation phase, all data sources other than the query poser send the related
tuples from their fact tables. As a result, no site gains extra useful information other
than the intersection and the join results.

4 Aggregate Query Processing

The traditional aggregation operation is generally used to compute the aggregate of a
list of values such as SUM, AVERAGE or MIN/MAX. One kind of privacy preserving
aggregation can be thought of as computing the aggregation of values in the union of
lists coming from different data sources such that each data source will only know the
final aggregate but nothing else. To execute these queries, each data source can compute
its local aggregate and the final aggregate can be computed in such a way that none of
the data sources will know the local aggregate of other data sources (Secure multiparty
computation or the technique described in this section can be used to compute the final
aggregate value for SUM and AVERAGE). However, data sources may not be willing to
execute aggregation operations over their whole data or may want to know more than the
sum of the values in several lists. Therefore, there is a need for new types of aggregation
queries. In this section, we will introduce Row-Based Aggregation and Column-Based
Aggregation queries. We formally define Row-Based Aggregation queries and show
how to process them in Section 4.1. Then, we will present Column-Based Aggregation
queries and techniques to execute them efficiently in Section 4.2.

4.1 Row-Based Aggregation

Enterprises may want to know the total expenditure of a customer in the market. For
example, hotels and airlines may want to classify their customers based on their travel

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 29

expenses. Without privacy concerns it is easy to perform this classification task. One
of the enterprises may collect data from all enterprises and perform the computation.
However, they may not be willing to reveal their value during this operation. For ex-
ample, an airline company may not be willing to reveal an expenditure of a customer
to other airlines since other airlines may try to attract this customer. For instance, if
a customer’s expenditure in company C1 is 80, and another company C2 knows that
his/her expenditure in C1 is 80, then C2 can offer a new deal to this customer and try
to attract him/her using this information. Although enterprises may not be willing to
reveal their earnings from a customer, they may want to know the total expenditure of
the customer without revealing their values. For example, these hotels and airlines may
be willing to know the total expenditure of a customer in these hotels and airlines (i.e.,
total expenditure in the market) without revealing their earnings from this customer
so that competing hotels and airlines protect their private information from each other.
Since the traditional aggregation operation is not strong enough to support these needs,
ABACUS proposes a new type of aggregation queries, Row-Based Aggregation queries,
and a new technique to execute them in a privacy preserving manner in the context of
data warehouses.

For the sake of this discussion, we will first define the row-based aggregation on a
table with two attributes namely Key and Value. Then, we will discuss how this can be
generalized to support queries in data warehouses. The Row-Based Aggregation query
processing problem is defined as follows:

Let T1, T2,..., Tm be the tables stored by a set of source peers P = {P1, P2, ...,

Pm} (m ≥ 3) respectively containing a Key and a Value attributes. Each data
source, Pi, would like to learn the aggregate for each Key ∈ Ti,

∑m
j=1 V alue

∃[Key, V alue] ∈ Tj . Then, the problem is to obtain the answer of the query
without revealing any additional information.

The above problem formulation is for SUM queries. We solve the above problem
with some relaxation. The relaxation is that a data source with Key in its database can
learn who else has the same Key (Note that this information is the same as the result
of aggregated intersection). However, it is impossible to learn the Value associated with
that Key at the other data warehouses. Extending our solution to support AVERAGE
queries is straightforward and discussed briefly at the end of this section.

Example 2. Let us illustrate the problem with an example. Consider four companies,
P1, P2, P3 and P4, that want to classify their customers according to their total expen-
ditures from these companies. They have tables T1, T2, T3 and T4 each of which with
two attributes customer SSN and the amount of expenditure as [Key, V alue] pairs. The
contents of the tables are as follows:

T1 = {[6565, 10], [7070, 20], [8080, 30]}
T2 = {[6565, 50], [8080, 30]}
T3 = {[6565, 10], [7070, 20], [8080, 30]}
T4 = {[6565, 10], [7070, 20]}

To classify customers, one should know their total expenditures in the market. In other
words, a row-based aggregation is needed for this process so that at the end of query pro-

30 F. Emekci, D. Agrawal, A. El Abbadi

cessing P1, P2, P3 and P4 will get the following lists respectively as an answer without
knowing any additional information: {[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [8080, 90]},

{[6565, 80], [7070, 60], [8080, 90]}, {[6565, 80], [7070, 60]}. The first item in the above first list,
[6565, 80] means that the customer with SSN 6565 has a total expenditure of 80 in com-
panies P1, P2, P3 and P4. ABACUS can process row-based aggregation queries in a
privacy preserving manner while revealing some information which is typically accept-
able in an honest-but-curious environment. For example, each company will learn who
else has a customer with the same SSN as in its list. For instance, P1 will know that
6565 exists in all data sources, while 7070 also exists in P3 and P4, and 8080 exists in
P2 and P3. During this query processing, none of the data sources will be able to learn
the value of a specific key of the other data sources. For example, P1 will not learn that
6565 has an expenditure of 50 in P2 , but will learn that 80 is the total expenditure of
6565 in all of the companies. Note that, if only two data sources have the same key, they
may not share their values with each other by rejecting aggregation on that key (because
they can learn each other’s value for that key). ABACUS allows users to configure their
privacy policies for this kind of policy related issues and handle them efficiently. We
will discuss these issues later in this section.

A simple technique to compute the sum of values (i.e., V1 + V2 + V3 + V4) for a
specific key Key in four key-value pairs [Key, V1], [Key, V2], [Key, V3], and [Key, V4]
residing at four different parties P1, P2, P3 and P4 respectively without revealing V1,
V2, V3 and V4 could be circulating a token with a label H(Key). Using secure one-way
hash function can prevent others from learning Key if they do not have Key. The process
consists of two circulations. During the first circulation, every party, Pi, would add its
value, Vi, and a random number, ri, and pass the token to the next party. Therefore, P1
creates a token with a label H(Key) and adds V1 + r1 , then passes it to P2. The other
parties follow the same protocol and pass the token to the next one. At the end of first
circulation, P1will get V1 + r1 + V2 + r2 + V3 + r3 + V4 + r4 for a token with a label
H(Key). There is no way to determine the value of a specific party during the course of
the first circulation because of the random numbers added. In the second circulation, all
parties subtract the random numbers they added during the first circulation. Therefore,
at the end of second circulation, P1 would have a token with a label H(Key) and the
sum of the values for that Key, V1 + V2 + V3 + V4. Although it seems secure, this basic
technique has two problems. Since this process is needed for every item in the list, using
the same random number for every item in the list may result in information leakage
such as the difference between two values. To prevent this information leakage, parties
should use a different random number for each item in their lists. Therefore, every data
source should maintain a list of random numbers it used during this process which is
not scalable for large lists. Another problem is that any two of the data sources could
collude and learn the value of another data source. For example, P2 and P4 could learn
the value of P3, V3. In the first circulation, P4 would pass the token with a label H(Key)
and V1 + r1 + V2 + r2 + V3 + r3 + V4 + r4 to P1 and in the second circulation, P1 would
pass V1 + V2 + r2 + V3 + r3 + V4 + r4 to P2 . Since P2 and P4 know V1 + r1 + V2 + r2 +
V3 + r3 + V4 + r4 and V1 + V2 + r2 + V3 + r3 + V4 + r4 they could figure out r1, and
thus V1(Note that P1 passed V1 + r1 to P2 in the first circulation). Therefore, P2 and P4

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 31

could collude and reveal the value of P1 without revealing their values to each other or
to the other parties.

In order to compute aggregation securely, ABACUS uses Shamir’s secret shar-
ing technique, which allows one to compute any linear combination of secret values.
ABACUS uses this property to perform SUM and AVERAGE queries thus computing
aggregation without revealing individual values.

Shamir’s Secret Sharing
Shamir’s secret sharing method [13] allows a dealer D to distribute a secret value vs

among n peers {P1, P2, ..., Pn}, such that knowledge of any k (k ≤ n) peers is required
to reconstruct the secret. Since, even complete knowledge of k − 1 peers cannot reveal
any information about the secret, Shamir’s method is information theoretically secure.
Dealer D chooses a random polynomial q(x) of degree k − 1 where the constant term is
the secret value, vs, and a publicly known set of n random points. The dealer computes
the share of each peer as q(xi) and sends it to peer Pi. The method is summarized in
Algorithm 1.

Algorithmus 1. Shamir’s Secret Sharing Algorithm
1: Input:
2: vs: Secret value;
3: D: Dealer of secret vs;
4: P : set of peers P1, ..., Pn to distribute secret;
5: Output:
6: share1, ..., sharen: Shares of secret, vs , for each peer Pi;
7: Procedure:
8: D creates a random polynomial q(x) = ak−1xk−1 + ... + a1x1 + a0 with degree k − 1 and a constant term

a0 = vs.
9: D chooses publicly known n random points, x1, ...xn, such that xi �= 0.
10: D computes share, sharei , of each peer, Pi , where sharei = q(xi) and sends it to Pi .

In order to construct the secret value vs, any set of k peers will need to share the
information they have received. After finding the polynomial q(x), the secret value vs =
q(0) can be reconstructed. q(x) can be found using Lagrange interpolation such that
p(xi) = sharei where i = 1, ..., k. The key observation is that at least k points and the
respective shares are required to determine a unique polynomial q(x) of degree k − 1.

Row-Based Aggregation in ABACUS
ABACUS executes row-based aggregation queries in three phases: Distribution phase,
Intermediate-Computation phase, and Final-Computation phase.

Distribution Phase
After the query is posed, m data sources decide on the degree of the polynomial that
is going to be used in Shamir’s secret sharing (the degree of the polynomial should
be greater than or equal to m − 1). They also choose n ≥ m random values X =
{x1, ..., xn}. Without loss of generality, we will use a polynomial of degree of m − 1
and n = m in our setting. Each data source Pi has a list of Key-Value pairs, Li =
{[K1, V1], ..., [K|Li|, V|Li|]}; Pi creates m shares from Li, share(Li, P1), ... ,share(Li,

Pm), one for each of the data sources P1 through Pm respectively (including itself).

32 F. Emekci, D. Agrawal, A. El Abbadi

Pi creates the shares by applying a one-way hash function and Shamir’s secret shar-
ing algorithm to each of the elements in Li. For every element [Key, V alue] in Li, Pi

computes the share of data source Pj , sh([Key, V alue], Pj) = [H(Key), q(xj)], using
a hash function H and Algorithm 1 with q(x) and X (the constant term in q(x) will be
replaced by the secret value, V alue, to compute q(x) in Shamir’s secret sharing). There-
fore, the list of shares of data source Pj from Li is share(Li, Pj) = {sh([K1, V1], Pj), ...,
sh([K|Li|, V|Li|], Pj)}. Then, Pi sends share(Li, Pj) to the data source Pj . Note that Pi

keeps its share, share(Li, Pi), for itself and since using the same q(x) would results in
information leakage, a random polynomial is used for each of the item in the list. There-
fore, random polynomials q1 through q|Li| are used for the items 1 through | Li | in Li.

In Example 2, assume P1 with a list, L1 = {[6565, 10], [7070, 20], [8080, 30]} and four
data sources decided on four random points X = {27, 65, 90, 123}. Since there are four
data sources, a polynomial q(x) of a degree three would be used with a hash function
H while calculating the share of each data source. As a first step, P1 chooses three ran-
dom polynomials for each item in its list: q1(x) = 2x3 − 2x2 + 10, q2(x) = x3 − 5x2 + 20,

q3(x) = x3 − 13x2 +30. Observe that the constant term of polynomial qi is value of the ith
item in L1 and qi is used for the ith item in L1. Then, the shares of key-value pairs in
L1 for data source P2 are calculated as follows:

sh([6565, 10], P2) = [H(6565), q1(x2)] = [H(6565), q1(65)]

sh([7070, 20], P2) = [H(7070), q2(x2)] = [H(7070), q2(65)]

sh([8080, 30], P2) = [H(8080), q3(x2)] = [H(6565), q3(65)].

Therefore, the share list for P2, share(L1, P2), is: share(L1, P2) = {[H(6565), q1(65)],

[H(7070), q2(65)], [H(8080), q3(65)]. Similarly, other data sources’ share lists are computed
and are sent to them. P1 would keep share(L1, P1) for itself and sends share(L1, P2),
share(L1, P3), and share(L1, P4) to P2, P3, and P4 respectively.

Distribution phase at data source Pi is summarized in Algorithm 2.

Algorithmus 2. Distribution Phase
1: Input:
2: X: Random Values X = {x1, .., xm};
3: H: Secure one-way hash function
4: Li: Secret list of Key-Value pairs at data source Pi;
5: Output:
6: share(Li, P1), ..., share(Li, Pm): Shares of secret list, Li, for each data source Pj ;
7: Procedure:
8: for Each secret Key-Value pair [Key, Vs] ∈ Li do
9: Find share sh([Key, Vs], Pj) of each data source Pj for [Key, Vs] with Algorithm 1 using a random polyno-

mial q(x) where q(x) = ak−1xk−1 + ... + Vs and the hash function H such that sh([Key, Vs], Pj) =
[H(Key), q(xj)].

10: Add sh([Key, Vs], Pj) into share(Li, Pj).
11: end for
12:
13: for For each data source Pj do
14: Send share(Li, Pj) to data source Pj

15: end for

Intermediate-Computation Phase
After receiving their shares from the data sources, P1, ..., Pm, each data source, Pi, cal-
culates intermediate result lists, IR(L1, Pi),...,IR(Lm, Pi), corresponding to the lists

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 33

share(L1, Pi) ,...,share(Lm, Pi) respectively. The kth element of share(Lj , Pi) is a
key-value pair i.e., share(Lj , Pi)[k] = [H(Key), V alue∗] which is the share of Pi from
the [Key, V alue] pair in Lj (share(Lj , Pi)[k][1] = H(Key) and share(Lj, Pi)[k][2] =
V alue∗). Pi computes the intermediate result lists as follows:

IR(Lj , Pi)[k][1] = share(Lj , Pi)[k][1]

IR(Lj , Pi)[k][2] =
∑ m

h=1(share(Lh, Pi)[g][2] s.t. ∃ g where share(Lh, Pi)[g][1] = IR(Lj , Pi)[k][1]),

i.e., INTER − RESi .

In Example 2, P1 would have lists share(L1, P1), share(L2, P1), share(L3, P1) and
share(L4, P1) where

share(L1, P1) = {[H(6565), 120], [H(7070), 320], [H(8080), 400]}
share(L2, P1) = {[H(6565), 100], [H(8080), 600]}
share(L3, P1) = {[H(6565), 3500], [H(7070), 900], [H(8080), 90]}
share(L4, P1) = {[H(6565), 110], [H(7070), 80]}
Then, in the intermediate computation phase, P1will compute IR(L1, P1) IR(L2, P1),
IR(L3, P1) and IR(L4, P1) and send them to data sources P1, P2, P3 and P4 respec-
tively. For example, IR(L3, P1) is computed as follows: Since H(6565) exists in all
lists, the values associated with it, 120, 100, 3500 and 110 in share(L1, P1) through
share(L4, P1) respectively, are added. Therefore, IR(L3, P1)[1] = H(6565) and
IR(L3, P1)[2] = 120+100+3500+110 = 3830. The same calculation is performed for all
items in the list resulting in IR(L3, P1) = {[H(6565), 3830], [H(7070), 4900], [H(8080), 1090]}.

The intermediate computation process at data source Pi is summarized in
Algorithm 3.

Algorithmus 3. Intermediate Computation Phase
1: Input:
2: ShareL: Set of share lists, ShareL = {share(L1, Pi), .., share(Lm, Pi) };
3: Output:
4: Set of intermediate result lists {IR(L1, Pi), .., IR(Lm, Pi)} to send back to the data sources P = {P1, ..., Pm}

respectively;
5: Procedure:
6: for each list share(Lk, Pi) ∈ ShareL do
7: for j = 1; j ≤ |share(Lk, Pi)| do
8: IR(Lk, Pi)[j][1] = share(Lk, Pi)[j][1]
9: if share(Lk, Pi)[j][1] = share(Ll, Pi)[o][1] such that ∃ l and o where l ≤ m and 1 ≤ o ≤|

share(Ll, Pi) | then
10: IR(Lk, Pi)[j][2] = IR(Lk, Pi)[j][2] + share(Ll, Pi)[o][2]
11: end if
12: end for
13: end for
14: Send IR(L1, Pi), ..., IR(Lm, Pi) to P1, ..., Pm respectively

Final-Computation Phase
In the final computation phase, data source Pi retrieves its intermediate result lists,
IR(Li, P1) ,...,IR(Li, Pm) from all m data sources. Since all data sources compute the
sum of their shares for a specific Key, the kth entry of an intermediate list contains H(Key)
and the sum of shares for Key. Therefore, for a Key-Value pair in Li, the correspond-
ing entry k in the intermediate result lists are: IR(Li, P1)[k] = [H(Key), INTER − RES1],

IR(Li, P2)[k] = [H(Key), INTER − RES2], . . ., IR(Li, Pm)[k] = [H(Key), INTER − RESm].

34 F. Emekci, D. Agrawal, A. El Abbadi

In the final computation phase, data sources calculate the sum for each Key from
the m intermediate results. Since all data sources use a random polynomial degree of
m − 1 and compute the shares of all data sources using m points, X = {x1, x2, .., xm},
these result in a polynomial P (x) = am−1x

m−1 + ... + a1x
1 + a0 where constant term,

a0, is the sum of the values for Key and P (xi) = INTER − RESi. The coefficients of
P (x) and thus the sum of the values could be computed because the values of P (x) are
known at m different points (P (xi) = INTER − RESi).

Proof of Correctness
A data source Pj constructs a random polynomial ajx

m−1
i +bjx

m−2
i +...+V alue to hide

the secret values for each [Key, V alue] pair. After generating this random polynomial,
it computes the share of Pi as (H(Key), [aPj xm−1

i +bPj xm−2
i + ...+vPj]) for each secret

key-value pair, where vPj = V alue and sends the shares of the other data sources. After
Pi receives the shares from all m data sources, it sends the sum of values which have
the same key. Without loss of generality, assume l of the m data sources have the same
Key with the secret values v1 through vl respectively. Then the sum for that Key is in the
following form:

a1xm−1
i + b1xm−2

i ... + v1+
a2xm−1

i + b2xm−2
i ... + v2+

.

.

.
alx

m−1
i + blx

m−2
i ... + vl

Therefore, Pi sends its results INTER−RESi = (a1 + a2 + ...+ al)xm−1
i ++SUM

to the parties having Key in their lists, where SUM is the sum of the secret values
(SUM = v1 + v2 + ... + vl) for the values that have the same key, Key.

Each data source receives m results from each of the data sources (including itself)
for each key in its [Key-Value] list:

INTER − RES1 = (a1 + a2 + ... + al)x
m−1
1 + ... + SUM

INTER − RES2 = (a1 + a2 + ... + al)x
m−1
2 + ... + SUM

.

.

.
INTER − RESm = (a1 + a2 + ... + al)xm−1

m + ... + SUM

Since X = {x1, x2, .., xm} is known by all data sources, there are a total of m unknown
coefficients including SUM and m equations in the above system of equations. There-
fore, SUM can be derived by using the above equations. The data source, Pj , cannot
know the value of the other data sources, since the coefficients of the polynomials used
by other data sources are not known by Pj .

For the average query, Pi sends INTER − RESi = [(a1 + a2 + ... + al)
xm−1

i + + SUM]/l where INTER − RESi = (a1+a2+...+al)
l

xm−1
i + + AV G)

and AV G = v1+v2+...+vl
l

. Therefore, each data source receives m results:

INTER − RES1 = (a1+a2+...+al)
l xm−1

1 + ... + AV G

INTER − RES2 = (a1+a2+...+al)
l xm−1

2 + ... + AV G
.
.
.

INTER − RESm = (a1+a2+...+al)
l xm−1

m + ... + AV G

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 35

Again, since X = {x1, x2, .., xn} is known by the data sources, there are m unknown
coefficients including AV G and m equations and thus, AV G can be derived from the
above equations.

Row-Based Aggregation in Data Warehouses
After the query is posed, data sources create lists of [Key,Value] pairs using their fact
and dimension tables so that row-based aggregation can be performed over them with
the above technique. All information in the dimension table about a tuple in the fact
table is used to form a Key for that tuple. The tuple from a fact table is added into
the list as [Key,Value] pairs where Value is the value associated with that tuple. For
example, data source P2 in Figure 4 creates [Key-Value] pairs as follows: for a tuple
with SSN 6565, it retrieves other information about 6565 from the customers table such
as name, surname and address. Then, it combines those information to create the Key
for this tuple and the amount is used as the Value.

Properties of the Algorithm
Data sources use a one-way hash function to hide Key, and thus all of the data sources
will learn H(Key). Only those data sources which have Key would be able to know
Key and its existence at data source Pi. In addition, Pi uses Shamir’s secret sharing
to hide the value associated with Key from other data sources. It uses a polynomial
degree of m − 1 and m random points to compute shares of the m data sources. Then,
it keeps one of these shares for itself and sends the remaining m − 1 shares to the other
parties. Since all of the m shares are needed to reveal the secret value in Shamir’s secret
sharing method, the other data sources would not be able to compute the value, even if
they combine their shares coming from Pi.

In general, for any Key at any data source Pj , any data source Pi can prevent ex-
ecution of aggregation for that Key. Since one of the m shares is sent to Pi, Pi can
prevent aggregation on Key by not sending the intermediate result to the other data
sources. Therefore, other data sources would not be able to learn SUM for Key. Us-
ing this property, ABACUS allows data sources to control sharing the value of Key
with other data sources. This might be needed since if only two data sources have Key,
performing row-based aggregation will result in revealing the values to these two data
sources (the result is the sum of the two values, and since these data source know their
values, they can figure out the other value from the result). Note that, if Key exists in
only one data source, then the owner can protect it from other data sources This can
easily be done by preventing aggregation on Key. In addition to these, data sources can-
not figure out something from their shares using the distribution of values since they are
random values (i.e., a random polynomial is used for each item in the list to compute
the shares).

4.2 Column-Based Aggregation

Enterprises might want to know the size of the market and some statistical information
about the market where they compete. In addition, they might be interested in expen-
ditures of their customers such as the ratio of their expenditures in their companies to

36 F. Emekci, D. Agrawal, A. El Abbadi

their total expenditures in the market. In other words, a company might want to know
how much it satisfies the needs of customers. Therefore, companies might be willing to
collaborate to perform these kinds of operations however, they might not want to reveal
extra information, for example a company might not want to reveal how much it satisfies
the needs of its customers. One way to compute the market size in a privacy preserving
manner is to aggregate the expenditures of all customers in that market. Formally, data
sources P1, P2, .., Pm might want to know sum of their local sums LS1, LS2, ..., LSm

respectively, and the global sum GS = LS1 + ... + LSm, without revealing their local
sums. This problem could be solved with the technique discussed in Section 4.1. How-
ever, in a competitive environment it is unrealistic to expect enterprises to share their
local sums. For example, a big company with 1000 customers might not be willing to
share its local sum which is the sum of its 1000 customers with a small company with
10 customers. Instead, it might want to collaborate for the common customers to com-
pute their total expenditures, so that both companies could learn how much they satisfy
the needs of their customers. However, during this process they do not want to reveal
any additional information. In order to satisfy these needs, we introduce column-based
aggregation.

Formally, the column-based aggregation query processing problem is defined as
follows:

Let T1, T2,..., Tm be the tables stored by a set of data warehouses P ={P1, P2, ...,

Pm} (m ≥ 3) respectively containing a key and a value field. The data source Pi

would like to learn the aggregation of values for all Keys in Ti, i.e.,
∑

∀Key∈Ti∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti). Then the problem is to

obtain the answer by only providing the aggregation result to Pi while reveal-
ing only the common Keys to other data sources.

The goal of the query processing is to compute column-based aggregation such
that the data source posing the query, Pi, would only know the result of the query,∑

∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti), while other data

sources would only know the Keys in Ti if they have those Keys. The query processing
consists of three steps:

– Intersection Phase: Data source Pi sends the list of hash values of Keys in Ti. On Pj

receiving this list, Pj computes the common keys in tables Ti and Tj (by hashing
its keys in Tj and comparing them with the list coming from Pi).

– Local Aggregation for Intersection Phase: Data source Pj , computes the local sum
of values, local sum, for the common keys between Pi and Pj . Formally, the local
sum, LSj , at data source Pj is: LSj =

∑
∀Key∈Ti

(V alue s.t. ∃[Key, V alue] ∈ Tj ∧
∃Key ∈ Ti).

– Global Aggregation Phase: Data sources compute the global sum, GS, which is
the sum of local sum of m data sources. They compute GS =

∑m
i=1 LSi with-

out revealing the local sums with the technique discussed in Section 4.1 (One
could think of the data sources, P1, ..., Pm, have the following [Key,Value] pairs
[Pi, LS1],...,[Pi, LSm] respectively and they want to compute the row-based aggre-
gation for the key Pi, which is the global sum).

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 37

The proposed query processing method computes column-based aggregation queries
correctly. The answer to the column-based aggregation query for data source Pi is
∑

∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti). The proposed tech-

nique computes the local sum at each data source in local aggregation for intersection
phase where LSj =

∑
∀Key∈Ti

(V alue s.t. ∃[Key, V alue] ∈ Tj ∧ ∃Key ∈ Ti). Then, in
global aggregation phase the sum of all the local aggregations are computed as answer
which is

∑m
k=1 LSk, i.e.,

∑
∀Key∈Ti

∑m
k=1(V alue s.t. ∃[Key, V alue] ∈ Tk ∧ ∃Key ∈ Ti).

At the end of the query processing other data sources will only know their common
Keys with the query poser Pi and Pi will only know the result of the column based ag-
gregation query result but nothing else. After intersection phase, the other data sources
will know the common elements between Pi and them but nothing else, since one-way
hash function is used to hide Keys. During local aggregation for intersection phase,
the data sources would compute their local aggregates. Then, in the global aggregation
phase, they compute the sum of the local aggregations without revealing their local ag-
gregations to anybody with the row-based aggregation. Therefore, Pi would only know
the global aggregation result, which is column based aggregation result but not the local
aggregations. And the other data sources would not know any other local aggregation
and the global aggregation results unless Piwants them to know (Note that if Pi does
not send its intermediate result to other data sources, they cannot compute the global
sum in the row-based aggregation in Section 4.1).

5 Analytical Evaluation

In this section, we compute the query response times for the proposed query processing
techniques. The query responses time for intersection and join queries are studied in
Section 5.1. Then, the query execution costs of row-based aggregation and column-
based aggregation queries are calculated in Section 5.2. Finally, we show the query
response times of the queries over a sample scenario to demonstrate the scalability of
our technique in Section 5.3.

5.1 Cost of Intersection and Join Query Processing

Data source Pi hashes its list and sends to m data sources. Then, it compares its list with
other datasources to find the intersection. Therefore, the computation cost is the cost of
hashing the list and the cost of comparisons. Let Ch be the cost of hashing a single item
and every hashed word is b bits long. The computation time for hashing is: Ch × |Li| .
The number of comparisons to compare the hashed list, Li, with the other lists coming
from other data sources is (assuming lists are sorted) less than (m − 1) × |Li| without
loss of generality assume Li is the longest list. The time needed for this comparison is:
(m−1)×|Li|
CPU Speed

seconds. Therefore, total computation time is: Ch × |Li| + (m−1)×|L1|
CPU Speed

The
communication time is the sum of the time needed to send its own hashed list and the
time to receive the m − 1 hashed lists from other data sources. Therefore, total commu-
nication time is: b×(|L1|+...+|Lm|)

Bandwidth
. The query response time, the sum of the computation

and communication cost, is:

Ch × |Li| +
(m − 1) × |Li|
CPU Speed

+
b × (|L1| + ... + |Lm|)

Bandwidth

38 F. Emekci, D. Agrawal, A. El Abbadi

In the aggregated join, the first step is aggregated intersection. After this first step,
data source Pj sends the related tuples to Pi. The query response time is sum of the cost
of aggregated intersection and the cost of sending related tuples. Therefore, the query
response time for aggregated join is:

The cost of intersection +
m × |L| × v

Bandwidth

where v is the size of a tuple t ∈ TR.

5.2 Cost of Aggregation Query Processing

The Cost of Row-Based Aggregation Query Processing
In the distribution phase, data sources compute the hash value of keys and the shares of
m data sources. Therefore, the computation cost is m×|L|

CPUspeed
+Ch ×|L|. The communi-

cation cost is sending these shares to other data sources and receiving shares from other
data sources, which is 2×m×|L|×b

Bandwidth
, where b is the size of a Key-Value pair.

In the local aggregation phase, the computation cost is scanning all lists and adding
the values for a specific key (computation of intermediate result lists). The amount of
addition is less than m × |L| . Thus the cost of computation in the local aggregation
phase is m×|L|

CPUspeed
(assuming that lists are sorted and are of the same size). After this

computation, Pi sends intermediate results lists to m data sources and receive its inter-
mediate result lists from m data sources. The communication cost for this operation is
2×m×|L|×b
Bandwidth

(note that the size of intermediate lists is equal to the size of lists).
In the final aggregation phase, Pi solves an equation system for each element in

the list. Thus, the computation time is |Li| × Ceq, where Ceq is the cost of solving an
equation with m unknowns.

The query response time for row-based aggregation query is (without loss of gener-
ality, assume all lists are size of |L|):

≈ |L| × Ch +
4 × m × b × |L|

Bandwidth
+

2 × m × |L|
CPUspeed

+ |L| × Ceq.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 5. The Query Response Time for Intersection Queries

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 39

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 6. The Query Response Time for Row-based Aggregation Queries

 0

 5000

 10000

 15000

 20000

 25000

 0 10 20 30 40 50 60 70 80 90 100

T
h
e
 q

u
e
ry

 r
e
sp

o
n
se

 t
im

e
 (

in
 s

e
co

n
d
)

Bandwidth (in Mbits/sec)

m=5
m=10
m=15
m=20
m=25

Fig. 7. The Query Response Time for Column-based Aggregation Queries

The Cost of Column-Based Aggregation Query Processing
The column-based aggregation query processing consists of three phases: 1) intersec-
tion phase 2) local aggregation for intersection 3) global aggregation. In the intersection
phase, data source Pi sends its hashed lists to m data sources. The communication and
computation cost for this phase is:

Ch × |Li| +
m × b × |Li|
Bandwidth

The cost of computation in local aggregation for intersection phase is |Li|
CPUspeed

(data
sources calculates the sum of values in the intersection). Remember that there is no
communication in this phase. The cost of global aggregation phase is negligible since
the cost of the summation of m values using m parties is negligible in this context.
Therefore, the cost of column-based aggregation query processing is:

≈ Ch × |Li| +
m × b × |Li|
Bandwidth

+
|Li|

CPUspeed
.

40 F. Emekci, D. Agrawal, A. El Abbadi

5.3 Query Response Times over a Sample Scenario

We demonstrate the query response time of ABACUS for intersection and row-based
and column based aggregation queries over a sample scenario to show that it is scalable
and efficient. We compute the response times for queries in an environment where m
data warehouses each of which with a dimension table and a fact table size of 1 million.
We execute the queries over these data warehouses by varying the bandwidth and the
number of data warehouses involved, m. Figures 5, 6, and 7 show the query response
time for intersection, row-based aggregation and column-based aggregation queries.
During these calculations we take the size of key-value pair, b, as 1024 bits, the cost
of hashing, Ch, as 10−4 [5] seconds and the cost of solving an equation, Ceq , as 10−5

seconds (the time needed to solve an equation system with 20 unknowns in Matlab).
The analytical evaluations and the results over the sample scenario demonstrate that
ABACUS is scalable in terms of the number of parties participating in queries and the
cost is increasing linearly with the number of parties involved. In addition as results
show that the query processing is communication intensive operation since ABACUS
uses light-weight computations.

6 Conclusion

In this paper, we propose a distributed middleware, ABACUS, to perform intersection,
join and aggregation queries over multiple private data warehouses in a privacy preserv-
ing manner. In addition to this, we present new types of aggregation queries which are
needed for privacy preserving data sharing. Analytical evaluations demonstrate that the
proposed scheme is efficient and scalable.

References

1. G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, N. Mishra, R. Mot-
wani, U. Srivastava, D. Thomas, J. Widom, and Y. Xu. Enabling privacy for the paranoids.
In Proc. of the 30th Int’l Conference on Very Large Databases VLDB, pages 708–719, Aug
2004.

2. R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across private databases. In
Proc. of the 2003 ACM SIGMOD international conference on on Management of data, pages
86–97, 2003.

3. S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration of het-
erogeneous information sources. Data Knowl. Eng., 36(3):215–249, 2001.

4. U. Dayal and H. Hwang. View definition and generalization for database integration in a
multidatabase system. In IEEE Transactions on Software Engineering, volume 10, pages
628–644, 1984.

5. P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F. Mueller, and M. Sichitiu. An-
alyzing and modeling encryption overhead for sensor network nodes. In Proc. of the 2nd
ACM international conference on Wireless sensor networks and applications, pages 151–
159. ACM Press, 2003.

6. O. Goldreich. Secure multi-party computation. Working Draft, jun 2001.
7. L. M. Haas, R. J. Miller, B. Niswonger, M. T. Roth, P. M. Schwarz, and E. L. Wimmers.

Transforming heterogeneous data with database middleware: Beyond integration. IEEE Data
Engineering Bulletin, 22(1):31–36, 1999.

ABACUS: A Distributed Middleware for Privacy Preserving Data Sharing 41

8. A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data manage-
ment systems. In Proc. of the 19th ICDE, pages 505–516, 2003.

9. A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proc. of the 2003 ACM SIGMOD, pages 325–336,
2003.

10. M. W. N. Jefferies, C. Mitchell. A proposed architecture for trusted third party services.
Cryptography Policy and Algorithms Conference, July 1995.

11. M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation.
In ACM Symposium on Theory of Computing, pages 590–599, 2001.

12. Secure Hash Standart. http://www.itl.nist.gov/fipspubs/fip180-1.htm.
13. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

	Introduction
	Problem Definition and Architecture Overview
	Intersection and Join Query Processing
	Aggregated Intersection
	Aggregated Join Queries

	Aggregate Query Processing
	Row-Based Aggregation
	Column-Based Aggregation

	Analytical Evaluation
	Cost of Intersection and Join Query Processing
	Cost of Aggregation Query Processing
	Query Response Times over a Sample Scenario

	Conclusion

