
ABC: Algebraic Bound Computation for Loops ?

Régis Blanc1, Thomas A. Henzinger2, Thibaud Hottelier3, and Laura Kovács4

1 EPFL
2 IST Austria
3 UC Berkeley
4 TU Vienna

Abstract. We present ABC, a software tool for automatically computing sym-
bolic upper bounds on the number of iterations of nested program loops. The sys-
tem combines static analysis of programs with symbolic summation techniques
to derive loop invariant relations between program variables. Iteration bounds are
obtained from the inferred invariants, by replacing variables with bounds on their
greatest values. We have successfully applied ABC to a large number of exam-
ples. The derived symbolic bounds express non-trivial polynomial relations over
loop variables. We also report on results to automatically infer symbolic expres-
sions over harmonic numbers as upper bounds on loop iteration counts.

1 Introduction

Establishing tight upper bounds on the execution times of programs is both difficult
and interesting, see e.g. [10, 5, 9, 8]. We present ABC, a new software tool for auto-
matically computing tight symbolic upper bounds on the number of iterations of nested
program loops. The derived bounds express polynomial relations over loop variables.
ABC is fully automatic, combines static analysis of programs with symbolic summation
techniques, and requires no user-guidance in providing additional set of predicates, tem-
plates and assertions. ABC is also able to derive symbolic expressions over harmonic
numbers as upper bounds on loop iteration counts, which, to the best of our knowledge,
is not yet possible by other works.

In our approach to bound computation, we have identified a special class of nested
loop programs, called the ABC-loops (Section 3.1). Further, we have built a loop con-
verter to transform, whenever possible, arbitrary loops into their equivalent ABC-loop
format (Section 3.2). Informally, an ABC-loop is a nested for-loop such that each loop
from the nested loop contains exactly one iteration variable with only one condition
and one (non-initializing) update on the iteration variable. For such loops, our method
derives precise bounds on the number of loop iterations.

In our work, we assume that each program statement is annotated with the time
units it needs to be executed. For simplicity, we assume that an iteration of an unnested
loop takes one unit time, and all other instructions of the unnested loop need zero time.

The key steps of our approach to bound computation are as follows (Section 3.3).
(i) First, we instrument the innermost loop body of an ABC-loop with a new variable
? This work was supported in part by the Swiss NSF. The fourth author is supported by an FWF

Hertha Firnberg Research grant (T425-N23).

that increases at every iteration of the program. We denote this variable by z. Upper
bounds on the value of z thus express upper bounds on the number of loop iterations.
(ii) Next, the value of z is computed as a polynomial function over the nested loop’s
iteration variables. We call the relation between z and the loop’s iteration variables
the z-relation. To this end, for each loop of the ABC-loop, recurrence equations of z
and the loop iteration variables are first constructed. Closed forms of variables are then
derived using our symbolic solver which integrates special techniques from symbolic
summation (Section 3.4). The derived closed forms express valid relations between z
and the loop iteration variables, and thus the z-relations are loop invariant properties.
(iii) Further, by replacing loop iteration variables by bounds on their greatest values in
the computed z-relation, bounds on the value of z are obtained. These bounds give us
tight symbolic upper bounds on the number of iterations of the program. Our method
can be generalized for the timing analysis of loops whose iteration bounds involve har-
monic expressions over the loop variables (Section 3.5).

Implementation. ABC was implemented in the the Scala programming language [18],
contains altogether 5437 lines of Scala code, and is available at:

http://mtc.epfl.ch/software-tools/ABC/

Inputs to ABC are loops written in the Scala syntax. ABC first rewrites the in-
put loop into an equivalent ABC-loop by using its loop converter, and then computes
bounds on loop iteration counts using its bound computer. The bound computer relies
on the symbolic solver in order to derive closed forms of symbolic sums and simplify
mathematical expressions. The overall workflow of ABC is given in Figure 1.

Note that ABC does not rely on an external computer algebra package for symbolic
summation.

Experiments. We successfully applied ABC on examples from [10, 9], as well as on 90
nested loops extracted from the JAMA package [13] – see Section 4 and the mentioned
URL5. Altogether, we ran ABC on 558 lines of JAMA. ABC computed precise upper
bounds on iteration counts for all loops, and inferred the z-relation for 87 loops, all in
less than one second on a machine with a 2.8 GHz Intel Core 2 Duo processor and 2GB
of RAM. The 3 loops for which ABC was not able to derive the z-relation were actually
sequences of loops.

We believe that similar experimental results as the ones resulting from JAMA could
be obtained by running ABC on the Jampack library [20], or on various numerical
packages of computer algebra packages such as Mathematica [22], Matlab [4], or Math-
cad [2].

Related work. We only discuss some of the many methods that are related to ABC.
Paper [15] infers polynomial loop invariants among program variables by using

polynomial invariant templates of bounded degree. Unlike [15], where no restrictions
on the considered loops were made, we require no user guidance in providing invariant

5 There are 167 loops in JAMA amongst which there are 90 nested for-loops. ABC successfully
inferred the exact bound for all but three for-loops.

Loop

Loop Converter ABC Loop Bound Computer

z-Relation

Symbolic Sums Symbolic Solver Closed Forms

Fig. 1. The ABC tool.

templates but automatically derive invariants (z-relations) for a restricted class of loops.
Our method has thus advantage in automation, but it is restricted to ABC-loops.

The approach presented in [11] infers invariants and bound assertions for loops
with nested conditionals and assignments, where the assignments statements describe
non-trivial recurrence relations over program variables (i.e. variable initializations are
not allowed). To this end, loops are first represented by a collection of loop-free pro-
gram paths, where each path corresponds to one conditional branch. Further, recurrence
solving over variables is applied on each program path separately. Bounds on iteration
counters can be finally inferred if the iteration counters are changed by each path in the
same manner. Due to these restrictions, nested loops cannot be handled in [11]. Contrar-
ily to [11], we infer bound assertions as z-relations for nested loops, but, unlike [11],
our invariant assertions are only over loop iteration variables and not arbitrary program
variables.

Paper [10] derives iteration bounds of nested loops by pattern matching simple re-
currence equations. Contrarily to [10], we solve more general recurrence equations us-
ing the Gosper algorithm [6] and identities over harmonic numbers [7].

Solving recurrence relations is also the key ingredient in [1] for computing bounds.
Unlike our method, evaluation trees for the unfoldings of the recurrence relations are
first built in [1], and closed forms of recurrences are then derived from the maximum
size of the trees. Contrarily to [1], we can handle more general recurrences by means
of symbolic computation, but [1] has the advantage of solving non-deterministic recur-
rences that may result from the presence of guards in the loop body.

Symbolic upper bounds on iteration counts of multi-path loops are automatically
derived in [8]. The approach deploys control-flow refinement methods to eliminate in-
feasible loop paths and rewrites multi-path loops into a collection of simpler loops
for which bound assertions are inferred using abstract interpretation techniques [3].
The programs handled by [8] are more general than the ABC-loops. Unlike [8], we do
not rely on abstract interpretation, and are able to infer harmonic expressions as upper
bounds on loop iterations counts. Abstract interpretation is also used in [12, 16] for au-
tomatically inferring upper and lower bounds on the number of execution steps of logic
programs.

Paper [14] describes an automated approach for inferring linear upper bounds for
functional programs, by solving constraints that are generated using linear program-
ming. In our work we derive polynomial, and not just linear, upper bounds.

for (i = 1; i ≤ n; i = i + 1) do
for (j = 1; j ≤ n; j = j + 1) do
skip
end do
end do

for (i = 0; i ≤ n; i = i + 1) do
for (j = 0; j ≤ m; j = j + 2) do
skip

end do
end do

(a) (b)

Fig. 2. Examples illustrating the power of ABC to (i) compute z-relations as loop invariants, and
(ii) infer tight upper bounds on the number of iterations of loops.

There has been a great deal of research on estimating the worst case execution time
(WCET) of real-time systems, see e.g. [5, 9, 19]. Papers [5, 9] automatically infer loop
bounds only for simple loops; bounds for the iteration numbers of multi-path loops
must be provided as user annotations. The aiT tool [5] determines the number of loop
iterations by relying on a combination of interval-based abstract interpretation with pat-
tern matching on typical loop patterns. The SWEET tool [9] determines upper bounds
on loop iterations by unrolling loops dynamically and analyzing each loop iteration
separately using abstract interpretation. In contrast, our method is fully automatic and
path-insensitive, but it is restricted to ABC-loops. The TuBound tool [19] implements
a constraint logic based approach for loop analysis to compute tight bounds for nested-
loops. The constraints being solved in [19] are directly obtained from the loop con-
ditions and express bounds on the loop iteration variables. Unlike [19], we infer loop
bounds by computing closed forms of iteration variables.

2 Motivating Examples
We first give some examples illustrating what kind of iteration bounds ABC can auto-
matically generate.

Consider Figure 2(a) taken from the JAMA library [13]. ABC first instruments the
innermost loop of Figure 2(a) with a new variable z, initialized to 1, for counting the
number of iterations of Figure 2(a). The thus obtained loop is presented in Figure 3(a).
Further, by applying ABC on Figure 3(a), we derive the z-relation6:

z = (i − 1)n + j

as an invariant property of the loop. By replacing i and j with bounds on their greatest
values (i.e. n) in the z-relation, the number of iterations of Figure 2(a) is bounded by:

n2.

Consider next Figure 2(b) with a non-unit increment, and its ”instrumented” version
in Figure 3(b). We obtain the z-relation:

z = 1 +
⌊

j

2

⌋
+ i

(⌊m

2

⌋
+ 1

)
,

6 Actually, the loops of Figure 2 are first translated into their equivalent ABC-format, and then
the z variable is introduced in their innermost loop body. For simplicity, in Figure 3 we present
the “instrumentation” step directly on the loops of Figure 2 and not on their ABC-loop formats.

z = 1
for (i = 1; i ≤ n; i = i + 1) do
for (j = 1; j ≤ n; j = j + 1) do
z = z + 1
end do
end do

z = 1
for (i = 0; i ≤ n; i = i + 1) do
for (j = 0; j ≤ m; j = j + 2) do
z = z + 1

end do
end do

(a) (b)

Fig. 3. Figure 2 instrumented by ABC.

yielding:

1 + (1 + n)
⌊m

2

⌋
+ n

as a tight upper bound on loop iteration counts 7, where bm
2 c denotes the largest integer

not greater than m
2 .

In the sequel, we illustrate the main steps of ABC on Figure 2(b).

3 ABC: System Description

We have identified a special class of loops, called the ABC-loops (Section 3.1), and de-
signed a loop converter for translating programs into their equivalent ABC-loop shape
(Section 3.2). Algorithmic methods from symbolic summation, implemented in our
symbolic solver (Section 3.4), are further deployed in ABC to automatically derive
upper bounds on loop iterations of ABC-loops (Section 3.3).

3.1 ABC-Loops

We denote by Z the set of integer numbers, and by Z[x] the ring of polynomial functions
in indeterminate x over Z.

We consider programs of the following form:

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

skip
end do
. . .

end do
end do

(1)

7 In our work we did not consider analyzing the relations between the smallest and greatest
symbolic values of the loop iteration variables. It may however be the case that these symbolic
values are such that the loops are never executed (e.g. n < 0).

Algorithm 1 Loop Converter
Input: For-loop F and conversion list = {}
Output: ABC-loop F ′ and conversion list
1: 〈ovar, oincr〉:= 〈outer iteration variable(F), outer iteration increment(F)〉
2: 〈olbound, oubound〉:= 〈outer iteration lowerbound(F), outer iteration upperbound(F)〉
3: nvar:= fresh variable()
4: F0:= loop body(F)

[
ovar 7→ oincr ·

(
nvar + olbound− 1

)]
5: conversion list:=conversion list ∪ {ovar = oincr ·

(
nvar + olbound− 1

)
}

6: if isloop(F0) then
7: F ′:= for-loop(nvar, 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, Loop Converter(F0))

8: else
9: F ′:= for-loop(nvar, 1,

⌊
oubound−olbound

oincr

⌋
+ 1, 1, F0)

10: end if

where i1, . . . , id are pairwise disjoint scalar variables (called loop iteration variables)
with values from Z, c is an integer-valued symbolic constants, and fk ∈ Z[i1, . . . , ik]
are polynomial functions (k = 1, . . . , d − 1).

In what follows, loops satisfying (1) will be called ABC-loops.

3.2 The Loop Converter

Converting loops into ABC-loops is done as presented in Algorithm 1. The algorithm
(i) converts loops into equivalent ones such that the smallest values of the loop iteration
variables are 1, and (ii) converts loops with arbitrary increments over the iteration vari-
ables into equivalent loops with increments of 1. The for-loop(v,e1,e2,e3,body) notation
used in Algorithm 1 is a short-hand notation for the loop:

for (v = e1; v ≤ e2; v = v + e3) do body end do.

In more detail, Algorithm 1 takes as input a nested for-loop F and an empty list
conversion list, and returns, whenever possible, an ABC-loop F ′ that is equivalent to
F . The conversion list is used to store the list of changes made by Algorithm 1 on the
iteration variables of F .

Lines 4-9 of Algorithm 1 are required to convert F into an equivalent loop whose
outermost loop has the following properties: it iterates over a new variable nvar instead
of the iteration variable ovar of the outermost loop of F , where nvar and ovar are
polynomially related; the smallest value of nvar is 1 (instead of the smallest value
olbound of ovar); nvar is increment by 1 (instead of the oincr increment value of
ovar); the greatest value of nvar is given by the largest integer not greater than the
rational expression oubound−olbound

oincr + 1, where oubound is the greatest value of ovar.
The appropriately modified8 loop body F0 of F is processed in the similar manner,
yielding finally the ABC-loop F ′ that is equivalent to F .

8 The expression s[x 7→ e] denotes the expression obtained from s by substituting each occur-
rence of the variable x by the expression e.

for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do
for(j1 = 1; j1 ≤ bm

2
c+ 1; j1 = j1 + 1) do

skip
end do

end do

z = 1
for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do

for (j1 = 1; j1 ≤ bm
2
c+ 1; j1 = j1 + 1) do

z := z + 1
end do

end do
(a) (b)

Fig. 4. ABC-loop format of Figure2(b) and its instrumented version, where i = i1 − 1 and
j = 2(j1 − 1). Note that bm/2c ∈ Z.

Example 1. Consider Figure 2(b). By applying Algorithm 1, the loop iteration variables
i1 and j1 are introduced with i = i1 − 1 and j = 2(j1 − 1) (lines 3-5 of Algorithm 1).
The smallest values of i1 and j1 are 1, their greatest values are respectively n + 1 and
bm

2 c+1, and i1 and j1 are incremented by 1 (lines 6-9 of Algorithm 1). The ABC-loop
format of Figure 2(b) is given in Figure 4(a).

Based on Algorithm 1 and keeping the notations of (1), we conclude that the general
shape of loops that can be converted into ABC-loops is:

for (i1 = l; i1 ≤ c; i1 = i1 + inc1) do
for (i2 = g1(i1); i2 ≤ f1(i1); i2 = i2 + inc2) do

. . .
for (id = gd−1(i1, . . . , id−1); id ≤ fd−1(i1, . . . , id−1); id = id + incd) do

skip
end do
. . .

end do
end do

(2)

where l, inc1, . . . , incd are integer-valued symbolic constants, and gk ∈ Z[i1, . . . , ik].

3.3 The Bound Computer

We assume that each program statement is annotated with the time units it needs to be
executed. For simplicity, we assume that an iteration of an unnested ABC-loop takes one
time unit, and all other instructions of the unnested loop need zero time (e.g. assignment
statements take zero time to be executed). That is we compute a bound on the total
number of loop iterations of an ABC-loop (1).

In our approach to bound computation, we instrument the innermost loop body of
(1) with a new variable that increases at every iteration of the program, and is initialized
to 1 before entering the ABC-loop. We denote this variable by z. From (1), we thus

obtain:
z = 1
for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + 1
end do
. . .

end do

(3)

Example 2. The instrumented loop of Figure 4(a) is given in Figure 4(b).

Upper bounds on the value of z give upper bounds on the number of iterations of
(3). We are hence left with computing the value of z as a function, called the z-relation,
over i1, . . . , id. To this end, the value of z at an arbitrary iteration of the outermost loop
of (3) is first computed.

Computing the value of z after an arbitrary iteration of the outermost loop of (3).
Let us consider a more general loop than (3):

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do

. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + g(id)
end do
. . .

end do
end do

(4)

where i1, . . . , id, c, f1, . . . , fd−1 are as in (1), and g ∈ Z[id]. In particular, if g = 1 then
(4) becomes (3).

Let s1, . . . , sl be nonnegative integers (l = 1, . . . , d) such that 1 ≤ s1 ≤ c,
1 ≤ s2 ≤ f1(i1), . . . , and 1 ≤ sl ≤ fl−1(i1, . . . , il−1). In the sequel we con-
sider s1, . . . , sl arbitrary but fixed. We write x(l,‖s1,...,sl‖) to mean the value of a vari-
able x ∈ {i1, . . . , id, z} in (4) such that the kth loop of (4) is at its skth iteration
(k = 1, . . . , l),

We are thus interested in deriving z(1,‖s1‖) for s1 ∈ {1, . . . , c}. We proceed as fol-
lows. For each loop of (4), starting from the innermost one, we (i) model the assignment
over z as a recurrence equation, (ii) deploy symbolic summation algorithms to compute
the closed form of z, and (iii) replace the loop by a single assignment over z expressing
the relation between the values of z before the first and after the last execution of the
loop. Steps (i)-(iii) are recursively applied until all loops of (4) are eliminated.

In more detail, z(1,‖s1‖) is derived as follows. We start with the innermost loop of
(4). The assignment over z is modeled by the recurrence equation:

z(d,‖s1,...,sd+1‖) = z(d,‖s1,...,sd‖) + g(i(d,‖s1,...,sd−1‖)
d), (5)

Algorithm 2 Bound Computer
Input: ABC-loop F , initial value z0 of z
Output: z-relation zrel
1: inner:= loop body(F)
2: incr:= z reduce loop(inner)
3: 〈ovar, oubound〉:= 〈outer iteration variable(F),outer iteration upperbound(F)〉
4: nvar:= fresh variable()
5: zi:=z0 + solve sum(nvar, 1, ovar − 1, incr

[
ovar 7→ nvar

]
)

6: if isloop(inner) then
7: zrel:= z =Bound Computer(inner, zi)
8: else
9: zrel:=z = zi

10: end if

yielding:

z(d,‖s1,...,sd‖) = iniz +
sd∑

k=1

g(i(d,‖s1,...,k−1‖)
d),

where iniz = z(d,‖s1,...,0‖) denotes the value of z before entering the innermost loop
of (4). The value of i

(d,‖s1,...,sd‖)
d is computed from the recurrence equation:

i
(d,‖s1,...,sd+1‖)
d = i

(d,‖s1,...,sd‖)
d + 1.

Namely, we have i
(d,‖s1,...,sd‖)
d = inid +

∑sd

k=1 1, where inid = 1 denotes the initial
value of id (i.e. before the first iteration of the innermost loop of (4)). Hence,

i
(d,‖s1,...,sd‖)
d = sd + 1. (6)

Note that (6) holds for each iteration variable, that is:

i
(l,‖s1,...,sl‖)
l = sl + 1

for every l ∈ {1, . . . , d}. For this reason, in what follows we write il instead of i
(l,‖s1,...,sl‖)
l

and use the relation il = sl + 1 to speak about the value of il at iteration sl of the lth
loop. We thus obtain:

z(d,‖s1,...,sd‖) = iniz +
sd∑

k=1

g(i(d,‖s1,...,k−1‖)
d) = iniz +

id−1∑
k=1

g(k).

Since g ∈ Z[id], the closed form of
∑id−1

k=1 g(k) always exists [6] and can be computed
as a polynomial function over id (see Section 3.4).

Finally, we consider the last iteration sd = id − 1 = fd−1(i1, . . . , id−1) of the
innermost loop of (4), and write incrd =

∑fd−1(i1,...,id−1)
k=1 g(k). We make use of

incrd ∈ Z[i1, . . . , id−1] to “eliminate” the innermost loop of (4) and obtain:

for (i1 = 1; i1 ≤ c; i1 = i1 + 1) do
. . .
for (id−1 = 1; id−1 ≤ fd−1(i1, . . . , id−2); id−1 = id−1 + 1) do

z := z + incrd

end do
. . .

end do

(7)

Inner loops of (7) can be further eliminated by applying recursively the steps described
above, since closed forms of polynomial expressions over i1, . . . , id yield polynomial
expressions over i1, . . . , id whenever the summation variables are bounded by polyno-
mial expressions. As a result, the total number of increments over z in the s1th iteration
of the outermost loop of (4) is derived. Let us denote this number by incr1. Then:

z(1,‖s1‖) = z0 + incr1, where z0 = 1 is the value of z before (4).

Example 3. Consider Figure 4(b). We aim at deriving z(1,‖s1‖), where 1 ≤ s1 ≤ n + 1
is arbitrary but fixed such that i1 = s1 + 1.

From the innermost loop of Figure 4(b), we have z(2,‖s1,s2+1‖) = z(2,‖s1,s2‖) + 1
for an arbitrary but fixed s2, where 1 ≤ s2 ≤ bm

2 c + 1 and j1 = s2 + 1. Hence,

z(2,‖s1,s2‖) = ini2 + j1 − 1,

where ini2 is the initial value of z before entering the innermost loop. Further, after
s2 = j1−1 = bm

2 c+1 iterations of the innermost loop, the total number of increments
over z is:

incr2 =
bm

2 c+1∑
k=1

1 = bm

2
c + 1.

The innermost loop of Figure 4(b) is next eliminated, yielding:

for (i1 = 1; i1 ≤ n + 1; i1 = i1 + 1) do z = z + bm

2
c + 1 end do

with the recurrence equation of z as:

z(1,‖s1‖+1) = z(1,‖s1‖) + bm

2
c + 1.

Solving this recurrence and using that z0 = 1 is the initial value of z before the outer-
most loop of Figure 4(b), we obtain:

z(1,‖s1‖) = 1 +
i1−1∑
k=1

(
bm

2
c + 1

)
= 1 + (i1 − 1)

(
bm

2
c + 1

)
.

Computing the z-relation among arbitrary values of z, i1, . . . , id.
We are interested in deriving the value of z(d,‖s1,...,sd‖), where ik = sk + 1 (k =
1, . . . , d), from which the z-relation can be immediately constructed as z = z(d,‖s1,...,sd‖).

The value z(d,‖s1,...,sd‖) (and hence the z-relation) is inferred by Algorithm 2 as
follows.

(a) The value incr is computed such that z(1,‖s1‖) = z0 + incr (line 2 of Algorithm
2);

(b) The outermost loop of (4) is omitted (line 1 of Algorithm 2), yielding:

for (i2 = 1; i2 ≤ f1(i1); i2 = i2 + 1) do
. . .
for (id = 1; id ≤ fd−1(i1, . . . , id−1); id = id + 1) do

z := z + g(id)
end do
. . .

end do

(8)

(c) The value of z at the s2th iteration of the outermost loop (8) is next computed,
where the initial value of z before (8) is considered to be z(1,‖s1‖) (line 7 of Algo-
rithm 2). As a result, z(2,‖s1,s2‖) in the loop (4) is obtained.

(d) Steps (b)-(c) are recursively applied on (8) until no more loops are left and z(d,‖s1,...,sd‖)

is derived (lines 6-9 of Algorithm 2).

Example 4. Consider Figure 4(b). The outermost loop of Figure 4(b) is omitted (line 1
of Algorithm 2), yielding:

for (j1 = 1; j1 ≤ bm

2
c + 1; j1 = j1 + 1) do z = z + 1 end do (9)

The total number of increments incr2 = bm
2 c+ 1 over z made by (9) is computed,

as presented in Example 3 (line 2 of Algorithm 2). The value zi = z(1,‖s1‖) of z at an
iteration s1 = i1 − 1 of the outermost loop of Figure 4(b) is further obtained (lines 3-5
of Algorithm 2), as:

zi = z0 +
i1−1∑

nvar=1

(
bm

2
c + 1

)
= 1 + (i1 − 1)

(
bm

2
c + 1

)
.

Next, Algorithm 2 is called on (9) with the initial value zi to compute the value of
z at an iteration s2 = j1 − 1 of (9) (line 7 of Algorithm 2). As (9) has no inner loops,
we have incr = 1 and z′i = zi +

∑j1−1
nvar=1 1, yielding (lines 2-5 of Algorithm 2):

z(2,‖s1,s2‖) = z′i = (i1 − 1)
(
bm

2
c + 1

)
+ j1.

The z-relation of Figure 4(b) is finally derived (line 9 of Algorithm 2), as:

z = (i1 − 1)
(
bm

2
c + 1

)
+ j1.

To obtain the z-relation of Figure 2(b), we make use of i = i1 − 1 and j = 2(j1 − 1)
and have:

z = i
(⌊m

2

⌋
+ 1

)
+

⌊
j

2

⌋
+ 1.

Replacing i and j respectively with n and m in the z-relation, the upper bound on loop
iteration counts of Figure 2(b) is:

(n + 1)
(⌊m

2

⌋
+ 1

)
.

for (i = 1; i ≤ n; i = i + 1)
for (j = 0; j ≤ n; j = j + i)
skip
end do

end do

for (i1 = 1; i1 ≤ n; i1 = i1 + 1)
for (j1 = 1; j1 ≤ n1; j1 = j1 + 1)
skip
end do

end do

z := 1
for (i1 = 1; i1 ≤ n; i1 = i1 + 1)
for (j1 = 1; j1 ≤ n1; j1 = j1 + 1)
z := z + 1
end do

end do
(a) Not an ABC-loop (b) Converted loop by ABC with (c) Instrumented loop by ABC

n1 = b n
i1
c + 1, and i = i1, j = i · j1

Fig. 5. ABC on a non-ABC-loop.

3.4 Symbolic Solver

Simplifying arithmetical expressions and computing closed forms of symbolic sums is
performed by the symbolic solver engine of ABC. Our symbolic solver supports the
closed form computation of the following sums:

e2∑
x=e1

c1 · nx
1 · xd1 + · · · + cr · nx

r · xdr

where e1, e2 are integer-valued symbolic constants, ni, di are natural numbers, and ci

are rational numbers. Closed forms of such sums always exists [6]. For computing the
closed forms of these sums we rely on a simplified version of the Gosper algorithm [6].

We have also instrumented our symbolic solver to handle symbolic sums whose
closed forms involve harmonic numbers [7], as discussed in Section 3.5.

3.5 Beyond ABC-Loops

Our approach to bound computation implemented in ABC is complete for ABC-loops
and for loops satisfying (2). That is, it always returns the z-relation and loop iteration
bound of an ABC-loop.

It is worth to be mentioned that some loops violating (2) can still be successfully
analyzed by ABC.

Consider Figure 5(a) violating (2), as updates over j depend on i. However, using
Algorithm 1 we derive the loop given in Figure 5(b), yielding finally the “instrumented”
loop from Figure 5(c). Further, by applying Algorithm 2, we are left with finding the
closed form of

∑i1−1
k=1

⌊
n
i1

⌋
. This sum cannot be further simplified [7]. However, we

can compute an upper-bound on its closed form using the relation:

i1−1∑
k=1

⌊
n

i1

⌋
≤

⌊
i1−1∑
k=1

n

i1

⌋
=

⌊
n

i1−1∑
k=1

1
i1

⌋
.

Note that
∑i1−1

k=1
1
i1

is the harmonic number H(i1 − 1) arising from the truncation
of the harmonic series [7]. We make use of H(i1−1) and derive an upper bound on the
loop iteration count of Figure 5(a) as being a harmonic expression. To this end, we have

Loop z-relation Iteration bound Time [s]

for (i = a; i ≤ b; i = i + 1)
skip

end do
z = 1 + i − a 1 + b − a 0.172

for (i = 0; i ≤ n − 1; i = i + 1)
for (j = 0; j ≤ i; j = j + 1)
skip
end do

end do

z = 1 + j + i+i2
2

n+n2
2

0.219

for (i = 1; i ≤ m; i = i + 1)
for (j = 1; j ≤ i; j = j + 1)
for (k = i + 1; k ≤ m; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip

end do
end do
end do

end do

z =

i2m2−im2+i2m−im
4 +

i2−i4
8 + i3−i

12 +

jm+jm2+k2

2 −

m2+ji2+ji+m+k
2 + 1

3m4+2m3−3m2−2m
24

1.281

for (i = 0; i ≤ (n∗n∗n
2 − 1); i = i + 1)

for (j = 0; j ≤ n − 1; j = j + 1)
for (k = 0; k ≤ j − 1; k = k + 1)
skip
end do
end do

end do

z =

1 + k + in2−in+j2−j
2

n5−n4
4

0.234

for (i = 1; i ≤ n; i = i + 1)
for (j = 1; j ≤ i; j = j + 1)
skip
end do

end do

z = i2−i
2 + j n2+n

2
0.203

for (i = 1; i ≤ n; i = i + 1)
for (j = i; j ≤ n; j = j + 1)
skip
end do

end do

z =

(i − 1)n + j + i−i2
2

n2+n
2

0.203

for (j = 1; i ≤ m; j = j + 1)
for (i = 1; i ≤ n; i = j + 1)
skip
end do

end do

z = i + (j − 1)n nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ 1; j = j − 1)
skip
end do

end do

z = (n−i+1)m−j+1 nm 0.188

Table 1. Experimental results obtained by ABC on benchmark examples.

extended our symbolic solver with some simple identities over harmonic numbers. To
the best of our knowledge, inferring a tight loop bound for Figure 5(a) is not yet possible
by other works.

ABC can thus be successfully applied to loops for which symbolic computation
methods can be deployed to compute or approximate closed forms of loop variables.
Such cases may arise from nested loops whose inner loop counters are updated by non-
constant polynomial functions in the outer loop counters (i.e. yielding iteration bounds
as harmonic numbers).

4 Experiments

We applied ABC to a large number of examples, including benchmark programs from
recent work on timing analysis [21] as well as from the JAMA package [13].

Loop z-relation Iteration bound Time [s]

for (i = 1; i ≤ n; i = i + 1)
for (j = 1; j ≤ m; j = j + 1)
skip

end do
end do

z = j + (i − 1)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
skip

end do
end do

z = j + (n − i)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ 1; j = j − 1)
skip

end do
end do

z = 1 − j + (n − i + 1)m nm 0.187

for (i = n; i ≥ 1; i = i − 1)
for (j = m; j ≥ m; j = j − 1)
skip

end do
end do

z = 1 − i − j + m + n n 0.203

for (i = a; i ≤ b; i = i + 1)
for (j = c; j ≤ d; j = j + 1)
for (k = i − j; k ≤ i + j; k = k + 1)
skip
end do

end do
end do

z =

1 − 2ad + 2id−
ad2 + id2 + ac2−
ic2 + j2 − c2+

j − a + k

(c2 − (d + 1)2)(a − b − 1) 0.328

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
for (k = i; k ≤ i + j; k = k + 1)
for (l = 1; l ≤ k; l = l + 1)
skip

end do
end do

end do
end do

z =

−m2+3m+2
4 i2+

(j2+j−1
2 − 2m3+9m2+13

12)i+

k2−k
2 + j3−j

6 + 1+

2m2+3mn+9m+9n+13
12 mn

2m2+3mn+9m+9n+13
12 mn 0.625

for (i = n; i ≥ 1; i = i − 1)
for (j = 1; j ≤ m; j = j + 1)
for (k = i; k ≤ p; k = k + 1)
for (l = q; l ≤ j; l = l − 1)
skip
end do
end do

end do
end do

z =
3j−ij−j2+ij2

2 + k − l − p+

i2m+im2−i2m2−im
4 +

jq − jk + kq − pq+

mn−m2n−mn2+m2n2
4 +

3jp−j2p−imp+im2p
2 −

ijq + jpq+

mnp−m2np−imq
2 − impq+

im2q+mnq−mn2q
2 + mnpq

m2n2−mn2−m2n+mn
4 +

mnp−m2np+mnq−mn2q
2 +

mnpq

0.375

Table 2. Further experimental results obtained by ABC.

Tables 1 and 2 summarize some of our results obtained on a machine with a 2.8
GHz Intel Core 2 Duo processor and 2GB of RAM.

The first four programs of Table 1 are examples taken from [21], whereas the last
four programs of Table 1 are loops taken from the JAMA package [13]. The examples of
Table 2 are our own benchmark examples, and illustrate the power of ABC in handling
nested loops whose inner loop counters polynomially depend on its outer loop counters.
The difference between the first four programs of Table 2 is given by the mixed incre-
mental/decremental updates and smallest/greatest values of the loop counters. Note that
the last three programs of Table 2 yield polynomial loop bounds as sums of multivariate
monomials.

The first column of Table 1 (respectively of Table 2) presents the loop being fed
into ABC, the second column shows the z-relation derived by ABC, whereas the third
one presents the number of loop iterations computed by ABC. The forth column gives
the time (in seconds) needed by ABC to infer bounds on loop iteration counts 9. Note
that iteration bounds are integer-valued polynomial expressions (e.g. n2 +n is divisible
by 2).

5 Conclusions

We describe the software tool ABC for automatically deriving tight symbolic upper
bounds on loop iteration counts of a special class of loops, called the ABC-loops. The
system was successfully tried on a large number of examples. The derived symbolic
bounds express non-trivial (polynomial and harmonic) relations over loop variables.

Future work includes extending ABC to handle more complex sums, such as e.g.
fractions of polynomials [17], including more sophisticated control-flow refinement
techniques, such as [8], into ABC, and improving the loop converter of ABC for han-
dling more complex loops.

References
1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Automatic Inference of Upper Bounds for

Recurrence Relations in Cost Analysis. In Proc. of SAS, pages 221–237, 2008.
2. B. Birkeland. Calculus and Algebra with MathCad 2000. Haeftad. Studentlitteratur, 2000.
3. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Proc. of POPL, pages 238–
252, 1977.

4. I. Danaila, P. Joly, S. M. Kaber, and M. Postel. An Introduction to Scientific Computing:
Twelve Computational Projects Solved with MATLAB. Springer, 2007.

5. C. Ferdinand and R. Heckmann. aiT: Worst Case Execution Time Prediction by Static Pro-
gram Analysis. In Proc. of IFIP Congress Topical Sessions, pages 377–384, 2004.

6. R. W. Gosper. Decision Procedures for Indefinite Hypergeometric Summation. PNAS,
75:40–42, 1978.

7. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley
Publishing Company, 2nd edition, 1989.

8. S. Gulwani, S. Jain, and E. Koskinen. Control-flow Refinement and Progress Invariants for
Bound Analysis. In Proc. of PLDI, pages 375–385, 2009.

9. J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. Automatic Derivation of Loop
Bounds and Infeasible Paths for WCET Analysis Using Abstract Execution. In Proc. of
RTSS, pages 57–66, 2006.

10. C. A. Healy, M. Sjödin, V. Rustagi, D. B. Whalley, and R. van Engelen. Supporting Timing
Analysis by Automatic Bounding of Loop Iterations. Real-Time Systems, 18(2/3):129–156,
2000.

11. T. A. Henzinger, T. Hottelier, and L. Kovacs. Valigator: A Verification Tool with Bound and
Invariant Generation. In Proc. of LPAR, pages 333–342, 2008.

12. M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program De-
bugging, Verification, and Optimization using Abstract Interpretation (and the Ciao System
Preprocessor). Sci. Comput. Program., 58(1-2):115–140, 2005.

9 Note, that the timings given in Tables 1 and 2 include also the required time to launch the JVM.

13. J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo, and K. Remington. JAMA:
A Java Matrix Package. http://math.nist.gov/javanumerics/jama/, 2005.

14. S. Jost, H. Loidl, K. Hammond, N. Scaife, and M. Hofmann. “Carbon Credits” for Resource-
Bounded Computations Using Amortised Analysis. In Proc. of FM, pages 354–369, 2009.

15. M. Müller-Olm, M. Petter, and H. Seidl. Interprocedurally Analyzing Polynomial Identities.
In Proc. of STACS, pages 50–67, 2006.

16. J. Navas, E. Mera, P. Lopez-Garcia, and M. V. Hermenegildo. User-Definable Resource
Bounds Analysis for Logic Programs. In Proc. of ICLP, pages 348–363, 2007.

17. I. Nemes and M. Petkovsek. RComp: A Mathematica Package for Computing with Recursive
Sequences. Journal of Symbolic Computation, 20(5-6):745–753, 1995.

18. M. Odersky. The Scala Language Specification. http://www.scala-lang.org, 2008.
19. A. Prantl, J. Knoop, M. Schordan, and M. Triska. Constraint Solving for High-Level WCET

Analysis. CoRR, abs/0903.2251, 2009.
20. G. W. Stewart. JAMPACK: A Java Package For Matrix Computations.

http://www.mathematik.hu-berlin.de/ lamour/software/JAVA/Jampack/.
21. R. A. van Engelen, J. Birch, and K. A. Gallivan. Array Data Dependence Testing with the

Chains of Recurrences Algebra. In Proc. of IWIA, pages 70–81, 2004.
22. S. Wolfram. The Mathematica Book. Version 5.0. Wolfram Media, 2003.

