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Abstract. ABC is a public-domain system for logic synthesis and formal 
verification of binary logic circuits appearing in synchronous hardware designs. 
ABC combines scalable logic transformations based on And-Inverter Graphs 
(AIGs), with a variety of innovative algorithms. A focus on the synergy of 
sequential synthesis and sequential verification leads to improvements in both 
domains. This paper introduces ABC, motivates its development, and illustrates 
its use in formal verification. 
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1   Introduction 

Progress in both academic research and industrial products critically depends on the 
availability of cutting-edge open-source tools in the given domain of EDA. Such tools 
can be used for benchmarking, comparison, and education. They provide a shared 
platform for experiments and can help simplify the development of new algorithms. 
Equally important for progress is access to real industrial-sized benchmarks. 

For many years, the common base for research in logic synthesis has been SIS, a 
synthesis system developed by our research group at UC Berkeley in 1987-1991. Both 
SIS [35] and its predecessor MIS [8], pioneered multi-level combinational logic 
synthesis and became trend-setting prototypes for a large number of synthesis tools 
developed by industry. 

In the domain of formal verification, a similar public system has been VIS [9], 
started at UC Berkeley around 1995 and continued at the University of Colorado, 
Boulder, and University of Texas, Austin. In particular, VIS features the latest 
algorithms for implicit state enumeration [15] with BDDs [11] using the CUDD 
package [36].  

While SIS reached a plateau in its development in the middle 90’s, logic 
representation and manipulation methods continued to be improved. In the early 
2000s, And-Inverter Graphs (AIGs) emerged as a new efficient representation for 
problems arising in formal verification [22], largely due to the published work of A. 
Kuehlmann and his colleagues at IBM.  

In that same period, our research group worked on a multi-valued logic synthesis 
system, MVSIS [13]. Aiming to find better ways to manipulate multi-valued relations, 
we experimented with new logic representations, such as AIGs, and found that, in 
addition to their use in formal verification, they can replace more-traditional 
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representations in logic synthesis. As a result of our experiments with MVSIS, we 
developed a methodology for tackling problems, which are traditionally solved with 
SOPs [35] and BDDs [37], using a combination of random/guided simulation of AIGs 
and Boolean satisfiability (SAT) [25].  

Based on AIGs as a new efficient representation for large logic cones, and SAT as 
a new way of solving Boolean problems, in the summer 2005, we switched from 
multi-valued methods in MVSIS to binary AIG-based synthesis methods. The 
resulting CAD system, ABC, incorporates the best algorithmic features of MVSIS, 
while supplementing them with new findings.  

One such finding is a novel method for AIG-based logic synthesis that replaced the 
traditional SIS logic synthesis flow, which was based on iterating elimination, 
substitution, kerneling, don’t-care-based simplification, as exemplified by SIS scripts, 
script.algebraic and script.rugged. Our work on AIGs was motivated by fast 
compression of Boolean networks in formal verification [5]. We extended this method 
to work in synthesis, by making it delay-aware and replacing two-level structural 
matching of AIG subgraphs with functional matching of the subgraphs based on 
enumeration of 4-input cuts [26].  

It turned out that the fast AIG-based optimizations could be made even more efficient 
by applying them to the network many times. Doing so with different parameter settings 
led to results in synthesis comparable or better than those of SIS, while requiring much 
less memory and runtime. Also this method is conceptually simpler than the SIS 
optimization flow, saving months of human-effort in code development and tuning. The 
savings in runtime/memory led to the increased scalability of ABC, compared to SIS. 
As a result, ABC can work on designs with millions of nodes, while SIS does not finish 
on these designs after many hours, and even if it finishes, the results are often inferior to 
those obtained by the fast iterative computations in ABC. 

The next step in developing ABC was to add an equivalence checker for verifying 
the results of synthesis, both combinational and sequential [29]. Successful 
equivalence checking motivated experiments with model checking, because both 
types of verification work on a miter circuit and have the common goal of reducing it 
to the constant 0. To test this out, we submitted an equivalence checker in ABC to the 
hardware model checking competition at CAV 2008, winning in two out of three 
categories. 

Working on both sequential synthesis and verification has allowed us to leverage 
the latest results in both domains and observe their growing synergy. For example, the 
ability to synthesize large problems and show impressive gains spurs development of 
equally scalable equivalence checking methods, while the ability to scalably verify 
sequential equivalence problems spurs the development, use, and acceptance of 
aggressive sequential synthesis. In ABC, similar concepts are used in both synthesis 
and verification: AIGs, rewriting, SAT, sequential SAT sweeping, retiming, 
interpolation, etc.  

This paper provides an overview of ABC, lists some of the ways in which 
verification ideas have enriched synthesis methods, shows how verification is helped 
by constraining or augmenting sequential synthesis, and details how various 
algorithms have been put together to create a fairly powerful model checking engine 
that can rival some commercial offerings. We give an example of the verification 
flow applied to an industrial model checking problem. 
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The rest of the paper is organized as follows. Section 2 introduces the basic 
terminology used in logic synthesis and verification. Section 3 describes combinational 
and sequential AIGs and their advantages over traditional representations. Section 4 
discusses the duality of synthesis and verification. Section 5 gives a case study of an 
efficient AIG implementation, complete with experimental results. Section 6 describes 
both the synthesis and verification flows in ABC and provides an example of the 
verification flow applied to an industrial model checking problem. Section 7 concludes 
the paper and sketches some on-going research. 

2   Background  

2.1   Boolean Network  

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to 
logic gates and directed edges corresponding to wires connecting the gates. The terms 
Boolean network, netlist, and circuit are used interchangeably in this paper. If the 
network is sequential, the memory elements are assumed to be D flip-flops with initial 
states.  

A node n has zero or more fanins, i.e. nodes driving n, and zero or more fanouts, 
i.e. nodes driven by n. The primary inputs (PIs) are nodes without fanins in the 
current network. The primary outputs (POs) are a subset of nodes of the network. A 
fanin (fanout) cone of node n is a subset of all nodes of the network, reachable 
through the fanin (fanout) edges of the node. 

2.2   Logic Synthesis  

Logic synthesis transforms a Boolean network to satisfy some criteria, for example, 
reduce the number of nodes, logic levels, switching activity. Technology mapping 
deals with representing the logic in terms of a given set of primitives, such as standard 
cells or lookup tables.  

Combinational logic synthesis involves changing the combinational logic of the 
circuit with no knowledge of its reachable states.  As a result, the Boolean functions 
of the POs and register inputs are preserved for any state of the registers.  In contrast, 
sequential logic synthesis preserves behavior on the reachable states and allows 
arbitrary changes on the unreachable states. Thus, after sequential synthesis, the 
combinational functions of the POs and register inputs may have changed, but the 
resulting circuit is sequentially-equivalent to the original.   

2.3   Formal Verification  

Formal verification tries to prove that the design is correct in some sense.  
The two most common forms of formal verification are model checking and 

equivalence checking. Model checking of safety properties considers the design along 
with one or more properties and checks if the properties hold on all reachable states. 
Equivalence checking checks if  the design after synthesis is equal to its initial 
version, called the golden model.  
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In modern verification flows, the circuit to be model-checked is transformed into a 
circuit called a model checking miter by supplementing the logic of the design with a 
monitor logic, which checks the correctness of the property. Similarly, in equivalence 
checking, the two circuits to be verified are transformed into an equivalence checking 
miter [7] derived by combining the pairs of inputs with the same names and feeding 
the pairs of outputs with the same names into EXOR gates, which are ORed to 
produce the single output of the miter.  

In both property and equivalence checking, the miter is a circuit with the inputs of 
the original circuit and an output that produces value 0, if and only if the original 
circuit satisfies the property or if the two circuits produce identical output values 
under any input assignment (or, in sequential verification, under any sequence of 
input assignments, starting from the initial state).  

The task of formal verification is to prove that the constructed miter always 
produces value 0. If synthesis alone does not solve the miter, the output can be 
asserted to be constant 1 and a SAT solver can be run on the resulting problem. If the 
solver returns “unsatisfiable”, the miter is proved constant 0 and the property holds, or 
the original circuits are equivalent. If the solver returns “satisfiable”, an assignment of 
the PIs leading to 1 at the output of the miter, called a counter-example, is produced, 
which is useful for debugging the circuit. 

2.4   Verifiable Synthesis  

An ultimate goal of a synthesis system is to produce good results in terms of area, 
power, speed, capability for physical implementation etc, while allowing an unbiased 
(independent) verification tool to prove that functionality is preserved. Developing 
verifiable synthesis methods is difficult because of the inherent complexity of the 
sequential verification problem [20].  

One verifiable sequential synthesis is described in [29]. This is based on identifying 
pairs of sequentially-equivalent nodes/registers, that is groups of signals having the 
same or opposite values in all reachable states. Such equivalent nodes/registers can be 
merged without changing the sequential behavior of the circuit, often leading to 
substantial reductions, e.g. some parts of the logic can be discarded because they no 
longer affect the POs. This sequential synthesis technique is used extensively in ABC 
to reduce both designs and sequential miters. 

3   And-Inverter Graphs 

3.1   Combinational AIGs  

A combinational And-Invertor Graph (AIG) is a Boolean network composed of two-
input ANDs and inverters. To derive an AIG, the SOPs of the nodes in a logic 
network are factored, the AND and OR gates of the factored forms are converted into 
two-input ANDs and inverters using DeMorgan’s rule, and these nodes are added to 
the AIG manager in a topological order. The size (area) of an AIG is the number of 
its nodes; the depth (delay) is the number of nodes on the longest path from the PIs to 
the POs. The goal of optimization by local transformations of an AIG is to reduce 
both area and delay.   
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Structural hashing of AIGs ensures that all constants are propagated and, for each 
pair of nodes, there is at most one AND node having them as fanins (up to a 
permutation). Structural hashing is performed by hash-table lookups when AND 
nodes are created and added to an AIG manager. Structural hashing was originally 
introduced for netlists of arbitrary gates in early IBM CAD tools [15] and was 
extensively used in formal verification [22]. Structural hashing can be applied on-the-
fly during AIG construction, which reduces the AIG size. To reduce the number of 
AIG levels, the AIG is often balanced by applying the associative transform, a(bc) = 
(ab)c. Both structural hashing and balancing are performed in one topological 
traversal from the PIs and have linear complexity in the number of AIG nodes.  

A cut C of a node n is a set of nodes of the network, called leaves of the cut, such 
that each path from a PI to n passes through at least one leaf. Node n is called the root 
of cut C. The cut size is the number of its leaves. A trivial cut of a node is the cut 
composed of the node itself. A cut is K-feasible if the number of nodes in the cut does 
not exceed K. A cut is dominated if there is another cut of the same node, which is 
contained, set-theoretically, in the given cut. 

A local function of an AIG node n, denoted fn(x), is a Boolean function of the logic 
cone rooted in n and expressed in terms of the leaves, x, of a cut of n. The global 
function of an AIG node is its function in terms of the PIs of the network. 

3.2   Sequential AIGs  

Sequential AIGs extend combinational AIGs with technology-independent D-flip-flops 
with one input and one output, controlled by the same clock, omitted in the AIG 
representations.   

We represent flip-flops in the AIG explicitly as additional PI/POs pairs. The PIs 
and register outputs are called combinational inputs (CIs) and the POs and register 
inputs are called combinational outputs (COs). The additional pairs of CI/CO nodes 
follow the regular PIs/POs, and are in one to one correspondence with each other. 
This representation of sequential AIGs differs from that used in [1] where latches are 
represented as attributes on AIG edges, similar to the work of Leiserson and Saxe 
[23].  

The chosen representation of sequential AIGs allows us to work with the AIG 
manager as if it was a combinational AIG, and only utilize its sequential properties 
when sequential transformations are applied. For example, combinational AIG 
rewriting works uniformly on combinational and sequential AIGs, while sequential 
cleanup, which removes structurally equivalent flip-flops, exploits the fact that they 
are represented as additional PIs and POs. Sequential transformation, such as 
retiming, can add and remove latches as needed. 

3.3   Distinctive Features of AIGs  

Representing logic using networks containing two-input nodes is not new. In SIS, there 
is a command tech_decomp [35] generating a two-input AND/OR decomposition of 
the network. However, there are several important differences that make two-input 
node representation in the form of AIGs much more efficient that its predecessors in 
SIS: 



 ABC: An Academic Industrial-Strength Verification Tool 29 

• Structural hashing ensures that AIGs do not contain structurally identical nodes. 
For example, node a∧b can only exist in one copy. When a new node is being 
created, the hash table is checked, and if such node already exists, the old node 
is returned. The on-the-fly structural hashing is very important in synthesis 
applications because, by giving a global view of the AIG, it finds, in constant 
time, simple logic sharing across the network. 

• Representing inverters as edge attributes. This feature is borrowed from the 
efficient implementation of BDDs using complemented edges [36]. As a result, 
single-input nodes representing invertors and buffers do not have to be created. 
This saves memory and allows for applying DeMorgan’s rule on-the-fly, which 
increases logic sharing. 

• The AIG representation is uniform and fine-grain, resulting in a small, fixed 
amount of memory per node. The nodes are stored in one memory array in a 
topological order, resulting in fast, CPU-cache-friendly traversals. To further 
save memory, our AIG packages compute fanout information on demand, 
resulting in 50% memory reduction in most applications. Similar to the AIG 
itself, fanout information for arbitrary AIG structures can be represented 
efficiently using a constant amount of memory per node. 

Fig. 1 shows a Boolean function and two of its structurally-different AIGs. The nodes 
in the graphs denote AND-gates, while the bubbles stand for complemented edges. 
The figure shows that the same completely-specified Boolean function can be 
represented by two structurally different AIGs, one with smaller size and larger depth, 
the other vice versa. 

3.4   Comparing Logic Synthesis in SIS and in ABC  

In terms of logic representation, the main difference between SIS and ABC, is that 
SIS works on a logic network whose nodes are represented using SOPs, while ABC 
works on an AIG whose nodes are two-input AND gates. A SIS network can be 
converted into an AIG by decomposing each node into two-input AND gates. For a 
deterministic decomposition algorithm, the resulting AIG is unique.  However, the 
reverse transformation is not unique, because many logic networks can be derived 
from the same AIG by grouping AND gates in different ways. This constitutes the 
main difference between SIS and ABC. 

SIS works on one copy of a logic network, defined by the current boundaries of its 
logic nodes, while ABC works on an AIG. A cut computed for an AND node in the 
AIG can be seen as a logic node. Since there are many cuts per logic node, the AIG can 
be seen as an implicit representation of many logic networks. When AIG rewriting is 
performed in ABC, a minimal representation is found among all decompositions of all 
structural cuts in the AIG, while global logic sharing is captured using a structural 
hashing table. Thus, ABC is more likely to find a smaller representation in terms of 
AIG nodes than SIS, which works on one copy of the logic network and performs only 
those transformations that are allowed by this network. 

SIS and ABC use different heuristics for logic manipulation, so it is still possible 
that, for a particular network, SIS finds a better solution than ABC. 
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Fig. 1. Two different AIGs for a Boolean function 

3.5   Advantages of AIGs summarized  

The following properties of AIGs fascilitate development of robust applications in 
synthesis, mapping, and formal verification:  

• AIGs unify the synthesis/mapping/verification by representing logic compactly 
and uniformly. The results of technology-independent synthesis are naturally 
expressed as an AIG. During technology mapping, the AIG is used as a subject 
graph annotated with cuts that are matched with LUTs or gates. At any time, 
verification can be performed by contructing a miter of the two synthesis 
snapshots represented as one AIG, handled by a complex AIG-based 
verification flow.  

• Although AIG transformations are local, they are performed with a global view 
afforded by the structural hashing table. Because these computations are 
memory/runtime efficient, they can be iterated, leading to superior results, 
unmatched by a single application of a more global transform.  

• An AIG can be efficiently duplicated, stored, and passed between calling 
applications as a memory buffer or compactly stored on disk in the AIGER 
format [4].  

4   Synthesis-Verification Duality 

Recent advances in formal verification and logic synthesis have made these fields 
increasingly interdependent, especially in the sequential domain [10].  

In addition to algorithm migration (for example, AIG rewriting, SAT solving, 
interpolation came to synthesis from verification), hard verification problems 
challenge synthesis methods that are used to simplify them, while robust verification 
solutions enable more aggressive synthesis. For example, bold moves can be made in 
sequential synthesis by assuming something that seems likely to hold but cannot be 
proved easily. If the result can be verified (provided that sequential verification is 
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powerful enough), synthesis is over. Otherwise, different types of synthesis can be 
tried, for example, traditional or other risk-free synthesis. Preliminary experiments 
show potentially large gains in synthesis for industrial problems. 

4.1   Known Synergies 

In this section, we outline several aspects of combinational and sequential verification 
that benefit from synthesis.  

Combinational equivalence checking (CEC) proves equivalence of primary outputs 
and register inputs after combinational synthesis. To this end, a combinational miter is 
constructed and solved using a set of integrated methods, including simulation, SAT 
solving, and BDD or SAT sweeping [22]. Running combinational synthesis on a miter 
during verification substantially improves the CEC runtime [27]. This is because 
synthesis quickly merges shallow equivalences and reduces the size of the miter, 
allowing difficult SAT calls go through faster.  

A similar observation can be made about retiming [23]. If retiming has been 
applied during sequential synthesis, it is advantageous to apply most-forward retiming 
as one of the preprocessing steps during sequential verification. It can be shown that if 
during sequential synthesis only retiming was applied without changing the logic 
structure, then most forward retiming followed by an inductive register 
correspondence computation is guaranteed to prove sequential equivalence [21]. This 
observation is used in our verification tool, which allows the user to enable retiming 
as an intermediate step during sequential verification [29]. 

Yet another synthesis/verification synergy holds when induction is used to detect 
and merge sequentially equivalent nodes. The following result was obtained in [29]: if 
a circuit was synthesized using only k-step induction to find equivalent signals, then 
equivalence between the original and final circuits is guaranteed provable using k-step 
induction with the same k.  

These results lead to the following rule of thumb which is used in our verification 
flow: if a transformation is applied during synthesis, it is often helpful (and necessary) 
to apply the same or more powerful transformations during verification. 

5   Case Study: Developing a Fast Sequential Simulator for AIGs 

Several applications suffer from the prohibitive runtime of a sequential gate-level 
simulator. For example, in formal verification, the simulator is used to quickly detect 
easy-to-disprove properties or as a way to compute simulation signatures of internal 
nodes proving their equivalence. The same sequential simulator is useful to estimate 
switching activity of registers and internal nodes. The pre-computed switching 
activity can direct transformations that reduce dynamic power dissipation in low-
power synthesis. In this case study, based on [19], we discuss how to develop a fast 
sequential simulator using AIGs.  

5.1   Problem Formulation  

The design is sequentially simulated for a fixed number of time-frames. A sequential 
simulator applies, at each time step, a set of values to the PIs. In the simplest case, 
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random PI patterns are generated to have a 0.5 probability of the node changing its 
value (fixed toggle rate). In other scenarios, the probability of an input transitions  
is given by the user, or produced by another tool. For example, if an input trace is 
known, it may be used for simulating the design. It is assumed that the initial state is 
known and initializes the sequential elements at the first time-frame. In subsequent 
time frames, the state derived at the previous iteration is used. 

The runtime of sequential simulation can be reduced by minimizing the memory 
footprint. This is because most CPUs have a local cache ranging in size from 2Mb to 
16Mb. If an application requires more memory than this, repeated cache misses cause 
the runtime to degrade. Therefore, the challenge is to design a simulator that uses a 
minimalistic data-structure without compromising the computation speed.  

We found three orthogonal ways of reducing the memory requirements of the 
simulator, which in concert greatly improve its performance. 

Compacting logic representation. Sequential designs are represented as AIGs. A 
typical AIG package uses 32 or more bytes to represent each AIG object (an internal 
AND node, an PI/PO, or a flop outputs/inputs). However, a minimalistic AIG package 
requires only 8 bytes per object. For an internal node, two integer fields, four bytes 
each, are used to store the fanin IDs. Other data structures may be temporarily 
allocated, for example, a hash-table for structural hashing may be used during AIG 
construction and deallocated before simulation begins. 

Recycling simulation memory. When simulation is applied to a large sequential 
design, storing simulated values for all nodes in each timeframe requires a lot of 
memory. One way of avoid this, is to use the simulation information as soon as it is 
computed and to recycle the memory when it is not needed. For example, to estimate 
switching activity, we are only interested in counting the number of transitions seen at 
each node. For this, an integer counter can be used, thereby adding four bytes per 
object to the AIG package memory requirements, while the simulation information 
does not have to be stored.  

Additionally, there is no need to allocate simulation memory for each object in the 
AIG. At any time during simulation, we only need to store simulation values for each 
combinational input/output and the nodes on the simulation frontier. These are all the 
nodes whose fanins are already simulated but at least one fanout is not yet simulated. 
For industrial designs, the number of internal nodes where simulation information 
should be stored is typically very small. For example, large industrial designs tend to 
have simulation frontier that is less than 1% of the total number of AIG nodes. The 
notion of a simulation frontier has also been useful to reduce memory requirements 
for the representation of priority cuts [28]. 

Bit-parallel simulation of two time-frames at the same time. A naïve approach to 
estimate the transition probability for each AIG node would be to store simulation 
patterns in two consecutive timeframes. Then, this information is compared (using 
bitwise XOR), and the number of ones in the bitwise representation is accumulated 
while simulating the timeframes. However, saving simulation information at each 
node for two consecutive timeframes leads to a large memory footprint. For example, 
an AIG with 1M objects requires 80Mb to store the simulation information for two 
timeframes, assuming 10 machine words (40 bytes) per object.  
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This increase in memory can be avoided by simultaneously simulating data 
belonging to two consecutive timeframes. In this case, comparison across the 
timeframes is made immediately, without memorizing previously computed results. 
This leads to duplicating the computation effort by simulating every pattern twice, one 
with the previous state value and the other with the current state value. However, the 
speedup due to not having to traverse the additional memory (causing excessive cash 
misses) outweighs the disadvantage of the re-computation. 

5.2   Experimental Results  

This section summarizes two experiments performed to evaluate the new simulator.  
The first experiment, was designed to show that the new sequential simulator, 

called SimSwitch, has affordable runtimes for large designs.  Four industrial designs 
ranging from 304K to 1.3M AIG nodes were simulated with different numbers of 
simulation patterns, ranging from 2,560 to 20,480. The input toggle rate was assumed 
to be 0.5. The results are shown in Table 1. Columns “AIG” and “FF” show the 
numbers of AIG nodes and registers. The runtimes for different amounts of input 
patterns are shown in the last columns. Note that the runtimes are quite affordable 
even for the design with 1.3M AIG nodes. In all four cases, the 2,560 patterns were 
sufficient for node switching activity rates to converge to a steady state.  

Table 1. Runtime of SimSwitch 

Runtime for inputs patterns (seconds) Design AIG FF 

2560 5120 10240 20480 

C1 304K 1585 0.1 0.2 0.2 0.4 
C2 362K 27514 2.7 2.9 4.1 6.6 
C3 842K 58322 7.4 7.6 10.2 18.2 
C4 1306K 87157 12.1 15.4 15.7 24.2 

 
In the second experiment, we compare the runtime of SimSwitch vs. ACE-2.0 on 

14 industry designs and 12 large academic benchmarks. The input toggle rate is 
assumed to be 0.5 for both tools. The number of input patterns is assumed to be 5,000 
for both runs. All circuits are decomposed into AIG netlists before performing the 
switching estimation. The table of results can be found in [19]. The summary of 
results are as follows:  

• For industry designs, SimSwitch is 149+ times faster than ACE-2.0.   
• For academic benchmarks, SimSwitch is 85+ times faster than ACE-2.0.  
• SimSwitch finished all testcases while ACE-2.0 times out on four industrial 

designs. 

6   Optimization and Verification Flows   

This section describes integrated sequences of transformations applied in ABC.  
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6.1   Integration of Synthesis 

The optimization algorithms of ABC are integrated into a system called Magic [31] 
and interfaced with a design database developed to store realistic industrial designs. 
For instance, Magic handles multiple clock domains, flip-flops with complex controls, 
and special objects such as adder chains, RAMs, DSP modules, etc. Magic was 
developed to work with hierarchical designs whose sequential logic cones, when 
represented as a monolithic AIG, contain more than 1M nodes. The algorithms are 
described in the following publications: 

 
Synthesis 

Scalable sequential synthesis [29] and retiming [34]. 
Combinational synthesis using AIG rewriting [26]. 
Combinational restructuring for delay optimization [30]. 
 

Mapping 
Mapping with structural choices [14]. 
Mapping with global view and priority cuts [28]. 
Mapping to optimize application-specific metrics [18][19]. 
 

Verification 
Fast sequential simulation [19] 
Improved combinational equivalence checking [27]. 
Improved sequential equivalence checking [29][33]. 
 

The integration of components inside Magic is shown in Fig. 2. The design database 
is the central component interfacing the application packages. The design entry into 
Magic is performed through a file or via programmable APIs.  

Design 
database 

Sequential 
synthesis 

AIG 
rewriting 

File / Code 
interface 

Computing 
choices 

LUT 
mapping 

Retiming 

Structuring 
for delay 

Post-place 
optimization 

Verification  
 

Fig. 2. Interaction of application packages in Magic 

Shown on the right of Fig. 2, is sequential synthesis based on detecting, proving, 
and merging sequentially equivalent nodes. This transformation can be applied at the 
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beginning of the flow, before combinational synthesis and mapping. Another optional 
transform is retiming that reduces the total number of logic levels in the AIG or in the 
mapped network. Reducing the number of logic levels correlates with but does not 
always lead to an improvement in the clock frequency after place-and-route. The 
sequential transforms can be verified by sequential simulation and sequential 
equivalence checking. 

Shown on the left of Fig. 2, is the combinational synthesis flow, which includes 
AIG rewriting, computing structural choices, and FPGA look-up-table (LUT) 
mapping. Computation of structural choices can be skipped if fast low-effort synthesis 
is desired. The result of mapping is returned to the design database or passed on to 
restructuring for delay optimization.  After combinational synthesis, the design can be 
verified using combinational equivalence checking. 

Finally, the box in the bottom right corner represents post-placement resynthesis, 
which includes incremental restructuring and retiming with wire-delay information.  

6.2   Integration of Verification 

Similar to IBM’s tool SixthSense [2], the verification subsystem of ABC is an 
integrated set of applications, divided into several categories: miter simplifiers (i.e. 
sequential synthesis), bug-hunters (i.e. bounded model checking), and provers (i.e. 
interpolation). The high-level interface coded in Python orchestrates the applications 
and determines the resource limits used. An embedded Python interpreter allows for 
defining new procedures in addition to those included. 

An AIG file is read in, and the objective is to prove each output unsatisfiable or 
find a counter-example. The top-level functions are prove and prove_g_pos. The 
former works for single-output properties, while the latter applies the former to each 
output of a multi-output miter, or to several outputs grouped together based on the 
group’s support. The main flow is 

pre_simp → quick_verify → abstract → quick_verify → speculate → final_verify, 

with each function passing the resulting AIG to the next function. At each stage, a set 
of resources is selected to spend on an algorithm. These resources are: total time, limit 
on the number of conflicts in SAT, maximum number of timeframes to unroll, 
maximum number of BDD nodes, etc. The allocation of resources is guided by the 
state of verification and the AIG parameters (the number of PIs, POs, FFs, AIG 
nodes, BMC depth reached, etc), which vary when the AIG is simplified and 
abstracted.   

A global parameter x_factor can be used to increase the resources. If the problem is 
proved UNSAT by one of the application packages, the computation stops and the 
result is returned. . If the problem is found SAT and no abstraction has been done, the 
counter-example is returned. 

The function pre_simp tries to reduce the AIG by applying several simplification 
algorithms: 

• Phase abstraction, trying to identify clock-like periodic behaviors and deciding to 
unfold the design several frames depending on the clocks found and the amount 
of simplification this may allow [6]. 

• Trimming, which eliminates PIs that have no fanouts. 
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• Constraint extraction, which looks for implicit constraints inductively, uses these 
to simplify the design, and folds them back in with a structure such that if ever a 
constraint is not satisfied, the output is forced to be 0 from then on [12]. 

• Forward retiming and sequential FF correspondence, which finds correspondences 
between FFs and reduces the FF count, especially in SEC examples [29]. 

• Strong simplification script simplify, which iterates AIG rewriting, retiming for 
minimum FF (flip-flop) count, k-step sequential signal correspondence with k 
selected based on problem size. Also, the effort spent in signal correspondence 
can be adjusted by using a dedicated circuit-based SAT solver. 

If simplify has already been applied to an AIG, then repeating it is usually fast, so the 
verification flow iterates it several times when other reductions have been done. 

The function quick_verify, performed after each significant AIG reduction, is a low 
resource version of final_verify. These functions try to prove the problem by running 
interpolation or, if the problem seems small enough, by attempting BDD reachability. 

The algorithm abstract is a combination of counter-example abstraction and proof-
based abstraction implemented in a single SAT instance [17]. It returns an abstracted 
version of the AIG (a set of registers removed and replaced by PIs) and the frame 
count it was able to explore. To double check that a valid abstraction is derived, BMC 
(or, if the problem is small enough, BDD reachability) is applied to the resulting 
abstraction using additional resources. If a counter-example is found, abstract is 
restarted with additional resources from the frame where the counter-example was 
found.  

The algorithm speculate applies speculative reduction [32][33]. This algorithm 
finds candidate sequential equivalences in the AIG, and creates a speculative reduced 
model, by transferring the fanouts of each equivalence class to a single representative, 
while creating new outputs, which become additional proof obligations. This model is 
refined as counter-examples are produced, finally arriving at a model that has no 
counterexamples up to some depth explored by BMC. Then, attempts are made to 
prove the outputs of the speculatively reduced model. If all outputs are successfully 
proved, the initial verification problem is solved. If at least one of the outputs failed, 
the candidate equivalences have to be filtered and speculative reduction repeated. 

6.3   Example of Running the Verification Flow 

Below is an example of a printout produced by ABC during verification of an 
industrial design. Comments follow the printout. 

 
abc> Read_file  example1.aig 
PIs = 532, POs = 1, FF = 2389, ANDs = 12049 
abc> prove 
 
Simplifying 
Number of constraints found = 3 
Forward retiming, quick_simp, scorr_comp, trm: PIs = 532, POs = 1, FF = 2342,  
ANDs = 11054 
Simplify:    PIs = 532, POs = 1, FF = 2335, ANDs = 10607 
Phase abstraction:    PIs = 283, POs = 2, FF = 1460, ANDs = 8911 
 



 ABC: An Academic Industrial-Strength Verification Tool 37 

Abstracting 
Initial abstraction:     PIs = 1624, POs = 2, FF = 119, ANDs = 1716, max depth = 39 
Testing with BMC 
bmc3 -C 100000 -T 50 -F 78:     No CEX found in 51 frames 
Latches reduced from 1460 to 119 
Simplify:     PIs = 1624, POs = 2, FF = 119, ANDs = 1687, max depth = 51 
Trimming:     PIs = 158, POs = 2, FF = 119, ANDs = 734, max depth = 51 
Simplify:     PIs = 158, POs = 2, FF = 119, ANDs = 731, max depth = 51 
 
Speculating 
Initial speculation:    PIs = 158, POs = 26, FF = 119, ANDs = 578, max depth = 51 
Fast interpolation:    reduced POs to 24 
Testing with BMC 
bmc3 -C 150000 -T 75:    No CEX found in 1999 frames 
PIs = 158, POs = 24, FF = 119, ANDs = 578, max depth = 1999 
Simplify:     PIs = 158, POs = 24, FF = 119, ANDs = 535, max depth = 1999 
Trimming:     PIs = 86, POs = 24, FF = 119, ANDs = 513, max depth = 1999 
 
Verifying  
Running reach -v -B 1000000 -F 10000 -T 75:    BDD reachability aborted 
RUNNING interpolation with 20000 conflicts, 50 sec, max 100 frames:  'UNSAT‘ 
 
Elapsed time: 457.87 seconds, total: 458.52 seconds 

 
NOTES: 

1. The file example1.aig is first read in and its statistics are reported: 532 
primary inputs, 1 primary output, 2389 flip-flops, and 12049 AIG nodes. 

2. 3 implicit constraints were found, but they turned out to be only mildly 
useful in simplifying the problem. 

3. Phase abstraction found a cycle of length 2 and this was useful for 
simplifying the problem to 1460 FF from 2335 FF. Note that the number of 
outputs increased to 2 because the problem was unrolled 2 time frames. 

4. Abstraction was successful in reducing the FF count to 119. This was 
proved valid out to 39 time frames.  

5. BMC verified that the abstraction produced is actually valid to 51 frames, 
which gives us good confidence that the abstraction is valid for all time. 

6. Trimming reduced the inputs relevant to the abstraction from 1624 to 158 
and simplify reduced the number of AIG nodes to 731. 

7. Speculation produced a speculative reduced model (SRM) with 24 new 
outputs to be proved and low resource interpolation proved 2 of them. The 
SRM model is simpler and has only 578 AIG nodes. The SRM was tested 
with BMC and proved valid out to 1999 frames. 

8. Subsequent trimming and simplification reduced the PIs to 86 and AIG 
size to 513. 

9. The final verification step first tried BDD reachability allowing it 75 sec. 
and to grow to up to 1M BDD nodes. It could not converge with these 
resources so it was aborted. Then interpolation has returned UNSAT, and 
hence all 24 outputs are proved.  



38 R. Brayton and A. Mishchenko 

10. Although quick_verify was applied between simplification and abstraction, 
and between abstraction and speculation, it was not able to prove anything, 
so its output is not shown. 

11. The total time was 457 seconds on a Lenovo X301 laptop with 1.4Gb Intel 
Core2 Duo CPU and 3Gb RAM. 

7   Conclusions and Future Work 

In this paper, we discussed the development of ABC and described its basic 
principles. Started five years ago, ABC continues to grow and gain momentum as a 
public-domain tool for logic synthesis and verification. New implementations, 
improvements, bug fixes, and performance tunings are added frequently. Even the 
core computations continue to improve through better implementation and exploiting 
the synergy between synthesis and verification. Possibly another 2-5x speedup can be 
obtained in these computations using the latest findings in the field. As always, a gain 
in runtime allows us to perform more iterations of synthesis with larger resource 
limits, resulting in stronger verification capabilities. 

Future work will continue in the following directions: 

• Improving core applications, such as AIG rewriting (by partitioning the problem 
and prioritizing rewriting moves) and technology mapping (by specializing the 
mapper to an architecture based on a given lookup-table size or a given 
programmable cell). 

• Developing new applications (for example, a fast incremental circuit-based SAT 
solver or a back-end prover based on an OR-decomposition of the property cone, 
targetting properties not provable by known methods). 

• Building industrial optimization/mapping/verification flows, such as Magic [31], 
targeting other implementation technologies (for example, the FPGA synthesis 
flow can be extended to work for standard cells). 

• Disseminating the innovative principles of building efficient AIG/SAT/ 
simulation applications and the ways of exploiting the synergy of synthesis and 
verification. 

• Customizing ABC for users in such domains as software synthesis, cryptography, 
computational biology, etc. 

ABC is available for free from Berkeley Verification and Synthesis Research Center [3]. 
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