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Abstract
A mathematical model delineating the control strategies in transference of Covid-19 pan-
demic is examined through Atangana–Baleanu Caputo type fractional derivatives. The total
count of people under observation is classified into Susceptible, Vaccinated, Infected and
Protected groups (SVIP). The designed model studies the efficiency of vaccination and per-
sonal precautions incorporated qualitatively by every individual via fixed point theorem.
Stability of the system has been investigated with spectral characterisation of Ulam Hyer’s
kind. Numerical interpolation has been derived by Adam’s semi-analytical technique and
we have approximated the solution. We have proved the theoretical analysis through graph-
ical simulations that vaccination and self protective interventions are the significant role to
decrease the contagious expansion of the virus among the people in process.

Keywords Covid-19 pandemic · ABC derivatives · Multi control measures · Fixed point
theorems · Stability of Hyer Ulam’s kind · Adam’s Bashforth interpolation

Introduction

Infectious diseases have resilient impacts on public health overseas. COVID-19 pandemic has
provoked depletion in health and wealth of the human society since the day of its explosion
in the market of Wuhan, China from December 2019. The entire world is facing the iterative
mayhem arouse as its consequences at full throttle with 437,333,859 confirmed infective
cases and 5,960,972 persons died due to the harshness of the viral disease [1]. Coronaviruses
cause illness with common cold affecting the air way organ of human body. Symptoms of
this vulnerable disease include breathing trouble, body ache, sore throat, runny nose, nausea,
vomiting and diarrhoea [2, 3]. Delta virus, Omicron were few new mutations of nCov-19
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with nippy transmission and inclined fatalities [4]. The Government with health department
have planned effective control strategies. Multiple control measures such as vaccination, self
hygienic habits help in breaking the transference link in a faster note [5]. Knowing the severity
of the virus is primary to implement control measures and notify to the heedless. ‘An ounce of
prevention is worth a pound of cure’ recommend that personal precautionary measures is the
major control strategy. Guarding unvaccinated family members, babies below 5 years of age,
pregnantwomen, immune-compromised high risk individuals place top in the list [6].Copious
self curb measures such as covering mouth and nose with a mask, be isolated, neglecting
crowds, personal hygiene, disinfecting hands and avoid touching eyes,ears, nose and mouth
were forced to follow strictly. Non-pharmaceutical immunity boosters armed us to defend
the dreadful virus naturally. Herbal nutraceutical diet with warm water intake, meditation,
Pranayamapractice, turmeric, cumin, coriander and garlic rich foods, steam inhalation, herbal
tea improvises and regulates airway passage in process triggering the defence system onset.
Mass inoculation on emergency mode is also an efficient control method during pandemic
situation. Innoculation doses combats every individuals to defense the exposure of the viral
contaminated neighbourhoods. Successful implementation of vaccine shots to each and every
susceptible adults results in reducing the infectious complications of the disease [7, 8]. To
face the hazardous stream of microparasitic invasion, several vaccines have been developed
and totally seven were approved in India, out of which Covishield, Covaxin and Sputnik V
were used for vaccination drive since Jan 2021, to downstream the morbidity and fatalities.
In India, vaccination programmes were commenced initially to strengthen the national health
care systemby vaccinating health care professionals, workers and adult groups above 60 years
of age from March 2021. Later, the vaccine shots were injected for other age groups above
18 years eventually. All Indians inspite of their economic status, were entitled to vaccination
process at free of cost.Due to abundant precautionary actions against the emergingmutants of
variants of concern (Voc), inoculating children of 15–18 years age, have been initiated from
Jan 3, 2022 very effectively [9]. Covid-19 vaccines quicken up the immunity by supplying
a sack of memory cells called T- Lymphocytes and B- Lymphocytes to arm from infections
latterly [9, 10]. Indefiance of the high impactness of vaccines over the late virulent strains,
vaccine efficacy wanes rapidly after 6 months of duration, urging the necessity of booster
shots to protect the people from death and more complexity [10–12].

Mathematical modelling the real world complex phenomena help us to understand the
dynamics of a problem. Recently, Epidemic modelling equations in terms of arbitrary order
visualises the transference dynamics and control process of contagious diseases. Epidemio-
logical models occupies an impulsive act in COVID-19 disease dynamics with improvised
awareness on the basics of a specific illness. The dynamical behaviour of disease spread is
well understood by modelling the phenomena. Despite this, mathematical models of wide
usage in several microphysical phenomena covers Magnetohydrodynamics(MHD) of 2D,
3D fluid flow, nano fluid flows and thermal conduction. Physical dynamics of electrically
conducting fields using homotopy analysis were studied in [13] by parameters influencing
heat transfer and velocity throughMHD electro-osmosis in non-Newtonian fluid with various
viscosity used to design micro-biomedical chips and DNA study in [14], magnetic effect and
radiative flow of Maxwell nanoliquid system depicts the gradual rising of thermal parame-
ters resulting in reduced level of microorganisms, mixed convective entropy [15], Brownian
motion and thermophoresis of MHD flow in Buongiorno model [16]. Nonlinear models of
stretching and free stream velocities predicted heat generation/absorption and stagnation
point flow at an inclined applied magnetic field and tangent hyperbolic material [17, 18],
Cattaneo-Christov heat flux model comparing 2D squeezing flow with that of Fourier’s law
of heat conduction [19] and effects of nanofluid flow usingVonKarman transformations [20].

123



Int. J. Appl. Comput. Math (2022) 8 :130 Page 3 of 25 130

Manymodelling scientists have contributed several results involving systems of ordinary cal-
culuswhich employs only the current state activities and also inaccurate about its real existing
state. To its contrast, fractional order systemswith non-local aspects globalise the past history
covering a vast neighbourhood matters. The global functioning of fractional calculus attracts
analysts to analyse real world anomalous issues of many fields. The transmission dynamics
of an epidemic model demands for the memory patterns, past events and inbuilt hereditary of
micropathogenic infections on host’s immunity. To all intents and purposes arbitrary order
calculus with long term memory is the most preferable tool by many researchers [21]. The
neighbourhood covering feature of fractional kernels indulge a more sensible approach for
simulating COVID-19 pandemic dynamics. In contempt of untiring computations of frac-
tional operators, variety of numerical algorithms have been solved for rapid convergence
of solutions. In addition to this, biophysical applications of fractional order models include
Caputo modelling of Casson fluid with Fourier’s law [22], digital mask control design using
Atangana Baleanu derivatives were investigated by Ghanbari and Atangana effectively [23],
disease dynamics of various biological models also been studied for visceral leishmaniasis
[24], dengue fever therein [25] and toxoplasmosis investigated therein [26].

Fractional calculus formulates non-integer type integrals and derivatives [27]. GreatMath-
ematicians Riemann–Liouville, Letnikov etc. have contributed their findings on singular
exponential kernels, while Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) developed
non-singular Mittag–Leffler kernel operators [28]. Both CF and AB type integrals are exten-
sively used by biologists, physicist and electro-chemical therapists [29–31]. The newlier
preeminent definition captivated byAtangana,Baleanu andCaputo isABCderivative in 2016,
which exhibits singular kernel via non-singular kernel detailed in [28–38]. Some of the up-to
date fractional models employing estrange kinetic energy were solved efficiently in fluid
flow, diffusive behaviour analysis, Earthquake dynamics, viscoelasticity properties,damping
oscillator and optical sciences, Astro and chemical physics, Finance, Geological changes
etc..Fractional order models of some physical unsteady natural convection, Newtonian effect,
MHD of Maxwell fluid in AB and CF forms using Laplace transformation and impact of
magnetic effect on heat transfer over porous inclined surface were explored in [32, 33] Frac-
tional derivatives and integrals are used for analysis of disease models effectively for its
non-local behaviour. The memory index of the biological immune system have been deeply
captured in in [34, 35]. Fractional order reproducing kernel algorithms were also developed
and studied efficiently for physical interpretations of Lienard’s equation and damping Van
der pol oscillator by authors in [36, 37]. Numerical solutions for Fredholm and Volterra type
integro differential equations were analysed and contributed by authors for fractional AB
type derivatives as well in [38, 39]. The Mittag Leffler function is the multifaceted function
in recent fractional order epidemiological systems which inherits the reproducing memory
principle. Analytical herd behaviour of infected prey on predators influenced by external
toxicants were studied in [40, 41].

India reported 38,566,027 positive infected cases with 488,422 deaths with 99% recovery
rate as of February 2022. Various predictive models have been formulated on COVID-19
disease in recent days. Kamal Shah et al., framed a COVID-19 mathematical model and thor-
oughly analysed the effectual reactions of the disease [42]. Oud, M.A, Ali, et al., studied the
disease model on COVID-19 with multicontrols quarantine and isolation [43]. Muhammed
Sinan et al., have analysed a compartmental model PSEIT with control strategies inhibited
more feasibly [44]. Qualitative and stability in Hyer Ulam’s style [45] analysis of fractional
Caputo type model have been demonstrated by several modelling analysts and the better
desired result have been suggested for most minimal order of derivatives [42–48]. In this
work, we present a novel epidemiological model of ABC derivatives for COVID-19 with
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effective self-hygienic control. This paper analyses SVIP model with self- precautionary
activities avoiding new infections, infection rate of susceptibles, relapse rate of vaccinated
susceptibles after the implementation of effective vaccination programme for immunising
against COVID-19 ailment.

An ABC type non-integer order disease model that encapsulates vaccination and self-
hygienic control measures to reduce the complicate virulence of the infection is built in this
paper. The significant features investigated here are.

(i) the emergency need of vaccination in minimising viral transmission,
(ii) effect of increasing vaccination rate and reduced contact rate in reducing severity of

the virus and
(iii) personal hygienic habitual impacts on self- protection against the exposed infectives.

This manuscript synopsizes the following sections, basic necessary definitions and results
of ABC fractional derivatives were presented in “Preliminary Definitions and Results”
section, Model formulation in “Formulation of Mathematical Model SVIP” section, Quali-
tative analysis with some basic properties of the model and its stability in “Basic Properties
of the Model” section, Numerical formulation and the interpreted graphical results were
discussed in “Numerical Method and Results” and “Results and Discussion” sections.

Preliminary Definitions and Results

In this section, some basic necessary definitions and fundamental results needed for the
analysis of our model were presented. The fractal fractional derivative of ABC type is the
most powerful of all other fractional operators, which integrates the memory kernel called
Mittag Leffler function is defined on Banach space to employ the existence of solution for
the non-linear system modelled in (1).

Definition 2.1 Let F be defined on the space [0, T], F ′ � (0, T ) ⊂ R, [0, T] � (F, R) be
functions with continuity. Define T: [0, 1] → R satisfies,

‖(S,V, I, P)‖ � max
t∈[0,T ]{‖S(t) + V(t) + I(t) + P(t)‖} where S,V, I, P ∈ [0,T].

The fractal fractional derivative of ABC is given by,

ABC Dη
0+ f(t) � M(η)

1 − η

t∫

0

d

dy
f(y)Kη

( −η

1 − η
(t − y)η

)
dy (1)

where M(η) � (1 − η) + η
�η

is the normalisation operator takes only real positive values
satisfying M(η) � 1 for η � 0 and 1, η ∈ [0, 1]. The main purpose of applying this type
of multipliers assures maintaining balance in modelling complex problems while integrating
over the non-integer order η.

Here Kη-memory kernel of Leffler category, generalisation of exponential function given
by

Kη(f) �
∞∑
k�0

f k

Kη + 1
(2)
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The corresponding integral is defined as follows,

AB I f (t) � 1 − η

M(η)
f(t) +

η

M(η)�η

t∫

0

(t − y)η−1f(y) dy (3)

The first term exists in (4) for η � 0, and vanishes for η � 1.

Definition 2.2 The iterated solution to the given model of fractional order η ∈ [0, 1] is given
by.

ABC Dη
0+ f(t) � f0 +

1 − η

M(η)
f(t) +

η

M(η)�η

t∫

0

(t − y)η−1f(y) dy (4)

where ABC Dη
0+ f(t) is the η-order fractional derivative of ABC type, f0-initial value of the

function f(t).

Schauder’s Fixed Point Theorem [49]

For a non-empty closed and convex subset N of a Banach spaceH. Let us assume a continuous
map N onto a relatively compact f (N) ⊂ H, then there exists a unique fixed point in N, (i.e.)

f (x) � x for x ∈ N.

Krasnoselski Fixed Point Theorem [49]

Let N 	� φ, closed and convex subset of a Banach space (H, ‖.‖), T1 and T2 maps N into S
such that,

(i) T1x + T2 y ∈ N for all values x, y in N.
(ii) T1 is continuous, T1 N ⊂ N, which is compact in H.
(iii) A contraction map T2, satisfying T1 x + T2 x � x.

Definition

A solution x � ϕ(t) of (1) is,

(i) attractive if the zero solution ϕ(t) � 0 such that ‖x0‖≤ ε, ⇒ lim
t→∞ x0 � 0.

(ii) Attractive and stable ⇒ asymptotic stability.

Formulation of Mathematical ModelSVIP
The mathematical disease model in this study is framed using references therein [43–48]
with various control measures. It has been noted that apart from susceptible infections,
inefficient vaccinated infections are also possible and taken into count. Many are found to be
well protected due to self-preventive actions which are non-medicinal. Each new infants are
suscepted significantly to get contagious also considered. The sum of persons into account
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is N(t) � S + V + I + P. The entire strength is split up into four distinct sub-individuals as
follows:

(i) Susceptible population S(t): The class of unvaccinated susceptible persons to get
infected at any time.

(ii) Vaccinated population V(t): The class of vaccinated people, susceptible to get infected
in case of vaccine inefficacy.

(iii) Infected population I(t): The class of infected persons both from unvaccinated and
vaccinated susceptibles.

(iv) Protected population P(t): The class of self protected susceptibles and those recovered
from infection.

Assumptions of the parameters involved in the model:

(i) Total population of the contaminated region under study be assumed as (N (t)).
(ii) The persons entering the susceptible population S(t) were assumed as ‘a’
(iii) Let ‘v’ be the proportion of vaccinated individuals with the total probability 0 < v ≤

1. The unvaccinated persons ‘va’ from S(t) gets vaccinated and move on to V(t).
(iv) Infection rate of susceptibles β

N moves into I(t).
(v) Infection rate of vaccinated individuals α

N due to vaccine inefficacy added to infected
group I(t).

(vi) Natural death occurring among all individuals denoted by μ.
(vii) Due to severe complications of the disease, mortality of infected persons denoted by

φ removed from I(t).
(viii) Natural immunity gained due to recovery from infection is assumed as γ, moves to

P(t).
(ix) Even protected individuals P(t) gets infected at the rate of δ, enters in I(t).
(x) Rate of self -preventive practices defending from infection is denoted as Ψ , added to

P(t).

The novel vaccination model with personal precautions for Covid-19 with the notations
discussed above is formulated in the commensurate system (5) in terms of equal ABC frac-
tional order ‘η’.

ABC Dη
0+S(t) � (1 − v)a − βSI

N − μS − ΨS
ABC Dη

0+V(t) � va − αVI
N − μV

ABC Dη
0+I(t) � βSI

N + αVI
N − μI − γI − φI + δP

ABC Dη
0+P(t) � γI + ΨS − μP − δP

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

where 0 < η < 1,ABC Dη
0+ is the ABC derivative of order η, with the initial conditions

S(0), V(0), I(0), P(0) are all non-negative (Table 1).

Basic Properties of theModel

Equilibrium Point Analysis [44, 46, 50]

By solving the commensurate model [48] of same order η, we obtain two state of equilibrium
as follows,

Infection free equilibrium (IFE):
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Table 1 Numerical data for the parameters

Parameters Description Value

N Total population 1401.23 in millions

S0 Initial susceptible population 0.0031941

V0 Initial susceptible population 0.000392

I0 Initial susceptible population 0.0003543

P0 Initial protected population 0.00033

a Total recruitment rate 0.06987

v Rate of Initial vaccination 0.000492

β Transmission rate of susceptibles 1100.01, 1000.00, 800.13

α Infection rate of vaccinated susceptibles 310, 200.123, 0

γ Recovery rate from disease 0.003

δ Relapse rate of protected individuals 0.00033

μ Natural death rate 0.00002

φ Disease induced death rate 0.00003

	 Self-prevention rate of protected population 0.0261, 0.051, 0.078, 1

Assuming the infections in (5) to be zero we derive the infection free point,

′E0(S0,V0, I0, P0) �
(

(1 − v)a

μ + Ψ
,
va

μ
, 0,

Ψ (1 − v)a

(μ + Ψ )(μ + δ)

)
, if I � 0 (6)

Infection persistent equilibrium (IPE):
In view of, continuous prevalence of infective cases, the values of IPE given by

Sp,Vp, Ip, Pp derived from (5) follows,

′Ep
(Sp,Vp, Ip, Pp

) �
(

(1 − v)a

βI + (μ + Ψ )N0,
N0,,

va

αI + μN0,
N0,, Ip,

γI + ΨS
(μ + δ)

)
if I 	� 0.

(7)

Stability and Sensitivity Around the Threshold Metric

Theorem 4.1.2 The threshold value R0 � βS + αV− N0(μ + γ + φ) is the pandemic metric
of secondary infections transmitted from an infected person, then the framed model (5)

(i) remains stable if R0 � β(1−v)a
(μ+γ+φ)(μ+Ψ )N0

+ α(va)
(μ+γ+φ)μN0,

< 1, observing the controllability
of the disease.

(ii) will be persistently unstable if R0 > 1.

Proof The stability of infection free state ′E0 can be examined by deriving the next generation
matrix FV−1, for system (5). By arraying the new positive infective cases of (5) in the matrix
F and migration of infected to other compartments as V , we get,

F �
(

βS+αV
N 0
0 0

)
, V �

(
0

μ + γ + φ

)

The largest spectral radius, ρ(FV−1) is the epidemic threshold parameter,

R0 � βS + αV − N0(μ + γ + φ) (8)
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(i) The (IFE) ′E0 exhibits that, a rapid control of the disease will happen only if,

β(1 − v)a

βI + (μ + Ψ )N0,
+

α(va)

αI + μN0,
− N0(μ + γ + φ) < 1. (9)

(ii) Analysing the infection prevalent state, the stability around the (IPE) ′Ep point,

From (7) we have
(

β(1−v)a
βI+(μ+Ψ )N0,

+ α(va)
αI+μN0,

− N0(μ + γ + φ)
)
I + δPN0 � 0

I 	� 0, Then

(
β(1 − v)a

βI + (μ + Ψ )N0,
+

α(va)

αI + μN0,
− N0(μ + γ + φ)

)
I � −δPN0 (10)

Ip � β(1−v)a
βI+(μ+Ψ )N0,

+ α(va)
αI+μN0,

≤ N0(μ + γ + φ − δP), then the disease spread in the region
will prevail persistently.

Sensitivity Analysis

Sensitivity analysis are very useful and highly supported by eco-epidemiologists to iden-
tify the alleviating factors of contagious spread. Sensitivity ratios were calculated partially
differentiating with respect to every parameters of the threshold value R0. This suggests a
comparative study on impacts and effects of the parameters defining the disease dynamics.
These indices influence all the primary note about the transmission, reduction and control of
the viral parasites.

Definition 4.2.1 The threshold value R0 defines the sensitivity ratio by partial derivatives of
its every parameter, S� � ∂R0

∂�
�
R0
, where � - assumes all the parameters defining R0.

The reproduction ratio plays a significant role in predicting the control of an ailment.
From the fied data of Covid-19 in India, R0 were very high ranging between 2 and 3 in the
emerging months of 2020. It started to decline reaching a local maximum after 7 months
reporting stability and control with R0 � 0.99 in Mid October 2020. There was a sudden
hike recorded in early days of 2021, due to contagiousness of the microparasites. Moreover,
the positive consequences of rapid vaccination and self-protectiveness helps to reduce the
infection spread later at the end of 2021. Still there were instable peak caused due to seasonal
changes in Dec 2021 [51].

By differentiating directly R0, The sensitivity relation between all parameters from (8),
(9) are calculated and interpreted with numerical values as follows in Table 2.

∂R0

∂β

β

R0
� βS

βS + αV ;
∂R0

∂α

α

R0
� αV

βS + αV ;
∂R0

∂Ψ

Ψ

R0
� − [αV + μβ(1 − v)]a

[μβ(1 − v)a + α(va)(μ + Ψ )]
;

∂R0

∂φ

φ

R0
� − φ

N0(μ + γ + φ)
;

∂R0

∂a

a

R0
� 1

N0(μ + γ + φ)

(
β(1 − v)

(μ + Ψ )
+

αv

μ

)

∂R0

∂v

v

R0
� v[αa(μ + Ψ ) − μaβ]

[μβ(1 − v)a + α(va)(μ + Ψ )]
;

∂R0

∂μ

μ

R0
� − μ

(μ + γ + φ)

∂R0

∂γ

γ

R0
� − γ

N0(μ + γ + φ)

The relation between the disease spread and the parameters explaining the behaviour of
viral pathogens were interpreted which helps to design and implement effective control steps.
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Table 2 Sensitivity indices for
numerical input from Table 1 Parameters Sensitivity index Value

a Sa 6.9114

v Sv 0.45963

β Sβ 0.94291

α Sα 0.0571

γ Sγ − 0.98361

μ Sμ − 0.00656

φ Sφ − 0.00984

	 S� − 0.525687

From the above table, the parameters a,v, β, α, 	 shows a direct positive dominance over
the pandemic threshold value R0 which implicates the magnification or lessening of these
parameters reacts more sensitive to reproduction number R0. For instance, increasing the
values by 10(say), we have a � 69.114, v � 4.5963, β � 9.4291, α � 0.571, will sensitively
hyperbolize R0. Nevertheless, the negative sensitivity ratio with respect to recovery rate γ

� 9.8361, natural death rate μ � 0.0656 and disease death rate φ � 0.0984, self- protective
rate, 	 � 5.2568 contradicts the increment of 10 resulting in decrement of the metric R0.
Thus by increasing the rate of vaccination, self-prevention results in better controllability of
the pandemic spread.

Stability analysis

The stable condition of the equilibrium points is investigated in this section. To its key note,
the Jacobian matrix of (5) is arrayed as,

J �

⎛
⎜⎜⎜⎜⎝

−
(

βI
N + μ + Ψ

)
0 −βS

N 0

0 −αI
N − μ −αV

N 0
βI
N

αI
N

βS+αV
N − μ − γ − φ δ

Ψ 0 γ −δ − μ

⎞
⎟⎟⎟⎟⎠

Local stability of infection-free equilibrium (IFE)

Theorem 4.3.1 The infection free equilibrium (IFE) point
(

(1−v)a
μ+Ψ

, va
μ

, 0, Ψ (1−v)a
(μ+Ψ )(μ+δ)

)
exhibits local asymptotic stability if R0 < 1 and unstable if R0 > 1.

Proof The model (5) is linearized by deriving the partial derivatives to form the Jacobian
form.

The Jacobian matrix about (IFE) is arrayed as,

J(′E0) �

⎛
⎜⎜⎜⎜⎝

−(μ + Ψ ) 0 − β
N

(1−v)a
μ+Ψ

0

0 −μ −αV
N 0

0 0
β

(1−v)a
μ+Ψ

+α va
μ

N − μ − γ − φ δ

Ψ 0 γ −δ − μ

⎞
⎟⎟⎟⎟⎠
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The eigen roots of the above matrix are obtained from its characteristic equation.

∣∣J(′E0)−λI
∣∣�

∣∣∣∣∣∣∣∣∣∣∣∣

−(μ + Ψ ) − λ 0 − β
N

(1−v)a
μ+Ψ 0

0 −μ − λ − α
N

va
μ 0

0 0

(
β

(1−v)a
μ+Ψ

+α va
μ

N − (μ + γ + φ)

)
− λ δ

Ψ 0 γ (−δ − μ) − λ

∣∣∣∣∣∣∣∣∣∣∣∣
� 0

yields λ1 � (μ + Ψ ), λ2 � μ and roots of λ 2 + k1λ + k2 � 0, where

k1 � −
(

β
(1−v)a
μ+Ψ

+ α va
μ

N
− (2μ + γ + φ + δ)

)
,

k2 � −
[
(δ + μ)

(
β

(1−v)a
μ+Ψ

+ α va
μ

N
− (μ + γ + φ)

)
+ δγ

]

For the controllability of infection if R0 < 1 with all the non-negative parameters, we have
the roots with negative principal parts.

k1�
β

(1−v)a
μ+Ψ

+α va
μ

N
−(2μ + γ+φ + δ) < 0,

β
(1−v)a
μ+Ψ

+ α va
μ

N
< (2μ + γ + φ + δ) ⇒ k1 > 0.

k2 � (δ + μ)

(
β

(1−v)a
μ+Ψ

+ α va
μ

N
− (μ + γ + φ)

)
+ δγ < 0

(
β

(1−v)a
μ+Ψ

+ α va
μ

N

)
+

δγ

(δ + μ)
< (μ + γ + φ) ⇒ k2 > 0.

ByRouth–Hurwitz criterion, the system (5) is stable around the ′E0, if R0 < 1 and unstable
if any of the real eigen-root is positive.

The unstability R0 > 1 of the IFE point occurs if k2 < 0 ⇒ ′E0 is unstable.

Local stability of infection-persistent equilibrium (IPE)

The IPE is the steady-state point at which the infection spread persists still among the peo-
ple. For non-zero positive values of ′Ep

(Sp,Vp, Ip, Pp
)
, let us obtain the Jacobian and its

characteristic values.

J
(′Ep

) �

⎛
⎜⎜⎜⎜⎝

−
(

βIp
N + μ + Ψ

)
0 −βSp

N 0

0 −αIp
N − μ −αVp

N 0
βIp
N

αIp
N

βSp+αVp
N − μ − γ − φ δ

Ψ 0 γ −δ − μ

⎞
⎟⎟⎟⎟⎠
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The eigenvalues of the above Jacobian are obtained from its characteristic equation.

∣∣J(′Ep
) − λI

∣∣

�

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
(

βIp
N + μ + Ψ

)
− λ 0 − βSp

N 0

0 −
(

αIp
N + μ

)
− λ − αVp

N 0

βIp
N

αIp
N

(
βSp+αVp

N − (μ + γ + φ)

)
− λ δ

Ψ 0 γ (−δ − μ) − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� 0

The roots of λ3 − l1λ2 + l2λ − l3 � 0 and λ � −(δ + μ) are the eigen values of J(′Ep)
with

l1 � −
(

βSp−βIp+αVp

N
−(3μ+γ+Ψ +φ)

)

l2 � 1

N

[
Ip

(
α(γ + φ − Ψ ) + β(γ + φ) − αβ

N

(Sp + Vp − Ip
))

−Ψ
(
αSp + βVp

) − 2μ
(
αVp + βSp − βIp

)
]

+ μ
[
3(μ + Ψ ) + 2γ + φ)

]
+ Ψ (γ + φ)

l3 � − 1

N

{[
αβIp
N

(
μ
(Sp+Vp

))
+ΨSp−(μ+γ+φ)Ip

]
+Ψ

[
μ
(
αVp + βSp

) − αIp(γ + φ)
]

−μIp
[
(α + β)(γ + φ) + Ψ α

] − μ2
[
(α + β)Ip − (

αVp + βSp
)]

}

− μ2[(μ + γ + φ + Ψ )
] − Ψ μ(γ + φ)

The coefficients of the characteristic equation reveals that system (5) is locally asymptotic
stable around the infection persistent point ′Ep , if l1 l2 < l3 and unstable if any of the real
eigen-root is positive with l1 l2 > l3.

Positivity, feasible adherence and persistence

This section ensures the positive and feasible well-posedness of the bio-mathematical model
(5) for every initial value set (S(0),V(0), I(0), P(0)) defined on [0, 1).

Lemma 4.4.1 Positivity and Feasible adherence
The eigen value solution (S,V, I, P) of (5) hold the following,

(i) For the non-negative initial values of the subgroups defined in (1) satisfying S(0) >

0,V(0) > 0, I(0) > 0, P(0) > 0, we have an unique perturbated solution S(t) >

0,V(t) > 0, I(t) > 0, P(t) > 0 defined in [0, 1).
(ii) The eigen value solution (S,V, I, P) of (5) is adherely bounded in the feasible region.{

(S,V, I, P)εR4
}
, o < N (t) ≤ a

μ
, where N (t) � S + V + I + P.

Proof The proof of (i) assumes the potential state of all variables,

At S � 0,ABC Dη
0+S(t) � (1 − v)a ≥ 0

At V � 0,ABC Dη
0+V(t) � va ≥ 0

At I � 0,ABC Dη
0+I(t) � δP ≥ 0

At P � 0,ABC Dη
0+P(t) � γI + ΨS ≥ 0

Hence the variables defined by
{
(S,V, I, P)εR4

}
are all non-negative.
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To prove the part (ii), Adding all the sub-populations of (1), we have∑
ABC Dη

0+(S,V, I, P) � ABC Dη
0+N (t)

≤ a − μN (t) − φI(t)
ABC Dη

0+N (t) ≤ a − μN (t)

Integrating upon both sides, we get

N (t) � − a

μ
e−μt +

a

μ
+ N (0)e−μt

� a

μ

(
1 − e−μt ) + N (0)e−μt ,

which yields some positive constant.
Hence for infinitely large time t , The feasible adherent least upper bound of N (t)) ≤ a

μ
.

Persistence of the ailment

The persistence of the ailment for a long period is exhibited in this lemma.

Lemma 4.4.2 Let 〈tn〉 be a sequence of time prevalence of the epidemic system, as n → ∞,
S(tn) → f, V(tn) → g, I(tn) → 0 and P(tn) → h, then for every solution (S,V, I, P) of
the model (5) we have,

f � (1 − v)a

μ + Ψ
, g � va

μ
, h � Ψ (1 − v)a

(μ + Ψ )(μ + δ)
.

Proof Let us assume a sequence 〈tn〉 of time, the disease spread continues to persists in a
region.

From Lemma 4.4.1, it is clear that, (1−v)a
μ+Ψ

≥ f ≥0, va
μ

≥ g ≥ 0 and Ψ (1−v)a
(μ+Ψ )(μ+δ)

≥ h ≥ 0
for infinitely large t , subject to the vanishing infections I(tn) → 0.

Let the solution (S,V, I, P) of (5) belongs to the limit point invariant set,

� �
{
(S,V, I, P)εR4, o < N (t) ≤ a

μ

}
, where N (t) � S + V + I + P.

The limit value ( f , g, 0, h) ∈ (S0,V0,I0, P0
)
, for every (S,V, I, P) ∈ ω, as n → ∞.

It follows that, for every t ∈ [0, T] ⊂ R, S(t) � S0 +

(
f − 1

μ+Ψ
(1−v)a

)
e
−
(

(1−v)a
μ+Ψ

)
t
.

V(t) � V0, +

(
g − 1

μ
va

)
e
−
(

va
μ

)
t
, P(t) � P0 +

(
h − 1

(μ+Ψ )(μ+δ)
Ψ (1−v)a

)
e
−
(

Ψ (1−v)a
(μ+Ψ )(μ+δ)

)
t
, I(t) � 0.

On contradicting the fact of non-negativity of all values,S(t),V(t) and P(t) turns negative
when tn → −∞.

Unique solution existence

Existence of unique solution is guaranteed by functional analysis of non-linear functions
defined on a Banach space. Theorem of fixed point indicates the consideredmodel (5) possess
atleast single solution in [0, T].
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Let us consider, L(t , S), M(t , V), N(t , I), O(t , P) are continuous kernel functions with
respect to S(t), V(t), I (t) and P(t) respectively.

ABC Dη
0+S(t) � (1 − v)a − βSI

N − μS − Ψ S � L(t,S)

ABC Dη
0+V (t) � va − αVI

N − μV � M(t,V)

ABC Dη
0+ I (t) � βSI

N + αVI
N − μI − γ I − φ I + δP � N (t, I)

ABC Dη
0+P(t) � γ I + Ψ S − μP − δP � O(t, P)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

Reformulation of (11) in the form of AB integral as expressed in (4) are given by,

S(t) � S0 +
1−η
M(η)

L(t,S(t)) + η
M(η)�η

t∫
0
(t − y)η−1L(y,S(y))dy � L1 + L2

V(t) � V0 +
1−η
M(η)

M(t,V(t)) + η
M(η)�η

t∫
0
(t − y)η−1M(y,V(y))dy � M1 + M2

I(t) � I0 + 1−η
M(η)

N(t, I(t)) + η
M(η)�η

t∫
0
(t − y)η−1N(y, I(y))dy � N1 + N2

P(t) � P0 +
1−η
M(η)

O(t, P(t)) + η
M(η)�η

t∫
0
(t − y)η−1O(y, P(y))dy � O1 + O2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

For the real world applications of nonlinear functional system, the existence of the model
is proved with the help of fixed point theorems. In the point of Krasnoselski’s theorem on
fixed point, let us group the governing equations (12) and prove them as contraction maps
A
(
L1, M1, N1,O1

)
and B(L2, M2, N2, O2) of continuous compact integrals, where

L1 � S0 +
1 − η

M(η)
L(t,S(t)), L2 � η

M(η)�η

t∫

0

(t − y)η−1L(y,S(y))dy

M1 � V0 +
1 − η

M(η)
M(t,V(t)), M2 � η

M(η)�η

t∫

0

(t − y)η−1M(y,V(y))dy

N1 � I0 + 1 − η

M(η)
N(t, I(t)), N2 � η

M(η)�η

t∫

0

(t − y)η−1N(y, I(y))dy

O1 � P0 +
1 − η

M(η)
O(t, P(t)), O2 � η

M(η)�η

t∫

0

(t − y)η−1O(y, P(y))dy (13)

Theorem 4.5.1 The non-linear maps A
(
L1, M1, N1,O1

)
:[0, T] x R x R x R → R4 defined in

(8) satisfy the Lipschitzian contractive condition for constants KL , KM , KN , KO > 0.

Proof Let the operators A
(
L1, M1, N1,O1

)
:[0, T] x R x R x R → R4, defined on a complete

normed linear space with norm,

‖(S,V, I, P)‖ � max
t∈[0,T ]{‖S(t) + V(t) + I(t) + P(t)‖}where S,V, I, P ∈ [0,T].
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First let us prove that A
(
L1, M1, N1,O1

)
is a contraction map.

For S(t) and Ŝ(t), we have.∥∥∥L(S,V, I, P)(t) − L
(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥
�

∥∥∥∥(1 − v)a − βSI
N

− μS − ΨS − (1 − v)a +
βŜI
N

+ μŜ + ΨS
∥∥∥∥

�
∥∥∥∥βI
N

(
S − Ŝ

)
− μ

(
S − Ŝ

)
− Ψ

(
S − Ŝ

)∥∥∥∥∥∥∥L(S,V, I, P)(t) − L
(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥
≤

∥∥∥∥
(

βI
N

+ μ + Ψ

)∥∥∥S − Ŝ
∥∥∥
∥∥∥∥

≤
∥∥∥∥
(

βI
N

+ μ + Ψ

)∥∥∥∥
∥∥∥S − Ŝ

∥∥∥
∥∥∥L(S,V, I, P)(t) − L

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤ KL

∥∥∥S − Ŝ
∥∥∥, where KL �

(
βI
N

+ μ + Ψ

)

Similarly for other mappings, M,N,O we derive,
∥∥∥M(S,V, I, P)(t) − M

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤ KM

∥∥∥V − V̂
∥∥∥, where KM

∥∥∥�
( α

N
‖I‖ + μ

)∥∥∥
∥∥∥N(S,V, I, P)(t) − N

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤ KN

∥∥∥I − Î
∥∥∥, where KN �

∥∥∥∥
(

βS + αV
N

+ μ + γ + φ

)∥∥∥∥∥∥∥O(S,V, I, P)(t) − O
(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤ KO
∥∥P − P̂

∥∥, where KL � ‖(μ + δ)‖

This shows that, for A
(
L1, M1, N1,O1

)
, we have.

∥∥∥A(S,V, I, P)(t) − A
(
Ŝ,V̂,Î, P̂

)
(t)

∥∥∥ � 1 − η

M(η)
max
t ∈[0,T]

∣∣∣(S,V, I, P(t) −
(
Ŝ,V̂,Î, P̂

)
(t)

∣∣∣
≤ 1 − η

M(η)

∥∥∥(S,V, I, P) −
(
Ŝ,V̂,Î, P̂

)∥∥∥
≤ 1 − η

M(η)
K

with K � max{KL , KM , KN , KO} < 1 is Lipschitzian constant.

⇒ A(S,V, I, P) is a non - expansivemap.

To prove B(L2, M2, N2, O2) is compact and continuous:
Let us assume the modulus of all continuous operators L,M,N,O, defined in (8) are posi-

tively bounded with constants CL ,CM ,CN ,CO ,OL ,OM ,ON ,OO satisfying,

|L(t,S)| ≤ CL‖S‖ +OL

|M(t,V)| ≤ CM‖V‖ +OM

|N (t, I)| ≤ CN‖I‖ +ON

|O(t, P)| ≤ CO‖P‖ +OO

Let us consider a closed subset B of Z as B � {(S,V, I, P)∈ Z /‖(S,V, I, P)‖≤ �, � >

0}.
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For (S,V, I, P)∈B, we have,

⇒ ‖L2(t,S)‖ � max
t∈[0,T]

∣∣∣∣∣∣
η

M(η)�η

t∫

0

(t − y)η−1L(y,S(y))dy

∣∣∣∣∣∣

≤ ξη

M(η)�η

ξ∫

0

(ξ − y)η−1|L(y,S(y))|dy

≤ ξη

M(η)�η
CL� +OL

In the same way, we have

‖M2(t,V)‖ ≤ CM� +OM

M(η)�η
, ‖N2(t, I)‖ ≤ CN� +ON

M(η)�η
, ‖O2(t, P)‖ ≤ CO� +OO

M(η)�η

Now let us derive the maximum norm of ||B (L2, M2, N2, O2)|| as,
||B(L2, M2, N2,O2)||� ≤ ξη

M(η)�η

[
(CL + CM + CN + CO )� +OL +OM +ON +OO

] �
£, a positive constant.

Hence, ||B (S,V, I, P)||≤ £ ⇒ B is an uniformly bounded operator.
For t1 < t2 ∈ [0, T], we have.
To prove B is equi-continuous for t1 < t2 ∈ [0, T].

|L2(t2,S) − L2(t1,S)|

� η

M(η)�η

∣∣∣∣∣∣
t2∫

0

(t − y)η−1L(y,S(y))dy −
t1∫

0

(t − y)η−1L(y,S(y))dy

∣∣∣∣∣∣

≤ η

M(η)�η

⎛
⎝

t2∫

0

(t − y)η−1 −
t1∫

0

(t − y)η−1

⎞
⎠[(CL )� +OL ]

≤ (CL)� +OL

M(η)�η

(
tη2 − tη1

)
(14)

Also for M2, N2, O2 satisfies inequality in (14),

|M2(t2,V) − M2(t1,V)| ≤ (CM )� +OM

M(η)�η

(
tη2 − tη1

)

|N2(t2, I) − N2(t1, I)| ≤ (CN )� +ON

M(η)�η

(
tη2 − tη1

)

|O2(t2, P) − O2(t1, P)| ≤ (CO)� +OO

M(η)�η

(
tη2 − tη1

)

⇒ ‖B(L2, M2, N2, O2)(t2) − B(L2, M2, N2, O2)(t1)‖ → 0, as t1 → t2 independent of
the operators (S,V, I, P).

⇒ B(L2, M2, N2, O2) is an operator of equi-continuity, which is also completely contin-
uous.
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By Arzela’s theorem, uniformly boundedness postulate of a completely continuous map
is relatively compact. Contraction and continuity of the operatorsA andB imposes the single
solution existence according to theorem of fixed point by Krasnoselski.

Theorem 4.5.2 Attractive solution The postulate (∦1) signifies our COVID 19 mathematical
model (1) has an

(i) unique result if ξη

M(η)�η
K < 1, where K � max{KL , KM , KN , KO}

(ii) attractive solution if trivial solution ϕ(t) � 0 such that ‖x0‖ ≤ ε, ⇒ lim
t→∞ x0 � 0.

Proof Let us define an operator W � (W1,W2,W3,W4): Z → Z using (9) as follows,

W1(S,V, I, P)(t) � S0 +
1−η
M(η)

L(t,S(t)) + η
M(η)�η

t∫
0
(t − y)η−1L(y,S(y))dy

W2(S,V, I, P)(t) � V0 +
1−η
M(η)

M(t,V(t)) + η
M(η)�η

t∫
0
(t − y)η−1M(y,V(y))dy

W3(S,V, I, P)(t) � I0 + 1−η
M(η)

N(t, I(t)) + η
M(η)�η

t∫
0
(t − y)η−1N(y, I(y))dy

W4(S,V, I, P)(t) � P0 +
1−η
M(η)

O(t, P(t)) + η
M(η)�η

t∫
0
(t − y)η−1O(y, P(y)) dy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Accordingly for (S,V, I, P), (Ŝ,V̂,Î,P̂) ∈ Z, and using (10) we claim,
∥∥∥W1(S,V, I, P)(t) − W1

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ � 1 − η

M(η)

∥∥∥ L(t,S(t)) − L
(
t, Ŝ(t)

)∥∥∥

+
η

M(η)�η

t∫

0

∥∥∥L(y,S(y)) − L
(
y, Ŝ(y)

)∥∥∥(t − y)η−1L(y,S(y))dy

∥∥∥W1(S,V, I, P)(t) − W1

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤ 1 − η

M(η)
KL

∥∥∥S − Ŝ
∥∥∥ +

ξη

M(η)�η
KL

∥∥∥S − Ŝ
∥∥∥

≤
(
1 − η

M(η)
+

ξη

M(η)�η

)
KL

∥∥∥S − Ŝ
∥∥∥

As S(t) → Ŝ(t) then
∥∥∥S − Ŝ

∥∥∥ → 0, the above inequality becomes,

∥∥∥W1(S,V, I, P)(t) − W1

(
Ŝ, V̂, Î, P̂

)
(t)

∥∥∥ ≤
(
1 − η

M(η)
+

ξη

M(η)�η

)
KL ≤ 1,

with
∥∥∥W1(S,V, I, P)(t) − W1

(
Ŝ,̂V, Î, P̂

)
(t)

∥∥∥
(
1 −

(
1 − η

M(η)
+

ξη

M(η)�η

)
KL

)
≤ 0

Proceeding in the same way, we have
∥∥∥W2(S,V, I, P)(t) − W2

(
Ŝ, V̂ , Î, P̂

)
(t)

∥∥∥
(
1 −

(
1 − η

M(η)
+

ξη

M(η)�η

)
KM

)
≤ 0

∥∥∥W3(S,V, I, P)(t) − W3

(
Ŝ, V̂ , Î, P̂

)
(t)

∥∥∥
(
1 −

(
1 − η

M(η)
+

ξη

M(η)�η

)
KN

)
≤ 0

∥∥∥W4(S,V, I, P)(t) − W4

(
Ŝ, V̂ , Î, P̂

)
(t)

∥∥∥
(
1 −

(
1 − η

M(η)
+

ξη

M(η)�η

)
KO

)
≤ 0
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Hence the operator

∥∥∥W(S,V, I, P) − W
(
Ŝ, V̂, Î, P̂

)∥∥∥ ≤
(
1 − η

M(η)
+

ξη

M(η)�η

)
K
[∥∥∥(S,V, I, P) −

(
Ŝ,V̂,Î, P̂

)∥∥∥
]

(16)

⇒ The contraction map W inherits the properties of Schauder’s and Krasnoselski’s theo-
rem on unique fixed point.

Thus the unique solution is exhibited for system (5).

Attractivity of the derived solution
The unique solution is attractive if the zero solution (S,V, I, P)(t) � 0 such that

‖(S,V, I, P)‖ ≤ ε,⇒ lim
t→∞(S,V, I, P)(t) � 0. (17)

Also the solution is attractive if the trivial solution ϕ(t) � 0 such that x0 ≤ ε,
⇒ lim

t→∞ x0 � 0.

⇒ Asymptotically stable.

Hyer-Ulam’s stability

Stability of the solution to modelled fractional differential equation system in Hyer-Ulam’s
style is studied with differential inequality [52].

Theorem The unique solution (S,V, I, P) of themodel (1) is stable ofHyer-Ulam’s kind [45]

if the spectral radius of

⎛
⎜⎜⎝

l l l l

m m m m

n n n n

o o o o

⎞
⎟⎟⎠ lies strictly inside the unit circle (discrete dichotomy)

[50] given by |l +m + n + o| < 1. where,

l �
(
1 − η

M(η)
+

ξη

M(η)�η

)
KL ; m �

(
1 − η

M(η)
+

ξη

M(η)�η

)
KM ;

n �
(
1 − η

M(η)
+

ξη

M(η)�η

)
KN ; o �

(
1 − η

M(η)
+

ξη

M(η)�η

)
KO

Proof The system defined in model (5) has an unique solution by theorem.

To its contrary. let (S,V, I, P) and
(
Ŝ,V̂ ,Î, P̂

)
be two different solutions of the same

model,then we write with help of (16)∥∥∥W(S,V, I, P) − W
(
Ŝ,V̂,Î, P̂

)∥∥∥
≤

(
1 − η

M(η)
+

ξη

M(η)�η

)
K
[∥∥∥(S,V, I, P) −

(
Ŝ,V̂,Î, P̂

)∥∥∥
]

�
(
1 − η

M(η)
+

ξη

M(η)�η

)
KL

∥∥∥S − Ŝ
∥∥∥ +

(
1 − η

M(η)
+

ξη

M(η)�η

)
KM

∥∥∥V − V̂
∥∥∥

+

(
1 − η

M(η)
+

ξη

M(η)�η

)
KN

∥∥∥I − Î
∥∥∥ +

(
1 − η

M(η)
+

ξη

M(η)�η

)
KO

∥∥P − P̂
∥∥ (18)

Linearization of above norm for (S,V, I, P) and
(
Ŝ,V̂ ,Î, P̂

)
in terms of matrices, we

have
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∥∥∥(S,V, I, P) −
(
Ŝ,V̂,Î, P̂

)∥∥∥ ≤

∣∣∣∣∣∣∣∣

l l l

m m m

n n n

l

m

n

o o o o

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎜⎝

∥∥∥S − Ŝ
∥∥∥∥∥∥V − V̂
∥∥∥∥∥∥I − Î
∥∥∥∥∥P − P̂
∥∥

⎞
⎟⎟⎟⎟⎟⎠

converges to zero, with

l,m,n,o defined above.
The characteristic roots of the above matrix are x1 � 0, x2 � 0, x3 � 0, x4 � l + m + n

+ o.
The spectral radius denoted by r � max { |xi |, i � 1, 2, 3, 4} < 1 exhibits a discrete

dichotomy making the solution of model (1) as Ulam Hyer’s stable.

Numerical Method and Results

In this section, numerical algorithm for the designed model (1) is derived using Adams
Bashforth technique [31].

Applying Lagrange’s interpolation formula to our ABC fractional order model governing
kernels in (9) and iterate as,

S(t) − S(0) − 1 − η

M(η)
L(t,S(t)) � η

M(η)�η

t∫

0

(t − y)η−1L(y,S(y)) dy (19)

Step 1.
Setting t � tύ+1, for ύ � 0, 1, 2…

S(tύ+1) − S(0) − 1 − η

M(η)
L(tύ ,S(tύ )) � η

M(η)�η

tύ+1∫

0

(tύ+1 − y)η−1L(y,S(y)) dy

� η

M(η)�η

ύ∑
ώ�0

tώ+1∫

tώ

(tύ+1 − y)η−1L(y,S(y)) dy.

(20)

Step 2.
Interpolating the function L(t ,S(t)) on [tώ, tώ+1] we get,

L(y,S(t)) ∼� L(tώ,S(tώ))

δ

(
t − tώ−1

)
+
L
(
tώ−1,,S

(
tώ−1

))
δ

(t − tώ) (21)

Step 3.
Applying this interpolated result on the susceptible group S(t),

S(tύ+1)−S(0)− 1−η

M(η)
L(tύ ,S(tύ) � η

M(η)�η

ύ∑
ώ�0

⎛
⎜⎝L

(
tώ,S(tώ))

δ

tώ+1∫

tώ

(
t − tώ−1

)(
tύ+1 − t

)η−1 − L
(
tώ−1,S

(
tώ−1

))
δ

tώ+1∫

tώ

(
t − tώ

)(
tύ+1 − t

)η−1dt

⎞
⎟⎠

� η

M(η)�η

ύ∑
ώ�0

(
L
(
tώ,S(tώ))

δ
Aώ−1,η − L

(
tώ−1,S

(
tώ−1

))
δ

Aώ,η

)
(22)
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Step 4.
Computing the auxiliary functions Aώ−1,η, Aώ,η describing the discretization of values

for ώ � 0 to ύ.

Aώ−1,η �
tώ+1∫

tώ

(
t − tώ−1

)
(tύ+1 − t)η−1dt

� −
{

1
η

[(
tώ+1 − tώ−1

)
(tύ+1 − tώ+1)

η − (
tώ − tώ−1

)
(tύ+1 − tώ)η

]
+ 1

η(η+1)

[
(tύ+1 − tώ+1)

η+1 − (tύ+1 − tώ)η+1
]

}
(23)

Aώ,η �
tώ+1∫

tώ

(t − tώ)(tύ+1 − t)η−1dt

� −
{
1

η

[
(tώ+1 − tώ)(tύ+1 − tώ+1)

η
]
+

1

η(η + 1)

[
(tύ+1 − tώ+1)

η+1 − (tύ+1 − tώ)η+1
]}

(24)

Substituting tώ � ώδ in (23), (24) then we have,

Aώ−1,η � −δη+1

η

[ (
ώ + 1 − (

ώ − 1
))(

ύ + 1 − (
ώ + 1

))η
−(

ώ − (
ώ − 1

))(
ύ + 1 − ώ

)η
]

− δη+1

η(η + 1)

[(
ύ + 1 − (

ώ + 1
))η+1 − (

ύ + 1 − ώ
)η+1]

� δη+1

η

[
−2(η + 1)

(
ύ − ώ

)η + (η + 1)
(
ύ + 1 − ώ

)η
−(

ύ − ώ
)η+1 + (

ύ + 1 − ώ
)η+1

]

� δη+1

η(η + 1)

[ (
ύ − ώ

)η(−2
(
ώ + 1

) − (
ύ − ώ

))
+
(
ύ + 1 − ώ

)η(
η + 1 + ύ + 1 − ώ

)
]

� δη+1

η(η + 1)

[(
ύ + 1 − ώ

)η(
ύ − ώ + 2 + η

) − (
ύ − ώ

)η(
ύ − ώ + 2 + 2η

)]
(25)

Aώ,η � −δη+1

η

{ [(
ύ + 1 − ώ

)(
ύ + 1 − (

ώ + 1
))η]+

1
(η+1)

[(
ύ + 1 − (

ώ + 1
))η+1 − (

ύ + 1 − ώ
)η+1]

}

� δη+1

η(η + 1)

[
−(η + 1)

(
ύ − ώ

)η − (
ύ − ώ

)η+1 + (
ύ + 1 − ώ

)η+1]

� δη+1

η(η + 1)

[(
ύ − ώ

)η(−(η + 1) − (
ύ − ώ

))
+
(
ύ + 1 − ώ

)η+1]

� δη+1

η(η + 1)

[(
ύ + 1 − ώ

)η+1 − (
ύ − ώ

)η(
ύ − ώ + 1 + η

)]
(26)

Step 5.
To derive the recurrence relation for all the equations in model (5)
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Substituting (25) and (26) in (22), we have the following equations

S(tύ+1) − S(0) − 1 − η

M(η)
L
(
tύ ,S(tύ))

� η

M(η)�η

ύ∑
ώ�0

⎛
⎜⎜⎜⎝

L(tώ,S(tώ))
�η+2 δη

[(
ύ + 1 − ώ

)η(
ύ − ώ + 2 + η

) − (
ύ − ώ

)η(
ύ − ώ + 2 + 2η

)]

−L
(
tώ−1,S

(
tώ−1

))
�η+2 δη

[(
ύ + 1 − ώ

)η+1 − (
ύ − ώ

)η(
ύ − ώ + 1 + η

)]

⎞
⎟⎟⎟⎠ (27)

V(tύ+1) − V(0) − 1 − η

M(η)
M
(
tύ ,V(tύ))

� η

M(η)�η

ύ∑
ώ�0

⎛
⎜⎜⎜⎝

M(tώ,V(tώ))
�η+2 δη

[(
ύ + 1 − ώ

)η(
ύ − ώ + 2 + η

) − (
ύ − ώ

)η(
ύ − ώ + 2 + 2η

)]

−M
(
tώ−1,V

(
tώ−1

))
�η+2 δη

[(
ύ + 1 − ώ

)η+1 − (
ύ − ώ

)η(
ύ − ώ + 1 + η

)]

⎞
⎟⎟⎟⎠ (28)

I(tύ+1) − I(0) − 1 − η

M(η)
N
(
tύ , I(tύ))

� η

M(η)�η

ύ∑
ώ�0

⎛
⎜⎜⎜⎝

N(tώ,I(tώ))
�η+2 δη

[(
ύ + 1 − ώ

)η(
ύ − ώ + 2 + η

) − (
ύ − ώ

)η(
ύ − ώ + 2 + 2η

)]

−N
(
tώ−1,I

(
tώ−1

))
�η+2 δη

[(
ύ + 1 − ώ

)η+1 − (
ύ − ώ

)η(
ύ − ώ + 1 + η

)]

⎞
⎟⎟⎟⎠ (29)

P
(
tύ+1

) − P(0) − 1 − η

M(η)
O
(
tύ , P

(
tύ
))

� η

M(η)�η

ύ∑
ώ�0

⎛
⎜⎜⎜⎝

O(tώ,P(tώ))
�η+2 δη

[(
ύ + 1 − ώ

)η(
ύ − ώ + 2 + η

) − (
ύ − ώ

)η(
ύ − ώ + 2 + 2η

)]

−O
(
tώ−1,P

(
tώ−1

))
�η+2 δη

[(
ύ + 1 − ώ

)η+1 − (
ύ − ώ

)η(
ύ − ώ + 1 + η

)]

⎞
⎟⎟⎟⎠ (30)

Equations (27)–(30) offer the numerical analysis to our model contemplated in (5).

Results and Discussion

The graphical visualisation of the solution for the model (5) is analysed with the numerical
input of the data tabulated below. The data have been collected from Our World In Data [51]
source of COVID-19 reported for India.

Numerical Simulations: Reduced Incidence Rates with Vaccination

The impact of the variables defining the governing commensurate model equations on the
transference and control of the pandemic disease is validated by stimulating for the reported
real time data from OWID-Covid data [51]. The most minimal fractional order derivatives
yields better approximate results proved by researchers exist in the literature [22–26, 28–31,
42–48]. In view of that point, the fractional iterations of very smallest order simulations were
shown with η � 0.02 for declining transmission rate of susceptibles β(1211.03, 1000.00,
800.13) in Fig. 1. The susceptibles being contagious to the virus converges eventually after
120 days. The disease spread will be controlled by and by in the next 12 weeks quietly.

As the rate of vaccinated being infected α � 310.251, 200.123, 0 reduces, the numerical
derivation for most small arbitrary order η � 0.02 shown in different curves of Fig. 2, There
arise a sudden increase of highly immuned vaccinated population V(t) due to the decay or
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Fig. 1 The simulaton of susceptible individuals S(t) for a period of 360 days for various decreasing rate of
susceptible infections β with order η � 0.02

Fig. 2 The simulation of gradual increase of vaccinated population, V(t)visualising gradual decrease of new
infections for various rate of vaccinated infections α

avoidance of contact with infectious. Thus by decreasing the contact rate (β,α) of susceptibles
and vaccinated people with infectious ones, the flow of curves predict the control of disease at
the appropriate time. Self -hygiene and vaccination are the duo noteworthy control measures
in concern. By increasing personal precautionary activities of every individual the pandemic
spread will be flattened shortly. In Fig. 3, the graph analyses the rapid hike of protected
population P(t) with various upsurge of self-prevention value 	� 0.0261, 0.051, 0.078, 1.
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Fig. 3 The simulated results of protected population P(t) with improvised rate of various self preventive
measures 	

Fig. 4 The simulation of gradual decrease in infections I(t) due to rate of increase of self precautionary
measures and decline in transmissions

The lower, the transmission rate and the most safeguard yields an imperceptible expansion
of healthy people initiated gently.

The above Fig. 4 is graphed to embellish the distrainment of infected population I(t)
for lesser carrying rates and death rates α � 100, β � 300, δ � 0.0002, μ � 0.00001, φ �
0.00002, γ � 0.099 by 18 weeks. The flow of infections started to reduce very rapidly shows
the effective controllability of the disease to its nil infection state.
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Conclusion

The COVID-19 fractional order SVIP model with multi control measures such as self- pre-
cautions and vaccination explores the flow of four groups susceptibles, vaccinated, infected
people and protected ones in a contagious region. The proposed model have been framed and
examined in terms of non-linear ABC type derivatives. The system possess two equilibrium
points IFE and IPE. The infection free state IFE is locally asymptotic stable attracting close
neighbourhood points iff R0 < 1, whereas the disease continues persistently around IPE for
R0 > 1, inspite of vaccination and self-protection. The model has a single feasible solution is
validated by theorems on fixed point and stability analysis of Hyer-Ulam’s kind is performed.
Semi-analytical method of Adam-Bashforth equations were derived for the proposed model.
Transference of COVID-19 disease in India since the implementation of vaccination has
been interrogated for real data recorded from Our World in data (OWID) web-link. Rapid
vaccinations were implemented for the whole of our nation very expertly. Records of OWID
evince that by vaccinating individuals help to build artificial immunity that defeats the worst
severity of infections and reduce fatalities on the trot. The productive immunity of vaccine
shots in triggering the inherited defence system of human cells is well-established in terms
of Mittag–Leffler memory of ABC kernel function [46, 47]. The effect of mass vaccination
and self-protective measures shown graphically conjectures the decline in infections’ spread
effectively in due course are studied with two views and listed below,

Minimised contact rates β, α and Efficient vaccination;

(i) Least-real order iterations of fractional differentiation for complex type systems provide
pertinent results as desired [42–45] Hence fractional order graphs are simulated for the
most minimal order η � 0.02.

(ii) Increased rate of vaccination ‘v’ results in decay of Susceptible population S(t) due to
immigration of susceptible to vaccinated group V(t). The more, the vaccinated people
causes the less in unvaccinated susceptibles.

(iii) By controlling the rate of susceptible people gets infected β, there is a decay of suscep-
tible population S(t) to the equilibrium point on their respective paths slowly.

(iv) Due to relapse of vaccine efficiency, reducing the rate of vaccinated being infected α

to 0, gradual hike in vaccinated population V(t) is attained.
(v) Maximal vaccination results in high immunity to fight against later infection and mor-

tality.

Self-control strategy.

(i) Reduced transmission rates β, α and continuous immunization by vaccines result in a
fast degradation of infected population I(t) reaching the infection free state IFE.

(ii) Self- precautionary measures 	 shows effective result on reducing the virulent spread
more effectively. As 	 increases, the salubrious peaks of protected people P(t) are
visualised.
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