IRA-International Journal of Applied Sciences ISSN 2455-4499; Vol.04, Issue 03 (2016) Institute of Research Advances Pg. no. 358-378 http://research-advances.org/index.php/IRAJAS

ABCD analysis of Dye-doped Polymers for **Photonic Applications**

Shubhrajyotsna Aithal¹ and P. S. Aithal²

¹Srinivas School of Engineering, Mukka, Mangalore – 574146, India. ²Srinivas Institute of Management Studies, Pandeshwar, Mangalore – 575 001, India.

Type of Review: Peer Reviewed.

DOI: <u>http://dx.doi.org/10.21013/jas.v4.n3.p1</u>

How to cite this paper:

Aithal, S., & Aithal, P. (2016). ABCD analysis of Dye-doped Polymers for Photonic Applications. *IRA-International Journal of Applied Sciences* (ISSN 2455-4499), 4(3), 358-378. doi:<u>http://dx.doi.org/10.21013/jas.v4.n3.p1</u>

© Institute of Research Advances

(CC) BY-NC

This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Institute of Research Advances (IRA) are the views and opinions of their respective authors and are not the views or opinions of the IRA. The IRA disclaims of any harm or loss caused due to the published content to any party.

ABSTRACT

Photonics is a subject of scientific study on generating, controlling, harvesting and detecting the beam of photons or light with a purpose of creating, manipulating, storing, transmitting and detecting information using nonlinear optical properties of materials. This paper is a new attempt to integrate scientific research and social research by analysing the characteristics of dye-doped polymer films for photonics applications. The analysing framework called ABCD framework to analyse any business concepts, business systems, technology, strategy, engineering material, technology or even an idea systematically by identifying the advantages, benefits, constraints, and disadvantages under various determinant issues and listing the constituent critical elements under each construct. In this paper, as per the ABCD framework, the various determinant issues related to the use of dye-doped polymer films for photonic applications through focus group method are determined as affecting factors under : (1) Material Issues, (2) Application Issues, (3) Commercialization Issues, (4) Production/Service providers Issues, (5) Customer Issues, and (6) Environmental/Social Issues. The constituent critical elements of these factors are listed under the four constructs - advantages, benefits, constraints and disadvantages of the ABCD technique and tabulated. The analysis has brought about 204 critical constituent elements which satisfy the success of this analysis methodology.

Keywords: Nonlinear optical materials, Dye-doped polymer films, ABCD analysis, Constituent critical elements.

1. Introduction

Nonlinear optics is expected to play an important role in the field of photonics which is a multidisciplinary new frontier of science and technology capturing the imagination of scientists and engineers worldwide due to its potential applications in optical communication, and optical computation. According to the definition, Photonics is the technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The range of applications of photonics extends from energy generation to detection to communication and information processing using nonlinear optical properties of materials. The major challenge of photonics is identifying a right material/device to optimally process the signals for a right application using material science and chemical engineering knowledge. Materials with exceptional nonlinear optical properties are critical to the continuing development of photonic and electro-optical devices, such as those used in optical communications, networking, Optical computation for signal processing, and data storage equipment. The nonlinear optical material is a general term for the materials efficiently makes the appearance of nonlinear phenomenon optically as the responses to optical wavelength conversion, optical amplification as well as the refractive index changes due to its intensity. Nonlinear optical materials are largely divided into inorganic and organic materials. In 1930, the nonlinear optical effect related to optical wavelength conversion was predicted, which was said to be the first finding knowledge about the nonlinear optical phenomenon. In 1960, laser oscillation using inorganic material was reported. Since then research of inorganic nonlinear optical materials were actively taken place, but now-a-days, probably there is no more that undiscovered [1]. With the rapid development of modern science and technology, information transmission capacity of communication increases day by day. Optical communication, which has advantages of large transmission capacity, high transmission velocity, excellent anti-jamming ability and good Signal-to-Noise value, is becoming the main method in communication research at present. Functions like optical switching and memory by nonlinear optical effects, all depending on light intensity, are expected to result in the realization of a pivotal optical device in optical computing. This is a new data processing system that makes the maximum use of light characteristics such as parallel and spatial processing capabilities and high speed [2].

All-optical networks with good performances, such as big capacity, good transparency, wavelength routing characteristics, compatibility, and extensibility, has become the first choice of next generation of the wide-band net with a promising application. Accompanied by the deep research of wave division multiplex (WDM), switches have drawn more and more people's attention. In the existing opticalelectronic-optical conversion apparatus of present communication net, disadvantages of slow switching speed and clock displacement have lead to a "bottleneck" of optical fiber communication systems. Alloptical switches which can break through the transmission speed limits of electro-optical, acousto-optical, thermo-optical and micro-electro-mechanical switches, can serve as effective methods to solve these problems. Based on the third-order nonlinear optical (NLO) effect, phase all-optical switches use a controlled light to bring changes of refraction index and make phase difference when signal light passes through the sample and thus carry out the function of "on" or "off' of optical switches. Its nonlinear phase difference is proportional to $(2\pi/\lambda)n_2IL$, where I is intensity, L is the length of interaction of wave and n_2 is nonlinear refraction index. The properties, such as change speed, intensity loss, sensitivity to optical polarization and insert loss, all depend on third-order NLO materials used to synthesize apparatuses. At present, it is with great enthusiasm to an emphasis on exploring and synthesis of materials for all-optical switches based on the continual discovery of varies kinds of new materials. There are other applications of third-order NLO materials, including optical limiting devices, Q-switch, passive mode locking, optical operation and light storage etc. Laser weapons applied to military have special effects on optical-electro antagonism, aerial defense and military recovery. Laser blinding can make eyes blind temporarily or permanently, and laser can also destroy important apparatus in the satellite, such as detectors and sensors. As a result, laser protection materials and devices have become a focus. The purpose of laser protection is to protect people and devices from the damage of high intensity. These optical limiting devices are mainly based on the materials' third-order NLO properties, including self-focusing, self-defocusing, two-photon absorption, reverse saturable absorption and nonlinear scattering. Comparing to earlier laser protection devices, it has advantages of fast response, wide protected band, low optical limiting threshold, large damage threshold and high linear transmission, etc. The third-order NLO properties of materials can also be used in the compression (mode-locking) and shaping of laser pulses, optical bistability, etc. Thirdorder NLO materials also have many potential practical exciting applications and motivated scientists to continually explore new materials with high third-order NLO properties. The demands of materials for all-optical information process and high-speed all-optical switches include large nonlinear refraction index, small linear and nonlinear absorption coefficient, fast response and low propagation loss [1-3]. Photonic and electro-optical (in which information storage or processing involves the modulation and switching of light beams) devices are used in many applications which include :

- Electro-optic modulators
- Mach-Zehnder interferometers
- Optical switches
- Optical interconnectors
- Frequency doublers for high-power lasers
- Active waveguides
- Optical memory storage devices
- Optical computing devices
- Nonlinear directional couplers
- Nonlinear Bragg reflectors
- Optical limiters
- Photorefractive memories

Currently, a wide range of inorganic non-linear optical materials is available [2-3] with varied wavelengths, damage thresholds, and optical characteristics. The research focus is to develop materials that meet all requirements such as faster response, high laser damage threshold, and wide transparency range coupled with adaptability, processing ability, and the ability to interface with other materials. Further, robust growth in demand for high bandwidth fiber optic networking infrastructure and high-speed

optical computing are expected to boost the demand for Non-Linear Optical Materials [1]. Doped inorganic nonlinear crystals are also shown optical limiting properties [4-7]. Studies showed that by means of heavy ion irradiation one can improve the material properties of both inorganic and organic nonlinear crystals [8-11].

It is well known that one can improve the performance of any system by comparing it with a hypothetical, predicted system of that kind called "Ideal system" [12]. Ideal properties of a device or a system can be used to upgrade or improve its properties towards reaching 100% efficiency. By comparing the properties/characteristics of a practical device/system with its ideal counterpart, one can find out the possible modifications in that device /system towards reaching the objective of achieving such an ideal system [13]. Many systems like an ideal gas, ideal fuel, ideal solution, ideal fluid, ideal engine, ideal switch, ideal voltage source, ideal current source, ideal diode, ideal transistor, and ideal amplifier are familiar to everybody since school days. Recently, ideal business system [13-14], ideal education system [15-17], ideal technology system [12], ideal strategy [18], ideal energy source [19], ideal banking system [20], and ideal library system [21] are studied and their input, system, output and environmental characteristics are discussed. The properties of the ideal nonlinear material are interesting to know. In table 1, we have summarized the ideal properties of the nonlinear optical material.

S. No	Property	Value
1	Nonlinear Susceptibility	Infinity (High)
2	Refractive index	Low & constant value
3	Dielectric property	Low
4	Material property	optimum
5	Material Processing	Easy
6	Colour	Transparent and colourless
7	Transmission range	Infinite
8	Durability	Life time without degradation
9	Laser damage threshold	High
10	Transmission range	Infinite
11	Material state	Solid (Film & Fiber)
12	Electro-optic Coefficient	Infinity (High)
13	Photoconductivity	Infinity (High)
14	Photorefractive co-efficient	Infinity (High)
15	Degradation with time	No
16	Cost	Zero
17	Availability	Abundant
18	Environmental degradation	Zero
19	Weight	Zero (Low)

Table 1 . Ideal Properties of optical nonlinear material.

From the year 1982, organic nonlinear optical material research got importance due to their advantages compared to the inorganic counterpart. It is found that organic compounds with the delocalized conjugated electrons which have excellent nonlinear optical property and high-speed responsiveness due to the high mobility of electrons. Based on predictions, the 21st century is said to be an age of photonics. As one of the basic technology of photonics, improvements in the wavefront control technology using organic nonlinear optical effects are considered very important and hence research on the organic materials with excellent nonlinear optical properties, and exceptional material properties have been studied. Present developments in the field of materials chemistry show that, though inorganic materials are still the choices for many devices, interest, and scope for organic materials are growing day-by-day in view of their adaptability to various kinds of applications. The field of organic molecular materials has

transformed the use of materials in the modern world in the last 40 years, and it can be seen that organic molecules provide wonderful opportunities to materials researchers to design custom-tailored materials whose properties at the macroscopic /microscopic level reflect closely to the modeled or actual behavior of individual molecules. In other words, development of novel functional organic materials is a rapidly growing area of science, which probably can replace the traditionally used materials with cheaper and better-performing new ones in the near future, and also bring out some new applications [22-24]. Research also has shown that many organic crystals have better nonlinear susceptibility compared to inorganic crystals [25-26].

In view of the technological applications of the organic materials, the current research focus is in five technical areas, which are (1) Structural and multifunctional materials, (2) Energy and power materials, (3) Photonic and Electronic Materials, (4) Functional organic and hybrid materials, (5) Bio-derived and bio-inspired materials. Organic nonlinear materials are currently finding importance due to their advantages and benefits for photonics device fabrication. Some of the benefits of organic nonlinear optical materials are:

- **Easy to process**: Because they do not require electric poling or the preparation of large single crystals, these materials are easier to process than inorganic optical materials.
- Lower cost: The ease of processing directly translates into a lower cost to fabricate.
- **High second- and third-order susceptibility**: This technology exhibits exceptional performance in doubling and tripling the frequency of light passing through it, making it at least comparable to inorganic materials.
- Low dielectric constant: An optical material with a high dielectric constant requires a larger poling voltage in order to polarize the dipole moment and can suffer changes in the refractive index. This technology requires no poling voltage and maintains its refractive index.
- **High electro-optic coefficient**: Materials with a high electro-optic coefficient are more suitable for electro-optic modulation for high-speed devices.
- **Colorless**: It is believed that the clarity of the doubling material will prevent the absorption of visible light, allowing a wide variety of light frequencies to be doubled.
- **Resistant to laser damage**: The tripling material can be exposed to 4,32,000 20-nanosecond pulses at 20 Hz without any evidence of damage to the organic material, making it ideal for use in photonic applications.

2. Dye – Doped Polymers for Photonic Applications

Though the present best practice in Photonics technology is the usage of organic materials/dyes that exhibit exceptional nonlinear optical properties, these organic materials have few of the drawbacks inherent in the processing of comparable inorganic materials like of intense light induced degradation or bleaching and aggregation at higher dye concentration. In order to overcome these drawbacks and for effective use of highly nonlinear dyes, the strategic idea for the next practice is doping the dye molecules in the polymer matrix. This idea of dye-doped polymer material matrix may increase the concentration of absorptive or fluorescence centers as well as the opto-chemical and opto-physical stability [27-28]. A large number of organic compounds with delocalized electrons and conjugated double bond systems, and a large dipole moment has been studied to realize the susceptibilities far larger than the inorganic optical materials [29]. The organic compounds and dyes molecules with two basic structural families of acceptor/donor/donor/acceptor and donor/bridge/acceptor have shown high two photon absorption properties. Such information can be useful in the design of more efficient two-photon dyes for imaging and power-limiting applications. Organic dye doped polymer films are used for (1) Optical amplification, (2) Rewritable optical data storage, (3) optical information storage, (4) Spatial light modulation, (5) Optical power limiting [30-33], (6) Photonic switching [34], (7) Quasi-permanent alloptical encoding [35], (8) Two photon florescence microscopy [36], (9) Frequency up-converted lasing,

(10) Three dimensional optical storage, (11) Two photon induced optical imaging, (12) photosensitive media for holographic recording and optical computing, (13) Ultrafast all-optical devices. (14) Optical phase conjugation [37-39], (15) Optical parametric oscillator using four-wave mixing [40-41], and (16) controlling light by light through optical spatial solitons [42]. Many studies have been conducted to measure nonlinear optical properties like third harmonic generation properties [43], optical limiting studies [44] and optical phase conjugation using four-wave mixing studies [45] in various nonlinear dyes doped in polymer films. In this paper, we have made an attempt to analyse nonlinear dye-doped polymer films for nonlinear and photonic applications using recently developed analysis framework called ABCD analysis framework. The acronym ABCD stands for Advantages, Benefits, Constraints, and Disadvantages.

3. About ABCD Analysis

Various techniques are used to analyze the individual characteristics, system characteristics, effectiveness of a concept or idea, effectiveness of a strategy while studying the business value in the society. The individual characteristics or organizational effectiveness & strategies in a given environment can be studied using SWOT analysis, SWOC analysis, PEST analysis, McKinsey 7S framework, ICDT model, Portor's five force model etc. Recently introduced business analysis framework called ABCD analysis framework [46] is suitable for analysing business concepts, business systems, technology, business models or business idea in terms of determining various factors for chosen determinant issues under four constructs called advantages, benefits, constraints, and disadvantages. In the qualitative analysis using ABCD framework, the concept/system/strategy/technology/model/idea is further analysed by identifying constitutional critical factors. In the quantitative analysis using ABCD framework [47], the appropriate score/weightage is given to each constituent critical factor under each construct, through empirical research, the total score is calculated for each construct and by evaluating the scores, the concept/idea/system/technology/strategy can be accepted or rejected. Thus ABCD analysis framework can be used as a research tool in these areas and is a simple but systematic analyzing technique for business models/systems/concepts/ideas/technology/strategy analysis.

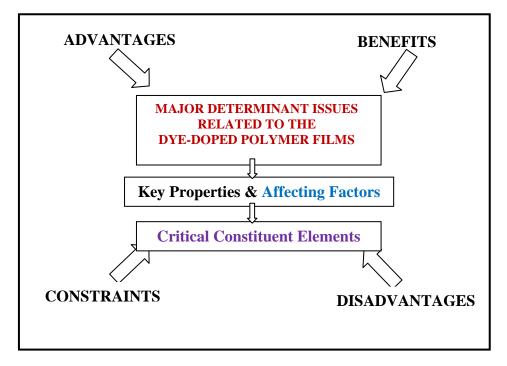
4. Literature Review on ABCD Analysis

In 2015, Aithal P.S. et. al. [46] developed ABCD analyzing framework to analyze any business model/strategy/concept/system and to study its effectiveness in providing value to its stakeholders and sustainable profit through expected revenue generation. Application of ABCD analysis results in an organized list of business advantages, benefits, constraints, and disadvantages in a systematic matrix. The entire framework is divided into various issues/area of focus and various business deployment factors affecting the business/concept can be identified and analyzed under each issue by identifying the suitable critical effective element. This analyzing technique being simple gives he guideline to identify and analyze the effectiveness of any business model, business strategy, business concept/idea, and business system.

Reshma et. al. [48], have analyzed the characteristics of "Working from Home" e-business model using 'ABCD Analysis Technique'. Based on various factors which decide the Working from Home system, a model of various factors and their constituent critical elements affecting under organizational objectives, employers point of view, employees point of view, customers/students point of view, environmental/societal point of view and system requirements are derived from a qualitative data collection instrument namely focus group method. It is found that the factors supporting advantages and benefits are more effective compared to constraints and disadvantages of this model so that working from the home model may become more popular from the perspective of employers and employees in the organization in the future.

ABCD analysis framework is used for analysing Black Ocean Strategy (BOS) concept [49]. The various factors & their constituent critical factors affecting the BOS concept adopted in some of the business organizations for quick relief from the problems are identified for organizational point of view, administrative point of view, employee point of view, operational point of view, business point of view and external issues point of view are determined under the four constructs - advantages, benefits, constraints, and disadvantages.

ABCD analysis framework has been used for analysis of a concept "Higher Education Stage Model". The characteristics of the concept are evaluated based on identifying and analyzing the advantages, benefits, constraints, and disadvantages. The result supported the logic of using ABCD analyzing technique in any concept/idea performance evaluation [50].


ABCD analysis framework is also used for analysing National Assessment and Accreditation Council (NAAC) accreditation process on higher education institutions [51]. The various features of the NAAC accreditation system is evaluated based on identifying and analyzing the advantages, benefits, constraints, and disadvantages of some of the chosen issues like organizational issues, Faculty performance issues, student development/progression issues, social/environmental/community engagement issues, Infrastructure And Learning resources, and Issues on Innovations Creativity and Best Practices. The affecting factors under these issues found out using focus group method and the constituent critical elements under each factor are identified. The result supported the logic of using ABCD analyzing technique in any System/concept performance evaluation.

In another paper on "Study on ABCD Analysis Technique for Business Models, business strategies, Operating Concepts & Business Systems", the author discussed the detailed ABCD framework for quantitative studies and explained how this framework can be used for four specific instances namely Business model, Business strategy, Operational concept and Functional system are outlined here. Finally, ABCD analysing framework is compared with other known analyzing techniques like SWOC, Competitive Profile Matrix (CPM) analysis, EFE & IFE Matrices, BCG analysing frameworks, Porter's Five Forces Model, and PESTLE Analysis [47].

Application of ABCD Analysis Framework on Private University System in India is another paper published using this model in which for six determinant issues related to the functioning of a University has been chosen. These are Organizational aspects, Students Progression, Faculty development, Societal & other stakeholders issues, Governance, Leadership, and Issues on Innovations and Best Practices. Four key issues were identified under each of these and critical constituent elements under these factors are worked out. Through this analysis, 192 critical constituent elements which satisfy the success of a private university have been explored [52].

Recently, another paper on "Study of New National Institutional Ranking Framework (NIRF) System using ABCD Framework, is published in which the ranking system is evaluated using four constructs Advantages, Benefits, Constraints, and Disadvantages, this system consider all determinant issues in key areas through analyzing the major issues and identifying the critical constituent elements and concluded that NIRF provides a comprehensive ranking suitable for higher educational institutions and it takes care of many small and subtle aspects comparable to quality assessment criterion of National Assessment and Accreditation Council. [53].

Apart from using ABCD framework for Qualitative analysis, in several research studies, ABCD analysis is limited and simplified to only listing of various advantages, benefits, constraints, and disadvantages of either concept, models, systems, strategies, technology, or ideas [54-60]. These studies on ABCD listing can be analysed in detail using ABCD framework either qualitatively or quantitatively for further research.

5. ABCD Analysis on Dye-doped Polymers

Figure. 1 . Block diagram of issues affecting the dye-doped polymer films for photonic applications as per ABCD framework.

Advantages, Benefits, Constraints and Disadvantages (ABCD) of a System can be used to analyze and understand the model/system in an effective way. As per this analysis technique, the effectiveness of a material system can be studied by identifying and analyzing the advantages, benefits, constraints, and disadvantages by considering various determinant issues related to the use of dye-doped polymers for photonic applications as shown in the block diagram (fig. 1). As per the ABCD framework, the various determinant issues related to the success of dye-doped polymer films in photonic applications identified using focus group method [61] are : (1) Material Issues, (2) Application Issues, (3) Commercialization Issues, (4) Production/Service providers Issues, (5) Customer Issues, and (6) Environmental/Social Issues.

(1) Material Issues :

The affecting factors under key properties like Processing for device fabrication, Third order susceptibility, Laser damage threshold, Electro-optic coefficient value, and Dielectric constant value are determinant factors under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

(2) Application Issues :

The affecting factors under key properties like Optical limiting, Electro-optic modulators, Photorefractive memories, Optical switches, and Optical computer components are determined under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

(3) Commercialization Issues :

The affecting factors under key properties like Easy to process, Low cost, High reliability, and Long life are determined under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

(4) Production/Service providers Issues :

The affecting factors under key properties like Production cost, Performance, Durability, and Raw materials availability are determined under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

(5) Customer Issues :

The affecting factors under key properties like Quality, Durability, Cost, and Availability are determined under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

(6) Environmental/Society Issues :

The affecting factors under key properties like Environmental degradation, Social perception, Future scope, and Recycling are determined under the constructs Advantages, Benefits, Constraints, and Disadvantages of the System.

Each determinant issue has sub-issues called key properties used for analyzing the advantages, benefits, constraints and disadvantages, the four constructs of the framework. The factors affecting the various determinant issues of private university system for each key issue under four constructs are derived by a qualitative data collection instrument namely, focus group method [61-68], and are listed in table 2.

Determinant	Key	Advantages	Benefits	Constraints	Disadvantages
Issues	Properties				
Material	Processing for	Easy to	Microfilm	Maintaining	Low physico-
Properties	device	fabricate as	component	uniform	chemical
Issues	fabrication	thin films	for device	thickness and	stability.
			fabrication	surface	
	Third order	High third	Enhanced	Depending	Bleaching of
	susceptibility	order	efficiency	on film	dye for long
		susceptibility		thickness	time
	Laser damage	Effective	Suitable for	Sample may	Low damage
	threshold	performance at	low power	burn at high	thresh
		Low power	devices	intensity	old
		laser		laser beam	
	Electro-optic	High at low	High	Applying	E-O
	coefficient	applied	breakdown	external dc	coefficient
	value	electric field	voltage	electric field	varies with
				is difficult	wavelength of
					laser beam
	Dielectric	Low dielectric	No poling	Applying	Dielectric
	constant value	constant	voltage	external dc	constant varies
			required	electric field	with
				is difficult	wavelength of
					laser beam
Application	Optical	Limiting of	Eye	Limiter at all	Nonlinear
Issues	limiting	High intensity	protection	wavelengths	refraction
		laser light	when		property of

Table 2. Analysis of the d	ve-doped polymer films f	or photonic applications using	ABCD framework.

			working with		dve
			laser beams		dye
	Electro-optic modulators	High electro- optic coefficient	Fast response	High voltage requirement for modulation	Low physico- chemical stability
	Photorefractive memories	High PR coefficient	High density storage at high retrieval speed	Doping is required to increase trapping centers	Temperature dependent properties
	Optical switches	Fast optical response	High figure of merit	Doping is required to increase charge centers	Slow time response
	Optical computer components	Easy to fabricate thin film & fibers	High speed response	Doping is required to increase charge centers	Low physico- chemical stability
Commercializ ation Issues	Easy to process	Easy to fabricate as thin films and fibers	Less expensive equipments required	Tedious process	Colour of dye decreases the transparency range
	Low cost	Less expensive	Easily available in the market	Low profit due to low cost	More competitors
	High reliability	Stable nonlinear properties	Used for longer period	Degradation of performance for longer period	Low phisico- chemical stability
	Long life	Stable nonlinear properties for long time	High laser damage threshold	Delicate for replacement	Not withstands at higher laser intensity
Production/Se	Production cost	Low	Less	Assembling	Periodical
rvice			expensive		Replacement
providers Issues	Performance	Higher susceptibility	Fast response	Anti- reflection coating	Degrades with time
	Durability	Long time	Less after sales service	Periodic service	Less life with 100 efficiency

	Raw materials availability	Easily available	Cheap	Uniform doping	Environmental degradation of
					dyes
Customer Issues	Quality	High nonlinear properties	Easy processing	Soft material	Bleaching of dye after several years
	Durability	Long life with expected performance	Worth investment	Maintaining outer surface of thin sample	Bleaching of dye after several years
	Cost	Low cost device	Low price	Periodic up gradation	Periodic replacement
	Availability	Easily available	Anywhere usage	Simple component	Supply of components
Environmental /Society Issues	Environmental degradation	No green gas emission	Low environment al effect	Careful handling	Dyes are poisonous
	Social perception	Advanced device for society	High speed device	Environment al effect	Low phisico- chemical stability
	Future scope	High performance devices	Advanced technology usage	Availability of dyes	Threat of better components based on nanotechnolog y
	Recycling	Possible	No degradation	Dye stability	Dye may degrade drinking water

6. Critical Constituent Elements as per ABCD model

The critical constituent elements of these factors are listed under the four constructs - advantages, benefits, constraints and disadvantages of the ABCD technique and tabulated in tables 3 to 6.

SI.	Issue	Factors affecting	Critical Constituent Elements	
No.				
1.	Material Issues	Easy to fabricate as thin	Easy for spin coating	
		films & fibers	Easy for hot press method	
		High third order	Non-centrosymmetric molecular	
		susceptibility	structure	
			Do not require electric poling	
		Effective performance at	1	
		Low power laser	laser beam	
			Active for low power UV, visible, and	
			IR region	
		High at low applied electric	Effective polarization	
		field	High breakdown voltage	
		Low dielectric constant	Polarization ability	
			Electric field strength	
2.	Application	Limiting of High intensity	High nonlinear absorption	
	Issues	laser light	Wide transparency range	
		High electro-optic coefficient	Variation of transmission amplitude	
			High modulation index	
		High Photorefractive	Refractive index variation with light	
		coefficient	intensity	
			Charge transfer properties	
		Fast optical response	Free carriers	
			Optical bistability	
		Easy to fabricate thin film &	Surface tension	
		fibbers	Strength of fibres	
3.	Commercializati	Easy to fabricate as thin	Material property	
	on Issues	films and fibers	Tensile strength	
		Less expensive	Easy availability	
			Simple processes	
		Stable nonlinear properties	Non-centrosymmetry	
			Non-bleaching	
		Stable nonlinear properties	Material type	
		for long time	Stable dye & polymer used	
4.	Production/Serv	Low production cost	Easy component processing	
	ice providers		Availability of raw materials at low	
	Issues	· · · · · · · · · · · · · · · · · · ·	price	
		Higher susceptibility	Quality of raw materials	
		· · ·	Organic nonlinear materials	
		Long time	Functioning	
			Same conversion efficiency	
		Easily available	Abundant	
		· · · · ·	Low cost	
5.	Customer Issues	High nonlinear properties	Non-centrosymmetry	
			Efficiency	
		Long life with expected	Faithfull operation	
		performance	Expected performance	
		Low cost device	Low price	

Table 3 : Advantages of dye-doped polymers for photonic applications

			Easy replacement
		Easily available	Abundant
			Continuous supply
6.	Environmental/	No green gas emission	Clean operation
	Society Issues		Clean environment
		Advanced device for society	Latest technology
			Environmental sustainability
		High performance devices	Efficiency
			Best output
		Recycling Possible	Low degradation
			Sustainability

Table 4 : Benefits of the dye-doped polymers for photonic applications

SI. No.	Issue	Factors affecting	Critical Constituent Elements
1.	Material Issues	Microfilm component for	Small device
		device fabrication	Simple device
		Enhanced efficiency	Best performance
			Better output
		Suitable for low power	Low cost
		devices	Low input energy
		High breakdown voltage	Sustaining strong electric field
			High polarizability
		No poling voltage	Natural nonlinearity
		required	Low cost
2.	Application Issues	Eye protection when	Low transmission at high intensity
		working with laser beams	High laser damage threshold
		Fast response	Effective at nano and femto second
			regime
			High modulation index
		High density storage at	High space charge field
		high retrieval speed	Refractive Index grating
		High figure of merit	High optical bistability
			Low noise for amplification
		High speed response	High speed grating
			High speed storage & retrieval
3.	Commercialization	Less expensive	Simple and easy process
	Issues	equipments required	Less and cheaper raw materials
		Easily available in the	Abundant supply of raw materials
		market	Minimum raw materials requirement
		Used for longer period	Trouble free operations
			Minimum energy consumption
		High laser damage	Durability
		threshold	No periodic material replacement
4.	Production/Service	Less expensive	Low investment
	providers Issues		Small component size
		Fast response	Material property
			Amount of doping

		Less after sales service	No frequent breakdown
		Less after sales service	Easy repairing/replacement
		Cheap	Simple raw materials
		F	Component in the form of thin film.
5.	Customer Issues	Easy processing	Simple process
			No special care needed
		Worth investment	No periodic replacement
			Return on investment
		Low price	Affordability
			High demand
		Anywhere usage	Simple operations
			Easy procurement
6.	Environmental/Soci	Low environmental effect	Emission
	ety Issues		Recycling
		High speed device	Technology
			Speed
		Advanced technology	Comfortability
		usage	Better facilities
		No degradation	Poisonous gas
			Green house effect

Table 5 : Constraints of	the dye-doped pol	ymers for photo	tonic applications

SI.	Issue	Factors affecting	Critical Constituent Elements
No.			
1.	Material Issues	Maintaining thickness and	Viscosity
		surface	Surface Tension
		Depending on film	Noncentrosymmetry
		thickness	Doping concentration
		Sample may burn at high	Phisico-chemical stability
		intensity laser beam	Power of input light
		Applying external dc	Electric field intensity
		electric field is difficult	Film thickness
		High AC electric field is	Material property
		required for modulation	Modulation index
2.	Application Issues	Limiter at all wavelengths	Material transmission range
			Nonlinear refractive index
		High voltage requirement	Electro-optic coefficient
		for modulation	Modulating voltage strength
		Doping is required to	Space charge
		increase trapping centers	Dye concentration
		Doping is required to	Nature of Dye
		increase charge centers	Intensity variation of external light
3	Commercialization	Tedious process	Thickness monitoring
	Issues		Uniform doping
		Low profit due to low	Less investment
		cost	Low price
		Degradation of	Dye bleaching

		performance for longer period	Film cracking
		Delicate for replacement	Thin film
			Trouble free performance
4.	Production/Service	Assembling	Delicate
	providers Issues		Simple processes
		Anti-reflection coating	Enhanced interaction of light
			Avoid reflection of light
		Periodic service	Film replacement
			Easy service
		Uniform doping	Proper solvent
			Uniform drying
5.	Customer Issues	Soft material	Polymer as backbone
			Film between glass plates
		Maintaining outer surface	Antireflection coating
		of thin sample	Film between thin glass plates
		Periodic up gradation	Increases performance
			Easy
		Simple component	Susceptibility for damage
			Easy replacement
6.	Environmental/Soci	Careful handling	Fragile
	ety Issues		Complete replacement & recycling
		Environmental effect	Dyes are poisonous
			Degradability of dyes
		Availability of dyes	Nature of dye
			Supply of dye
		Dye stability	Component replacement
			Easy recycling

Table 6 : Disadvantages of the dye-doped polymers for photonic applications

Sl.	Issue	Factors affecting	Critical Constituent Elements
No.			
1.	Material Issues	Low physico-chemical	Softness of film
		stability.	Fragileness/brittleness
		Bleaching of dye for long	Reaction with atmosphere
		time	Reaction of dye with light beam
		Low damage threshold	Intensity of pulsed laser beam
			Choice of polymer base
			Dye concentration
		E-O coefficient varies	Material property with laser wavelength
		with wavelength of laser	Nature of dye
		beam	
		Dielectric constant varies	Polarizability
		with wavelength of laser	Bandwidth
		beam	
2	Application Issues	Nonlinear refraction	Material property
		property of dye	Wavelength of light
		Low physico-chemical	Instability in electro-optic property

		stability	
		Temperature dependent	Thermal stability
		properties	Working temperature range
		Slow time response	Optical bistability
		2	Effective intensity & wavelength range
		Low physico-chemical	Durability of components
		stability	Assembling of components
3.	Commercialization	Colour of dye decreases	Transmission range of dye
	Issues	the transparency range	a a a a a a a a a a a a a a a a a a a
		More competitors	Demand
			Profit
		Low phisico-chemical	Durability of device
		stability	After sales support
		Not withstands at higher	Dye bleaching
		laser intensity	Threshold intensity
4.	Production/Service	Periodical Replacement	Durability
	providers Issues	r i i i i i i i i i i i i i i i i i i i	Warranty
		Degrades with time	Aging of components
			Safe input intensity range
		Less life with 100 %	Warranty period
		efficiency	
		Environmental	Production easiness
		degradation of dyes	Demand for dye
5.	Customer Issues	Bleaching of dye after	Nature of dye used
		several years	Operating light intensity range
		Bleaching of dye after	
		several years	Faithful operation of device
		Periodic replacement	Cost of replacement
			Troubleless working time
		Supply of components	Demand
			Importance of component
6.	Environmental/Soci ety Issues		Recycling the component
			Air tight system
		Low phisico-chemical	Optimum ingredients
		stability	Softness & bleaching
		Threat of better	Dye sensitized nanomaterials
		components based on	Nano-composites
		nanotechnology	
		Dye may degrade	Recycling
		drinking water	Usage of selective dyes

7. Conclusion

We have studied the application of dye-doped polymer films for nonlinear and photonics processes using ABCD analysis framework. The various determinant issues of related to the use of dye-doped polymer films in photonic applications identified using focus group method are : (1) Material Issues, (2) Application Issues, (3) Commercialization Issues, (4) Production/Service providers Issues, (5) Customer Issues, and (6) Environmental/Social Issues. The analysis identified the affecting factors for various determinant issues under four constructs advantages, benefits, constraints, and disadvantages.

The analysis has brought about 204 critical constituent elements which satisfy the success of this analysis methodology.

References

[1] Sutherland, R.L., McLean, D.G., and Kirkpatrick, S. (2003). Handbook of Nonlinear Optics, 2nd Edition, Marcel Dekker, New York.

[2] Stegeman, G I, Torruellas, W E., (1996). Nonlinear materials for information processing and communications. *Philos Trans R Sot Land Phys Sci Eng*, 354, 745-756.

[3] Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW. (1990). Sensitive measurement of optical nonlinearities using a single beam. *IEEE Journal of Quantum Electronics*, 26, 760–769.

[4] Aithal, P.S., Kiran, P.P., Rao, D. N., (1999). Self-focusing, self-trapping, and optical limiting of light beams in photorefractive Bi₁₂SiO₂₀: Fe crystal, *International Symposium on Photonics and Applications*, 406-416.

[5] Aithal P. S., Kiran P. P., and Rao D. N., (1999). Optical Limiting Study in Pure and Doped Bi₁₂SiO₂₀ Crystals, International Conference on Laser Materials and Devices., Allied Publishers, 106-111.

[6] Aithal, P. S., Singh, R. P., Kiran, P.P., & Rao D. N., (2000). Optical limiting and nonlinear absorption studies in $Bi_{12}SiO_{20}$ crystal at high power nanosecond laser regime. *Asian Journal of Physics*, 9(1), 107-114.

[7] Aithal, P. S., Kiran, P. P., & Rao D. N. (2000). Optical limiting studies in photorefractive pure and iron-doped Bi ₁₂ SiO₂₀ crystals, *Journal of Nonlinear Optical Physics & Materials*, 9(2), 217-225.

[8] Bhat, A. P., Aithal, P. S., Rao, P. M., & Avasthi, D. K., (1996). Effect of Heavy Ion Irradiation on Dielectric Properties of ADP and Doped ADP Crystals, *Materials Science Forum*, 223, 213-216.

[9] Bhat, A. P., Aithal, P. S., Rao, P. M., & Avasthi, D. K. (2000). Effects of swift heavy ions on the dielectric properties of doped and undoped ammonium dihydrogen phosphate crystals, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 166, 964-967.

[10] Rao, P. M., Nagaraja, H. S., Aithal, P. S., Avasthi, D. K., & Sarma, A. (1998). Effect of high energy ion irradiation on electrical and optical properties of organic nonlinear optical crystals, *Materials chemistry and physics*, 54(1), 147-150.

[11] Aithal, P. S., Nagaraja, H. S., Rao, P. M., Nampoori, V. P. N., Vallabhan, C. P. G., and Avasthi, D. K. (1997). Possibility of waveguide formation on organic nonlinear crystal methyl para-hydroxy benzoate using high energy ion irradiation, *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 129(2), 217-220.

[12] Aithal, P. S., & Shubhrajyotsna Aithal, (2015). Ideal Technology Concept & its Realization Opportunity using Nanotechnology, *International Journal of Application or Innovation in Engineering & Management (IJAIEM)*, 4(2), 153 - 164.

[13] Aithal, P. S. (2015). Concept of Ideal Business & Its Realization Using E-Business Model, *International Journal of Science and Research (IJSR)*, 4(3), 1267 - 1274.

[14] Aithal, P. S., (2015). Mobile Business as an Optimum Model for Ideal Business. *International Journal of Management, IT and Engineering (IJMIE)*, 5(7), 146-159.

[15] Aithal, P. S., & Shubhrajyotsna Aithal (2015). An Innovative Education Model to realize Ideal Education System. *International Journal of Scientific Research and Management (IJSRM)*, 3(3), 2464-2469.

[16] Aithal, P. S., & Shubhrajyotsna Aithal, (2014). Ideal education system and its realization through online education model using mobile devices. *Proceedings of IISRO Multi Conference 2014, Bangkok*, 140 – 146. ISBN No. 978-81-927104-33-13.

[17] Aithal, P. S., & Shubhrajyotsna Aithal, (2016). Impact of On-line Education on Higher Education System. *International Journal of Engineering Research and Modern Education (IJERME)*, 1(I), 225-235.

[18] Aithal, P. S. (2016). The concept of Ideal Strategy & its realization using White Ocean Mixed Strategy, *International Journal of Management Sciences and Business Research (IJMSBR)*, 5(4), 171-179.

[19] Sridhar Acharya, P. and Aithal, P. S., (2016). Concepts of Ideal Electric Energy System for production, distribution and utilization. *International Journal of Management, IT and Engineering* (*IJMIE*), 6(1), 367-379.

[20] Aithal, P. S., (2016). <u>Concept of Ideal Banking and Realization of it using Ubiquitous Banking</u>. *Proceedings of National Conference on Changing Perspectives of Management, IT, and Social Sciences in Contemporary Environment, Manegma 2016*, SIMS, Mangalore, India, 14, 13-24. ISBN 978-93-5265-6523.

[21] Aithal, P. S., (2016). Smart Library Model for Future Generations. *International Journal of Engineering Research and Modern Education (IJERME)*, 1(1), 693-703.

[22] Prasad, P.N. (1991). Strategy for optimization of molecular materials for nonlinear optics and photonics. *Organic Molecules for Nonlinear Optics and Photonics*, Springer Netherlands, 225-237.

[23] Larry, R. Dalton, Peter Günter, Mojca Jazbinsek, O-Pil Kwon, Philip A. S., (2015). Organic Electro-Optics and Photonics: Molecules, Polymers and Crystals, *Cambridge University Press*.

[24] Prasad, P.N. (1990). Nonlinear optical effects in organic materials. *Nonlinear Optics in Solids, Springer Berlin Heidelberg*, 304-327.

[25] Nagaraja, H. S., Upadhyaya, V., Rao, P.M., Aithal, P.S., Bhat, A.P., (1998). Organic nonlinear optical crystals of benzoyl glycine, *Journal of crystal growth*, 193(4), 674-678.

[26] Aithal, P.S. & Rao, P.M., (1995). Novel nonlinear optical crystal of methyl-p-hydroxy benzoate. *Journal of crystal growth*, 153(1), 60-62.

[27] Sindhu Sukumaran, V. (2015). Third Order Optical Nonlinearity of Dye Doped Polymer. *International Journal of ChemTech Research*, 8(1), 300-303.

[28] Tomov, I. V., VanWonterghem, B., Dvornikov, A. S., Dutton, T. E., & Rentzepis, P. M. (1991). Degenerate four-wave mixing in azo-dye-doped polymer films. *JOSA B*, 8(7), 1477-1482.

[29] Badran, H. A., (2015). Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique, Appl. Phys. B. 119, p.319.

[30] Aithal, P. S., Singh, R. P., Rao D. N. (2003). Optical limiting due to frequency up-converted fluorescence in DASPB-dye-doped polymer matrix. *International Symposium on Optical Science and Technology*, 229-239.

[31] Singh, R. P., Aithal, P. S., & Rao, D. N. (2003). Optical limiting studies of Disperse Orange and Disperse Yellow in PMMA-MA matrix. *International Symposium on Optical Science and Technology*, 52-58.

[32] Shubrajyotsna Aithal, Aithal, P. S., and Bhat, G. K. (2011). Optical Nonlinearity of Dye-doped Polymer Film using Z-scan Technique, *Second International Conference on Photonics* 2011, 17-19 Kota Kinabalu, Malaysia, IEEEXplore. 62-66. ISBN 978-1-61284-265-3.

[33] Shubrajyotsna Aithal, Aithal, P. S., and Bhat, G. K. (2011). Study of nonlinear absorption in a dye doped polymer film due to frequency up-converted fluorescence. *Proceedings of the International Conference on Laser, Material Science and Communication*, Dept. of Physics, University of Burdwan, West Bengal, Ed. U. Chatterjee and P.K. Chakrabarti, 107-109. ISBN : 978-93-80813-14-1.

[34] Shubhrajyotsna Aithal, Aithal, P. S., and Bhat, G. K. (2011). Nonlinear Absorption Studies of Disperse Orange Doped Polymer Film, *Trends in Optics and Photonics II, Proceedings of International Conference on Trends in Optics and Photonics*, December 7-9, 2011, Kolkata, India. Editors : Ajay Ghosh and Debesh Choudhury, 132-137. ISBN 978-81-908188-1-0.

[35] Fiorini, C., Charra, F., Nunzi, J. M., & Raimond, P. (1997). Quasi-permanent all-optical encoding of noncentrosymmetry in azo-dye polymers. *JOSA B*, 14(8), 1984-2003.

[36] Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. *Science*, 248 (4951), 73-76.

[37] Shubrajyotsna Aithal, Sreeramana Aithal, and Gopalkrishna Bhat, (2012). Phase Conjugation in Two Photon Absorbing Dye films by Degenerate Four-wave Mixing, *Proceedings of 3rd International Conference on Photonics*, 1-3 October 2012, Penang, Malaysia. IEEEXplore, 235-239 (2012). ISBN: 978-1-4673-1463-3. DOI 10.1109/ICP.2012.6379868.

[38] Shubrajyotsna Aithal, & Aithal, P. S. (2012). Study of Phase Conjugated wave in DASPB dye-doped polymer films, Photonics Global Conference 2012, 13-16, December 2012, Nanyang Technical University, Singapore. *Photonics Global Conference (PGC), Singapore*, (pp. 1-5).

[39] Shubhrajyotsna Aithal, Aithal, P. S., and Bhat, G. K. (2015). Comparative Study on Azo dye-doped Polymer Films for Optical Phase Conjugation, *International Journal of Science and Research (IJSR)*, 4(4), 436 – 441.

[40] Shubrajyotsna Aithal, Aithal, P. S., & Bhat, G. K. (2012). Study of Degenerate Four-Wave Mixing in Disperse Orange Dye-doped Polymer Film. *Advanced Materials Research Journal, Trans Tech Publications (TTP), Switzerland*, 584, 526-530.

[41] Shubrajyotsna Aithal, Aithal, P.S., & Bhat, G. K. (2013). Degenerate four-wave mixing in DASPB dye-doped polymer film, published in Part IV Quantum Optics, Chapter 12, Advances in Laser Physics and Technology, Edited by Man Mohan, Anil Kumar Maini, Aranya A. Bhattacherjee and Anil K. Razdan under the imprint of Foundation Books, Cambridge University Press India Pvt Ltd. pp. 179 - 195, ISBN: 978-93-844634-1-0.

[42] Aithal, P.S., Prem Kiran, P., & Rao, D. N. (2000). Self-trapping of optical beams in an unbiased photorefractive Bi₁₂SiO₂₀:Fe crystal, Asian Journal of Physics, 9(2), 376 - 381.

[43] Shubhrajyotsna Aithal, Aithal, P. S., & Bhat, G. K. (2013). Study of Optical Limiting and Optical Phase Conjugation in DASPB dye-doped polymer films. *GSTF Journal of Physics and Applications (JPA)*, 1(1), 15-24.

[44] Aithal, S., Aithal P. S., Bhat, G. K. (2015). A Review on sustainable organic materials for optical limiting technology, *International Journal of Management, IT and Engineering (IJMIE)*, 5(7), 527-544.

[45] Shubhrajyotsna Aithal, Aithal, P. S., & Bhat, G. K. (2016). A Review on Organic Materials for Optical Phase Conjugation & All-optical Switches. *International Journal of Management, IT and Engineering (IJMIE)*, 6(1), 222-238.

[46] Aithal, P. S., Shailashree, V. T., Suresh Kumar, P. M. (2015). A New ABCD Technique to Analyze Business Models & Concepts, *International Journal of Management, IT and Engineering (IJMIE)*, 5(4), 409-423.

[47] Aithal, P. S. (2016). Study on ABCD Analysis Technique for Business Models, Business strategies, Operating Concepts & Business Systems, *International Journal in Management and Social Science*, 4(1), 98-115.

[48] Reshma, Aithal, P. S., Shailashree, V. T., & Sridhar Acharya, P. (2015). An Empirical study on working from home – A popular E-business model, *International Journal of Advance and Innovative Research*, 2(2), 12-18.

[49] Aithal, P. S., Shailashree, V. T., & Suresh Kumar, P. M. (2015). Application of ABCD Analysis Model for Black Ocean Strategy. *International Journal of Applied Research (IJAR)*, 1(10), 331-337.

[50] Aithal, P. S., Shailashree, V. T., & Suresh Kumar P. M., (2016). ABCD analysis of Stage Model in Higher Education. *International Journal of Management, IT and Engineering (IJMIE)*, 6(1), 11-24.

[51] Aithal, P. S., Shailashree, V. T., & Suresh Kumar, P. M. (2016). Analysis of NAAC Accreditation System using ABCD framework. *International Journal of Management, IT and Engineering (IJMIE)*, 6(1), 30-44.

[52] Aithal, P. S., Shailashree, V. T., & Suresh Kumar, P. M. (2016). Application of ABCD Analysis Framework on Private University System in India. *International Journal of Management Sciences and Business Research (IJMSBR)*, 5(4), 159-170.

[53] Aithal, P. S., Shailashree, V. T., & Suresh Kumar, P. M. (2016). The Study of New National Institutional Ranking System using ABCD Framework, *International Journal of Current Research and Modern Education (IJCRME)*, 1(1), 389–402.

[54] Sridhar Acharya, P., Aithal, P. S. (2016). Concepts of Ideal Electric Energy System for production, distribution and utilization. *International Journal of Management, IT and Engineering (IJMIE)*, 6(1), 367-379.

[55] Reshma, Aithal, P. S., Sridhar Acharya P. (2015). Relevance of On-line Office Administration through Working from Home in Future Education System. *International Journal of Application or Innovation in Engineering & Management*, 4(4), 44 - 53.

[56] Padmanabha Shenoy, & Aithal, P. S., (2016). A Study on History of Paper and possible Paper Free World. *International Journal of Management, IT and Engineering (IJMIE)*, 6(1), 337-355.

[57] Aithal, P. S. (2015). Comparative Study on MBA Programmes in Private & Public Universities - A case study of MBA programme plan of Srinivas University. *International Journal of Management Sciences and Business Research (IJMSBR)*, 4(12), 106-122.

[58] Aithal, P. S., & Shubhrajyotsna Aithal, (2016). Impact of On-line Education on Higher Education System. *International Journal of Engineering Research and Modern Education (IJERME)*, I(1), 225-235.

[59] Aithal, P. S., & Suresh Kumar, P. M. (2016). Analysis of Choice Based Credit System in Higher Education. *International Journal of Engineering Research and Modern Education (IJERME)*, 1(1), 278-284.

[60] Varun Shenoy, & Aithal, P. S. (2016). Changing Approaches in Campus Placements - A new futuristic Model. *International Journal of Scientific Research and Modern Education (IJSRME)*, 1(1), 766–776.

[61] Rogers, E. M., (1995). Diffusion of Innovation. The Free Press, NY.

[62] Aithal P. S. and Varambally K. V. M. (2006). Security Issues in Online Financial Transactions with Special Reference to Banking Industry. In Quality in Service Sector and Managerial Challenges – Allied Publisher Pvt. Ltd. 2006, ISBN: 81-7764-992-2, pp 103- 114.

[63] Varambally, K. V. M., & Aithal, P. S. (2009). <u>Technological Management and Mobile Business</u> <u>Services in India – A Futuristic Approach</u>, Proceedings on MIDISA - SAARC Conference on Change and Continuity : Management Prospects and Challenges, RIM, Thimphu, Bhutan, 121-139.

[64] Aithal, P. S., & Varambally, K. V. M. (2009). Mobile Business Technology and Business Proliferation of Banks – A futuristic Approach. *Amity Business Review – an Indian Journal*, 10(1), 9–25.

[65] Aithal, P. S., and Shubhrajyotsna Aithal, (2015). Ideal Technology Concept & its Realization Opportunity using Nanotechnology. *International Journal of Application or Innovation in Engineering & Management (IJAIEM)*, 4(2), 153-164.

[66] Aithal P. S., & Shubhrajyotsna Aithal, (2015). Managing Anticipated Breakthrough Technologies of 21st Century - A Review. *International Journal of Research & Development in Technology and Management Sciences*, 21(6), 112–133.

[67] Aithal P. S., (2015). Concept of Ideal Business & Its Realization Using E-Business Model. International Journal of Science and Research (IJSR), 4(3), 1267-1274.

[68] Aithal P. S., & Shubhrajyotsna Aithal, (2015). An Innovative Education Model to realize Ideal Education System. *International Journal of Scientific Research and Management (IJSRM)*, 3(3), 2464 – 2469.