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Abstract In high energy physics, graph-based implementations have the advantage of treat-

ing the input data sets in a similar way as they are collected by collider experiments. To

expand on this concept, we propose a graph neural network enhanced by attention mecha-

nisms called ABCNet. To exemplify the advantages and flexibility of treating collider data

as a point cloud, two physically motivated problems are investigated: quark–gluon discrim-

ination and pileup reduction. The former is an event-by-event classification, while the latter

requires each reconstructed particle to receive a classification score. For both tasks, ABCNet

shows an improved performance compared to other algorithms available.

1 Introduction

One of the main goals in modern machine learning is to be able to extract the maximum

amount of information available from a data set. Successful implementations take advantage

of the data structure for model building. In high energy physics (HEP), particle collisions

in experiments are reconstructed by combining the energy deposits left by particles after

crossing different parts of a detector. The information provided by sub-detectors can be further

combined to give a full description of each particle produced. At the Large Hadron Collider

(LHC) [1], jets are ubiquitous objects produced in proton–proton collisions. Jets are the

byproducts of the hadronisation of quarks and gluons, resulting in an often collimated spray

of particles. After each collision, O(1000) or more particles can be produced, making the

task of identifying the original hard scattering objects challenging. The luminosity increase

at the LHC will also increase the amount of multiple interactions per bunch crossing (pileup).

For instance, event collisions recorded thus far by the ATLAS [2] and CMS [3] detectors

at LHC measured an average of about 30 extraneous interactions. With the future upgrade,

up to 200 pileup events per bunch crossing are expected, requiring new methods for particle

identification and pileup suppression. In this paper, a new method for event classification

in HEP is introduced. The attention-based cloud net (ABCNet) takes into account the data

structure recorded by particle collision experiments, treating each interaction as an unordered

set of points that defines a point cloud. This description is advantageous since the byproducts

of each particle collision are treated in a similar fashion as they are collected by particle

detectors. To enhance the extraction of local information, an attention mechanism is used,

following closely the implementation developed in [4]. Attention mechanisms have proved to
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boost performance for different applications in machine learning by giving local and global

context to the learning procedure. To show the performance and flexibility of the model, two

critical problems are investigated: quark–gluon discrimination and pileup mitigation.

2 Related works

The main novelties introduced by ABCNet are the treatment of particle collision data as

a set of permutation invariant objects, enhanced by attention mechanisms to filter out the

particles that are not relevant for the tasks we want to accomplish. The usage of graph-based

machine learning implementations is still a new concept in particle physics. Nevertheless,

new implementations have already been proposed with promising results. ParticleNet [5] uses

a similar approach, using point clouds for jet identification. The main difference between

ABCNet and ParticleNet is that ABCNet takes advantage of attention mechanisms to enhance

the local feature extraction, allowing for a more compact and efficient architecture. A theory-

inspired approach was also developed in the framework of Deep Sets [6] using an infrared

and collinear safe basis, developed in the context of Energy Flow Networks [7]. A message-

passing approach for jet tagging discussed in [8]. Interaction networks were also studied in the

context of high-mass particle decays with JEDI-net [9]. Other graph-based implementations

have also been presented in the context of signal and background classification [10,11],

particle track reconstruction [12], and particle reconstruction on irregular calorimeters. [13].

In the context of pileup rejection, the GGNN implementation [14] shows promising results

by combining graph nodes with GRU cells.

3 GAPLayer

ABCNet follows closely the implementation described for GAPNet [4], with key differences

to adapt the implementation to our problems of interest. For clarity, the description of the

essential aspects of the implementation are described. The key aspect of GAPNet is the devel-

opment of a graph attention pooling layer (GAPLayer) using the edge convolution operation

proposed in [15], which defines a convolution-like operation on point clouds together with

attention mechanisms to operate on graph-structured data described in [16]. The point cloud

is first represented as a graph with vertices represented by the points themselves. The edges

are constructed by connecting the points to their k-nearest neighbours, while the edge fea-

tures, yi j = (xi − xi j ), are taken as the difference between features of each point xi and

its k-neighbours xi j . A GAPLayer is constructed by first encoding each point and edge to

a higher-level feature space of dimension F using a single-layer neural network (NN), with

learnable parameters θ , in the following form:

x ′
i = h(xi , θi , F)

y′
i j = h(yi j , θi j , F)

where h() denotes the single-layer neural network operation. Self- and local coefficients

are created by passing the transformed points and edges to a single-layer NN with output

dimension of size one. Finally, the attention coefficients ci j are created by combining the

newly created coefficients in the following way:

ci j = LeakyRelu(h(x ′
i , θ

′
i , 1) + h(y′

i j , θ
′
i j , 1)) (1)
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where the nonlinear LeakyRelu operation is applied to the output of the sum. To align the

attention coefficients between different points, a Softmax normalisation is applied to the

coefficients ci j . At this moment, each point is associated with k attention coefficients. To

compute a single attention feature for each point, a linear combination with a nonlinear

activation function is defined as

x̂i = Relu

⎛

⎝

∑

j

ci j y′
i j

⎞

⎠ . (2)

To enhance the stability of the determination of the coefficients x̂i , a multihead mechanism

can be used. A M-head process repeats the same procedure described above, determining

x̂i M times, differing only on the random weight initialisation. The M results are combined

by taking the maximum of the M different x̂i . The outputs of each GAPLayer consist of

attention features (x̂i ) and graph features (y′
i j ). The graph features are further aggregated in

the form:

ymax
i j = max(y′

i j ).

Due to stackability properties, a GAPLayer output can be further used as an input to a

subsequent GAPLayer or multilayer perceptron (MLP).

4 Classification: quark–gluon tagging

Quark–gluon tagging refers to the task of identifying the origin of a jet as produced from

the hadronisation of a gluon or a quark. The data set used for the studies are available from

[7]. It consists of stable particles clustered into jets, excluding neutrinos, using the anti-

kT algorithm [17] with R = 0.4. The quark-initiated sample (signal) is generated using a

Z(νν) + (u, d, s) while the gluon-initiated data (background) are generated using Z(νν) +g

processes. Both samples are generated using Pythia8 [18] without detector effects. Jets are

required to have transverse momentum pT ∈ [500, 550] GeV and rapidity |y| < 1.7 for

the reconstruction. For the training, testing and evaluation of the method, the recommended

splitting is used with 1.6M/200k/200k events, respectively. For every reconstructed jet, up to

200 constituents are saved. Each constituent contains the four momentum and the expected

particles type (electron, muon, photon, or charged/neutral hadrons). A typical jet has O(10)

to O(100) particles. To simplify the implementation, ABCNet uses the first 100 constituents

sorted by pT from highest to lowest. If the jet has less than 100 constituents, the event is

padded with zeros; if there are more than 100 constituents, the event is truncated.

To enhance the non-local information extraction, global features can also be added to

ABCNet. The approach is similar to the one described in [19], where global information is

used to parameterise the network, improving the generalisation and performance as a function

of the global parameters.

The features used to describe each constituent are listed in Table 1.

4.1 Network architecture

The network layout used is shown in Fig. 1. The first step is to calculate the distances

between the constituents in the pseudorapidity–azimuth (η − φ) space of the form �R =
√

�η2 + �φ2. From the distances, we create the first GAPLayer by associating each particle

to its nearest 10 neighbours. While different choices for k were tested, the overall perfor-

mance did not improve with the addition of more neighbours. The encoding channel size of
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Table 1 Description of each feature used to define a point in the point cloud implementation for quark–gluon

classification. The latter two features are the global information added to the network

Variable Description

�η Difference between the pseudorapidity of the constituent and the jet

�φ Difference between the azimuthal angle of the constituent and the jet

log pT Logarithm of the constituent’s pT

log E Logarithm of the constituent’s E

log
pT

pT(jet)
Logarithm of the ratio between the constituent’s pT and the jet pT

log E
E(jet)

Logarithm of the ratio between the constituent’s E and the jet E

�R Distance in the η − φ space between the constituent and the jet

PID Particle type identifier as described in [20]

m(jet) Jet mass

pT(jet) Jet transverse momentum

the GAPLayer F is selected to be 32 with a 1-head. The attention features created by the

GAPLayer are then passed through two MLPs with node sizes (128,128). The distances used

for the second GAPLayer are calculated using the full-feature space produced in the output

of the last MLP, allowing the network to learn distances in the transformed feature space. To

achieve a robust estimation, the encoding channel size is selected to be 64 with the number

of heads determined to be two. The newly created attention features are passed through two

MLPs of node sizes each of 128. In parallel, ABCNet also takes additional global inputs in

the form of the jet mass and transverse momenta. The global inputs are first transformed by

means of a single-layer MLP with small node size of 16. The two graph features and the

output of each MLP are concatenated with the transformed global features and fed to a MLP

of node size 128. An average pulling is applied, and the result is further passed to 2 additional

MLPs of node sizes (128,256) interleaved by two dropout layers. A Softmax operation is

applied to the output result.

4.2 Results

The performance of ABCNet is compared to the methods implemented in [5] and [7], using

the same data set.

The figures of merit used for the comparison are:

– Accuracy: Ratio between the number of correct predictions and the total number of test

examples.

– AUC: Integral of the area under the receiver operating characteristic distribution.

– 1/ǫB : One over the background efficiency for a fixed value of the signal efficiency (50%

or 30%)

– Parameters: Number of trainable weights for the model.

The results of the comparisons are listed in Table 2. Even though the accuracy obtained by

ABCNet is numerically the same as the one reported by ParticleNet, ABCNet excels on the

other figures of merit, improving the background rejection, at 30% signal efficiency, by 15–

20%. The use of attention coefficients allow the model complexity of ABCNet to be reduced,

having 40% less parameters compared to ParticleNet.
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Fig. 1 ABCNet architecture used for quark–gluon tagging. Fully connected layer and encoding node sizes

are denoted inside “{}”. For each GAPLayer, the number of k-nearest neighbours (k) and heads (H) is given

Table 2 Comparison between the performance achieved with ABCNet and different available implementa-

tions

Acc AUC 1/ǫB (ǫS = 0.5) 1/ǫB (ǫS = 0.3) Parameters

ResNeXt-50 0.821 0.9060 30.9 80.8 1.46M

P-CNN 0.827 0.9002 34.7 91.0 348k

PFN – 0.9005 34.7 ± 0.4 – 82k

ParticleNet-Lite 0.835 0.9079 37.1 94.5 26k

ParticleNet 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3 366k

ABCNet 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5 230k

The uncertainty quoted corresponds to the standard deviation of nine trainings with different random weight

initialisation. If the uncertainty is not quoted, then the variation is negligible compared to the expected value

4.3 Visualisation

A simple way to check what ABCNet is learning is to look at the self-coefficients of each

point of the point cloud. First, we pre-processes the images in a similar fashion as [21], using

the following steps:

– Centre: All jet images are translated in the η − φ space to a common centre at (0,0). The

centre of the jet is taken as its pT-weighted centroid.

– Particle scale: Each particle constituent has its transverse momentum scaled such that
∑ jet

pT,i = 1, where i is the i-th constituent of the jet.

– Overall scale: The final image is created by superimposing the individual event images

and dividing the resulting distribution by the number of events in the test sample.

Other steps were adopted in [21]; however, since the goal is to have a simple visual cue, they

were not used. The resulting jet images are shown in Fig. 2 for quark- and gluon-initiated jets

on the upper and lower rows, respectively. The leftmost images correspond to the jets after the

pre-processing. The subsequent columns show the same distribution, but only considering
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Fig. 2 Distribution of the pT-scaled distribution of the jet constituents averaged over all images in the test

sample. The leftmost images are the quark (top) and gluon (bottom) jet averages after the pre-processing. The

first 5% of the jet constituents with the highest self-attention coefficients for the first and second GAPLayers

are shown on the images in the centre and right, respectively

particles whose self-attention coefficients, resulting from the first (middle column) and second

(right column) GAPLayers, are higher than a certain value. This value is chosen such that

only the first 5% of all particles with the largest self-attention coefficients are selected.

The self-coefficients from the first GAPLayer have the effect of giving higher attention

to high-pT particles, while soft-QCD with large angular variation has less importance. The

second GAPLayer, where nearest neighbours are calculated in the feature space, has different

distributions for quark-initiated and gluon-initiated jets. Quark-initiated jets have the highest

coefficients in a confined radius with ∼ �R = 0.1 around the centre, while gluon-initiated

coefficients spam a bigger area around the centre with ∼ �R = 0.3. That behaviour is

expected since gluon jets have a larger colour factor compared to quark jets, typically resulting

in a broader angular distribution compared to quark jets.

5 Pileup reduction using part segmentation

Another crucial problem in particle physics is how to identify the particles originated from

high-pT collisions and separate them from unwanted additional interactions. Two traditional

methods to accomplish this task are the SoftKiller [22] and the Pileup Per Particle Identifica-

tion (PUPPI) [23] algorithms. These two algorithms are chosen since they represent the most

common algorithms for pileup mitigation at the LHC. To test the performance of ABCNet

in this context, we change the scope of a single jet classifier to a particle-by-particle classi-

fication (part segmentation). In this case, a probability is estimated for object, determining

how likely it is for each particle to originate from the leading vertex (LV). The sample used

for this study is available from [24], containing a set of qq̄ light-quark-initiated jets coming
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Table 3 Variable description for each feature used to define a point in the point cloud implementation for the

pileup mitigation problem. The latter two features are the global information added to the network

Variable Description

η Particle’s pseudorapidity

φ Particle’s azimuthal angle

log pT Logarithm of the particle pT

Q Boolean flag identifying if the particle is charged

log
pT

pT(jet)
Logarithm of the ratio between the particle pT and the associated jet pT

log E
E(jet)

Logarithm of the ratio between the particle E and the associated jet E

wPUPPI PUPPI weight for the particle

wSoftKiller Boolean flag identifying if the particle passes the SoftKiller pT requirement

NPU number of pileup interactions

NPART Number of reconstructed particles associated with jets

from the decay of a scalar particle with mass mφ = 500 GeV. The samples were generated

using Pythia8 at
√

s = 13 TeV. The pileup events were generated by overlaying soft QCD

processes onto each event. Stable particles are clustered into jets, excluding neutrinos, using

the anti-kT algorithm with R=0.4. At parton level, a pT requirement of at least 95 GeV was

applied. Only jets satisfying pT>100 GeV and η ∈ [−2.5, 2.5] are considered. For each event,

up to two leading jets as ordered in pT are stored. Two thousand events are generated, each

with a different number of pileup interactions (NPU) ranging from 0 to 180. For the training

and testing samples, events are randomly selected from the generated samples according to

a Poisson distribution with average pileup <NPU> = 140, motivated by the expected pileup

levels for future collisions at the LHC. The training and evaluation are done with 80% and

10% of the events with <NPU> = 140, respectively. For testing, two samples are created: one

corresponding to the remaining 10% of the events and <NPU> = 140 and the other a sample

with independent events generated at different NPU levels. For each event, up to 500 particles

are stored as long as they are matched to one of the two leading jets. The features used to

define each particle are described in Table 3. The feature choice is similar to the ones used

for the classification task. The main difference is that for this sample, the PID information is

not available, but replaced by a flag that identifies if a particle is charged or not. Since more

than one jet can be reconstructed, a global zero is used for all events, instead of using the jet

axis as a reference point. While no selection is applied to the particles used in ABCNet, the

PUPPI weights and the SoftKiller decision flag are also used as input features. The global

information added to the parameterisation is NPU and the number of reconstructed particles

associated with jets.

5.1 Network architecture

The network architecture for the part segmentation problem is similar to the setup used

previously. The main differences are:

– Number of considered neighbours increased from 10 to 50.

– Additional MLPs after the attention features and after the pooling layer.

– Usage of only 1-head GAPLayers.
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Fig. 3 ABCNet architecture used for pileup identification. Fully connected layer and encoding node sizes are

denoted inside “{}”. For each GAPLayer, the number of k-nearest neighbours (k) and heads (H) are given

The increase in expansion of neighbours and MLPs is chosen to increase the model’s capacity

to cover the larger amount of points per event. The architecture is shown in Fig. 3.

5.2 Results

The performance of ABCNet is compared to the performance achieved using PUPPI and

SoftKiller. The default parameters for those methods are the same as the ones used in [24]:

R0 =0.3, Rmin = 0.02, wcut = 0.1, pT
cut (NPU) = 0.1 + 0.007 × NPU (PUPPI), grid size = 0.4

(SoftKiller). First, the jet mass is reconstructed with the <NPU> = 140 evaluation sample,

applying the different mitigation algorithms. Inspired by PUPPI, the output probabilities

from ABCNet are used to reweight the four-momentum of each particle. The reconstructed

dijet mass and the dijet mass resolution are shown in Fig. 4. The resolution is defined as:

mass resolution = mreco − mtrue

mtrue
.

In Table 4, the width of the jet mass resolution, extracted by fitting the distributions in

Fig. 4 (right) with a Gaussian function, is also listed.

ABCNet improves jet mass resolution compared to both PUPPI and SoftKiller by 75% and

83%, respectively. The robustness of each algorithm is also tested by comparing. The Pearson

linear correlation coefficient (PCC) between the true jet mass and corrected jet masses for

different NPU is generated. Figure 5 shows the result of the comparison using the test sample

with NPU from 0 to 180. To investigate the power of ABCNet to generalise, a training

sample with <NPU> = 20 is created and trained using the same architecture described

previously. For both trainings, ABCNet shows a superior performance compared to PUPPI

and SoftKiller for the entire NPU range. Furthermore, ABCNet is also remarkably robust for
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Fig. 4 Distribution of the dijet mass using the different pileup mitigation algorithms (left) and the jet mass

resolution (right). A narrower resolution peak means better performance. All distributions are normalised to

unit

Table 4 Resolution width for

different pileup mitigation

strategies. The resolution width is

extracted by fitting the

distributions shown in Fig. 4

(right) with a Gaussian function

Algorithm Resolution width

SoftKiller 0.022

PUPPI 0.021

ABCNet 0.012

pileup variations outside the training region due to the addition of the global parameters to

the method.

6 Training details

ABCNet is implemented using Tensorflow v1.4 [25]. A Nvidia GTX 1080 Ti graphics card

is used for the training and evaluation steps. For all tasks described in this paper, the Adam

optimiser [26] is used. The learning rate starts from 0.001 and decreases linearly by a factor

10 every seven epochs, until reaching a minimum of 1e-7. The training is performed with

a mini batch size of 64 to a maximum number of 50 epochs. The epoch with the highest

accuracy on the evaluation is saved in the case of the quark–gluon classification task. For the

pileup identification, the epoch with the lowest loss is stored.

7 Conclusion

In this document, a new machine learning implementation for data classification in HEP is

introduced. The attention-based cloud net (ABCNet) takes advantage of the data structure

commonly found in particle colliders to create a point cloud interpretation. An attention mech-

anism is implemented to enhance the local information extraction and provide a simple way
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Fig. 5 PCC for each pileup mitigation algorithm for different NPU. ABCNet is trained on <NPU> = 140

(blue) or <NPU> = 20 (orange)

to investigate what the method is learning. To capture the global information, direct connec-

tions for global input features can be directly added. ABCNet can be used for event-by-event

classification problems or generalised to particle-by-particle classification. To exemplify the

architecture flexibility, two example problems are investigated: quark–gluon classification

and pileup mitigation. For both problems, ABCNet achieved an improved performance com-

pared to other available methods. By using a graph architecture and interpreting each point

in a point cloud as a particle, ABCNet can be readily adapted to other applications in HEP

like jet-flavour tagging, boosted jet identification, or particle track reconstruction.
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