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Abstract

How to model a pair of sentences is a critical
issue in many NLP tasks such as answer selec-
tion (AS), paraphrase identification (PI) and
textual entailment (TE). Most prior work (i)
deals with one individual task by fine-tuning
a specific system; (ii) models each sentence’s
representation separately, rarely considering
the impact of the other sentence; or (iii) re-
lies fully on manually designed, task-specific
linguistic features. This work presents a gen-
eral Attention Based Convolutional Neural
Network (ABCNN) for modeling a pair of
sentences. We make three contributions. (i)
The ABCNN can be applied to a wide va-
riety of tasks that require modeling of sen-
tence pairs. (ii) We propose three attention
schemes that integrate mutual influence be-
tween sentences into CNNs; thus, the rep-
resentation of each sentence takes into con-
sideration its counterpart. These interdepen-
dent sentence pair representations are more
powerful than isolated sentence representa-
tions. (iii) ABCNNs achieve state-of-the-art
performance on AS, PI and TE tasks. We
release code at: https://github.com/
yinwenpeng/Answer_Selection.

1 Introduction

How to model a pair of sentences is a critical is-
sue in many NLP tasks such as answer selection
(AS) (Yu et al., 2014; Feng et al., 2015), paraphrase
identification (PI) (Madnani et al., 2012; Yin and
Schütze, 2015a), textual entailment (TE) (Marelli et
al., 2014a; Bowman et al., 2015a) etc.

A
S

s0 how much did Waterboy gross?
s+1 the movie earned $161.5 million
s−1 this was Jerry Reed’s final film appearance

PI

s0 she struck a deal with RH to pen a book today
s+1 she signed a contract with RH to write a book
s−1 she denied today that she struck a deal with RH

T
E

s0 an ice skating rink placed outdoors is full of people
s+1 a lot of people are in an ice skating park
s−1 an ice skating rink placed indoors is full of people

Figure 1: Positive (<s0, s
+
1 >) and negative (<s0, s

−
1 >)

examples for AS, PI and TE tasks. RH = Random House

Most prior work derives each sentence’s represen-
tation separately, rarely considering the impact of
the other sentence. This neglects the mutual influ-
ence of the two sentences in the context of the task.
It also contradicts what humans do when comparing
two sentences. We usually focus on key parts of one
sentence by extracting parts from the other sentence
that are related by identity, synonymy, antonymy
and other relations. Thus, human beings model the
two sentences together, using the content of one sen-
tence to guide the representation of the other.

Figure 1 demonstrates that each sentence of a pair
partially determines which parts of the other sen-
tence we must focus on. For AS, correctly answer-
ing s0 requires attention on “gross”: s+1 contains
a corresponding unit (“earned”) while s−1 does not.
For PI, focus should be removed from “today” to
correctly recognize < s0, s

+
1 > as paraphrases and

< s0, s
−
1 > as non-paraphrases. For TE, we need

to focus on “full of people” (to recognize TE for
<s0, s

+
1 >) and on “outdoors” / “indoors” (to recog-

nize non-TE for <s0, s
−
1 >). These examples show

the need for an architecture that computes different
representations of si for different s1−i (i ∈ {0, 1}).

https://github.com/yinwenpeng/Answer_Selection
https://github.com/yinwenpeng/Answer_Selection


Convolutional Neural Networks (CNNs) (LeCun
et al., 1998) are widely used to model sentences
(Kalchbrenner et al., 2014; Kim, 2014) and sen-
tence pairs (Socher et al., 2011; Yin and Schütze,
2015a), especially in classification tasks. CNNs
are supposed to be good at extracting robust and
abstract features of input. This work presents the
ABCNN, an attention-based convolutional neural
network, that has a powerful mechanism for mod-
eling a sentence pair by taking into account the
interdependence between the two sentences. The
ABCNN is a general architecture that can handle a
wide variety of sentence pair modeling tasks.

Some prior work proposes simple mechanisms
that can be interpreted as controlling varying atten-
tion; e.g., Yih et al. (2013) employ word alignment
to match related parts of the two sentences. In con-
trast, our attention scheme based on CNNs models
relatedness between two parts fully automatically.
Moreover, attention at multiple levels of granularity,
not only at word level, is achieved as we stack mul-
tiple convolution layers that increase abstraction.

Prior work on attention in deep learning (DL)
mostly addresses long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber, 1997).
LSTMs achieve attention usually in a word-to-word
scheme, and word representations mostly encode
the whole context within the sentence (Bahdanau et
al., 2015; Rocktäschel et al., 2016). It is not clear
whether this is the best strategy; e.g., in the AS ex-
ample in Figure 1, it is possible to determine that
“how much” in s0 matches “$161.5 million” in s1
without taking the entire sentence contexts into ac-
count. This observation was also investigated by
Yao et al. (2013b) where an information retrieval
system retrieves sentences with tokens labeled as
DATE by named entity recognition or as CD by POS
tagging if there is a “when” question. However, la-
bels or POS tags require extra tools. CNNs benefit
from incorporating attention into representations of
local phrases detected by filters; in contrast, LSTMs
encode the whole context to form attention-based
word representations – a strategy that is more com-
plex than the CNN strategy and (as our experiments
suggest) performs less well for some tasks.

Apart from these differences, it is clear that atten-
tion has as much potential for CNNs as it does for
LSTMs. As far as we know, this is the first NLP

paper that incorporates attention into CNNs. Our
ABCNNs get state-of-the-art in AS and TE tasks,
and competitive performance in PI, then obtains fur-
ther improvements over all three tasks when linguis-
tic features are used.

2 Related Work

Non-DL on Sentence Pair Modeling. Sentence
pair modeling has attracted lots of attention in the
past decades. Many tasks can be reduced to a se-
mantic text matching problem. In this paper, we
adopt the arguments by Yih et al. (2013) who ar-
gue against shallow approaches as well as against
semantic text matching approaches that can be com-
putationally expensive:

Due to the variety of word choices
and inherent ambiguities in natural lan-
guage, bag-of-word approaches with sim-
ple surface-form word matching tend to
produce brittle results with poor predic-
tion accuracy (Bilotti et al., 2007). As a
result, researchers put more emphasis on
exploiting syntactic and semantic struc-
ture. Representative examples include
methods based on deeper semantic anal-
ysis (Shen and Lapata, 2007; Moldovan et
al., 2007), tree edit-distance (Punyakanok
et al., 2004; Heilman and Smith, 2010)
and quasi-synchronous grammars (Wang
et al., 2007) that match the dependency
parse trees of the two sentences.

Instead of focusing on the high-level semantic rep-
resentation, Yih et al. (2013) turn their attention to
improving the shallow semantic component, lexical
semantics, by performing semantic matching based
on a latent word-alignment structure (cf. Chang et al.
(2010)). Lai and Hockenmaier (2014) explore finer-
grained word overlap and alignment between two
sentences using negation, hypernym, synonym and
antonym relations. Yao et al. (2013a) extend word-
to-word alignment to phrase-to-phrase alignment by
a semi-Markov CRF. However, such approaches of-
ten require more computational resources. In ad-
dition, employing syntactic or semantic parsers –
which produce errors on many sentences – to find
the best match between the structured representa-
tions of two sentences is not trivial.



DL on Sentence Pair Modeling. To address
some of the challenges of non-DL work, much re-
cent work uses neural networks to model sentence
pairs for AS, PI and TE.

For AS, Yu et al. (2014) present a bigram CNN to
model question and answer candidates. Yang et al.
(2015) extend this method and get state-of-the-art
performance on the WikiQA dataset (Section 5.1).
Feng et al. (2015) test various setups of a bi-CNN ar-
chitecture on an insurance domain QA dataset. Tan
et al. (2016) explore bidirectional LSTMs on the
same dataset. Our approach is different because we
do not model the sentences by two independent neu-
ral networks in parallel, but instead as an interdepen-
dent sentence pair, using attention.

For PI, Blacoe and Lapata (2012) form sentence
representations by summing up word embeddings.
Socher et al. (2011) use recursive autoencoders
(RAEs) to model representations of local phrases
in sentences, then pool similarity values of phrases
from the two sentences as features for binary classi-
fication. Yin and Schütze (2015a) similarly replace
an RAE with a CNN. In all three papers, the rep-
resentation of one sentence is not influenced by the
other – in contrast to our attention-based model.

For TE, Bowman et al. (2015b) use recursive neu-
ral networks to encode entailment on SICK (Marelli
et al., 2014b). Rocktäschel et al. (2016) present an
attention-based LSTM for the Stanford natural lan-
guage inference corpus (Bowman et al., 2015a). Our
system is the first CNN-based work on TE.

Some prior work aims to solve a general sen-
tence matching problem. Hu et al. (2014) present
two CNN architectures, ARC-I and ARC-II, for sen-
tence matching. ARC-I focuses on sentence repre-
sentation learning while ARC-II focuses on match-
ing features on phrase level. Both systems were
tested on PI, sentence completion (SC) and tweet-
response matching. Yin and Schütze (2015b) pro-
pose the MultiGranCNN architecture to model gen-
eral sentence matching based on phrase matching on
multiple levels of granularity and get promising re-
sults for PI and SC. Wan et al. (2016) try to match
two sentences in AS and SC by multiple sentence
representations, each coming from the local repre-
sentations of two LSTMs. Our work is the first
one to investigate attention for the general sentence
matching task.

Attention-Based DL in Non-NLP Domains.
Even though there is little if any work on atten-
tion mechanisms in CNNs for NLP, attention-based
CNNs have been used in computer vision for visual
question answering (Chen et al., 2015), image clas-
sification (Xiao et al., 2015), caption generation (Xu
et al., 2015), image segmentation (Hong et al., 2016)
and object localization (Cao et al., 2015).

Mnih et al. (2014) apply attention in recurrent
neural networks (RNNs) to extract “information
from an image or video by adaptively selecting a
sequence of regions or locations and only process-
ing the selected regions at high resolution.” Gre-
gor et al. (2015) combine a spatial attention mech-
anism with RNNs for image generation. Ba et al.
(2015) investigate attention-based RNNs for recog-
nizing multiple objects in images. Chorowski et al.
(2014) and Chorowski et al. (2015) use attention in
RNNs for speech recognition.

Attention-Based DL in NLP. Attention-based
DL systems have been applied to NLP after their
success in computer vision and speech recognition.
They mainly rely on RNNs and end-to-end encoder-
decoders for tasks such as machine translation (Bah-
danau et al., 2015; Luong et al., 2015) and text re-
construction (Li et al., 2015; Rush et al., 2015). Our
work takes the lead in exploring attention mecha-
nisms in CNNs for NLP tasks.

3 BCNN: Basic Bi-CNN

We now introduce our basic (non-attention) CNN
that is based on the Siamese architecture (Brom-
ley et al., 1993), i.e., it consists of two weight-
sharing CNNs, each processing one of the two sen-
tences, and a final layer that solves the sentence pair
task. See Figure 2. We refer to this architecture as
the BCNN. The next section will then introduce the
ABCNN, an attention architecture that extends the
BCNN. Table 1 gives our notational conventions.

In our implementation and also in the mathemat-
ical formalization of the model given below, we
pad the two sentences to have the same length s =
max(s0, s1). However, in the figures we show dif-
ferent lengths because this gives a better intuition of
how the model works.

We now describe the BCNN’s four types of lay-
ers: input, convolution, average pooling and output.



symbol description
s, s0, s1 sentence or sentence length
v word
w filter width
di dimensionality of input to layer i+ 1
W weight matrix

Table 1: Notation

Figure 2: BCNN: ABCNN without Attention

Input layer. In the example in the figure, the two
input sentences have 5 and 7 words, respectively.
Each word is represented as a d0-dimensional pre-
computed word2vec (Mikolov et al., 2013) embed-
ding, d0 = 300. As a result, each sentence is repre-
sented as a feature map of dimension d0 × s.

Convolution layer. Let v1, v2, . . . , vs be the
words of a sentence and ci ∈ Rw·d0 , 0 < i < s +
w, the concatenated embeddings of vi−w+1, . . . , vi
where embeddings for vj are set to zero when j < 1
or j > s. We then generate the representation
pi ∈ Rd1 for the phrase vi−w+1, . . . , vi using the
convolution weights W ∈ Rd1×wd0 as follows:

pi = tanh(W · ci + b)

where b ∈ Rd1 is the bias.
Average pooling layer. Pooling (including min,

max, average pooling) is commonly used to extract

robust features from convolution. In this paper, we
introduce attention weighting as an alternative, but
use average pooling as a baseline as follows.

For the output feature map of the last convolu-
tion layer, we do column-wise averaging over all
columns, denoted as all-ap. This generates a rep-
resentation vector for each of the two sentences,
shown as the top “Average pooling (all-ap)” layer
below “Logistic regression” in Figure 2. These two
vectors are the basis for the sentence pair decision.

For the output feature map of non-final convolu-
tion layers, we do column-wise averaging over win-
dows of w consecutive columns, denoted as w-ap;
shown as the lower “Average pooling (w-ap)” layer
in Figure 2. For filter width w, a convolution layer
transforms an input feature map of s columns into
a new feature map of s + w − 1 columns; average
pooling transforms this back to s columns. This ar-
chitecture supports stacking an arbitrary number of
convolution-pooling blocks to extract increasingly
abstract features. Input features to the bottom layer
are words, input features to the next layer are short
phrases and so on. Each level generates more ab-
stract features of higher granularity.

The last layer is an output layer, chosen accord-
ing to the task; e.g., for binary classification tasks,
this layer is logistic regression (see Figure 2). Other
types of output layers are introduced below.

We found that in most cases, performance is
boosted if we provide the output of all pooling lay-
ers as input to the output layer. For each non-final
average pooling layer, we perform w-ap (pooling
over windows of w columns) as described above, but
we also perform all-ap (pooling over all columns)
and forward the result to the output layer. This
improves performance because representations from
different layers cover the properties of the sentences
at different levels of abstraction and all of these lev-
els can be important for a particular sentence pair.

4 ABCNN: Attention-Based BCNN

We now describe three architectures based on the
BCNN, the ABCNN-1, the ABCNN-2 and the
ABCNN-3, that each introduces an attention mech-
anism for modeling sentence pairs; see Figure 3.

ABCNN-1. The ABCNN-1 (Figure 3(a)) em-
ploys an attention feature matrix A to influence con-



(a) One block in ABCNN-1

(b) One block in ABCNN-2

(c) One block in ABCNN-3

Figure 3: Three ABCNN architectures



volution. Attention features are intended to weight
those units of si more highly in convolution that are
relevant to a unit of s1−i (i ∈ {0, 1}); we use the
term “unit” here to refer to words on the lowest level
and to phrases on higher levels of the network. Fig-
ure 3(a) shows two unit representation feature maps
in red: this part of the ABCNN-1 is the same as
in the BCNN (see Figure 2). Each column is the
representation of a unit, a word on the lowest level
and a phrase on higher levels. We first describe the
attention feature matrix A informally (layer “Conv
input”, middle column, in Figure 3(a)). A is gener-
ated by matching units of the left representation fea-
ture map with units of the right representation fea-
ture map such that the attention values of row i in
A denote the attention distribution of the i-th unit of
s0 with respect to s1, and the attention values of col-
umn j in A denote the attention distribution of the
j-th unit of s1 with respect to s0. A can be viewed as
a new feature map of s0 (resp. s1) in row (resp. col-
umn) direction because each row (resp. column) is a
new feature vector of a unit in s0 (resp. s1). Thus, it
makes sense to combine this new feature map with
the representation feature maps and use both as in-
put to the convolution operation. We achieve this by
transforming A into the two blue matrices in Figure
3(a) that have the same format as the representation
feature maps. As a result, the new input of convolu-
tion has two feature maps for each sentence (shown
in red and blue). Our motivation is that the atten-
tion feature map will guide the convolution to learn
“counterpart-biased” sentence representations.

More formally, let Fi,r ∈ Rd×s be the represen-
tation feature map of sentence i (i ∈ {0, 1}). Then
we define the attention matrix A ∈ Rs×s as follows:

Ai,j = match-score(F0,r[:, i],F1,r[:, j]) (1)

The function match-score can be defined in a variety
of ways. We found that 1/(1 + |x− y|) works well
where | · | is Euclidean distance.

Given attention matrix A, we generate the atten-
tion feature map Fi,a for si as follows:

F0,a = W0 ·A>, F1,a = W1 ·A

The weight matrices W0 ∈ Rd×s, W1 ∈ Rd×s are
parameters of the model to be learned in training.1

1The weights of the two matrices are shared in our imple-
mentation to reduce the number of parameters of the model.

We stack the representation feature map Fi,r and
the attention feature map Fi,a as an order 3 tensor
and feed it into convolution to generate a higher-
level representation feature map for si (i ∈ {0, 1}).
In Figure 3(a), s0 has 5 units, s1 has 7. The output
of convolution (shown in the top layer, filter width
w = 3) is a higher-level representation feature map
with 7 columns for s0 and 9 columns for s1.

ABCNN-2. The ABCNN-1 computes attention
weights directly on the input representation with the
aim of improving the features computed by convolu-
tion. The ABCNN-2 (Figure 3(b)) instead computes
attention weights on the output of convolution with
the aim of reweighting this convolution output. In
the example shown in Figure 3(b), the feature maps
output by convolution for s0 and s1 (layer marked
“Convolution” in Figure 3(b)) have 7 and 9 columns,
respectively; each column is the representation of a
unit. The attention matrix A compares all units in s0
with all units of s1. We sum all attention values for a
unit to derive a single attention weight for that unit.
This corresponds to summing all values in a row of
A for s0 (“col-wise sum”, resulting in the column
vector of size 7 shown) and summing all values in a
column for s1 (“row-wise sum”, resulting in the row
vector of size 9 shown).

More formally, let A ∈ Rs×s be the attention
matrix, a0,j =

∑
A[j, :] the attention weight of unit

j in s0, a1,j =
∑

A[:, j] the attention weight of
unit j in s1 and Fc

i,r ∈ Rd×(si+w−1) the output of
convolution for si. Then the j-th column of the new
feature map Fp

i,r generated by w-ap is derived by:

Fp
i,r[:, j]=

∑
k=j:j+w

ai,kF
c
i,r[:, k], j = 1 . . . si

Note that Fp
i,r ∈ Rd×si , i.e., ABCNN-2 pooling

generates an output feature map of the same size as
the input feature map of convolution. This allows
us to stack multiple convolution-pooling blocks to
extract features of increasing abstraction.

There are three main differences between the
ABCNN-1 and the ABCNN-2. (i) Attention in the
ABCNN-1 impacts convolution indirectly while at-
tention in the ABCNN-2 influences pooling through
direct attention weighting. (ii) The ABCNN-1 re-
quires the two matrices Wi to convert the attention
matrix into attention feature maps; and the input to



convolution has two times as many feature maps.
Thus, the ABCNN-1 has more parameters than the
ABCNN-2 and is more vulnerable to overfitting.
(iii) As pooling is performed after convolution, pool-
ing handles larger-granularity units than convolu-
tion; e.g., if the input to convolution has word level
granularity, then the input to pooling has phrase level
granularity, the phrase size being equal to filter size
w. Thus, the ABCNN-1 and the ABCNN-2 imple-
ment attention mechanisms for linguistic units of
different granularity. The complementarity of the
ABCNN-1 and the ABCNN-2 motivates us to pro-
pose the ABCNN-3, a third architecture that com-
bines elements of the two.

ABCNN-3 (Figure 3(c)) combines the ABCNN-1
and the ABCNN-2 by stacking them; it combines the
strengths of the ABCNN-1 and -2 by allowing the
attention mechanism to operate (i) both on the con-
volution and on the pooling parts of a convolution-
pooling block and (ii) both on the input granularity
and on the more abstract output granularity.

5 Experiments

We test the proposed architectures on three tasks:
answer selection (AS), paraphrase identification (PI)
and textual entailment (TE).

Common Training Setup. Words are initialized
by 300-dimensional word2vec embeddings and not
changed during training. A single randomly initial-
ized embedding is created for all unknown words by
uniform sampling from [-.01,.01]. We employ Ada-
grad (Duchi et al., 2011) and L2 regularization.

Network Configuration. Each network in the
experiments below consists of (i) an initialization
block b1 that initializes words by word2vec em-
beddings, (ii) a stack of k − 1 convolution-pooling
blocks b2, . . . , bk, computing increasingly abstract
features, and (iii) one final LR layer (logistic regres-
sion layer) as shown in Figure 2.

The input to the LR layer consists of kn features
– each block provides n similarity scores, e.g., n
cosine similarity scores. Figure 2 shows the two
sentence vectors output by the final block bk of the
stack (“sentence representation 0”, “sentence repre-
sentation 1”); this is the basis of the last n similarity
scores. As we explained in the final paragraph of
Section 3, we perform all-ap pooling for all blocks,

AS PI TE

#C
L

lr w L2 lr w L2 lr w L2

ABCNN-1 1 .08 4 .0004 .08 3 .0002 .08 3 .0006
ABCNN-1 2 .085 4 .0006 .085 3 .0003 .085 3 .0006
ABCNN-2 1 .05 4 .0003 .085 3 .0001 .09 3 .00065
ABCNN-2 2 .06 4 .0006 .085 3 .0001 .085 3 .0007
ABCNN-3 1 .05 4 .0003 .05 3 .0003 .09 3 .0007
ABCNN-3 2 .06 4 .0006 .055 3 .0005 .09 3 .0007

Table 2: Hyperparameters. lr: learning rate. #CL: num-
ber convolution layers. w: filter width. The number of
convolution kernels di (i > 0) is 50 throughout.

not just for bk. Thus we get one sentence representa-
tion each for s0 and s1 for each block b1, . . . , bk. We
compute n similarity scores for each block (based
on the block’s two sentence representations). Thus,
we compute a total of kn similarity scores and these
scores are input to the LR layer.

Depending on the task, we use different methods
for computing the similarity score: see below.

Layerwise Training. In our training regime,
we first train a network consisting of just one
convolution-pooling block b2. We then create a
new network by adding a block b3, initialize its b2
block with the previously learned weights for b2 and
train b3 keeping the previously learned weights for
b2 fixed. We repeat this procedure until all k − 1
convolution-pooling blocks are trained. We found
that this training regime gives us good performance
and shortens training times considerably. Since sim-
ilarity scores of lower blocks are kept unchanged
once they have been learned, this also has the nice
effect that “simple” similarity scores (those based
on surface features) are learned first and subsequent
training phases can focus on complementary scores
derived from more complex abstract features.

Classifier. We found that performance increases
if we do not use the output of the LR layer as the
final decision, but instead train a linear SVM or a
logistic regression with default parameters2 directly
on the input to the LR layer (i.e., on the kn similarity
scores that are generated by the k-block stack after
network training is completed). Direct training of
SVMs/LR seems to get closer to the global optimum
than gradient descent training of CNNs.

Table 2 shows hyperparameters, tuned on dev.
We use addition and LSTMs as two shared base-

lines for all three tasks, i.e., for AS, PI and TE. We
2 http://scikit-learn.org/stable/ for both.

http://scikit-learn.org/stable/


now describe these two shared baselines.
(i) Addition. We sum up word embeddings

element-wise to form each sentence representation.
The classifier input is then the concatenation of the
two sentence representations. (ii) A-LSTM. Be-
fore this work, most attention mechanisms in NLP
were implemented in recurrent neural networks for
text generation tasks such as machine translation
(e.g., Bahdanau et al. (2015), Luong et al. (2015)).
Rocktäschel et al. (2016) present an attention-LSTM
for natural language inference. Since this model is
the pioneering attention based RNN system for sen-
tence pair classification, we consider it as a baseline
system (“A-LSTM”) for all our three tasks. The A-
LSTM has the same configuration as our ABCNNs
in terms of word initialization (300-dimensional
word2vec embeddings) and the dimensionality of all
hidden layers (50).

5.1 Answer Selection

We use WikiQA,3 an open domain question-answer
dataset. We use the subtask that assumes that there
is at least one correct answer for a question. The
corresponding dataset consists of 20,360 question-
candidate pairs in train, 1,130 pairs in dev and 2,352
pairs in test where we adopt the standard setup of
only considering questions with correct answers in
test. Following Yang et al. (2015), we truncate an-
swers to 40 tokens.

The task is to rank the candidate answers based
on their relatedness to the question. Evaluation mea-
sures are mean average precision (MAP) and mean
reciprocal rank (MRR).

Task-Specific Setup. We use cosine similarity as
the similarity score for AS. In addition, we use sen-
tence lengths, WordCnt (count of the number of non-
stopwords in the question that also occur in the an-
swer) and WgtWordCnt (reweight the counts by the
IDF values of the question words). Thus, the final
input to the LR layer has size k + 4: one cosine for
each of the k blocks and the four additional features.

We compare with seven baselines. The first three
are considered by Yang et al. (2015): (i) WordCnt;
(ii) WgtWordCnt; (iii) CNN-Cnt (the state-of-the-
art system): combine CNN with (i) and (ii). Apart
from the baselines considered by Yang et al. (2015),

3http://aka.ms/WikiQA (Yang et al., 2015)

method MAP MRR

B
as

el
in

es

WordCnt 0.4891 0.4924
WgtWordCnt 0.5099 0.5132
CNN-Cnt 0.6520 0.6652
Addition 0.5021 0.5069
Addition(+) 0.5888 0.5929
A-LSTM 0.5347 0.5483
A-LSTM(+) 0.6381 0.6537

BCNN
one-conv 0.6629 0.6813
two-conv 0.6593 0.6738

ABCNN-1
one-conv 0.6810∗ 0.6979∗

two-conv 0.6855∗ 0.7023∗

ABCNN-2
one-conv 0.6885∗ 0.7054∗

two-conv 0.6879∗ 0.7068∗

ABCNN-3
one-conv 0.6914∗ 0.7127∗

two-conv 0.6921∗ 0.7108∗

Table 3: Results on WikiQA. Best result per column
is bold. Significant improvements over state-of-the-art
baselines (underlined) are marked with ∗ (t-test, p < .05).

we compare with two Addition baselines and two
LSTM baselines. Addition and A-LSTM are the
shared baselines described before. We also combine
both with the four extra features; this gives us two
additional baselines that we refer to as Addition(+)
and A-LSTM(+).

Results. Table 3 shows performance of the base-
lines, of the BCNN and of the three ABCNNs. For
CNNs, we test one (one-conv) and two (two-conv)
convolution-pooling blocks.

The non-attention network BCNN already per-
forms better than the baselines. If we add attention
mechanisms, then the performance further improves
by several points. Comparing the ABCNN-2 with
the ABCNN-1, we find the ABCNN-2 is slightly
better even though the ABCNN-2 is the simpler ar-
chitecture. If we combine the ABCNN-1 and the
ABCNN-2 to form the ABCNN-3, we get further
improvement.4

This can be explained by the ABCNN-3’s abil-
ity to take attention of finer-grained granularity into
consideration in each convolution-pooling block
while the ABCNN-1 and the ABCNN-2 consider at-
tention only at convolution input or only at pooling
input, respectively. We also find that stacking two
convolution-pooling blocks does not bring consis-
tent improvement and therefore do not test deeper
architectures.

4If we limit the input to the LR layer to the k similarity
scores in the ABCNN-3 (two-conv), results are .660 (MAP) /
.677 (MRR).

http://aka.ms/WikiQA


5.2 Paraphrase Identification

We use the Microsoft Research Paraphrase (MSRP)
corpus (Dolan et al., 2004). The training set contains
2753 true / 1323 false and the test set 1147 true /
578 false paraphrase pairs. We randomly select 400
pairs from train and use them as dev; but we still
report results for training on the entire training set.
For each triple (label, s0, s1) in the training set, we
also add (label, s1, s0) to the training set to make
best use of the training data. Systems are evaluated
by accuracy and F1.

Task-Specific Setup. In this task, we add the
15 MT features from (Madnani et al., 2012) and
the lengths of the two sentences. In addition, we
compute ROUGE-1, ROUGE-2 and ROUGE-SU4
(Lin, 2004), which are scores measuring the match
between the two sentences on (i) unigrams, (ii) bi-
grams and (iii) unigrams and skip-bigrams (maxi-
mum skip distance of four), respectively. In this
task, we found transforming Euclidean distance into
similarity score by 1/(1 + |x − y|) performs better
than cosine similarity. Additionally, we use dynamic
pooling (Yin and Schütze, 2015a) of the attention
matrix A in Equation (1) and forward pooled val-
ues of all blocks to the classifier. This gives us bet-
ter performance than only forwarding sentence-level
matching features.

We compare our system with representative DL
approaches: (i) A-LSTM; (ii) A-LSTM(+): A-
LSTM plus handcrafted features; (iii) RAE (Socher
et al., 2011), recursive autoencoder; (iv) Bi-CNN-
MI (Yin and Schütze, 2015a), a bi-CNN architec-
ture; and (v) MPSSM-CNN (He et al., 2015), the
state-of-the-art NN system for PI, and the follow-
ing four non-DL systems: (vi) Addition; (vii) Ad-
dition(+): Addition plus handcrafted features; (viii)
MT (Madnani et al., 2012), a system that combines
machine translation metrics;5 (ix) MF-TF-KLD (Ji
and Eisenstein, 2013), the state-of-the-art non-NN
system.

Results. Table 4 shows that the BCNN is slightly
worse than the state-of-the-art whereas the ABCNN-
1 roughly matches it. The ABCNN-2 is slightly
above the state-of-the-art. The ABCNN-3 outper-

5For better comparability of approaches in our experiments,
we use a simple SVM classifier, which performs slightly worse
than Madnani et al. (2012)’s more complex meta-classifier.

method acc F1

B
as

el
in

es

majority voting 66.5 79.9
RAE 76.8 83.6
Bi-CNN-MI 78.4 84.6
MPSSM-CNN 78.6 84.7
MT 76.8 83.8
MF-TF-KLD 78.6 84.6
Addition 70.8 80.9
Addition (+) 77.3 84.1
A-LSTM 69.5 80.1
A-LSTM (+) 77.1 84.0

BCNN
one-conv 78.1 84.1
two-conv 78.3 84.3

ABCNN-1
one-conv 78.5 84.5
two-conv 78.5 84.6

ABCNN-2
one-conv 78.6 84.7
two-conv 78.8 84.7

ABCNN-3
one-conv 78.8 84.8
two-conv 78.9 84.8

Table 4: Results for PI on MSRP

forms the state-of-the-art in accuracy and F1.6 Two
convolution layers only bring small improvements
over one.

5.3 Textual Entailment

SemEval 2014 Task 1 (Marelli et al., 2014a) eval-
uates system predictions of textual entailment (TE)
relations on sentence pairs from the SICK dataset
(Marelli et al., 2014b). The three classes are entail-
ment, contradiction and neutral. The sizes of SICK
train, dev and test sets are 4439, 495 and 4906 pairs,
respectively. We call this dataset ORIG.

We also create NONOVER, a copy of ORIG in
which words occurring in both sentences are re-
moved. A sentence in NONOVER is denoted by the
special token <empty> if all words are removed.
Table 5 shows three pairs from ORIG and their trans-
formation in NONOVER. We observe that focusing
on the non-overlapping parts provides clearer hints
for TE than ORIG. In this task, we run two copies of
each network, one for ORIG, one for NONOVER;
these two networks have a single common LR layer.

Like Lai and Hockenmaier (2014), we train our
final system (after fixing hyperparameters) on train
and dev (4934 pairs). Eval measure is accuracy.

Task-Specific Setup. We found that for this task
forwarding two similarity scores from each block

6Improvement of .3 (acc) and .1 (F1) over state-of-the-art is
not significant. The ABCNN-3 (two-conv) without “linguistic”
features (i.e., MT and ROUGE) achieves 75.1/82.7.



ORIG NONOVER

0
children in red shirts are children red shirts
playing in the leaves playing
three kids are sitting in the leaves three kids sitting

1
three boys are jumping in the leaves boys
three kids are jumping in the leaves kids

2
a man is jumping into an empty pool an empty
a man is jumping into a full pool a full

Table 5: SICK data: Converting the original sentences
(ORIG) into the NONOVER format

(instead of just one) is helpful. We use cosine sim-
ilarity and Euclidean distance. As we did for para-
phrase identification, we add the 15 MT features for
each sentence pair for this task as well; our motiva-
tion is that entailed sentences resemble paraphrases
more than contradictory sentences do.

We use the following linguistic features. Nega-
tion is important for detecting contradiction. Fea-
ture NEG is set to 1 if either sentence contains “no”,
“not”, “nobody”, “isn’t” and to 0 otherwise. Fol-
lowing Lai and Hockenmaier (2014), we use Word-
Net (Miller, 1995) to detect nyms: synonyms, hy-
pernyms and antonyms in the pairs. But we do this
on NONOVER (not on ORIG) to focus on what
is critical for TE. Specifically, feature SYN is the
number of word pairs in s0 and s1 that are syn-
onyms. HYP0 (resp. HYP1) is the number of words
in s0 (resp. s1) that have a hypernym in s1 (resp.
s0). In addition, we collect all potential antonym
pairs (PAP) in NONOVER. We identify the matched
chunks that occur in contradictory and neutral, but
not in entailed pairs. We exclude synonyms and hy-
pernyms and apply a frequency filter of n = 2. In
contrast to Lai and Hockenmaier (2014), we con-
strain the PAP pairs to cosine similarity above 0.4
in word2vec embedding space as this discards many
noise pairs. Feature ANT is the number of matched
PAP antonyms in a sentence pair. As before we use
sentence lengths, both for ORIG (LEN0O: length
s0, LEN1O: length s1) and for NONOVER (LEN0N:
length s0, LEN1N: length s1).

On the whole, we have 24 extra features: 15
MT metrics, NEG, SYN, HYP0, HYP1, ANT, LEN0O,
LEN1O, LEN0N and LEN1N.

Apart from the Addition and LSTM baselines, we
further compare with the top-3 systems in SemEval
and TrRNTN (Bowman et al., 2015b), a recursive
neural network developed for this SICK task.

method acc

Se
m

-
E

va
l

To
p3

(Jimenez et al., 2014) 83.1
(Zhao et al., 2014) 83.6
(Lai and Hockenmaier, 2014) 84.6

TrRNTN (Bowman et al., 2015b) 76.9

Addition
no features 73.1
plus features 79.4

A-LSTM
no features 78.0
plus features 81.7

BCNN
one-conv 84.8
two-conv 85.0

ABCNN-1
one-conv 85.6
two-conv 85.8

ABCNN-2
one-conv 85.7
two-conv 85.8

ABCNN-3
one-conv 86.0∗

two-conv 86.2∗

Table 6: Results on SICK. Significant improvements over
(Lai and Hockenmaier, 2014) are marked with ∗ (test of
equal proportions, p < .05).

Results. Table 6 shows that our CNNs outper-
form A-LSTM (with or without linguistic features
added) and the top three SemEval systems. Compar-
ing ABCNNs with the BCNN, attention mechanisms
consistently improve performance. The ABCNN-1
has performance comparable to the ABCNN-2 while
the ABCNN-3 is better still: a boost of 1.6 points
compared to the previous state of the art.7

Visual Analysis. Figure 4 visualizes the attention
matrices for one TE sentence pair in the ABCNN-
2 for blocks b1 (unigrams), b2 (first convolutional
layer) and b3 (second convolutional layer). Darker
shades of blue indicate stronger attention values.

In Figure 4 (top), each word corresponds to ex-
actly one row or column. We can see that words in
si with semantic equivalents in s1−i get high atten-
tion while words without semantic equivalents get
low attention, e.g., “walking” and “murals” in s0 and
“front” and “colorful” in s1. This behavior seems
reasonable for the unigram level.

Rows/columns of the attention matrix in Figure 4
(middle) correspond to phrases of length three since
filter width w = 3. High attention values generally
correlate with close semantic correspondence: the
phrase “people are” in s0 matches “several people
are” in s1; both “are walking outside” and “walking
outside the” in s0 match “are in front” in s1; “the
building that” in s0 matches “a colorful building” in

7If we run the ABCNN-3 (two-conv) without the 24 linguis-
tic features, performance is 84.6.
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Figure 4: Attention visualization for TE. Top: unigrams,
b1. Middle: conv1, b2. Bottom: conv2, b3.

s1. More interestingly, looking at the bottom right
corner, both “on it” and “it” in s0 match “building”
in s1; this indicates that ABCNNs are able to detect
some coreference across sentences. “building” in
s1 has two places in which higher attentions appear,
one is with “it” in s0, the other is with “the building
that” in s0. This may indicate that ABCNNs recog-
nize that “building” in s1 and “the building that” /
“it” in s0 refer to the same object. Hence, corefer-
ence resolution across sentences as well as within a
sentence both are detected. For the attention vectors
on the left and the top, we can see that attention has
focused on the key parts: “people are walking out-
side the building that” in s0, “several people are in”

and “of a colorful building” in s1.
Rows/columns of the attention matrix in Figure 4

(bottom, second layer of convolution) correspond
to phrases of length 5 since filter width w = 3 in
both convolution layers (5 = 1 + 2 ∗ (3 − 1)). We
use “. . .” to denote words in the middle if a phrase
like “several...front” has more than two words. We
can see that attention distribution in the matrix has
focused on some local regions. As granularity of
phrases is larger, it makes sense that the attention
values are smoother. But we still can find some
interesting clues: at the two ends of the main di-
agonal, higher attentions hint that the first part of
s0 matches well with the first part of s1; “several
murals on it” in s0 matches well with “of a color-
ful building” in s1, which satisfies the intuition that
these two phrases are crucial for making a decision
on TE in this case. This again shows the potential
strength of our system in figuring out which parts of
the two sentences refer to the same object. In ad-
dition, in the central part of the matrix, we can see
that the long phrase “people are walking outside the
building” in s0 matches well with the long phrase
“are in front of a colorful building” in s1.

6 Summary

We presented three mechanisms to integrate atten-
tion into CNNs for general sentence pair modeling
tasks.

Our experiments on AS, PI and TE show that
attention-based CNNs perform better than CNNs
without attention mechanisms. The ABCNN-2 gen-
erally outperforms the ABCNN-1 and the ABCNN-
3 surpasses both.

In all tasks, we did not find any big improvement
of two layers of convolution over one layer. This is
probably due to the limited size of training data. We
expect that, as larger training sets become available,
deep ABCNNs will show even better performance.

In addition, linguistic features contribute in all
three tasks: improvements by 0.0321 (MAP) and
0.0338 (MRR) for AS, improvements by 3.8 (acc)
and 2.1 (F1) for PI and an improvement by 1.6 (acc)
for TE. But our ABCNNs can still reach or surpass
state-of-the-art even without those features in AS
and TE tasks. This indicates that ABCNNs are gen-
erally strong NN systems.



Attention-based LSTMs are especially successful
in tasks with a strong generation component like ma-
chine translation (discussed in Sec. 2). CNNs have
not been used for this type of task. This is an inter-
esting area of future work for attention-based CNNs.
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