
Abduction in Machine Learning

F. Bergadano1, V. Cutello1, and D. Gunetti2

1University of Catania, via A. Doria 6/A,

95100 Catania, Italy, bergadan@dipmat.unict.it

2University of Torino, corso Svizzera 185,

10149 Torino, Italy, gunetti@di.unito.it

Abstract

Abduction and induction are strictly related forms of defeasible reason-
ing. However, Machine Learning research is mainly focused on inductive
techniques, leading from specific examples to general rules, with applica-
tions to classification, diagnosis and program synthesis.. Abduction has
been used in Machine Learning, but its use was typically an aside tech-
nique, to be integrated or added on top of the basic inductive scheme.
We discuss the general relation between abductive and inductive reason-
ing, showing that they solve different instantiations of the same problem.
Then we analyze the specific ways abbdution has been used in Machine
Learning. Two different cases are individuated: (1) abductive reasoning
used in explanation-based learning systems as a heuristic to guide search
in top-down specialization, and (2) abduction used for generating missing
examples in relational learning. In both cases, the use of abduction is not
general and adapted to a very tiny and specific problem. In this sense,
the Machine Learning community has not used abduction as a synonym
of induction, despite the high degree of similarity. However, both uses of
abduction in learning have been proved to be effective for their intended
purposes.

1 Introduction

Both inductive learning and abductive reasoning start from specific facts or ob-

servations and produce some explanation of these facts. Both may be described

as forms of defeasible reasoning from effects to causes. There are some differences,

1

but they are minor and due to different understandings of the notions of observa-

tion and explanation. In [1], such differences are analyzed in detailed, and some

related discussion is also found in the next section or the present paper. To put it

in one sentence, induction views examples as instances of a concept and explana-

tions as general concept descriptions, while abduction views examples as specific

observations and explanations as other specific facts that are true, and cause

the observations to occur. As a typical case for induction, an example could be

the description of a specific bird, and a concept description could be a rule such as

bird(X) ← small(X) ∧ part of(X,Y) ∧ wing(Y)

For abduction, an oservation could be the fact that some specific bird does not

fly, and an explanation could be the fact that that specific bird has a broken wing.

In both cases, the relevant logical relation is that the explanation, together with

the domain knowledge, implies the observation.

The Machine Learning literature has largely ignored such similarities, or has

produced studies that emphasize the differences that are present [8, 10]. On

the other hand, abduction has been used as an effective technique within the

underlying inductive framework of Machine Learning methods. We have identified

two different approaches. First, abduction has been used to guide search in top-

down relational learning. The idea has evolved from explanation-based learning

methods, restricting the inductive hypotheses to be logical consequences of a given

domain theory. This is then generalized by allowing inductive hypothesis to be

obtained from the domain theory by either deductive or abductive reasoning.

Second, abduction has been used to generated missing examples in relational

learning. In fact, it is intrinsic to the nature of induction that the input data is

incomplete: some examples are given, but not all. If some particular examples

are missing, existing relational learning methods may however encounter serious

problems, and abductive generation of these missing examples may be an effective

solution. The following two paragraphs that conclude this introduction summarize

2

these two ways of using abduction in learning. These two approaches are, we think,

quite representative of the Machine Learning view of abductive reasoning.

Top-down relational learning algorithms suffer from the difficulty of serach a

space of possible inductive hypotheses that is usually very large. In the first rela-

tional learning systems, and also in more recent approaches such as Foil [15], the

problem was addressed with heuristics of a statistical nature. Top-down systems

start from very general concept descriptions, and then try to obtain consistent

rules with a number of specialization steps. Typically, heuristics would favor spe-

cializations that exclude negative examples while still covering a large number of

positive examples. Such heuirstics may be misleading, and may also be insuffi-

cient for an adequate pruning of the hypothesis space. The Explanation-Based

Learning (EBL) paradigm restricts the concept descriptions that may be possibly

produced to the logic consequences of a so-called domain theory, that is given

as an input to the learning system [11, 2, 14]. Abduction has been used in this

framework as follows: given the domain theory, also the concept descriptions that

may be obtained via abductive reasoning are considered as possible, and should be

evaluated inductively on the basis of the available examples. Studies that follow

this scheme may be found in [3, 6, 7].

A well known problem in Machine Learning is to provide a learning method

with an “adequate” set of examples of the target concept. Here “adequate” in-

formally means that the training set should contain all those examples required

to successfully complete the learning task, and no more. Obviously, this is a very

hard condition to achieve, since usually it is not possible to know in advance ex-

actly which examples are (and which are not) significant for learning a concept.

As a consequence, the learning task may turn out to be too slow (if too many

examples are given) and/or fails (if the examples are not significant). This prob-

lem is particularly serious for an important class of learning methods: Relational

Learning Algorithms based on an extensional interpretation of sub-predicates

and recursion [15, 2, 14]. In these methods, the learning procedure can not only

fail or be too slow, but also produce wrong results: the description of the target

3

concept synthesized by the system may entail some of the negative examples given

to the system. In this paper we show how abduction can be used to remedy the

above problem. An abductive procedure is used to query the user for any example

that may be missing, depending on the hypothesis space that has been defined

and the given examples. A similar technique has been used before, for example

in [16, 18], to query the user for missing values allowing a single example to be

covered. The novelty of our approach is that abduction is systematically applied

over the whole hypothesis space. As a result of this, the learning systems turns

out to be correct and sufficient, in the sense that the learned description does not

entail any of the negative examples and such a description can always be found if

it exists.

2 Abduction and Induction

Abductive and Inductive Reasoning in Artificial Intelligence are considered to be

distinct and have generated separate fields of study. After a simple analysis, one

finds in effect distinct inference schemes. For induction:

P(a)

———

∀x P(x)

For abduction:

P(x) → Q(x), Q(a)

————————

P(a)

Deeper analysis, however, suggests that the difference between the two schemes

is not always easy to state. For instance, using the tautology Φ = (∀x P(x)) →

4

P(a) one gets:

Φ, P(a)

————

∀x P(x)

as an abductive inference step, but actually has the same premises and conlusions

of the inductive inference scheme. It would then seem that the abductive scheme

includes simple forms of inductive reasoning. In [1] we start from the above consid-

erations and isolate some minor differences of abductive and inductive reasoning

within the same franework, that is determined by the above inference rules. In

the same paper, a formalization based on non-monotonic logic is developed. Here,

we simply note that induction and abduction are indeed very similar inference

schemes. However, the Machine Learning literature has not used them as syn-

onyms. The main keyword in learning is induction, and abductive reasoning is

rather used as an additional technique for solving particular problems. We discuss

in the following sections two such uses of abduction in Machine Learning. In the

next section we survey its use as a form of bias for guinding search in top-down

specialization. In the rest of the paper, we show how abductive reasoning and

queries can solve some relevant problems in relational top-down learning.

3 Guiding Search with Abduction

One use of the keyword abduction in the Machine Learning literature is related

to the problem of guiding search in top-down specialization. As the number of

concept descriptions that may possibly be generated is, in general, very large, and

because even the number of descriptions that are consistent with the examples

can be large, learning systems need extra-evidential criteria to prune the search

space. Deductive inference with a domain theory has been used to this purpose

in ML-SMART [2] and FOCL [14]. Similarly, a domain theory could be used

5

abductively within the same framework as in [3] and in [6, 7].

Before we can suitably describe the details of abductive inference to prune the

space of possible concept descriptions, we need to define a type of analytic learn-

ing called Explanation-based Learning (EBL), which has received much attention

during the late eighties. A survey of EBL is found in [9].

EBL needs in input one or more positive examples, as well as a so-called

domain theory, which includes relevant prior knowledge. A resolution proof of

the positive examples is produced, and the leaves of the proof tree are generalized

and taken as the antecedent of a new rule for the target concept. Suppose, for

instance, that the domain theory is as follows

C(X) :- B(X), A(X,Y).

B(X) :- R(X,Y).

B(b).

A(c,a).

R(c,d).

and a positive example for C is C(c). This example can be obtained deductively

from the domain theory, where the leaves in the proof tree are R(c,d) and A(c,a).

This yields the learned description for C:

C(X) :- R(X,Y), A(X,Z)

The learned description is actually a logical consequence of the given domain

theory, and could be obtained from the domain theory even without looking at

the examples, by resolving the first two clauses in the domain theory. The role of

the example is that of suggesting some consequences of the domain theory rather

than others: the ones that are useful to deduce the positive example are chosen.

One natural question arises: what is the purpose of this form of learning, if

its output is just a logical consequence of something that was already known?

6

The answer is that, although nothing really new is learned, the new form of

knowledge may be more operational, i.e., easier to use, or leading to more efficient

computations. In the above case, the positive example C(c) may be deduced more

efficiently from the learned clause than by the original domain theory, as one

resolution step is saved. EBL may then be seen as a form of pre-compilation, or

partial evaluation. The effectiveness of this form of speed-up learning depends on

whether the given positive examples are representative of future cases: if this is

not true, the learned clause may turn out to be useless, as the original domain

theory would be necessary every time. Learned clauses that are useless in this

sense will only take away some memory space, without giving any computational

advantage.

For this reason, systems soon started using EBL with many positive exam-

ples, so that only clauses that frequently proved to be useful woul be kept. Other

systems (e.g., [2]) also introduced the possibility of using negative examples, in

connection with the acceptance of a domain theory that might be partly incor-

rect. In this case, even clauses that follow deductively from the domain theory

may be incorrect, and may cover negative examples. Clauses covering too many

negative examples may then be discarded. When used in this way, the domain

theory basically defines a hypothesis space. The concept descriptions that are

logical consequences of the domain theory are descriptions that may potentially

be learned. The description which is actually produced would also be required

to perform well with respect to the data, i.e. cover many positive examples and

few negative examples. EBL may then be considered as a way to guide search

in top-down specialization: not all specializations are possible, but only the ones

that produce deductive consequences of the domain theory. Legal specializations

are obtained by resolving the clause to be specialized against some clause in the

domain theory. Other specializations are not considered. In the previous example,

the clause

C(X) :- R(X,Y), A(X,Z)

7

would be a legal specialization of the clause

C(X) :- B(X), A(X,Y).

while, e.g., the clause

C(X) :- B(X), A(X,Y), B(Y)

would not be considered. If the space of possible clauses is too large, a domain the-

ory can be used effectively to prune this space and suggest prefered specialization

steps. ML-SMART [2], and FOCL [14] adopt similar goals and techniques.

Abduction comes into place if the consequences of the domain theory are not

just taken to be deductive consequences, but are also obtained by means of an

abductive theorem prover. For instance, if the above domain theory would contain

the clause

D(X) :- A(X,Y)

then, an abductive/deductive consequence of the theory would be the clause

C(X) :- R(X,Y), D(X)

which would also be a legal specialization of the clause

C(X) :- B(X), A(X,Y).

Such an abductive use of a domain theory is found in [3], with the purpose of

restricting the hypothesis space without excluding concept descriptions that may

be meaningful on the basis of abductive reasoning. Cohen introduces the notion

8

of abductive EBL in a similar framework [6, 7].

4 Relational Learning Algorithms based on Ex-

tensionality

Relational Learning Algorithms learn recursive relational descriptions from pos-

itive and negative examples, given as ground literals. Usually, a subset of the

first-order predicate calculus, Horn clauses, is used for the concept description

(see, e.g. [5, 17, 6, 4, 12]). Learning definite clauses for multiple predicates is

difficult, and systems tend to be slow. Many systems, such as Foil [15], Focl [14]

and Golem [12] handle this problem evaluating clauses extensionally. In this way

candidate clauses can be generated directly from the examples one at a time and

independently of one another. The next subsection contains a simplified version

of Foil, in order to illustrate the extensional approach and its drawbacks.

4.1 The Extensional Approach: Simplified Foil

Let P be the target concept and pos examples(P) and neg examples(P) the given

positive and negative examples of P (in the following, α and γ represent generic

conjunction of literals).

Simplified Foil:
while pos examples(P) �= ∅ do

Generate one clause “P :- α”;
pos examples(P) ← pos examples(P) − pos(α)

Generate one clause:
α ← true;
while pos(α) �= ∅ do

if neg(α) = ∅ then return(P :- α)
else choose a predicate Q and its arguments Args;

α ← α ∧ Q(Args)

9

where pos(α) and neg(α) are the sets of positive and negative examples of P cov-

ered by α. Every predicate Q can be defined by the user intensionally by means of

logical rules or extensionally simply by giving some examples of its input-output

behavior. In particular, clauses can be recursive and, in this case, Q = P, and its

truth value can only be determined by the available examples.

Definition 1: We say that the clause P(X,Y) :- α(X,Y) extensionally covers an

example P(a,b) iff:

• α = Q(X,Y). Then Q(X,Y) extensionally covers P(a,b) iff Q(a,b) is derivable

from the definition of Q or is a given example of Q.

• α = γ(X,T), Q(T,Y) covers P(a,b) if there exists a value e such that the

conjunction γ(a,e) is true and Q(e,b) is derivable from the definition of Q

or is a given example of Q.

The choice of the literal Q(Args) to be added to the partial antecedent α of the

clause being generated is guided by heuristic information. It might nevertheless be

a wrong choice in some cases, in the sense that it causes the procedure “Generate

one clause” to fail by exiting the while loop without returning any clause. This

problem can be remedied by making the choice of Q(Args) a backtracking point.

Suppose, for instance, that Foil is given the following positive and negative

tuples of the ancestor relation:

+ <r,g>,<b,g>,<b,d>,<d,g>,<b,r>,<r,d>,<r,p>;

− <d,d>,<g,p>,<d,p>.

where we also have an intensional definition for parent:

parent(X,Y) :- mother(X,Y)

parent(X,Y) :- father(X,Y)

10

where mother and father are (extensionally) defined by the following pairs of

values:

mother father
X Y X Y
d g f g
r d s d
r p s p
i r b r
t s
a c h c

Finally, we know that the logic program for ancestor depends on parent and on

itself (i.e. it may be recursive). As there are at most 3 variables to be used, these

are the possible literals:

parent(X,Y), parent(Y,X), parent(X,W),
parent(W,X), parent(Y,W), parent(W,Y)
ancestor(X,W), ancestor(W,X), ancestor(Y,W), ancestor(W,Y) 1.

The learning algorithm starts to generate the first clause - the antecedent α

is initially empty. We need to choose the first literal Q(Args) to be added to α.

As we have left the heuristics unspecified, we will choose it so as to make the

discussion short.

Let α=parent(W,Y); then all positive examples and the second and third negative

examples are covered, so more literals need to be added.

Let α=parent(W,Y) ∧ parent(W,X); in this case no positive examples are cov-

ered and the negative example <d,p> is covered. Clause generation fails and we

backtrack to the last literal choice.

Let α=parent(W,Y) ∧ ancestor(X,W); no negative example is covered, and the

first 3 positive examples are extensionally covered. A clause is generated and the

covered positive examples are deleted.

We proceed to the generation of another clause; α is empty again. If we choose

the first literal as parent(X,Y), the remaining positive examples are covered and

1ancestor(X,Y) and ancestor(Y,X) are not listed because they may produce looping
recursions

11

the final solution is obtained:

ancestor(X,Y) :- parent(W,Y), ancestor(X,W).
ancestor(X,Y) :- parent(X,Y).

4.2 Problems of extensionality

The independence of the clauses is made possible by the extensional interpretation

of recursion and sub-predicates: when a predicate Q occurs in a clause antecedent

α, it is evaluated as true when the arguments match one of the positive examples.

For instance, the clause

ancestor(X,Y) :- parent(W,Y), ancestor(X,W).

was found to extensionally cover the example<b,g> of ancestor because parent(d,g)

is true, and <b,d> is also a positive example of ancestor. The previously gener-

ated logical definitions of Q are not used. The method is (partially) justified by

theorem 1 below.

Definition 2: A definition P is complete w.r.t. the examples E iff (∀ Q(i,o) ∈ E)

P
 Q(i,o). A definition P is consistent w.r.t. the examples E iff (� ∃ Q(i,o) ∈ E)

P
 Q(i,o’) and o �=o’.

Theorem 1: [4] Suppose Foil successfully exits its main loop and outputs a logic

program P, that always terminates for the given examples.

Let Q(X) :- α be a generated clause of P, then,

∀q+∈Q α extensionally covers q+ → P
 Q(q+).

However, extensionality forces us to include many examples, which would oth-

erwise be unnecessary. In fact other desirable properties, similar to the one given

by Theorem 1, are not true, and two fundamental problems arise:

Problem 1: For a logic program P, it may happen that P
 Q(q+), but none

of its clauses extensionally cover q+. As a consequence Foil would be unable to

12

generate P. Consider this program P:

ancestor(X,Y) :- parent(W,Y), ancestor(X,W).
ancestor(X,Y) :- parent(X,Y).

Let <r,g> be the only positive example of ancestor. This example follows from

P (P
 ancestor(r,g)) but is not extensionally covered: the second clause does

not cover it because parent(r,g) is false, and the first clause does not cover it

extensionally because parent(d,g) is true, but <r,d> is not given as a positive

tuple of ancestor.

Problem 2: Even if no clause of a definition P extensionally covers a negative

example q- of Q, it may still happen that P
 Q(q-). Therefore Foil might gener-

ate a definition that covers negative examples that were given initially (i.e. Foil

is not consistent). Consider the following definition P:

ancestor(X,Y) :- parent(W,X), ancestor(W,Y)
ancestor(X,Y) :- parent(X,Y).

Then P
 ancestor(g,p). Nevertheless, <g,p> is not extensionally covered by the

first clause: parent(d,g) is true, but <d,p> is not a positive tuple of ancestor.

Since d is not an ancestor of p, it could not possibly be added as a positive tuple,

and <g,p> would not be extensionally covered even if all positive tuples were

given. The solution differs from the one of problem 1: in this case P will be ruled

out by adding a negative example, namely <d,p>.

5 Problems of Intensional Methods

Giving up the extensional interpretation of predicates while keeping the basic

computational structure of Foil produces insuperable problems. In fact, the truth

value of the missing examples could be obtained by means of the partial program

generated at a given moment. But if the inductive predicates occurring in a

13

clause being generated are evaluated by means of the clauses that were learned

previously, then the order we learn these clauses with becomes a major issue.

Suppose, for instance, that we are given the following family tree:

parent(i,r), parent(r,d), parent(d,g), parent(f,g)

and the following positive and negative examples of ancestor:

+: <i,d>, <i,r>, <i,g>; −: <i,f>.

Suppose also that the following clauses are generated, with the given order:

(1) ancestor(X,Y) :- parent(X,W), parent(W,Y).
(2) ancestor(X,Y) :- parent(Y,W), ancestor(X,W).
(3) ancestor(X,Y) :- parent(X,W), ancestor(W,Y).

Clause (1) does not use any inductive predicate and immediately covers the

positive tuple <i,d>. Clause (2) contains ancestor(X,W), and this literal is eval-

uated with the clauses available at this stage, i.e. (1) and (2). With this kind

of intensional interpretation, the only tuple covered is <i,r>, a positive example.

When clause (3) is generated, it will cover the positive tuple <i,g>. But clause (2)

will now cover the negative tuple <i,f>, since parent(f,g) is true, and ancestor(i,g)

may now be deduced by using the third clause.

Rules that seem consistent and useful at some stage may later be found to

cover negative examples. We must then backtrack to the generation of the clause

causing the inconsistency, e.g. clause (3), and to the generation of the clause that

was later found to be inconsistent, e.g. clause (2). In general, we must abandon

our former assumption that clauses may be learned one at a time and indepen-

dently. Alternatively, we may number the predicates occurring in the learned

clauses every time an inconsistency is detected. For instance, the former program

would be rewritten as

ancestor1(X,Y) :- parent(X,W), parent(W,Y).
ancestor2(X,Y) :- parent(Y,W), ancestor2(X,W).
ancestor3(X,Y) :- parent(X,W), ancestor3(W,Y).
ancestor(X,Y) :- ancestor2(X,Y). ancestor2(X,Y) :- ancestor1(X,Y).
ancestor(X,Y) :- ancestor3(X,Y). ancestor3(X,Y) :- ancestor1(X,Y).

14

Nevertheless, this technique does not totally avoid the need of backtracking,

and explodes the number of possible clauses by multiplying the number of induc-

tive predicates by the number of generated indexes. A solution based on abduction

is presented in the next subsection, so that the advantages of extensionality are

preserved, i.e. so that previously generated clauses do not need to be reconsidered.

6 Completing examples via abduction before learn-

ing

There is no reason why particular positive (problem 1) or negative (problem 2)

examples should have to be present. After all, the whole motivation of induction

is that some information is missing. The important points are that (1) if a def-

inition P consistent with the given examples exists, then it must be found and

(2) the induced definition P must not cover any negative examples. The exten-

sional approach guarantees neither, unless some specially determined positive and

negative examples are given.

Here we show how abduction can be used to query the user for the missing

examples., in order to preserve the computational advantages of extensional ap-

proaches, while guaranteeing that a correct solution be found. Suppose that a

learning system has to cover the positive example P(a,b), and that the following

candidate clause has been generated:

P(X,Y) :- α(X,Y), Q(Y,Z).

Moreover, we know that α(a,b) is true (for example because every literal in α is

extensionally evaluated to true). Then, that clause will extensionally cover P(a,b)

only if there exists some value c such that Q(b,c) is a positive example (known to

the system) of Q. Suppose that all such examples are missing. From the classical

abductive inference rule:

15

α← β α

——————–

β

we get:

P(a,b) :- α(a,b), Q(b,Z). P(a,b)

———————————————————-

Q(b,Z)

and then the user can be queried for a value of Z such that Q(b,Z) is true. the

new example of Q is added to the set of positive examples and P(a,b) can now

be covered. This is a controlled form of abduction, in the sense that the result of

abductive inference is not asserted as true, but only proposed as a possible truth,

which is then queried to the user.

On the ground of this example, we have devised the following strategy. Every

legal clause (= permitted by the constraints) of the type

P(X,Y) :- A(X,W), Q(Y,W,Z), α.

where Q is processed with the following abductive completion procedure:

for every example <a,b> of P do
evaluate A(a,W), obtaining a sequence W1, ...,Wn

of partially instantiated answers.
for every Wi do

ask the user for all the positive and
negative examples of Q that match Q(b,Wi,Z)2;
add these examples to the positive examples of Q.

Adding one example may cause the request of others. Suppose, for instance, that

a tuple <a,c> is added to the positive examples for A. Then, the above procedure

2Therefore, the procedure will succeed only if Q(b,Wi,Z) has a finite number of positive and
negative instantiations

16

might add more positive or negative tuples of Q, e.g. the ones matching Q(b,c,Z).

As a consequence, the procedure must be repeated for every clause, again and

again, until no more examples are added.

Consider, for instance, the example about the ancestor relation given above,

and the following two clauses:
relative(X,Y) :- ancestor(X,Y).
ancestor(X,Y) :- parent(W,Y), ancestor(X,W).

where <b,g> is the only positive example of relative, <d,d> is the only posi-

tive example of relative, and <f,f> is the only negative example of ancestor; by

using the first clause, the user is queried for ancestor(b,g), and this is added to

the positive examples of ancestor. Using the second clause, parent(W,g) answers

W1=f and W2=d; the user is then queried for the truth value of ancestor(b,d) and

ancestor(b,f), that get added to the positive and negative examples, respectively.

Since f has no parents, <b,f> does not cause the addition of more examples. By

contrast, the second clause can be used again with X=b and Y=d, and, after

some repetitions of this procedure, we obtain the completed set of examples for

ancestor:

+ <b,g>,<b,d>,<b,r>

− <f,f>,<b,f>,<b,i>,<b,s>,<b,t>.

Not all possible examples have been added, only the ones that were useful for

those two clauses, given the initial examples. If this is done for all the clauses

that are possible a priori, i.e. that satisfy the given constraints, then problems 1

and 2 do not longer hold:

Theorem 2: Suppose the examples given to an extensional learning system are

completed with the above given abductive procedure. In this case, if the learning

system successfully exits its main loop and outputs a definition P for a concept

Q, then

P
 Q(q) → q is extensionally covered.

Proof (by contradiction)

Suppose that (1) P
 Q(q) but (2) q is not extensionally covered.

17

Let Q(X) :- β(X,Y) ∧ R(Y) ∧ γ be the clause resolved against Q(q). Suppose

that P
 β(q,r) ∧ γ and P
 R(r), but no such r is a positive example of R. There

must be one literal R(Y) having this property, because of assumptions (1) and

(2). Since the tuples of R must have been completed with the given procedure,

the user has been queried for R(r), and this must have been inserted as a negative

example. Therefore, it cannot be extensionally covered. We could now repeat the

same argument for R. This would produce a non-terminating chain of resolution

steps, and a finished proof of Q(q) would never be obtained, contradicting the

hypothesis that P
 Q(q).

Corollary 3: If the examples given to an extensional learning system are com-

pleted with the above given abductive procedure, and the learning system suc-

cessfully exits its main loop and outputs a definition P, then P is consistent.

It should be noted that this abductive completion is done as a preprocessing

step. Then, it guarantees that a solution consistent with the examples is found

if it exists. Moreover, it does not require reconsideration of previously generated

clauses, as do systems (e.g. MIS [18]) that ask for new examples only when they

are needed and during the learning process.

7 Conclusion

The relation between induction and abduction is briefly discussed in this paper.

Our main goal was then to show the specific uses of abductive reasoning in Ma-

chine Learning. On the one hand, it has been used to guide search in a top-down

specialization framework related to Explanation-based Learning. On the other

hand, we have also shown how abduction can be used to query the user for ex-

amples that may be missing. This means that the user must not provide all the

needed examples to learn one definition at a time. He or she can forget some

examples, and the abductive procedure will ask for them. Observe that only the

18

examples really needed are queried, so it will not waste time trying to cover use-

less examples. In many extensional systems [12, 15] the user must provide all the

examples at one time, and usually a superset of the examples needed is given,

resulting in a lot of time wasted in covering useless examples.

Acknowledgement: The authors thank esprit project DRUMS II which is cur-

rently supporting part of this research.

References

[1] F. Bergadano and P. Besnard. Abduction and Induction by Non-Monotonic
Logics, Workshop on Mathematical and Statistical Methods in Artificial Intel-
ligence, Udine, Italy, September 1994.

[2] F. Bergadano and A. Giordana. A Knowledge Intensive Approach to Con-
cept Induction. Proceedings of the Fifth International Conference on Machine
Learning. pages 305–317, Ann Arbor, MI, 1988.

[3] F. Bergadano, A. Giordana, and S. Ponsero. Deduction in Top-down Inductive
Learning, Proc. of the sixth Int. Conf. on Machine Learning. pages 23–25,
Ithaca, N.Y., 1989.

[4] F. Bergadano and D. Gunetti. An interactive system to learn functional logic
programs. In Proc. Int. Joint. Conf. on Artificial Intelligence, Chambery,
France, 1993. Morgan Kaufmann.

[5] L. Birnbaum and G. Collins (Eds.). Proc. Int. ML conference, part VI: Learn-
ing Relations. Morgan Kaufmann, 1991.

[6] W. Cohen. Abductive Explanation-Based Learning: a Solution to the Multiple
Inconsistent Explanation Problem. Machine Learning, 8:167–219, 1992.

[7] W. Cohen. Incremental Abductive Explanation-Based Learning. Machine
Learning, 15:5–24, 1994.

[8] L. Console and L. Saitta. Generalization in Learning and Abduction. technical
report, University of Torino, 1994.

[9] T. Ellman. Explanation-Based Learning: a Survey of Programs and Perspec-
tives. ACM Computing Surveys, 21:2, pages 163-222, 1989.

[10] P. Flach. Simply Logical, John Wiley and sons, 1992.

[11] T. Mitchell and R. M. Keller and S. Kedar-Cabelli. Explanation-Based Gen-
eralization: a Unifying View, Machine Learning, 47-80, 1986.

19

[12] S. Muggleton and C. Feng. Efficient Induction of Logic Programs. In Proc.
of the first conf. on Algorithmic Learning Theory, Tokyo, Japan, 1990.

[13] M. Pazzani and C. A. Brunk and G. Silverstein. A Knowledge-intensive
Approach to Learning Relational Concepts. Proc. of the 8th Int. Conf. on
Machine Learning, 1991.

[14] M. Pazzani and D. Kibler. The Utility of Knowledge in Inductive Learning.
Machine Learning, 9:57–94, 1992.

[15] R. Quinlan. Learning Logical Definitions from Relations. Machine Learning,
5:239–266, 1990.

[16] L. De Raedt and M. Bruynooghe. CLINT: a Multistrategy Interactive
Concept-Learner and Theory Revision System. In Proc. Workshop on Multi-
strategy Learning, pages 175–190, 1991.

[17] C. Rouveirol, editor. Proc. of the ECAI Workshop on Logical Approaches to
Learning. ECCAI, Vienna, Austria, 1992.

[18] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

20

