
Technical Communications of the International Conference on Logic Programming, 2010 (Edinburgh), pp. 192–201
http://www.floc-conference.org/ICLP-home.html

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS

GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Department of Computer Science and UMIACS
University of Maryland College Park
College Park, MD 20742, USA
E-mail address, Gerardo Simari: gisimari@cs.umd.edu
E-mail address, V.S. Subrahmanian: vs@cs.umd.edu

ABSTRACT. Action-probabilistic logic programs (ap-programs) are a class of probabilistic logic pro-
grams that have been extensively used during the last few years for modeling behaviors of entities.
Rules in ap-programs have the form “If the environment in which entity E operates satisfies certain
conditions, then the probability that E will take some action A is between L and U”. Given an
ap-program, we are interested in trying to change the environment, subject to some constraints, so
that the probability that entity E takes some action (or combination of actions) is maximized. This
is called the Basic Probabilistic Logic Abduction Problem (Basic PLAP). We first formally define
and study the complexity of Basic PLAP and then provide an exact (exponential) algorithm to solve
it, followed by more efficient algorithms for specific subclasses of the problem. We also develop
appropriate heuristics to solve Basic PLAP efficiently.

1. Introduction
Action probabilistic logic programs (ap-programs for short) [Khu07] are a class of the exten-

sively studied family of probabilistic logic programs (PLPs) [Ng92, Ng93, KI04]. ap-programs
have been used extensively to model and reason about the behavior of groups and an application
for reasoning about terror groups based on ap-programs has users from over 12 US government
entities [Gil08]. ap-programs use a two sorted logic where there are “state” predicate symbols and
“action” predicate symbols1 and can be used to represent behaviors of arbitrary entities (ranging
from users of web sites to institutional investors in the finance sector) because they consist of rules
of the form “if a conjunction C of atoms is true in a given state S, then entity E (the entity whose
behavior is being modeled) will take action A with a probability in the interval [L,U].”

In this kind of application, it is essential to avoid making probabilistic independence assump-
tions, since the approach involves finding out what probabilistic relationships exist and then exploit
these findings in the forecasting effort. For instance, Figure 1 shows a small set of rules automati-
cally extracted from data [Asa08] about Hezbollah’s past. Rule 1 says that Hezbollah uses kidnap-
pings as an organizational strategy with probability between 0.5 and 0.56 whenever no political sup-
port was provided to it by a foreign state (forstpolsup), and the severity of inter-organizational
conflict involving it (intersev1) is at level “c”. Rules 2 and 3, also about kidnappings, state that

1998 ACM Subject Classification: I.2.3: Logic Programming, Probabilistic Reasoning.
Key words and phrases: Probabilistic Logic Programming, Imprecise Probabilities, Abductive Inference.
1Action atoms only represent the fact that an action is taken, and not the action itself; they are therefore quite dif-

ferent from actions in domains such as AI planning or reasoning about actions, in which effects, preconditions, and
postconditions are part of the specification. We assume that effects and preconditions are generally not known.

c© Gerardo I. Simari and V.S. Subrahmanian
CC© Creative Commons Non-Commercial No Derivatives License

Technical Communications of the 26th International Conference on Logic Programming, Edinburgh, July, 2010
Editors: Manuel Hermenegildo, Torsten Schaub
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.ICLP.2010.192

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 193

r1. kidnap(1) : [0.50, 0.56]← forstpolsup(0) ∧ intersev1(c).
r2. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ demorg(0).
r3. kidnap(1) : [0.80, 0.86]← extsup(1) ∧ elecpol(0).
r4. tlethciv(1) : [0.49, 0.55]← demorg(1).
r5. tlethciv(1) : [0.71, 0.77]← elecpol(1) ∧ intersev2(c).

Figure 1: A small set of rules modeling Hezbollah.

this action will be performed with probability between 0.8 and 0.86 when no external support is
solicited by the organization (extsup) and either the organization does not advocate democratic
practices (demorg) or electoral politics is not used as a strategy (elecpol). Similarly, Rules 4
and 5 refer to the action “civilian targets chosen based on ethnicity” (tlethciv). The first one
states that this action will be taken with probability 0.49 to 0.55 whenever the organization advo-
cates democratic practices, while the second states that the probability rises to between 0.71 and
0.77 when electoral politics are used as a strategy and the severity of inter-organizational conflict
(with the organization with which the second highest level of conflict occurred) was not negligible”
(intersev2). ap-programs have been used extensively by terrorism analysts to make predictions
about terror group actions [Gil08, Man08].

Suppose, rather than predicting what action(s) a group would take in a given situation or envi-
ronment, we want to determine what we can do in order to induce a given behavior by the group.
For example, a policy maker might want to understand what we can do so that a given goal (e.g.,
the probability of Hezbollah using kidnappings as a strategy is below some percentage) is achieved,
given some constraints on what is feasible. The probabilistic logic abduction problem (PLAP) deals
with finding how to reach a new (feasible) state from the current state such that the ap-program as-
sociated with the group and the new state jointly entail that the goal will be true within a given
probability interval.

In this paper, we first briefly recall ap-programs and then formulate PLAP theoretically. We
then develop a host of complexity results for PLAP under varying assumptions. We then describe
both exact and heuristic algorithms to solve the PLAP problem. We briefly describe a prototype
implementation and experiments showing that our algorithm is feasible to use even when the ap-
program contains hundreds of rules. A brief note on related work before we begin; almost all
past work on abduction in such settings have been devised under various independence assump-
tions [Poo97, Poo93]. We are aware of no work to date on abduction in possible worlds-based
probabilistic logic systems such as those of [Hai84], [Nil86], and [Fag90] where independence as-
sumptions are not made.

2. Preliminaries
We now overview the syntax and semantics of ap-programs from [Khu07]. We assume the ex-

istence of a logical alphabet that consists of a finite set Lcons of constant symbols, a finite set Lpred
of predicate symbols (each with an associated arity) and an infinite set Lvar of variable symbols;
function symbols are not allowed. Terms, atoms, and literals are defined in the usual way [Llo87].
We assume that Lpred is partitioned into disjoint sets: Lact of action symbols and Lsta of state sym-
bols. Thus, if t1, . . . , tn are terms, and p is an n-ary action (resp. state) symbol, then p(t1, . . . , tn),
is called an action (resp. state) atom.

194 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Definition 2.1. A (ground) action formula is defined as: (i) a (ground) action atom is a (ground)
action formula; (ii) if F and G are (ground) action formulas, then ¬F , F ∧G, and F ∨G are also
(ground) action formulas.

The set of all possible action formulas is denoted by formulas(BLact), where BLact is the
Herbrand base associated with Lact, Lcons, and Lvar.

Definition 2.2. If F is an action formula and µ = [α, β] ⊆ [0, 1], then F : µ is called an annotated
action formula (or ap-formula), and µ is called the ap-annotation of F .

Definition 2.3. A world is any finite set of ground action atoms. A state is any finite set of ground
state atoms.

It is assumed that all actions in the world are carried out more or less in parallel and at once,
given the temporal granularity adopted along with the model. Contrary to (related but essentially
different) approaches such as stochastic planning, we are not concerned here with reasoning about
the effects of actions. We now define ap-rules.

Definition 2.4. If F is an action formula, B1, . . . , Bn are state atoms, and µ is an ap-annotation,
then F : µ ← B1 ∧ . . . ∧ Bm is called an ap-rule. If this rule is named r, then Head(r) denotes
F : µ and Body(r) denotes B1 ∧ . . . ∧ Bn.

Intuitively, the rule specified above says that if B1, . . . , Bm are all true in a given state, then
there is a probability in the interval µ that the action combination F is performed by the entity
modeled by the ap-rule.

Definition 2.5. An action probabilistic logic program (ap-program for short) is a finite set of ap-
rules. An ap-program Π′ such that Π′ ⊆ Π is called a subprogram of Π.

Figure 1 shows a small portion of an ap-program we derived automatically to model Hezbol-
lah’s actions. Henceforth, we use Heads(Π) to denote the set of all annotated formulas appearing
in the head of some rule in Π. Given a ground ap-program Π, we will use sta(Π) (resp., act(Π)) to
denote the set of all state (resp., action) atoms that appear in Π.

Example 2.6. Coming back to the ap-program in Figure 1, the following are examples of worlds:

{kidnap(1)}, {kidnap(1), tlethciv(1)}, {}
The following are examples of states:

{forstpolsup(0), elecpol(0)}, {extsup(1), elecpol(1)}, {demorg(1)}.

We useW to denote the set of all possible worlds, and S to denote the set of all possible states.
It is clear what it means for a state to satisfy the body of a rule [Llo87].

Definition 2.7. Let Π be an ap-program and s a state. We say that s satisfies the body of a rule
F : µ← B1 ∧ . . . ∧ Bm if and only if {B1, . . . , BM} ⊆ s.

Similarly, we define what it means for a world to satisfy a ground action formula:

Definition 2.8. Let F, F1, F2 be ground action formulas and w a world. We say that w satisfies F
if and only if:
− if F ≡ a, for some atom a ∈ BLact , then a ∈ w;
− if F ≡ F1 ∧ F2, then w satisfies F1 and w satisfies F2;
− if F ≡ F1 ∨ F2, then w satisfies F1 or w satisfies F2;
− if F ≡ ¬F ′, for some action formula F ′ ∈ formulas(BLact), then w does not satisfy F ′.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 195

Finally, we will use the concept of reduction of an ap-program w.r.t. a state:

Definition 2.9. Let Π be an ap-program and s a state. The reduction of Π w.r.t. s, denoted Πs, is
the set {F : µ | s satisfies Body and F : µ ← Body is a ground instance of a rule in Π}. Rules in
this set are said to be relevant in state s.

The semantics of ap-programs uses possible worlds in the spirit of [Hai84, Nil86, Fag90].
Given an ap-program Π and a state s, we can define a set LC (Π, s) of linear constraints associated
with s. Each world wi expressible in the language Lact has an associated variable vi denoting the
probability that it will actually occur. LC (Π, s) consists of the following constraints.
(1) For each Head(r) ∈ Πs of the form F : [`, u], we have constraint ` ≤

∑
wi∈W ∧wi|=F vi ≤ u.

(2) LC (Π, s) contains the constraint
∑

wi∈W vi = 1.
(3) All variables are non-negative.
(4) LC (Π, s) contains only the constraints described in 1− 3.
While [Khu07] provides a more formal model theory for ap-programs, we merely provide the defi-
nition below. Πs is consistent iff LC (Π, s) is solvable over R.

Definition 2.10. Let Π be an ap-program, s a state, and F : [`, u] a ground action formula. Πs

entails F : [`, u], denoted Πs |= F : [`, u] iff [`′, u′] ⊆ [`, u] where:
`′ = minimize

∑
wi∈W ∧wi|=F vi subject to LC (Π, s).

u′ = maximize
∑

wi∈W ∧wi|=F vi subject to LC (Π, s).

The following is an example of LC (Π, s) and entailment of an ap-formula.

Example 2.11. Consider ap-program Π from Figure 1 and state s2 from Figure 2. The set of
possible worlds is as follows: w0 = {}, w1 = {kidnap(1)}, w2 = {tlethciv(1)}, and
w3 = {kidnap(1),tlethciv(1)}. Suppose we use pi to denote the variable associated with
the probability of world wi; LC (Π, s2) then consists of the following constraints:

0.5 ≤ p1 + p3 ≤ 0.56
0.49 ≤ p2 + p3 ≤ 0.55
p0 + p1 + p2 + p3 = 1

One possible solution to this set of constraints is p0 = 0, p1 = 0.51, p2 = 0.05, and p3 = 0.44;
another possible distribution is p0 = 0.5, p1 = 0, p2 = 0, and p3 = 0.5; yet another one is p0 = 0,
p1 = 0.45, p2 = 0.11, and p3 = 0.44. Finally, formula kidnap(1)∧tlethciv(1) (satisfied only
by world w3) is entailed with probability in the interval [0, 0.55], meaning that one cannot assign a
probability greater than 0.55 to this formula (this example shows that, contrary to what one might
think, the interval [0, 1] is not necessarily a solution).

Note that representing a set of distributions is not possible in many other approaches to proba-
bilistic reasoning, such as Bayesian networks [Pea88], Poole’s Independent Choice Logic [Poo97]
and related formalisms such as [Poo93]. However, this is a key capability for our approach, as we
specifically require a formalism that is not forced to make assumptions about the probabilistic de-
pendence (or independence) of the events we are reasoning about. On the other hand, it is certainly
possible to extend our approach in such a way that the key aspects of Bayesian networks and related
formalisms are directly expressible, as was shown in [Ng93] when probabilistic logic programs
were introduced.

196 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)}
s2 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(1)}
s3 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(0), extsup(0), demorg(0)}
s4 = {forstpolsup(1), intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}
s5 = {forstpolsup(0), intersev1(c), intersev2(c), elecpol(0), extsup(1), demorg(0)}

Figure 2: A small set of possible states

3. The Probabilistic Logic Abduction Problem
Suppose s is a state (the current state), G is a goal (an action formula), and [`, u] ⊆ [0, 1] is a

probability interval. The basic PLAP problem requires finding a new state s′ such that Πs′ entails
G : [`, u]. However, s′ must be reachable from s. For this, we merely assume the existence of
a reachability predicate reach specifying direct reachability from one state to another. reach∗ is
the reflexive transitive closure of reach and unReach is its complement. We will investigate, in
Section 4.2 below, one way in which reach can be specified; when available, knowledge of action
effects and preconditions can be encoded into this predicate.

Example 3.1. Suppose, for simplicity, that the only state predicate symbols are those that appear in
the rules of Figure 1, and consider the set of states in Figure 2. Then, some examples of reachability
are the following: reach(s1, s2), reach(s1, s3), reach(s2, s1), reach(s4, s1), ¬reach(s2, s5), and
¬reach(s3, s5). Note that, if state s5 is reachable, then the ap-program is inconsistent, since both
rules 1 and 2 are relevant in that state.

We can now state the Basic PLAP problem formally:
Basic PLAP Problem.
Input: An ap-program Π, a state s, a reachability predicate reach and a ground ap-formulaG : [`, u].
Output: “Yes” if there exists a state s′ such that reach∗(s, s′) and Πs′ |= G : [`, u], and “No”
otherwise.

Example 3.2. Consider once again the program in the running example and the set of states from
Figure 2. If the goal is kidnap(1) : [0, 0.6] (we want the probability of Hezbollah using kidnappings
to be at most 0.6) and the current state is s4, then the problem is solvable because Example 3.1
shows that state s1 can be reached from s4, and Πs1 |= kidnap(1) : [0, 0.6].

The following result shows the intractability of Basic PLAP in the general case.

Proposition 3.3. Basic PLAP is EXPTIME-complete.

Moreover, this problem is likely to be intractable even under simplifying assumptions.

Proposition 3.4. Let Lsta be such that |Lsta| ≤ c′ for some constant c′ ∈ N; the Basic PLAP
problem under this assumption is NP-hard.

Proposition 3.5. Let Lact be such that |Lact| ≤ c′ for some constant c′ ∈ N; the Basic PLAP
problem under this assumption is NP-hard.

The above results reveal that the complexity of PLAP is caused by two factors. (P1) We need
to find a subprogram Π′ of Π such that when the body of all rules in that subprogram is deleted, the
resulting subprogram entails the goal, and (P2) Decide if there exists a state s′ such that Π′ = Πs

and s is reachable from the initial state.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 197

4. Algorithms for PLAP

In this section, we leverage the above intuition to develop an algorithm for PLAP under the
assumption that all goals are of the form F : [0, u] (ensure that F ’s probability is less than or equal
to u) or F : [`, 1] (ensure that F ’s probability is at least `). Finally, we develop a heuristic algorithm.

4.1. Answering Threshold Goals

A threshold goal is an annotated action formula of the form F : [0, u] or F : [`, 1]. In this
section, we study how we can devise a better algorithm for Basic PLAP when only threshold goals
are considered. This is a reasonable approach, since threshold goals can be used to express the
desire that certain formulas (actions) should only be entailed with a certain maximum probability
(upper bound) or should be entailed with at least a certain minimum probability (lower bound). The
tradeoff lies in the fact that we lose the capacity to express both desires at once. We start by inducing
equivalence classes on subprograms that limit the search space, helping address problem P1.

Definition 4.1. Let Π be a ground ap-program and F be a ground action formula. We say that
subprograms Π1,Π2 ⊆ Π are equivalent given F , written Π1 ∼F Π2, iff Π1 |= F : [`, u] ⇔
Π2 |= F : [`, u] for any `, u ∈ [0, 1]. Furthermore, states s1 and s2 are equivalent given F , written
s1 ∼F s2, iff reach(s1, s2), reach(s2, s1), and Πs1 ∼F Πs2 .

Example 4.2. Let Π be the ap-program from Figure 1, formula F = kidnap(1), Π1 = {r1},
Π2 = {r2, r3} Π3 = {r1, r4} Π4 = {r1, r5}, and Π5 = {r2, r3, r5}. Here, Π1 ∼F Π3, Π1 ∼F Π4,
Π3 ∼F Π4, and Π2 ∼F Π5. For instance, we can see that Π1 ∼F Π3 because the probability
with which kidnap(1) is entailed is given by rule r1; rule r4 is immaterial in this case. Clearly,
Π1 6∼F Π2 since F is entailed with different probabilities in each case.

Next, consider the states from Figure 2 and the reachability predicate from Example 3.1. Since
we have that reach(s1, s2), reach(s2, s1), Π1 is relevant in s1, and Π3 is relevant in s2, we can
conclude that s1 ∼F s2.

Relation ∼, both between states and between subprograms, is clearly an equivalence relation.
The following lemma specifies a way to construct equivalence classes.

Lemma 4.3. Let Π be an ap-program and G be an action formula. Consider two subprograms
Π′,Π′′ ⊆ Π such that Π′ = Πa ∪ Π′p (resp., Π′′ = Πa ∪ Π′′p), where Πa is a set of rules whose
heads have formulas F such that F ∧G 6|= ⊥ and Π′p (resp., Π′′p) contains rules whose heads have
formulas H such that H ∧G |= ⊥. Then, Π′ ∼G Π′′.

Lemma 4.4. Let Π be a consistent ap-program and G : [`G, uG] be a threshold goal. If there exists
a rule r ∈ Π such that Head(r) = F : [`F , uF] and: either (1) if uG = 1, F |= G, and `G ≤ `F ; or
(2) if `G = 0, G |= F , and uG ≥ uF ; then, Π |= G : [`G, uG].

The algorithm in Figure 3 first tries to leverage Lemma 4.4 and only proceeds if this is not
possible. The way in which the algorithm partitions Π is partly based on Lemma 4.3.

Proposition 4.5. Given an ap-program Π, a state s ∈ S, and an annotated action formulaG : [`, u],
Algorithm simpleAnnPLAP correctly computes a solution to Basic PLAP. Its worst case running
time is in O

(
2|Π| + 2|Lsta| + 2|Lact|

)
.

We now present an example of how this algorithm works.

198 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

Algorithm 1: simpleAnnPLAP(Π, s, G : [`G, uG])

(1) Select rules of the form r : F : [`r, ur] ← s1 ∧ . . . ∧ sn such that F ∧ G 6|= ⊥; call all such rules active
rules, and the complement set passive rules, denoted active(Π, G : [`G, uG]) and passive(Π, G : [`G, uG]).

(2) If Lemma 4.4 is applicable, return true if there exists a consistent Π′ ⊆ candAct(Π, G : [`G, uG]) ∪
passive(Π, G : [`G, uG]) such that:

(a) if uG = 1, then at least one rule r ∈ Π′ must have head F : [`F , uF] such that F |= G and `G ≤ `F ;
if `G = 0), at least one rule r ∈ Π′ must have head F : [`F , uF] such that G |= F and uG ≥ uF ;

(b) state s′ for which Πs′ = Π′ is such that reach∗(s, s′).
(3) Otherwise, for each rule ri : F : [`r, ur]← s1 ∧ . . . ∧ sn do:

(a) If `G = 0, F |= G, and `r > uG then add ri to set conf(Π, G : [`G, uG])
(b) Otherwise (i.e., uG = 1), if G |= F and ur < `G then add ri to set conf(Π, G : [`G, uG]).

(4) Let candAct(Π, G : [`G, uG]) = active(Π, G : [`G, uG]) \ conf(Π, G : [`G, uG]);
(5) Consider the set candAct(Π, G : [`G, uG]) ∪ passive(Π, G : [`G, uG]) and, for each pair of rules of the form

ri : Fi : [`ri , uri] ← si1 ∧ . . . ∧ sin and rj : Fj : [`rj , urj] ← sj1 ∧ . . . ∧ sjm such that Fi : [`ri , uri] and
Fj : [`rj , urj] are mutually inconsistent, add the pair (ri, rj) to a set called inc(Π).

(6) Return true if there exists a set of rules Π′ ⊆ candAct(Π, G : [`G, uG])∪ passive(Π, G : [`G, uG]) such that
Π′ ∩ candAct(Π, G : [`G, uG]) 6= ∅, no pair {r1, r2} ⊆ Π′ belongs to inc(Π), and:

(a) Π′ |= G : [`G, uG];
(b) ∃ state s′ for which Πs′ = Π′ such that reach∗(s, s′);

(7) If Step 6 is not possible, return false;

Figure 3: An algorithm to solve Basic PLAP assuming a threshold goal.

Example 4.6. Suppose Π is the ap-program of Figure 1, the goal is kidnap(1) : [0, 0.6] (abbrevi-
ated with G : [0, 0.6] from now on) and the state is that of Example 3.2, scurr = {forstpolsup(1),
intersev1(c), intersev2(c), elecpol(1), extsup(1), demorg(0)}; note that Πscurr = {r2, r5}
and that clearly Πscurr 6|= kidnap(1) : [0, 0.6]. Step 1 of simpleAnnPLAP is simple in this case,
since all the heads of rules in Π are atomic – therefore passive(Πscurr , G : [0, 0.6]) = ∅, and the
set of active rules contains all the rules in Π. The following step checks for the applicability of
Lemma 4.4; clearly rule r1 satisfies the conditions and we only need to verify that some subpro-
gram containing it is reachable. Assuming the same reachability predicate outlined in Example 3.1,
s1 = {forstpolsup(0), intersev1(c), intersev2(0), elecpol(1), extsup(0), demorg(0)} is
reachable from scurr; this corresponds to choosing subprogram Π′ = {r1}. The only other possibil-
ities are to make both r1 and r4, or r1 and r5 relevant.

4.2. An Improved PLAP Algorithm

In this section, we show that if we assume reachability/unreachability is specified in a syntactic
manner rather than in a very general manner as presented earlier, we can come up with some good
heuristics to solve Basic PLAP.

Definition 4.7. Let F and G be first-order formulas over Lsta and Lvar with connectives ∧, ∨, and
¬, and such that the set of variables over F is equal to those over G; all variables are assumed to
be universally quantified with scope over both F and G. A reachability constraint is of the form
F 6↪→ G; we call F the antecedent and G the consequent of the constraint, and its semantics is:

unReach(s1, s2)⇔ s1 |= F and s2 |= G

where s1 and s2 are states in S .

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 199

Algorithm 2: simpleAnnPLAP-Heur-RC(Π, s, G : [`G, uG],RC)

(1) Execute Steps 1, 3, 4, and 5 of simpleAnnPLAP
(2) Let goalState, goalStateAct, goalStateConf, and goalStateInf be logical formulas over Lsta and Lvar;
(3) Initialize goalState to null, goalStateAct to ⊥, and goalStateConf, goalStateInc to >;
(4) for each rule ri ∈ candAct(Π, G : [`G, uG]) with Head(ri) = F : [`F , uF] do

if [(uG = 1) and (F |= G and `G ≤ `F)] or [(`G = 0) and (G |= F and uG ≥ uF)]
then set goalStateAct := goalStateAct ∨ getStateFormula(ri);

(5) for each rule ri ∈ conf(Π, G : [`G, uG]) do
set goalStateConf := goalStateConf ∧ ¬getStateFormula(ri);

(6) for each pair of rules (ri, rj) ∈ inc(Π) do
set goalStateInc := goalStateInc ∧ ¬(getStateFormula(ri) ∧ getStateFormula(rj));

(7) set goalState := goalStateAct ∧ goalStateConf ∧ goalStateInc;
// goalState describes the states that satisfy the goal

(8) return decideReachability(s, goalState, RC);

Figure 4: A heuristic algorithm based on Lemma 4.4 to solve Basic PLAP assuming threshold goals
and that state reachability is expressed as a set RC of reachability constraints.

Reachability constraints simply state that if the antecedent is satisfied in a certain state, then
no states that satisfy the consequent are reachable from it. We now present an example of a set of
reachability constraints.

Example 4.8. Consider again the setting and ap-program from Figure 1. The following are exam-
ples of reachability constraints2:

forstpolsup(1) 6↪→ intersev1(c)

intersev1(c) ∨ intersev2(c)) ∧ demorg(0) 6↪→ demorg(1)

Algorithm simpleAnnPLAP-Heur-RC (Figure 4) takes advantage of the structure added by the
presence of reachability constraints. The algorithm starts out by executing the steps of simpleAn-
nPLAP that compute the sets active, passive, candAct, conf, and inc. It then builds formulas gener-
ated by reachability constraints that any solution state must satisfy; the algorithm uses a subroutine
formula(s) which returns a formula that is a conjunction of all the atoms in state s and the negations
of those not in s. In Step 4, the formula describes the fact that at least one of the states that make
relevant “candidate active” rules (as described in Algorithm simpleAnnPLAP) must be part of the
solution; similarly, Step 5 builds a formula ensuring that none of the conflicting active rules can
be relevant if the problem is to have a solution. Finally, Step 6 describes the constraints associated
with making relevant rules that are probabilistically inconsistent. Noticeably absent are the “pas-
sive” rules from the previous algorithm; such rules impose no constraints on the solution. The last
two steps put subformulas together into a conjunction of constraints, and the algorithm must decide
if there exist any states that model formula goalState and are eventually reachable from s. Eventual
reachability can be decided by means of a SAT-based method as follows: if the current state does not
satisfy goalState, it starts by initializing formula Reachable which will be used to represent the set
of eventually reachable states at each step. The initial formula describes state s, and the algorithm
then proceeds to select all the constraints whose antecedents are entailed by Reachable. Once we
have this set, Reachable is updated to the conjunction of the negations of all the consequents of
constraints in the set. We are done whenever either Reachable models goalState, or the old version
of Reachable is modeled by the new one (no new reachable states exist).

2If available, knowledge of action effects and preconditions can be represented with similar constraints.

200 GERARDO I. SIMARI AND V.S. SUBRAHMANIAN

600

800

1,000

1,200

1,400

1,600

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times for Reachability

Naïve

SAT based

0

200

400

600

800

1,000

1,200

1,400

1,600

5 10 15

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Ground Environment Atoms

Running Times for Reachability

Naïve

SAT based

Figure 5: 5 rules, 25 ground
action atoms, 5
reachability con-
straints, and atomic
queries.

100

150

200

250

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times: 10% Conflicting Rules

Naïve

SimpleAnn

0

50

100

150

200

250

4 6 8 10 12

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Rules

Running Times: 10% Conflicting Rules

Naïve

SimpleAnn

Figure 6: 10% goal-conf.
rules, 25 action
atoms, 5 state
atoms (ground),
and atomic queries.

1,500

2,000

2,500

3,000

3,500

4,000

ni
ng

Ti
m
e
(s
ec
on

ds
)

Running Times: Heuristic Algorithms

SimpleAnn Heur

SimpleAnn HeurRC

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

100 200 300 400 500

Ru
nn

in
g
Ti
m
e
(s
ec
on

ds
)

Number of Rules

Running Times: Heuristic Algorithms

SimpleAnn Heur

SimpleAnn HeurRC

Figure 7: Larger ap-
programs; 25
action atoms,
5 state atoms
(ground), and 5
reach. constr.

5. Experimental Results
We conducted experiments using a prototype JAVA implementation consisting of roughly 2,500

lines of code. All experiments were run on multiple multi-core Intel Xeon E5345 processors at
2.33GHz, 8GB of memory, running the Scientific Linux distribution of the GNU/Linux operating
system, kernel version 2.6.9-55.0.2.ELsmp.3 Numbers reported are averages over at least 20 runs.
No. of State Atoms. In Figure 5 we show the running times of the different approaches to deciding
reachability; the naive approach becomes intractable very quickly, while the (still exact) SAT-based
algorithm approach has negligible cost for these runs.
No. of Rules. Figure 6 reports the running times of the SimpleAnn rule selection algorithm vs. the
naive approach for programs in which 10% of the rules were forced to be in probabilistic conflict
with the goal. This experiment shows how SimpleAnn leverages the presence of these rules, greatly
reducing its running time w.r.t. that of the naive algorithm.

Finally, Figure 7 shows the running times for the SimpleAnn heuristic step (that is, assuming
the algorithm only tries to apply the heuristic and pessimistically returns false otherwise) and the
SimpleAnn-HeurRC algorithm for larger programs. It is interesting to see the different shapes of
the curves: as programs get larger, the SAT formulas associated with SimpleAnn-HeurRC become
larger as well, leading to the gradual increase in the running time; on the other hand, we can see that
the strategy of only focusing on certain “heuristic rules” pays off for the SimpleAnn heuristic step,
but there is a spike in running time when the size grows from 400 to 500 rules. This is likely due to
the appearance of more such rules, which means that the algorithm has many more subprograms to
verify for entailment of the goal.

6. Related Work and Conclusions
Abduction has been extensively studied in diagnosis [Con91], reasoning with non-monotonic

logics [Eit95], probabilistic reasoning [Pea91, Poo97], argumentation [Koh02], planning [Esh88],
and temporal reasoning [Esh88]; furthermore, it has been combined quite naturally with different
variants of logic programs [Den02]. David Poole et al. combined probabilistic and non-monotonic
reasoning, leading to the development of the Independent Choice Logic [Poo97]. Though this model
is related to our work, it makes general assumptions of pairwise independence of probabilties of
events; other related models are based on the class of graphical models including Bayesian Networks

3We note that this implementation makes use of only one processor and one core.

ABDUCTIVE INFERENCE IN PROBABILISTIC LOGIC PROGRAMS 201

(BNs). The main difference between graphical model-based work and our work is that we make no
assumptions on the dependence or independence of probabilities of events.

While AI planning may seem relevant, there are several differences. First, we are not assum-
ing knowledge of the effects of actions; second, we assume the existence of a probabilistic model
underlying the behavior of the entity being modeled. In this framework, we want to find a state
such that when the atoms in the state are added to the ap-program, the resulting combination entails
the desired goal with a given probability. While the italicized component of the previous sentence
can be achieved within planning, it would require a state space that is exponentially larger than the
one we use (the search space would be the set of all sets of atoms that are jointly entailed by any
subprogram of the ap-program and any state).

To the best of our knowledge, this is the first paper that tackles the problem of abductive rea-
soning in probabilistic logic programming under no independence assumptions, in the tradition
of [Ng92] for probabilistic logic programming, and [Hai84, Nil86, Fag90] for probabilistic logic.

Acknowledgements. The authors were funded in part by AFOSR grant FA95500610405 and ARO
grant W911NF0910206.

References
[Asa08] V Asal, J Carter, and J Wilkenfeld. Ethnopolitical violence and terrorism in the middle east. In J Hewitt,

J Wilkenfeld, and T Gurr (eds.), Peace and Conflict 2008. Paradigm, Boulder, CO, 2008.
[Con91] Luca Console and Pietro Torasso. A spectrum of logical definitions of model-based diagnosis. Comput. Intell.,

7(3):133–141, 1991.
[Den02] Marc Denecker and Antonis C. Kakas. Abduction in logic programming. In Computational Logic: Logic Pro-

gramming and Beyond, Part I, pp. 402–436. Springer-Verlag, London, UK, 2002.
[Eit95] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J. ACM, 42(1):3–42, 1995.
[Esh88] Kave Eshghi. Abductive planning with event calculus. In ICLP/SLP, pp. 562–579. 1988.
[Fag90] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning about probabilities. Information

and Computation, 87(1/2):78–128, 1990.
[Gil08] Jim Giles. Can conflict forecasts predict violence hotspots? New Scientist, (2647), 2008.
[Hai84] T. Hailperin. Probability logic. Notre Dame Journal of Formal Logic, 25 (3):198–212, 1984.
[Khu07] Samir Khuller, Maria Vanina Martinez, Dana S. Nau, Amy Sliva, Gerardo I. Simari, and V. S. Subrahmanian.

Computing most probable worlds of action probabilistic logic programs: scalable estimation for 10ˆ30,000
worlds. AMAI, 51(2-4):295–331, 2007.

[KI04] Gabriele Kern-Isberner and Thomas Lukasiewicz. Combining probabilistic logic programming with the power
of maximum entropy. Artif. Intell., 157(1-2):139–202, 2004.

[Koh02] J. Kohlas, D. Berzati, and R. Haenni. Probabilistic argumentation systems and abduction. AMAI, 34(1-3):177–
195, 2002.

[Llo87] J. W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.
[Man08] A. Mannes, M. Michael, A. Pate, A. Sliva, V. S. Subrahmanian, and J. Wilkenfeld. Stochastic opponent mod-

elling agents: A case study with Hezbollah. In Huan Liu and John Salerno (eds.), Proc. of IWSCBMP. 2008.
[Ng92] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic programming. Information and Computation,

101(2):150–201, 1992.
[Ng93] Raymond T. Ng and V. S. Subrahmanian. A semantical framework for supporting subjective and conditional

probabilities in deductive databases. J. Autom. Reasoning, 10(2):191–235, 1993.
[Nil86] Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–87, 1986.
[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1988.
[Pea91] Judea Pearl. Probabilistic and qualitative abduction. In AAAI Spring Symposium on Abduction, pp. 155–158.

AAAI Press, Stanford, CA, 1991.
[Poo93] David Poole. Probabilistic horn abduction and bayesian networks. Artif. Intell., 64(1):81–129, 1993.
[Poo97] David Poole. The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell., 94(1-

2):7–56, 1997.

