
Abductive Plan Recognition
by Extending Bayesian Logic Programs

Sindhu Raghavan and Raymond J. Mooney

Department of Computer Science, University of Texas,
1616 Guadalupe, Suite 2.408, Austin TX 78701, USA

{sindhu,mooney}@cs.utexas.edu

Abstract. Plan recognition is the task of predicting an agent’s top-level plans
based on its observed actions. It is an abductive reasoning task that involves in-
ferring cause from effect. Most existing approaches to plan recognition use ei-
ther first-order logic or probabilistic graphical models. While the former cannot
handle uncertainty, the latter cannot handle structured representations. In order
to overcome these limitations, we develop an approach to plan recognition using
Bayesian Logic Programs (BLPs), which combine first-order logic and Bayesian
networks. Since BLPs employ logical deduction to construct the networks, they
cannot be used effectively for plan recognition. Therefore, we extend BLPs to
use logical abduction to construct Bayesian networks and call the resulting model
Bayesian Abductive Logic Programs (BALPs). We learn the parameters in BALPs
using the Expectation Maximization algorithm adapted for BLPs. Finally, we
present an experimental evaluation of BALPs on three benchmark data sets and
compare its performance with the state-of-the-art for plan recognition.

1 Introduction

Plan recognition is the task of predicting an agent’s top-level plans based on its ob-
served actions. It is an abductive reasoning task that involves inferring cause from ef-
fect [8]. Traditionally, plan-recognition approaches have been based on first-order logic
in which a knowledge-base of plans and actions is developed for the domain and then
default reasoning [15] or logical abduction [24] is used to predict the best plan based on
the observed actions. However, these approaches are unable to handle uncertainty in the
observations or background knowledge and are incapable of estimating the likelihood
of different plans. An alternative approach to plan recognition is to use probabilistic
methods such as Abstract Hidden Markov Models [5] or statistical n-gram models [2].
While these approaches handle uncertainty, they cannot handle structured representa-
tions as they are essentially propositional in nature. As a result, it is also difficult to
incorporate planning domain knowledge in these approaches.

The main focus of this paper is to develop an approach to plan recognition that over-
comes the limitations described above. Recently, a number of formalisms that inte-
grate both first-order logic and probabilistic graphical models have been developed in
the area of statistical relational learning (SRL) [11]. Since these formalisms combine
the strengths of both approaches, they are well suited for solving problems like plan
recognition. We explore the application of one such formalism to plan recognition.

D. Gunopulos et al. (Eds.): ECML PKDD 2011, Part II, LNAI 6912, pp. 629–644, 2011.
© Springer-Verlag Berlin Heidelberg 2011

630 S. Raghavan and R.J. Mooney

Of the various SRL formalisms that have been developed, Markov Logic Networks
(MLNs), [29], which combine first-order logic and undirected graphical models (Markov
nets) have been used for abductive plan recognition by Kate and Mooney [14]. Since
MLNs employ deduction for logical inference, they adapt MLNs for abduction by
adding reverse implications for every rule in the knowledge base. However, the addition
of these rules increases the size and complexity of the MLN, resulting in a computa-
tionally expensive model.

In this paper, we explore the application of Bayesian Logic Programs (BLPs) [16],
which combine first-order Horn logic and Bayesian networks to plan recognition. BLPs
use SLD resolution to generate proof trees, which are then used to construct a ground
Bayes net for a given query. However, deduction is unable to construct proofs for ab-
ductive problems such as plan recognition. Therefore, we extend BLPs to use logical
abduction to construct proofs. In logical abduction, missing facts are assumed when
necessary to complete proof trees, and we use the resulting abductive proof trees to
construct Bayes nets. We call the resulting model Bayesian Abductive Logic Programs
(BALPs). Like all SRL formalisms, BALPs combine the strengths of both first-order
logic and probabilistic graphical models, thereby overcoming the limitations of tradi-
tional plan recognition approaches mentioned above.

First, we present the necessary enhancements to BLPs to support abduction. Next,
we discuss how to learn the parameters in BALPs using the Expectation Maximization
algorithm adapted for BLPs [18]. Finally, we present an experimental evaluation of
BALPs on three benchmark data sets for plan-recognition and compare its performance
with the state-of-the-art.

2 Background

2.1 Logical Abduction

In a logical framework, abduction, is usually defined as follows [28]:

– Given: Background knowledge B and observations O, both represented as sets of
formulae in first-order logic, where B is typically restricted to a set of Horn clauses
and O to a conjunction of ground literals.

– Find: A hypothesis H , also a set of logical formulae, such that B ∪H �|= ⊥ and
B ∪H |= O.

Here |= stands for logical entailment and ⊥ for false, i.e. find a set of assumptions
that is consistent with the background theory and explains the observations. There are
generally many hypotheses H that explain a particular set of observations O. Following
Occam’s Razor, the best hypothesis is typically selected based on minimizing |H |.

2.2 Bayesian Logic Programs

Bayesian logic programs (BLPs) [16] can be viewed as templates for constructing di-
rected graphical models (Bayes nets). Given a knowledge base as a special kind of logic
program, standard logical deduction (SLD resolution) is used to automatically construct
a Bayes net for a given problem. More specifically, given a set of facts and a query, all

Abductive Plan Recognition by Extending Bayesian Logic Programs 631

possible Horn-clause proofs of the query are constructed and used to build a Bayes net
for answering the query. Standard probabilistic inference techniques are then used to
compute the most probable answer.

More formally, a BLP consists of a set of Bayesian clauses, definite clauses of the
form A|A1, A2, A3,An, where n ≥ 0 and A, A1, A2, A3,......,An are Bayesian
predicates (defined below). A is called the head of the clause (head(c)) and (A1, A2,
A3,....,An) is the body (body(c)). When n = 0, a Bayesian clause is a fact. Each
Bayesian clause c is assumed to be universally quantified and range restricted, i.e
variables{head} ⊆ variables{body}, and has an associated conditional probability
distribution: cpd(c) = P (head(c)|body(c)).

A Bayesian predicate is a predicate with a finite domain, and each ground atom for a
Bayesian predicate represents a random variable. Associated with each Bayesian pred-
icate is a combining rule such as noisy-or or noisy-and that maps a finite set of cpds
into a single cpd [26]. Let A be a Bayesian predicate defined by two Bayesian clauses,
A|A1, A2, A3,An and A|B1, B2, B3,Bn, where cpd1 and cpd2 are their cpd’s.
Let θ be a substitution that satisfies both clauses. Then, in the constructed Bayes net,
directed edges are added from the nodes for each Aiθ and Biθ to the node for Aθ.
The combining rule for A is used to construct a single cpd for Aθ from cpd1 and cpd2.
The probability of a joint assignment of truth values to the final set of ground proposi-
tions is then defined in the standard way for a Bayes net: P(X) =

∏
i P (Xi|Pa(Xi)),

where X = X1, X2, ..., Xn represents the set of random variables in the network and
Pa(Xi) represents the parents of Xi. The cpds for Bayesian clauses can be learned
using the methods described by Kersting and De Raedt [18]. Once a ground network
is constructed, standard probabilistic inference methods can be used to answer various
types of queries [20].

3 Bayesian Abductive Logic Programs

Bayesian Abductive Logic Programs (BALPs) are an extension of BLPs. In plan recog-
nition, the known facts are insufficient to support the derivation of deductive proof trees
for the requisite queries. By using abduction, missing literals can be assumed in order
to complete the proof trees needed to determine the structure of the ground network. We
first describe the abductive inference procedure used in BALPs. Next we describe how
probabilistic parameters are specified and how probabilistic inference is performed. Fi-
nally, we discuss how parameters can be automatically learned from data.

3.1 Logical Abduction

Let O1, O2,, On be the set of observations. We derive a set of most-specific abductive
proof trees for these observations using the method originally proposed by Stickel [32].
The abductive proofs for each observation literal are computed by backchaining on each
Oi until every literal in the proof is proven or assumed. A literal is said to be proven if
it unifies with some fact or the head of some rule in the knowledge base, otherwise it is
said to be assumed. Since multiple plans/actions could generate the same observation,
an observation literal could unify with the head of multiple rules in the knowledge base.
For such a literal, we compute alternative abductive proofs. The resulting abductive

632 S. Raghavan and R.J. Mooney

Algorithm 1. AbductionBALP
Inputs: Background knowledge KB and observations O1, O2, O3,, On both repre-

sented as sets of formulae in first-order logic, where KB is typically restricted to a
set of Horn clauses and each Oi is a ground literal.

Output: Abductive proofs for all Oi.
1: Let Q be a queue of unproven atoms, initialized with Oi

2: while Q not empty do
3: Ai ← Remove atom from Q
4: for each rule Ri in KB do
5: consequent← Head literal of Ri

6: if Ai unifies with consequent then
7: Si← unify Ai and consequent and return substitution
8: Replace variables in the body of Ri with bindings in Si. Each literal in the

body of Ri is a new subgoal.
9: for each literali in body of Ri do

10: if literali unifies with head of some rule Rj in KB then
11: add literali to Q
12: else if literali unifies with an existing fact then
13: Unify and consider the literal to be proved
14: else
15: if literali unifies with an existing assumption then
16: Unify and use the assumption
17: else
18: Assume literali by replacing any unbound variables that are exis-

tentially quantified in literali with new Skolem constants.
19: end if
20: end if
21: end for
22: end if
23: end for
24: end while

proof trees are then used to build the structure of the Bayes net using the standard
approach for BLPs.

The basic algorithm to construct abductive proofs is given in Algorithm 1. The al-
gorithm takes as input a knowledge base (KB) in the form of Horn clauses and a set
of observations as ground facts. It outputs a set of abductive proof trees by performing
logical abduction on the observations. These proof trees are then used to construct the
Bayesian network. For each observation Oi, AbductionBALP searches for rules whose
consequents unify with Oi. For each such rule, it computes the substitution from the
unification process and substitutes variables in the body of the rule with bindings from
the substitution. The literals in the body now become new subgoals in the inference
process. If these new subgoals cannot be proved, i.e if they cannot unify with existing
facts or with the consequent of any rule in the KB, then they are assumed. In order
to minimize the number of assumptions, the assumed literals are first matched with

Abductive Plan Recognition by Extending Bayesian Logic Programs 633

(a) Partial Knowledge Base:
Shopping
1. inst(?g,going) | inst(?b,shopping), go-step(?b,?g).
2. inst(?sp,shopping-place) | inst(?s,shopping), store(?s,?sp).
Robbing
3. inst(?p,going) | inst(?r,robbing), go-step(?r,?p).

(b) Observations:
inst(go1,going)
inst(store1,shopping-place)

(c) Ground Abductive Clauses:
inst(go1,going) | inst(a1,shopping), go-step(a1,go1).
inst(go1,going) | inst(a1,robbing), go-step(a1,go1).
inst(store1,shopping-place) | inst(a1,shopping), store(a1,store1).

Fig. 1. (a) A partial knowledge base from the Story Understanding data set. All variables start
with “?”. (b) The logical representation of the observations. (c) The set of ground rules obtained
from logical abduction.

existing assumptions. If no such assumption exists, then any unbound variables in the
literal that are existentially quantified are replaced by Skolem constants.

In SLD resolution, which is used in BLPs, if any subgoal literal cannot be proven, the
proof fails. However, in BALPs, we assume such literals and allow proofs to proceed
till completion. Note that there could be multiple existing assumptions that could unify
with subgoals in Step 15. However, if we used all ground assumptions that could unify
with a literal, then the size of the ground network would grow exponentially, making
probabilistic inference intractable. In order to limit the size of the ground network, we
unify subgoals with assumptions in a greedy manner, i.e when multiple assumptions
match with a subgoal, we just randomly pick one of them and do not pursue the others.
We found that this approach worked well for plan-recognition. For other tasks, domain-
specific heuristics could potentially be used to reduce the size of the network.

We now illustrate the abductive inference process with a simple example from the
Story-Understanding benchmark data set described in Section 4.1. Consider the partial
knowledge base and set of observations given in Figure 1a and Figure 1b respectively.
There are two top-level plans, shopping and robbing, in the knowledge base. Note that
the action literal “inst(?g, going)” could be observed as part of both shopping and rob-
bing. For each observation literal in Figure 1b, we recursively backchain to generate
abductive proof trees. When we backchain on the literal inst(go1,going) using Rule 1,
we obtain the subgoals inst(?b,shopping) and go-step(?b,go1). These subgoals become
assumptions since no observations or heads of clauses unify with them. Since ?b is an
existentially quantified variable, we replace it with a Skolem constant a1 to obtain the
ground assumptions inst(a1,shopping) and go-step(a1,go1). We then backchain on lit-
eral inst(go1,going) using Rule 3 to get subgoals inst(?r,robbing) and go-step(?r,go1).
We cannot unify inst(?r, robbing) with any observation or existing assumptions; how-
ever, we can unify go-step(?r,go1) with an existing assumption go-step(a1,go1), thereby
binding ?r to a1. In order to minimize the number of assumptions, we first try to match

634 S. Raghavan and R.J. Mooney

Fig. 2. Bayesian network constructed for example in Figure 1. The nodes with thick borders
represent observed actions, the nodes with dotted borders represent intermediate nodes used to
combine the conjuncts in the body of a clause, and the nodes with thin borders represent plan
literals.

literals with unbound variables to existing assumptions, rather than instantiating them
with new Skolem constants. Finally, we backchain on the literal inst(store1,shopping-
place) using Rule 2 to get subgoals inst(?s,shopping), store(?s,store1). Here again, we
match inst(?s, shopping) to an existing assumption inst(a1,shopping), thereby binding
?s to a1.

Figure 1c gives the final set of ground rules generated by abductive inference. Af-
ter generating all abductive proofs for all observation literals, we construct a Bayesian
network. Figure 2 shows the Bayesian network constructed for the example in Fig-
ure 1. Note that since there are no observations/facts that unify with the subgoals
(inst(?b,shopping), go-step(?b,?g), inst(?r,robbing), go-step(?r,?p), and store(?s,?sp)
) generated during backchaining on observations, SLD resolution will fail to generate
proofs. This is typical in plan recognition, and as a result, we cannot use BLPs for such
tasks.

The only difference between BALPs and BLPs lies in the logical inference procedure
used to construct proofs. Once the abductive proofs are generated, BALPs use the same
procedure as BLPs to construct the Bayesian network. We further show in Section 3.3
and Section 4.3 that techniques developed for BLPs for learning parameters can also be
used for BALPs.

3.2 Probabilistic Parameters and Inference

We now discuss how parameters are specified in BALPs. We use noisy/logical-and and
noisy-or models to specify the cpds in the ground Bayesian network as these models

Abductive Plan Recognition by Extending Bayesian Logic Programs 635

compactly encode the cpd with fewer parameters, i.e. just one parameter for each parent
node. Depending on the domain, we use either a strict logical-and or a softer noisy-and
model to specify the cpd for combining evidence from the conjuncts in the body of
a clause. We use a noisy-or model to specify the cpd for combining the disjunctive
contributions from different ground clauses with the same head. Figure 2 shows the
noisy-and and noisy-or nodes in the Bayesian network constructed for the example in
Figure 1.

Given the constructed Bayesian network and a set of observations, we determine the
best explanation using standard methods for computing the Most Probable Explanation
(MPE) [26], which determines the joint assignment of values to the unobserved nodes
in the network which has the maximum posterior probability given the observations.
To compute multiple alternative explanations, we use the k-MPE algorithm [25] as im-
plemented in Elvira [10]. For other types of exact probabilistic inference (marginal and
joint) we use Netica,1 a commercial Bayes-net software package.

When the complexity of the ground network makes exact inference intractable (as
in the Monroe dataset described in Sect. 4), we have to resort to approximate infer-
ence. Due to the (noisy/logical) and and or nodes in the network, there are a number
of deterministic constraints, i.e. 0 values in the cpds. As a result, generic importance
sampling algorithms like likelihood weighting used in Elvira failed to generate suffi-
cient samples. Hence, we used SampleSearch [12], an approximate sampling algorithm
specifically designed for graphical models with multiple deterministic constraints.

3.3 Parameter Learning

Learning can be used to automatically set the noisy-or and noisy-and parameters in
the model. We learn these parameters using the EM algorithm adapted for BLPs by
Kersting and De Raedt [18]. In supervised training data for plan recognition, one typ-
ically has evidence for the observed actions and the top-level plans. However, we usu-
ally do not have evidence for network nodes corresponding to subgoals, noisy-ors, and
noisy/logical-ands. As a result, there are a number of variables in the ground networks
which are always hidden, and hence EM is appropriate for learning the requisite pa-
rameters from the partially observed training data. We simplify the problem by learning
only the noisy-or parameters and using a deterministic logical-and model to combine
evidence from the conjuncts in the body of a clause. We use uniform priors for top-level
plans unless otherwise mentioned.

4 Experimental Evaluation

Unfortunately, there are very few benchmark datasets or rigorous experimental evalua-
tions of plan recognition. In this section, we evaluate BALPs on three plan-recognition
datasets that are available. First, we describe experiments to determine if BALPs are
more effective for plan recognition than previous approaches. Then, we describe
additional experiments evaluating the automatic learning of BALP parameters.

1 http://www.norsys.com/

http://www.norsys.com/

636 S. Raghavan and R.J. Mooney

4.1 Datasets

Monroe / Reformulated Monroe. The Monroe dataset is an artificially-generated
plan-recognition dataset in the emergency response domain by Blaylock and Allen [1].
This domain includes top level plans such as setting up a temporary shelter, clearing
a road wreck, and providing medical attention to victims. The task is to infer a single
top level plan from a set of observed actions automatically generated by a planner. The
planner used is SHOP2 [22] and the domain knowledge is represented as a hierarchical
transition network (HTN). We constructed a logical knowledge base representing the
domain knowledge encoded in the HTN. We used 1,000 artificially generated examples
in our experiments. Each example instantiates one of the 10 top-level plans and contains
an average of 10.19 literals describing a sample execution of this plan.

Due to computational complexity, we were unable to compare the performance of
BALPs with Kate and Mooney’s [14] MLN approach on this domain. Their approach
resulted in an MLN with rules containing multiple existentially quantified variables
which produced an exponential number of possible groundings, eventually leading to
memory overflow. In order to compare BALPs with this MLN approach, we slightly
modified the Monroe domain to eliminate this problem without significantly changing
the underlying task. The resulting dataset also had 1,000 examples, with an average of
9.7 observations per example. We refer to this dataset as “Reformulated-Monroe.”

Linux. The Linux dataset is another plan-recognition dataset created by Blaylock and
Allen [3]. Human users were asked to perform various tasks in Linux and their com-
mands were recorded. The task is to predict the correct top level plan from the sequence
of executed commands. For example, one of the tasks involves finding all files with a
given extension. The dataset consists of 19 top level plans and 457 examples, with an
average of 6.1 command literals per example. We constructed the background knowl-
edge base for the Linux dataset based on our knowledge of the commands.

Story Understanding. We also used a dataset2 that was previously used to evaluate ab-
ductive story understanding systems [24,6]. In this task, characters’ higher-level plans
must be inferred from their actions described in a narrative text. A logical representa-
tion of the literal meaning of the text is given for each example. A sample story is: “Bill
went to the liquor-store. He pointed a gun at the owner.” The plans in this dataset include
shopping, robbing, restaurant dining, traveling in a vehicle (bus, taxi or plane), party-
ing and jogging. Most narratives involve more than a single plan. This small dataset
consists of 25 development examples and 25 test examples each containing an average
of 12.6 literals. We used the background knowledge that was initially constructed for
the ACCEL system [24]. Figure 1a and Figure 1b give a partial knowledge base and a
partial set of observations from this data set.

Each of these data sets evaluates a distinct aspect of plan recognition systems. Since
the Monroe domain is quite large with numerous subgoals and entities, it tests the ability
of a plan-recognition system to scale to large domains. On the other hand, the Linux
data set is not that large, but since the data comes from real human users, it is quite
noisy. There are several sources of noise including cases in which users claim they have

2 http://www.cs.utexas.edu/˜ml/accel.html

http://www.cs.utexas.edu/~ml/accel.html

Abductive Plan Recognition by Extending Bayesian Logic Programs 637

successfully executed a top-level plan when actually they have not [2]. Therefore, this
data set tests the robustness of a plan-recognition system to noisy input. Monroe and
Linux involve predicting a single top-level plan; however, in the Story Understanding
domain, most examples have multiple top-level plans. Therefore, this data set tests the
ability of a plan-recognition system to identify multiple top-level plans.

4.2 Comparison with Other Approaches

We now present comparisons to three previous approaches to plan-recognition across
the different benchmark datasets.

Monroe and Linux. We first compared BALPs with Blaylock and Allen’s [2] plan-
recognition system on both the Monroe and Linux datasets. Their approach learns sta-
tistical n-gram models to separately predict plan schemas (i.e. predicates) and their
arguments.

We learned the noisy-or parameters for BALPs using the EM algorithm described
in Sect. 3.3. We initially set all noisy-or parameters to 0.9, which gave reasonable per-
formance in both domains. We picked a default value of 0.9 for noisy-or parameters
based on the intuition that if a parent node is true, then the child node is true with a
probability 0.9. We then ran EM with two starting points – random weights and manual
weights (0.9). We found that EM initialized with manual weights generally performed
the best for both domains, and hence we used this approach for our comparisons. Even
though EM is sensitive to starting point, it outperformed other approaches even when
initialized with random weights (see Sect. 4.3). Initial experiments found no advantage
to using noisy-and instead of logical-and in these domains, so we did not experiment
with learning noisy-and parameters.

For Linux, we performed 10-fold cross validation for evaluation and we ran EM until
convergence on the training set for each fold. For Monroe, where more data is available,
we used 300 examples for training, 200 examples for validation, and the remaining 500
examples for testing. Note that for Monroe, Blaylock and Allen used 4,500 examples
for learning parameters. Using 4500 examples for learning BALP parameters results in
large training times, and hence we limited to using 300 examples. We ran EM iterations
on the training set until the accuracy on the validation set stopped improving. We then
used the final learned set of weights to perform plan-recognition on the test set.

For both Monroe and Linux, the plan-recognition task involves inferring a single top
level plan that best explains the observations. Hence, we computed the marginal proba-
bilities for all ground instantiations of the plan predicates in the network and picked the
single plan instantiation with the highest marginal probability.

Due to differences in Blaylock and Allen’s experimental methodology and ours, we
are only able to directly compare performance using their convergence score [2], the
fraction of examples for which the correct plan predicate is inferred (ignoring the argu-
ments) when given all of the observations.

Table 1 shows the results. BALPs outperform Blaylock and Allen’s system on the
convergence score in both domains and the difference in the performances was

638 S. Raghavan and R.J. Mooney

Table 1. Convergence scores for BALPs and Blaylock and Allen’s system for Monroe and Linux.
‘*’ indicates that the difference is statistically significant.

BALPs Blaylock and Allen
Monroe 98.4 94.2*
Linux 46.6 36.1*

statistically significant (p < .05) as determined by unpaired t-test 3. We treated the
convergence score as the mean of a Bernoulli variable (schema prediction event) and
computed variance accordingly, and then used the mean, variance, and sample size to
perform an unpaired t-test. The convergence score for Blaylock and Allen’s system on
Monroe is already quite high, leaving little room for improvement. However, BALPs
was still able to improve over this score by 4.5%. On the other hand, the baseline con-
vergence score for Linux was fairly low, and BALPs were able to improve the results by
a remarkable 29.1%. Despite this improvement, the overall convergence score for Linux
is not that high. Noise in the data is one reason for the modest score. Another issue with
this data set is the presence of very similar plans, like find-file-by-ext and find-file-by-
name. The commands executed by users in these two plans are nearly identical, making
it difficult for a plan recognition system to distinguish them [3].

Reformulated-Monroe. We also compared the performance of BALPs with Kate and
Mooney’s [14] MLN approach on the Reformulated-Monroe dataset. For MLNs, we
were unable to effectively learn clause weights on this dataset since it was intractable to
run Alchemy’s existing weight-learners due to the sizes of the MLN and data. Hence,
we manually set the weights using the heuristics described by Kate and Mooney [14].
To ensure a fair comparison, we also used manual instead of learned weights for BALPs.
We uniformly set all noisy-or parameters to 0.9 and used logical-and to combine evi-
dence from conjuncts in the body of a clause, since this gave good performance on the
original Monroe data.

We used two different metrics to compare the performance of the two approaches –
convergence score and accuracy. We compared the inferred plan with the correct plan
to compute the accuracy score. When computing accuracy, partial credit was given for
predicting the correct plan predicate with only a subset of its correct arguments. A point
was rewarded for inferring the correct plan predicate, then, given the correct predicate,
an additional point was rewarded for each correct argument. For example, if the cor-
rect plan was plan1(a1, a2) and the inferred plan was plan1(a1, a3), the accuracy was
66.67%.

The observation set for this domain includes all actions executed to implement the
top level plan. In order to evaluate performance for partially observed plans, we per-
formed plan recognition given only subsets of the complete action sequence. Specif-
ically, we report results after observing the first 25%, 50%, 75%, and 100% of the
executed actions. Table 2 shows the results. “Accuracy-n” is the accuracy when given
the first n% of the observations. BALPs consistently outperform the MLN approach on

3 We did not have access to scores for individual examples for Blaylock and Allen’s system,
hence we performed an unpaired t-test.

Abductive Plan Recognition by Extending Bayesian Logic Programs 639

Table 2. Comparative results for Reformulated-Monroe, “*” indicates that the difference is
statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
BALP 99.90 97.40 66.80 32.67 9.83
MLN 79.66* 79.20* 40.51* 19.26* 4.10*

this data set and all differences are statistically significant (p < .05) as determined by
the Wilcoxon Sign Rank (WSR) test [30]. The convergence score for BALPs demon-
strates a large (25.41%) improvement over MLNs. Finally, we would like to note that
the computational complexity of the MLN approach prevented us from running it on
the Linux dataset.

Story Understanding. On Story Understanding, we compared the performance of
BALPs with the MLN approach of Kate and Mooney [14] and ACCEL [24], a logical-
abduction system that uses a metric to guide its search for selecting the best explanation.
ACCEL can use two different metrics: simplicity, which selects the explanation with
the fewest assumptions and coherence, which selects the explanation that maximally
connects the input observations. This second metric is specifically geared towards text
interpretation by measuring explanatory coherence [23]. Currently, this bias has not
been incorporated in either the BALP or MLN approach.

For BALPs, we were unable to learn useful parameters from just 25 development ex-
amples. As a result, we set parameters manually in an attempt to maximize performance
on the development set. As before, a uniform value of 0.9 for all noisy-or parameters
seemed to work well for this domain. Unlike other domains, using logical-and to com-
bine evidence from conjuncts in the body of a clause did not yield high-quality results.
Using noisy-and significantly improved the results; so we used noisy-ands with uniform
parameters of 0.9. Here again, the intuition was that if parent node was false or turned
off, then the child node would also be false or turned off with a probability 0.9. To
disambiguate between conflicting plans, we set different priors for high level plans to
maximize performance on the development data. For the MLN approach, we used Kate
and Mooney’s [14] system with their manually-tuned weights for this dataset.

Since multiple plans are possible in this domain, we computed the most probable
explanation (MPE) to infer the best set of plans. We compared the inferred plans with
the ground truth to compute precision, recall, and F-measure (the harmonic mean of
precision and recall). As before, partial credit was given for predicting the correct plan
predicate with some incorrect arguments. The observed literals in this data are already
incomplete and do not include all of the actions needed to execute a plan, so they were
used as is.

Table 3 shows the results. BALPs performed better than both ACCEL-Simplicity and
MLNs. With respect to F-measure, BALPs improved over MLNs by 15.57% and over
ACCEL-Simplicity by 33.65%. However, ACCEL-Coherence still performed the best.
Since the coherence metric incorporates extra criteria specific to story understanding,
this bias would need to be included in the probabilistic models to make them more

640 S. Raghavan and R.J. Mooney

Table 3. Comparative results for Story Understanding, “*” indicates that the difference wrt
BALPs is statistically significant

BALP MLN ACCEL-Simplicity ACCEL-Coherence
Precision 72.07 67.31 66.45 89.39*

Recall 85.57 68.10* 52.32* 89.39
F-measure 78.24 67.70* 58.54* 89.39*

competitive. However, the coherence metric is specific to narrative interpretation and
not applicable to plan recognition in general.

Overall, BALPs outperformed most existing approaches on the existing benchmark
data sets, thus demonstrating that BALPs are a very effective approach to plan recogni-
tion.

4.3 Parameter Learning Experiments

We now describe additional experiments that were designed to determine if EM can
effectively learn BALP parameters in different plan-recognition domains.

Learning Methodology. We used EM as described in Sect. 3.3 to learn noisy-or pa-
rameters for the Linux and Monroe domains.4 We initially set all noisy-or parameters to
0.9. This gives reasonable performance in both domains, so we compare BALPs with
learned noisy-or parameters to this default model which we call “Manual-Weights”
(MW). For training, we ran EM with two sets of starting parameters – manual weights
(0.9) and random values. We call the former “MW-Start” and the latter “Rand-Start”.
We used the same training and test splits as described in Section 4.2 for both Linux and
Monroe. To measure performance, we computed the convergence score and accuracy
scores for various levels of observability as described above.

Learning Results. Table 4 shows the results for different models on Linux. MW-
Start consistently outperforms MW, demonstrating that parameter learning improves
the performance of default BALP parameters on the Linux domain. Rand-Start does
marginally better than MW for all but the 50% and 25% levels of partial observability.
However, it does not perform as well as MW-Start, showing that learning from scratch
is somewhat better than using default parameters but not as effective as starting learning
from reasonable default values.

Table 5 shows the results for different models on Monroe. The performance of MW
is already so high that there is little room for improvement, at least for the conver-
gence score. As a result, the MW-Start model could not improve substantially over the
MW model. The manual parameters seem to be at a (local) optimum, preventing EM
from making further improvements on this data. Rand-Start is performing about as well,
sometimes a bit better and sometimes a bit worse than MW, demonstrating that starting

4 We were unable to learn useful parameters for Story Understanding since the mere 25 devel-
opment examples were insufficient for training.

Abductive Plan Recognition by Extending Bayesian Logic Programs 641

Table 4. Results for parameter learning on Linux, “*” indicates that the difference wrt the MW
model is statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
MW 39.82 30.41 28.22 21.84 18.34

MW-Start 46.6* 36.32* 34.06* 25.45* 19.83*
Rand-Start 41.57 31.4 29.1 20.53 14.55*

Table 5. Results for parameter learning on Monroe, “*” indicates that the difference wrt the MW
model is statistically significant

Convergence Score Accuracy-100 Accuracy-75 Accuracy-50 Accuracy-25
MW 98.4 79.16 46.06 20.67 7.2

MW-Start 98.4 79.16 44.63* 20.26 7.33
Rand-Start 98.4 79.86* 44.73* 19.7* 10.46*

from random values the system can learn weights that are about as effective as manual
weights for this domain. One reason for the high performance of the MW model on
Monroe is the lack of ambiguity in the observations, i.e. there are few observed actions
that are part of more than one possible plan. Overall, EM was able to automatically
learn effective parameters for BALPs.

5 Discussion

We now discuss various aspects of BALPs that may explain their superior performance.
As mentioned earlier, Kate and Mooney’s MLN approach [14] cannot be applied to
large domains like Monroe since the addition of reverse implications results in a com-
putationally expensive model. As opposed to the explosive grounding of rules in MLNs,
BALPs use logical abduction in which only those rules that are relevant to the query
are included in the ground network. This results in much smaller networks, enabling
BALPs to scale well to large domains. Furthermore, the use of logical abduction allows
BALPs to use an existing knowledge base that was created for planning without any
modification.

When Blaylock and Allen [2] perform instantiated plan recognition, it is done in a
pipeline of two separate steps. The first step predicts the plan schema and the second
step predicts the arguments given the schema. Unlike their approach, BALPs are able to
jointly predict both the plan and its arguments simultaneously. We believe that BALP’s
ability to perform joint prediction is at least partly responsible for its superior perfor-
mance. Both BALP and MLN systems use planning knowledge specified in the form
of logical clauses, while Blaylock and Allen’s system has no access to domain knowl-
edge. We believe that the ability of BALPs to incorporate domain knowledge is also
partly responsible for its superior performance.

Blaylock and Allen’s system [2] uses 4500 examples to learn reasonable parame-
ters for the Monroe domain. The MLN system by Kate and Mooney is unable to scale

642 S. Raghavan and R.J. Mooney

effectively to this domain. On the other hand, BALPs learn effective parameters for this
domain from only 300 examples, demonstrating that EM can effectively learn parame-
ters given a reasonable number of examples. Except for the Story Understanding data
set, the EM algorithm used in BALPs could learn parameters automatically from data.
The inability of EM to learn effective parameters for this data set can be attributed to the
lack of a sufficient number of examples. Note that Kate and Mooney’s MLN approach
was also unable to learn reasonable weights for Story Understanding. Also note that it is
possible to learn parameters for Reformulated-Monroe using EM, but we deliberately
avoided using learning to ensure a fair comparison with MLNs. Overall, the success
of EM in the original Monroe and Linux domains demonstrates that our approach can
automatically learn accurate parameters from data.

Overall the results demonstrates that our approach to plan recognition using BALPs
is very effective, generally outperforming existing approaches on the three extant bench-
mark data sets. As mentioned earlier, each data set tests a specific aspect of the system,
and BALP’s superior performance on these data sets demonstrate that it is a robust
approach to plan recognition.

6 Related Work

Charniak and Goldman [7,6] developed an approach to automatically construct Bayesian
networks for plan recognition. Their work is similar to BALPs, but special purpose
procedures were used to construct the necessary ground networks rather than using a
general-purpose probabilistic predicate logic like MLNs, BLPs, or BALPs. Bui [5] has
developed an approach for plan recognition based on Abstract Hidden Markov Models,
but this approach cannot handle relational data. Several other systems for plan recogni-
tion [24,14,2] were already discussed in Section 4.2.

Poole [27] has developed a framework for Horn clause abduction and shows it re-
lations to Bayesian networks, Chen et. al [9] extend Stochastic Logic Programs [21]
to incorporate abduction, and Sato [31] has also developed a probabilistic logic called
PRISM that performs abduction. Kimmig et. al [19] have developed a method to con-
struct probabilistic explanations using ProbLog. However, none of these approaches
have been evaluated on the task of plan recognition. Kersting and De Raedt [17] discuss
the differences between BLPs and many of these formalisms; and BALPs inherit these
same differences.

7 Future Work

The current comparison to MLNs uses the method of Kate and Mooney [14] with-
out automatic learning of weights. In the future, we would like to explore more efficient
online-weight learning [13] with MLNs and compare their performance to BALPs. Fur-
thermore, Kate and Mooney’s approach to incorporating logical abduction in MLNs can
be improved (c.f. [4]), so comparing to enhanced MLN approaches is another area of
future work. We would also like to explore approaches based on lifted inference, which
allow to perform probabilistic inference without having to construct ground networks in
the future. As mentioned in Section 6, there are several probabilistic logics like Poole’s

Abductive Plan Recognition by Extending Bayesian Logic Programs 643

Horn Abduction, PRISM, and abductive SLPs that can perform abductive reasoning. It
would be interesting to apply these frameworks to plan recognition and compare their
performance with that of BALPs. In this paper, the background knowledge base was
hand-coded; however, we would like to explore techniques that learn abductive knowl-
edge bases automatically from training data.

8 Conclusions

This paper has introduced an approach to plan recognition based on Bayesian Logic
Programs (BLPs). We extended BLPs for plan recognition by employing logical ab-
duction to construct Bayesian networks as opposed to the deductive approach currently
used in BLPs. We also demonstrated that the model’s parameters can be effectively
learned using EM. Empirical evaluations on three benchmark data sets demonstrated
that the approach generally outperforms the state-of-the-art in plan recognition. We be-
lieve that its superior performance is due to its combination of logical abduction, joint
probabilistic inference, and incorporation of domain knowledge.

Acknowledgements. We would like to thank Nate Blaylock for sharing Linux and
Monroe data sets, Vibhav Gogate for helping us modify SampleSearch algorithm for
our experiments, and Parag Singla for his valuable inputs on the paper. This research
was funded by MURI ARO grant W911NF-08-1-0242 and Air Force Contract FA8750-
09-C-0172 under the DARPA Machine Reading Program. Experiments were run on the
Mastodon Cluster, provided by NSF grant EIA-0303609.

References

1. Blaylock, N., Allen, J.: Generating artificial corpora for plan recognition. In: Ardissono, L.,
Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 179–188. Springer,
Heidelberg (2005)

2. Blaylock, N., Allen, J.: Recognizing instantiated goals using statistical methods. In:
Kaminka, G. (ed.) Workshop on MOO 2005, pp. 79–86 (2005)

3. Blaylock, N., Allen, J.F.: Statistical goal parameter recognition. In: ICAPS 2004, pp. 297–
305 (2004)

4. Blythe, J., Hobbs, J., Domingos, J., Kate, P., Mooney, R., Implementing, R.: weighted ab-
duction in Markov logic. In: IWCS 2011 (January 2011)

5. Bui, H.H.: A general model for online probabilistic plan recognition. In: IJCAI 2003 (2003)
6. Charniak, E., Goldman, R.: A probabilistic model of plan recognition. In: AAAI 1991, pp.

160–165 (1991)
7. Charniak, E., Goldman, R.P.: A semantics for probabilistic quantifier-free first-order lan-

guages, with particular application to story understanding. In: IJCAI 1989, Detroit, MI
(1989)

8. Charniak, E., McDermott, D.: Introduction to Artificial Intelligence. Addison, Reading
(1985)

9. Chen, J., Muggleton, S., Santos, J.: Learning probabilistic logic models from probabilistic
examples. Machine Learning 73(1), 55–85 (2008)

10. Elvira-Consortium: Elvira: An environment for probabilistic graphical models. In:
Proceedings of the Workshop on Probabilistic Graphical Models, Cuenca, Spain (2002)

644 S. Raghavan and R.J. Mooney

11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT, Cambridge
(2007)

12. Gogate, V., Dechter, R.: Samplesearch: A scheme that searches for consistent samples. In:
AISTATS 2007 (2007)

13. Huynh, T.N., Mooney, R.J.: Online max-margin weight learning with Markov logic net-
works. In: SDM 2011 (2011)

14. Kate, R.J., Mooney, R.J.: Probabilistic abduction using Markov logic networks. In: IJCAI
2009 Workshop on Plan, Activity, and Intent Recognition, Pasadena, CA (July 2009)

15. Kautz, H.A., Allen, J.F.: Generalized plan recognition. In: AAAI, Philadelphia, PA, pp. 32–
37 (1986)

16. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with bayesian
networks. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 118–
131. Springer, Heidelberg (2001)

17. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In: Getoor, L.,
Taskar, B. (eds.) An Introduction to Statistical Relational Learning. MIT, Cambridge (2007)

18. Kersting, K., Raedt, L.D.: Basic principles of learning Bayesian logic programs. In: Proba-
bilistic Inductive Logic Programming, pp. 189–221 (2008)

19. Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning. In:
Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A.
(eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 176–187. Springer, Heidelberg (2007)

20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press, Cambridge (2009)

21. Muggleton, S.H.: Learning structure and parameters of stochastic logic programs. In:
Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 198–206. Springer,
Heidelberg (2003)

22. Nau, D., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: Shop2: An HTN planning
system. Journal of Artificial Intelligence Research 20, 379–404 (2003)

23. Ng, H.T., Mooney, R.J.: The role of coherence in abductive explanation. In: AAAI 1990,
Detroit, MI, pp. 337–442 (July 1990)

24. Ng, H.T., Mooney, R.J.: Abductive plan recognition and diagnosis: A comprehensive empir-
ical evaluation. In: KR 1992, Cambridge, MA, pp. 499–508 (October 1992)

25. Nilsson, D.: An efficient algorithm for finding the M most probable configurations in proba-
bilistic expert systems. Statistics and Computing 8, 159–173 (1998)

26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
MKP, CA (1988)

27. Poole, D.: Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence 64,
81–129 (1993)

28. Pople, H.E.: On the mechanization of abductive logic. In: IJCAI 1973, pp. 147–152 (1973)
29. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–136

(2006)
30. Rosner, B.: Fundamentals of Biostatistics. Duxbury Press (2005)
31. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:

ICLP 1995, pp. 715–729. MIT Press, Cambridge (1995)
32. Stickel, M.E.: A Prolog-like inference system for computing minimum-cost abductive expla-

nations in natural-language interpretation. Tech. Rep. Tech. Note 451, SRI International, CA
(September 1988)

	Abductive Plan Recognition by Extending Bayesian Logic Programs
	Introduction
	Background
	Logical Abduction
	Bayesian Logic Programs

	Bayesian Abductive Logic Programs
	Logical Abduction
	Probabilistic Parameters and Inference
	Parameter Learning

	Experimental Evaluation
	Datasets
	Comparison with Other Approaches
	Parameter Learning Experiments

	Discussion
	Related Work
	Future Work
	Conclusions
	References

