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Abstract

Fuzzy relation equations have recently been
extended to a more general framework in
which the unknown variables appear together
with their logical negation connectives, giv-
ing rise to the called bipolar fuzzy relation
equations. This paper shows an abductive
procedure for a special kind of normal residu-
ated logic program by means of bipolar max-
product fuzzy relation equations. From this
procedure, interesting properties relating the
models of a given normal residuated logic
program to the solutions of its corresponding
bipolar max-product fuzzy relation equation
is deduced.
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1 Introduction

Fuzzy relation equations [26] have been applied to a
wide variety of frameworks such as artificial intelli-
gence, information processing, pattern analysis and
classification, control systems, and decision making,
among others [1, 9, 11, 18, 21, 27, 30]. Many of
these applications require the presence of variables
that have a bipolar nature. This fact is due to the
simultaneous use of a variable and its negation in a
knowledge system can provide very interesting infor-
mation. Bipolar fuzzy relation equations arise as a
generalization of fuzzy relation equations, in which un-
known variables appear along with their logical nega-
tion connective. Specifically, the solvability of bipolar
fuzzy relation equations has been studied in [5, 19, 32].
In what regards to their application, they have al-
ready been successfully used in optimization prob-
lems [8, 13, 16, 17, 20, 31].

On the other hand, fuzzy logic programming is an-
other promising research area whose goal is introduc-
ing fuzzy logic methods in logic programming in order
to have the possibility to handle partial truth, impre-
cision and uncertainty. The inclusion of a negation
operator in these logic programs allows to simulate
the non-monotonic behavior of human reasoning and
provides the fuzzy logic programming with more flex-
ibility [3, 4, 6, 22, 23]. Different semantics have been
developed for logic programs with negation such as the
well-founded semantics [29], the stable models seman-
tics [15] and the answer sets semantics [14].

Coming back to the environment without negations,
it is convenient to pay special attention to the exist-
ing works that relate fuzzy relation equations to fuzzy
logic programming. In [10], a theoretical study shows
that the computation of the weights of the rules of a
logic program is equivalent to the resolution of a multi-
adjoint fuzzy relation equation. In [2], multi-adjoint
fuzzy relation equations are presented as a decision
support system for fuzzy logic programming. Consid-
ering these works, which show the close relationship
between the aforementioned frameworks, it is not dif-
ficult to think that the use of bipolar fuzzy relation
equations in the inference process of non-monotonic
logic programs can be an interesting research topic.

This work will be focused on relating bipolar max-
product fuzzy relation equations with the product
negation to a special kind of residuated logic program
enriched with the product negation. In particular,
given a residuated logic program without loops such
that its rules can contain only one negated proposi-
tional symbol in their bodies, we will show how bipo-
lar max-product fuzzy relation equations can be used
for abductive reasoning, that is, for computing the
truth values of the hypotheses from the observed val-
ues. Notice that, this framework is different from
inductive reasoning, which has been widely studied
in [12, 24, 25, 28].

In this paper, we will assume that the truth values
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of the propositional symbols appearing in the head
of the rules are known and the truth values of the
propositional symbols appearing in the bodies of the
rules will be computed. In addition, we will establish
the relationship between the models of a residuated
logic program enriched with the product negation and
the solutions of its corresponding bipolar max-product
fuzzy relation equation.

The structure of this paper is the following: in Sec-
tion 2, the necessary preliminaries from normal resid-
uated logic programming and bipolar max-product
fuzzy relation equations with the product negation are
introduced; in Section 3, we propose a procedure to
compute the truth values of the propositional symbols
appearing in the bodies of the rules of a given nor-
mal residuated logic program, by using bipolar max-
product fuzzy relation equations. Interesting proper-
ties relating the models of normal residuated logic pro-
grams to the solutions of bipolar max-product fuzzy
relation equations are also given. Finally, in Section 4,
we present different conclusions and prospects for fu-
ture work.

2 Preliminaries

This section will recall some basic notions and proper-
ties associated with the mathematical theories which
will be used in this paper. The section will be split
into two parts: normal residuated logic programming
and bipolar max-product fuzzy relation equations with
the product negation.

2.1 Normal residuated logic programming

Residuated logic programming was firstly introduced
in [7] as a logic programming frawework in which a
generalized modus ponens rule is defined and a confi-
dence factor is associated with each rule.

Residuated lattices with negation are adopted as the
semantical basis of normal residuated logic programs.
These algebraic structures are tuples composed of a
complete bounded lattice, an adjoint pair and a nega-
tion operator. Formally:

Definition 1 A residuated lattice with negation is a
tuple (L,�, ∗,←,¬) such that:

(1) (L,�) is a complete bounded lattice with a bottom
element ⊥ and a top element ⊤;

(2) (←, ∗) is an adjoint pair in (L,�), that is, the
equivalence:

z � (x← y) if and only if y ∗ z � x

holds, for all x, y, z ∈ L;

(3) (L, ∗,⊤) is a commutative monoid;

(4) ¬ : L → L is a negation operator, that is, an
order-reversing mapping such that ¬(⊥) = ⊤ and
¬(⊤) = ⊥.

It is important to highlight that the negation operator
considered in this environment plays the role of default
negation often used in logic programming. This role
will be clarified after presenting the notion of interpre-
tation.

In the following, we will introduce the notion of normal
residuated logic program.

Definition 2 Let (L,�, ∗,←,¬) be a residuated lat-
tice with negation. A normal residuated logic program
P is a finite set of weighted rules of the form:

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

where ϑ is an element of L and p, p1, . . . , pn are propo-
sitional symbols such that pi 6= pj, for all i, j ∈
{1, . . . , n}. Facts are rules of the form 〈p ← ⊤;ϑ〉
and are also usually denoted as 〈p← ;ϑ〉.

The set of propositional symbols of a normal residu-
ated logic program P is usually denoted as ΠP. The
rules of P are frequently denoted as 〈p← B;ϑ〉, where
B is called the body of the rule, p the head of the rule
and ϑ its weight or truth value.

In what regards the semantics of normal logic residu-
ated logic programs, we need to recall the concepts of
interpretation, model and satisfiability.

Definition 3 A fuzzy L-interpretation I is a mapping
I : ΠP → L which assigns a truth value to every propo-
sitional symbol appearing in a normal residuated logic
program P.

The set of all L-interpretations will be denoted as IL.
Notice that, the ordering relation � can be easily ex-
tended to IL, defining a new ordering relation ⊑, as
follows. Given two L-interpretations I and J , we say
that I ⊑ J if and only if I(p) � J(p), for all p ∈ ΠP.

The notions of model and satisfiability are also pre-
sented below.

Definition 4 Given a normal residuated logic pro-
gram P and an L-interpretation I ∈ IL. We say that:

(1) I satisfies a rule 〈p← B;ϑ〉 ∈ P if and only if the
inequality ϑ � Î(p← B) holds.

(2) I is a model of P if it satisfies all rules in P.

where Î is the homomorphic extension of I and so,
it satisfies that Î(p ← B) = I(p) ← Î(B) and Î(p1 ∗
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· · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn) = I(p1) ∗ · · · ∗ I(pm) ∗
¬I(pm+1)∗· · ·∗¬I(pn). Hence, in particular, the truth
value of Î(¬p) can be directly deduced from I(p) as
Î(¬p) = ¬I(p).

Stable models are defined in terms of the concept of
reduct, that is, a transformation of a normal resid-
uated logic program into a positive residuated logic
program. Specifically, given a normal residuated logic
program P and an interpretation I, the reduct of P

with respect to I, denoted as PI , is defined by substi-
tuting each rule in P of the form

〈p← p1 ∗ · · · ∗ pm ∗ ¬pm+1 ∗ · · · ∗ ¬pn; ϑ〉

by the rule

〈p← p1 ∗ · · · ∗ pm; ¬I(pm+1) ∗ · · · ∗ ¬I(pn) ∗ ϑ〉

Definition 5 Given a normal residuated logic pro-
gram P, an interpretation M is a stable model of P

if it is the least model of the reduct PM .

The notion of stable model plays a key role in the
definition of the semantics of a normal residuated logic
program. In fact, a proper definition of the semantics
of a normal residuated logic program depends on the
existence of stable models [23].

2.2 Bipolar max-product fuzzy relation
equations with the product negation

A broad study on the solvability of bipolar max-
product fuzzy relation equations with the product
negation was introduced in [5]. In this section, we
recall the main results related to this research topic.
First of all, we will include the definition of the prod-
uct negation, that is, the operator ¬P : [0, 1] → [0, 1]
defined as ¬P (0) = 1 and ¬P (x) = 0, for all x ∈ ]0, 1].

The formal definition of a bipolar max-product fuzzy
relation equation with the product negation is pre-
sented below.

Definition 6 Let m,n ∈N, a+ij , a
−

ij ,∈ [0, 1], bi ∈ (0, 1]
and xj ∈ [0, 1] be an unknown value, for all i ∈
{1, . . . , n} and j ∈ {1, . . . ,m}. A bipolar max-product
fuzzy relation equation is given by Equation (1).

m
∨

j=1

(a+ij ∗xj)∨(a−ij ∗¬P (xj)) = bi, i ∈ {1, . . . , n} (1)

The solvability of Equation (1) can be characterized
in terms of the existence of a pair of indexes satisfy-
ing a certain condition. Before presenting the char-
acterization theorem, we recall the definition of the
residuated implication of the product t-norm, that is,
z ←P x = min{1, z/x}, for all x, z ∈ [0, 1].

Theorem 1 ([5]) The bipolar max-product FRE
given by Equation (1) is solvable if and only if there ex-
ist two index sets J+, J− ⊆ {1, . . . ,m} with J+∩J− =
∅ such that, at least one of the following statements is
verified, for each i ∈ {1, . . . , n}:

(1) there exists j ∈ J+ such that a+ij ≥ bi and bi ←P

a+ij ≤ bh ←P a+hj, for each h ∈ {1, . . . , n}.

(2) there exists j ∈ J− such that a−ij = bi and a−hj ≤
bh, for each h ∈ {1, . . . , n}.

Now, we will show how bipolar max-product fuzzy re-
lation equations and its solvability can be used in ab-
ductive reasoning at a later date.

3 Bipolar max-product fuzzy relation

equations to abductive reasoning

Given a set of outputs, deducing the inputs which have
given rise to them is a crucial challenge in what regards
to decision making. In this section, we will show how
bipolar fuzzy relation equations can be used in order
to infer the value of those inputs, when the knowledge
system has been modeled by a normal residuated logic
program. For that purpose, we will take into account a
simple kind of normal residuated logic program. From
now on, the following statements will be considered
fixed:

(i) The considered residuated lattice with negation
will be ([0, 1],≤, ∗,←P ,¬P ), being ≤ the usual
order in [0, 1], ∗ the product t-norm,←P its resid-
uated implication and ¬P the product negation.

(ii) Only one propositional symbol, either negated or
not, will appear in the body of each rule of a given
normal residuated logic program.

(iii) No recursion is allowed. In other words, the set
of propositional symbols occurring in the head of
some rule of P and the set of propositional sym-
bols which appear in the body of some rule of P
are disjoint.

According to these requirements, in the following, we
outline the main idea of this paper by means of a toy
example.

Example 1 Let P be the normal residuated logic pro-
gram, defined on ([0, 1],≤, ∗,←P ,¬P ), consisting of
the following five rules:

r1 : 〈p←P q ; 0.1〉 r4 : 〈t←P q ; 0.8〉
r2 : 〈p←P ¬P q ; 0.6〉 r5 : 〈t←P s ; 0.5〉
r3 : 〈p←P ¬P s ; 0.8〉
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Suppose that, the truth values of the propositional sym-
bols p and t are known as a result of an experimenta-
tion, being ρp = 0.6 and ρt = 0.4, respectively. In what
follows, we will infer the truth values of the proposi-
tional symbols q and s. Let us denote these unknown
values as xq and xs, respectively. We will require that
all rules in P be satisfied in order to compute the values
xq and xs.

In particular, the rules r1, r2 and r3, whose head is p,
are satisfied when the three following inequalities hold:

0.1 ∗ xq ≤ ρp
0.6 ∗ ¬P (xq) ≤ ρp
0.8 ∗ ¬P (xs) ≤ ρp

Furthermore, ρp will be equal to the least value sat-
isfying the previous inequalities. These requirement
are modeled by the bipolar max-product fuzzy equation
given by Equation (2).

(0.1 ∗ xq) ∨ (0.6 ∗ ¬P (xq)) ∨ (0.8 ∗ ¬P (xs)) = ρp (2)

Following an analogous reasoning with respect to the
rules r4 and r5, which have as head the propositional
symbol t, we obtain that the next bipolar max-product
fuzzy equation must also be verified:

(0.8 ∗ xq) ∨ (0.5 ∗ xs) = ρt (3)

As the values ρp and ρt are known, we need to solve the
following bipolar max-product fuzzy relation equation
in order to deduce the values xq and xs:

(0.1 ∗ xq) ∨ (0.6 ∗ ¬P (xq)) ∨ (0.8 ∗ ¬P (xs)) = 0.6
(0.8 ∗ xq) ∨ (0.5 ∗ xs) = 0.4

(4)

Now, defining J+ = {2} and J− = {1}, notice that
J+ ∩ J− = ∅ and, for each i ∈ {1, . . . , n}, either
Statement (1) or (2) in Theorem 1 is verified. Hence,
applying Theorem 1, we can assert that Equation (4)
is solvable. This fact leads us to conclude that the tuple
(0, 0.8) is a solution of Equation (4). See [5] for more
details on how to compute this solution. Moreover, one
can easily check that (0, 0.8) is the unique solution of
Equation (4). As a result, the unique plausible truth
values of q and s are 0 and 0.8, respectively. �

Taking into account the previous toy example, we can
ensure that the detailed procedure allows us to obtain,
given a set of outputs, a plausible set of inputs from
which they have arisen. It is convenient to mention
that there might be more than one possibility for these
inputs. We will show that the number of possibilities
for the inputs directly depends on the solutions of the
bipolar max-product fuzzy relation equation obtained
from the inputs. In Example 1, as Equation (4) has
only one solution, then there is only one possibility

for the inputs. In the following, we will formalize the
previous method for an arbitrary normal residuated
logic program verifying the requirements detailed at
the beginning of this section.

Hereinafter, given a normal residuated logic program
P, we will distinguish between the set of propositional
symbols occurring in the head of some rule of P, refer-
ring to them as observed atoms (O) or observations;
and the set of propositional symbols appearing in the
body of some rule of P, referring to them as hypothe-
ses (H). Note that, O and H are disjoint sets, that is,
O ∩H = ∅.

Let O = {p1, . . . , po} and H = {q1, . . . , qh}. Assume
that the truth values of the propositional symbols in
O are known, which are denoted as ρ1, . . . , ρo, respec-
tively. We will denote the unknown truth values of the
elements in H as x1, . . . , xh, respectively. Notice that,
in order to simplify the notation, we make use of ρi
and xj instead of ρpi

and xqj , respectively.

According to the fact that all rules in P must be satis-
fied, the following bipolar max-product fuzzy relation
equation is obtained:

Vo×2h ⊙P X2h×1 = Ro×1 (5)

being ⊙P the max-product composition and the ma-
trices V , X, R are defined as follows:

V =







ϑ11 · · · ϑ1h ϑ1h+1 · · · ϑ1 2h

...
...

...
...

ϑo1 · · · ϑo h ϑo h+1 · · · ϑo 2h







X =
[

x1 · · · xh ¬P (x1) · · · ¬P (xh)
]t

R =
[

ρ1 · · · ρo
]t

where, for each i ∈ {1, . . . , o} and j ∈ {1, . . . , h},

ϑij =

{

ϑ if 〈pi ← qj ; ϑ〉 ∈ P

0 otherwise

ϑi h+j =

{

ϑ if 〈pi ← ¬P qj ; ϑ〉 ∈ P

0 otherwise

It needs to be stressed that, as ([0, 1],≤) is completely
ordered, we can suppose without loss of generality that
there are no two rules in P with the same head and
the same body. Notice that, in such case, the rule
with the smaller weight can be removed from the pro-
gram. Hence, the elements ϑij and ϑi h+j , and thus
the matrix V , are well-defined.

An interesting property of Equation (5) is the fact that
any solution of Equation (5) provides a model of the
normal residuated logic program P. This result is for-
malized as follows.
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Theorem 2 Let P be a normal residuated logic pro-
gram satisfying statements (i), (ii), (iii) and X̄ =
(x̄1, . . . , x̄h) a solution of Equation (5). Then, the in-
terpretation M : ΠP → [0, 1] given by M(pi) = ρi, for
each pi ∈ O, and M(qj) = x̄j, for each qj ∈ H, is a
model of P.

Now, given a solution X̄ = (x̄1, . . . , x̄h) of Equa-
tion (5), consider the normal residuated logic program
P
X̄ composed of the rules in P together with the facts

{

〈qj ← ; x̄j〉 | qj ∈ H
}

The next theorem shows that every solution X̄ of
Equation (5) is related to a stable model of its cor-
responding program P

X̄ .

Theorem 3 Let P be a normal residuated logic pro-
gram satisfying statements (i), (ii), (iii) and X̄ =
(x̄1, . . . , x̄h) a solution of Equation (5). Then the in-
terpretation M : ΠP → [0, 1] given by M(pi) = ρi, for
each pi ∈ O, and M(qj) = x̄j, for each qj ∈ H, is a

stable model of PX̄ .

As it was aforementioned in Section 2.1, the existence
of stable models make possible the definition of the
semantics of the program P

X̄ , for each solution X̄ of
Equation (5). Therefore, Theorem 3 provides sound-
ness to the detailed procedure.

In the sequel, Theorems 2 and 3 will be illustrated by
means of the normal residuated logic program intro-
duced in Example 1.

Example 2 Coming back to Example 1, we will con-
sider the normal residuated logic program P:

r1 : 〈p←P q ; 0.1〉 r4 : 〈t←P q ; 0.8〉
r2 : 〈p←P ¬P q ; 0.6〉 r5 : 〈t←P s ; 0.5〉
r3 : 〈p←P ¬P s ; 0.8〉

and the truth values of p and t, which are ρp = 0.6 and
ρt = 0.4, respectively.

According to the matrix notation detailed in Equa-
tion (5), we obtain that O = {p, t} and H = {q, s},
being xq and xs the unknown truth values of q and s,
respectively. As a result, the matrices V2×4, X4×1 and
R2×1 are given by:

V =

[

0.1 0 0.6 0.8
0.8 0.5 0 0

]

X =
[

xq xs ¬P (xq) ¬P (xs)
]t

R =
[

0.6 0.4
]t

As one would expect, the equation obtained as a re-
sult of the expression V2×4 ⊙P X4×1 = R2×1 is equiv-
alent to Equation (4). In Example 1, it was shown

that (0, 0.8) is the unique solution of Equation (4).
Hence, applying Theorem 2, since (0, 0.8) is a solu-
tion of Equation (4), we obtain that the interpretation
M ≡ {(p, 0.6), (q, 0), (s, 0.8), (t, 0.4)} is a model of P.

Notice that, if only the rules in P are considered, we
have that M is not a stable model of P, as we show
next. First of all, consider the reduct of P with re-
spect to M , that is, the residuated logic program PM

consisting of the following four rules:

rM1 : 〈p←P q ; 0.1〉 rM4 : 〈t←P q ; 0.8〉
rM2 : 〈p←P ; 0.6〉 rM5 : 〈t←P s ; 0.5〉

The rule rM3 : 〈p ←P 0 ; 0.8〉 has been removed from
PM since it does not provide any information due to its
body is 0. Then, we can easily see that the least model
of PM is given by M∗ ≡ {(p, 0.6), (q, 0), (s, 0), (t, 0)}.
Hence, M is not a stable model of P.

Following Theorem 3, what it is possible to ensure is
that M is a stable model of P

X̄ , where X̄ = (0, 0.8)
is the solution of Equation (4). Hence, we need to
consider the program P

X̄ composed of the rules in P

together with the fact 〈s←; 0.8〉. Notice that, the rule
〈q ←; 0〉 does not provide any knowledge, and thus it
is not included in P

X̄ . Then, Theorem 3 leads us to
conclude that M is a stable model of PX̄ . �

4 Conclusions and future work

We have presented the first steps in order to interpret
normal residuated logic programs as bipolar fuzzy re-
lation equations. Specifically, we have translated a
normal residuated logic program containing only one
propositional symbol, negated or not, in the body of
each rule and independent propositional symbols in
the head and the bodies of the rules, into a bipolar
max-product fuzzy relation equation with the prod-
uct negation. The relationship between the models of
the mentioned normal residuated logic programs and
the solutions of the bipolar max-product fuzzy rela-
tion equations associated with them have been also
obtained.

In this paper, given a normal residuated logic program,
we have assumed known the truth values of the propo-
sitional symbols appearing in the head of the rules and
we have reasoned abductively in order to compute the
truth values of the propositional symbols appearing
in the bodies of the rules. Considering more general
non-monotonic logic programs will be a future appeal-
ing goal. For instance, the occurrence of loops, the
presence of different negated propositional symbols in
the bodies of the rules and the use of several impli-
cations in the rules of a same logic program will be
allowed. These tasks will be carried out as a future
work.
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