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Abel transform and integrals of Bessel
local times

by

Mihai Gradinaru 1, Bernard Roynette, Pierre Vallois
Institut de Mathématiques Elie Cartan, Université Henri Poincaré,

B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

and

Marc Yor
Laboratoire de Probabilités, Université Pierre et Marie Curie,

Tour 56 (3ème étage), 4, place Jussieu, 75252 Paris Cedex, France

Abstract. - We study integrals of the type
∫ t
0 ϕ(s)dLs, where ϕ is a posi-

tive locally bounded Borel function and Lt denotes the local time at level 0
of a Bessel process of dimension d, 0 < d < 2.

1991 Mathematics Subject Classifications : 60J65, 60J55, 45E10.

Keywords : Bessel local time, Abel’s integral operator.

Résumé. - Nous étudions les intégrales du type
∫ t
0 ϕ(s)dLs, où ϕ est une

fonction borelienne positive localement bornée et où Lt est le temps local en
0 d’un processus de Bessel de dimension d, 0 < d < 2.

Titre en français : Transformée d’Abel et intégrales du temps local de pro-

cessus de Bessel

INTRODUCTION

Let (Xt, t ≥ 0) be a nice real-valued diffusion, with scale function s
and speed measure m; we are particularly interested in the case when Xt is
Brownian motion, or a Bessel process with dimension d ∈]0, 2[.

In a number of problems, the laws of inhomogeneous functionals
∫ t

0
f(s,Xs) ds

1e-mail: Mihai.Gradinaru@iecn.u-nancy.fr
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are of interest (see, e.g. [3], [4], [23]). Such functionals may be represented
as (inhomogeneous) integrals of the local times of X:

(0.1)

∫ t

0
f(s,Xs) ds =

∫ ∞

0
m(dx)

∫ t

0
dsL

x
sf(s, x),

where

Lx
t = lim

ε↓0
(1/m(x, x+ ε))

∫ t

0
ds1I{x≤Xs≤x+ε}

are the (diffusion) local times at level x associated with X (see, e.g. [11], p.
174).

Although the computations of the laws of
∫ t
0 f(s,Xs) dsmay be obtained,

in theory, from the Feynman-Kac formula, these computations are not easy
in practice. Thus, it seemed natural to first consider the “simplest” cases
(in view of (0.1)), i.e. the computations of the laws of

L
(ϕ)
t :=

∫ t

0
ϕ(s)dLs,

where Lt := L0
t is the local time at level 0.

Now, the moments of L
(ϕ)
t are easily obtained in terms of the densities

p·t(x, y) of the semi-group Pt(x, dy) with respect to m(dy), i.e.:

Pt(x, dy) = p·t(x, y)m(dy).

Indeed, it follows from (0.1) and the continuity of p·t(x, y) (see, again, [11],
p. 175), that:

Ex [dtL
y
t ] = p·t(x, y) dt.

We denote, for simplicity, q(t) := p·t(0, 0). With the help of the Markov

property, the moments of L
(ϕ)
t are given by:

E0

[(

L
(ϕ)
t

)m]

= (m!) E

[

∫ t

0

∫ t

s1

. . .

∫ t

sm−1

ds1
Ls1

. . . dsmLsmϕ(s1) . . . ϕ(sm)

]

= (m!)

∫ t

0

∫ t

s1

. . .

∫ t

sm−1

ds1ds2 . . . dsmq(s1)q(s2 − s1) . . . q(sm − sm−1)

×ϕ(s1) . . . ϕ(sm).

Using Fubini’s theorem, we can write:

(0.2) E0

[(

L
(ϕ)
t

)m]

= (m!)Qt(ϕQ•(ϕQ•(. . . Q•(ϕ1) . . .))),
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where

(0.3) Qt(ψ) := (Qψ)(t) =

∫ t

0
q(t− s)ψ(s) ds.

In the particular case when X is the Bessel process with dimension
d = 2(1 + n), where n ∈] − 1, 0[, we get

(0.4) q(t) = knt
−n−1, kn := 2−nΓ(n + 1)−1,

so that Q is then a multiple of the Abel integral operator (see section 1.5
below) with index α = −n. Hence, the Abel integral operators are naturally

closely related to the laws of L
(ϕ)
t for Bessel processes (see also Remark 4.1).

More generally, the above computations, which could be extended to the
computations of the moments of

∫ t
0 f(s,Xs) ds are well-understood in the

diffusion literature (see, e.g. [19] for some particular examples).
However, what may be a little newer is that in this paper is our charac-

terization of the law of

L
(ϕ)
t (R) :=

∫ t

0
ϕ(s)dLs(R)

for the Bessel process R, for the Bessel bridge, conditioned to take the value

y in time 1, and in particular y = 0. Recall that L
(1)
1 (R) = L1(R) is a

Mittag-Leffler random variable with parameter |n| (see, e.g. [7], p. 447 or
[14], p. 129).

Moreover, we show that the random variables

(0.5) RZ and

∫ Z

0
ϕ(1 − Z + v) dLv(R)

are independent, and
∫ Z
0 ϕ(1 − Z + v)dLv(R) is exponentially distributed

with parameter 1. Here, Z is a random variable independent from R. Its
probability density function, αf on [0, 1], is the Abel transform of index 1+n

of the derivative of a regular increasing function f . The function ϕ is related
to f by the equality ϕ = αf/f .

Clearly, the particular case n = −1/2 corresponds to the process |B|,
with B the linear Brownian motion.

Our approach is based on two probabilistic representations for the solu-
tion of a partial differential equation with mixed boundary conditions. Using
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Abel’s transform and these two representations (the backward Kolmogorov
representation and the Fokker-Planck representation) we deduce some useful

information on functionals of local time L
(ϕ)
t . Some results obtained here

may be proved using the dual predictable projection of the last passage time
in 0 (see another proof of Corollary 3.4).

The plan of the paper is as follows. After some useful preliminaries on
Bessel processes and Abel operators (section 1), we give the probabilistic
representations for the solution of this partial differential equation and the
analytic relations involving Abel’s transform (section 2). In section 3 we
state our main results. The proofs are given in section 4. We also make a
number of remarks. This paper is a complement and a generalization of [10].
One of the novelties in this paper is the importance of the Abel transform
which we had not realized, hence also not introduced in our 1997 preprint.
Finally, for practical and pedagogical, purposes, we collect in the Appendix
the main formulas obtained in both papers.

1. PRELIMINARIES

In this section we review a few basic facts on Bessel processes and on
Abel operators. For the proofs of these results, the reader may consult the
book [17], Chap. XI (see, also, for a number of applications, [15], [20], [22]),
respectively the book [9], Chap. 4.

1.1. Bessel processes and Bessel semi-groups

For any d ≥ 0 we denote by R2
t the square of a d-dimensional Bessel

process, the unique solution of the stochastic differential equation

R2
t = R2

0 + 2

∫ t

0

√

R2
s dβs + d t,

where β is a linear Brownian motion. The law of the square of a d-dimensional

Bessel process, started at x, is denoted Q
(d)
x and satisfies the following ad-

ditivity property:

Q(d)
x ∗Q(d′)

x′ = Q
(d+d

′)
x+x′ ,

for every d, d′ > 0 and x, x′ ≥ 0. Take 0 < d < 2 and denote by n :=

d/2− 1 ∈]− 1, 0[ the index of the Bessel process, and Qn

x := Q
(d)
x . From the

additivity property we deduce the Laplace transform

EQn

x

[

exp
(

−λR2
t

)]

= (1 + 2λ t)−(n+1) exp (−λx/(1 + 2λ t)) .
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By inverting the Laplace transform we get, for n > −1, the density of the
semi-group of the square of the Bessel process of index n, started at x:

qnt (x, y) := (2t)−1(y/x)n/2 exp(−(x+ y)/2t) In(
√
xy/t), t > 0, x > 0,

where In is the Bessel function of index n. For x = 0 this density becomes:

qnt (0, y) := (2t)−n−1Γ(n + 1)−1yne−y/2t.

The square root of the square of a Bessel process of index n, started at a2,
Rt, is called the Bessel process of index n started at a ≥ 0. Its law will
be denoted by Pn

a. The density of the semi-group is obtained from that of
the square of a Bessel process of index n, by a straightforward change of
variable. We obtain, for n > −1,

(1.1) pnt (x, y) := (y/t) (y/x)n exp(−(x2 + y2)/2t) In(xy/t), t, x > 0,

and

(1.1’) pnt (0, y) := 2−nΓ(n + 1)−1t−n−1y2n+1e−y2/2t, y > 0.

From (1.1) we see that, for positive Borel functions u, v,

(1.2) < Πn

tu, v >ν=< u,Πn

t v >ν , t > 0,

where Πn

t denote the semi-group of the Bessel process of index n

Πn

tu(a) := En

a [u(Rt)] ,

and

< u, v >ν :=

∫ ∞

0
u(x)v(x)x2n+1dx.

Hence the semi-group is symmetric with respect to the invariant measure
given by:

(1.2’) ν(dx) := x2n+11I]0,∞[(x) dx.

The infinitesimal generator of the Bessel process is

(1.3) L = (1/2) (∂2/∂x2) + ((2n + 1)/2x) (∂/∂x)
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on

(1.3’) D(L) := {f : f, Lf ∈ Cb([0,∞[), lim
x↓0

x2n+1f ′(x) = 0}

(see also [13], p. 761, or [6], pp. 114-115).
A continuous process (rt : t ∈ [0, t0]), the law of which is equal to

Pn,t0
a,b (·) := Pn

a( · | Rt0 = b)

is called the Bessel bridge from a to b over [0, t0]. In the sequel, we shall
be interested in the Bessel bridge rt from 0 to 0 over [0, 1−s], with s ∈ [0, 1].

1.2. Absolute continuity properties and law of the first hitting time of 0

It is known that for −1 < n < 0 the point 0 is reached a.s. under Pn

x

and it is instantaneously reflecting. Let us denote T0 := inf{t > 0 : Rt = 0}
and Ft := σ{Rs : s ≤ t}. Then, the laws of the Bessel processes satisfy the
following absolute continuity property:

(Pn

a)| Ft∩{t<T0}
= (Rt/a)

n exp

(

−(n2/2)

∫ t

0
ds/R2

s

)

·
(

P0
a

)

| Ft

,

an equality which is satisfied for every n ≥ −1. Note that P0
a is the law of

the 2-dimensional Bessel process starting from a. From this we deduce, for
−1 ≤ n < 0,

(1.4) (Pn

a)| Ft∩{t<T0}
= (a/Rt)

2|n| ·
(

P|n|
a

)

| Ft

,

(|n| = −n, since −1 ≤ n < 0).

Let us denote by Π̄n

t the semi-group of the Bessel process killed at T0

Π̄n

tu(x) := En

x

[

u(Rt)1I{t<T0}

]

,

and we can deduce from (1.2) and (1.4), that, for positive Borel functions
u, v,

(1.5) < Π̄n

tu, v >ν=< u, Π̄n

t v >ν , t > 0.

Moreover, by (1.4), we can deduce the Williams’ time-reversal property:
the processes

6



(1.6) {RT0−t : t < T0} under Pn

x and {Rt : t < γx} under P
|n|
0

are identical in law (cf. [18], p. 1158 or [15], p. 302). Here we denote
γx := sup{t : Rt = x}. Therefore

Pn

x(T0 ∈ dt) = P
|n|
0 (γx ∈ dt).

Using a result in [15], p. 329, (or [17], p. 308, Ex. (4.16), 5◦), we can write

P
|n|
0 (γx ∈ dt) = (|n|/x) p|n|t (0, x) dt.

Using (1.1’) we obtain the density of T0, under Pn

x,

(1.7) φ(x, t) := (d/dt)Pn

x(T0 ≤ t) = 2nΓ(|n|)−1tn−1x−2n e−x2/2t, x, t > 0

(for this particular result and n ≥ 1/2, see also [8], p. 864).
We also note that, using the strong Markov property at T0 we get, for

y > 0,

(1.8) pn,νt (0, y) = pn,νt (y, 0) =

∫ t

0
φ(y, s) pn,νt−s(0, 0) ds.

Here pn,νt (0, y) is the density of the semi-group Πn

t with respect to the in-
variant measure ν.

1.3. Local time at level 0

The local time at level x for the Bessel process Lx
t (R) can be defined as

an occupation density: for every positive Borel function h,

(1.9)

∫ t

0
h(Rs) ds = 2

∫ ∞

0
h(x) Lx

t (R)x2n+1dx.

Note that we use a different normalisation than in the formula in [17], p.
308, Ex. (4.16), 4◦ and also than in (0.1) in the Introduction.

This choice of local times agrees with the fact that R
2|n|
t − 2|n|L0

t (R) is a

martingale. Indeed, R
2|n|
t is a Ft-submartingale and it suffices to write its

Doob-Meyer decomposition to obtain L0
t (R) (up to a constant factor). We

often denote Lt(R) instead of L0
t (R).

Let us now mention two related scaling properties. Firstly, the Bessel
process has the Brownian scaling property, that is, for any real c > 0,

7



the processes Rc t and c1/2Rt have the same law, when R0 = 0. Secondly,
{Lt(R) : t ≥ 0} inherits from R the following scaling property: indeed, by
(1.9),

(1.10) {Lc t(R) : t ≥ 0} (law)
= {c|n|Lt(R) : t ≥ 0}.

We also recall that,

(1.11)

∫ 1

0
ϕ(t) dLt(R) <∞ ⇔

∫ 1

0
ϕ(t) t−n−1dt <∞

(see [16], p. 655 and [12], p. 44 for the case of Brownian motion, n = −1/2).

1.4. A simple path decomposition and the Bessel meander

It is known that, conditionally on gt, {Rs : s ≤ gt} is independent of
{Rs : s ≥ gt}, where gt := sup{s ≤ t : Rs = 0}. More precisely, the Bessel
meander

(1.12) mt(u) := (1/
√
t− gt)Rgt+u (t−gt), u ∈ [0, 1],

is independent of Fgt (see [20], p. 42). Let us recall also that, for fixed
t > 0,

gt
(law)

= t Z−n,1+n,

where by Za,b we denote a beta random variable with parameters a, b > 0:

P(Za,b ∈ du) = B(a, b)−1ua−1(1 − u)b−11I]0,1[(u) du.

Moreover, for every t > 0,

(1.12’) mt(1) = Rt/
√
t− gt

(law)
=

√

2 E(1),

where E(1) denotes an exponential variable with parameter 1 and
√

2 E(1)
is a Rayleigh random variable having density u e−u2/21I[0,∞[(u).

1.5. Abel’s integral operator

The Abel transform of a positive Borel function f on [0,∞[, is defined as

8



(1.13) Jαf(t) := Γ(α)−1
∫ t

0
(t− u)α−1f(u) du, t ≥ 0,

where α > 0. The operator Jα is called Abel integral operator, or frac-
tional integral operator. Our principal interest is for 0 < α ≤ 1. Clearly, J1

is the ordinary integration operator, that is J1f is the primitive of f .
By straightforward calculation we can verify that, for α, β > 0,

(1.14) Jα ◦ Jβ = Jα+β.

This, together with the previous remark, implies, if f(0) = 0,

(1.14’) Jα+1(f ′) = Jαf.

Let us also note that if ǫγ(t) := tγ , γ > −1, then

(1.15) Jαǫγ = (Γ(γ + 1)/Γ(α+ γ + 1)) ǫα+γ .

2. TWO PROBABILISTIC REPRESENTATIONS

Let us consider ω0 a continuous function with growth less than expo-
nential at infinity, and f a continuous function such that f ∈ C1(]0,∞[).
Assume that ω0(0) = f(0) = 0.

2.1. Dirichlet and Fokker-Planck representations

Recall that L is the generator of the Bessel process (see (1.3)). There is
existence and uniqueness of the solution of the problem

(2.1) (∂ω/∂t) (t, x) = (Lω) (t, x), t, x > 0,

with

(2.2) ω(0, x) = ω0(x), x ≥ 0,

and

(2.3) ω(t, 0) = f(t), t ≥ 0.

9



It admits both a Dirichlet representation (Proposition 2.1 below) and a
Fokker-Planck representation (Proposition 2.2 below). We shall then com-
pare these two representations (Proposition 2.3 below).

Proposition 2.1. - The solution ω(t, x) of (2.1)-(2.3) can be written as

(2.4) ω(t, x) = ω1(t, x) + ω2(t, x), t, x ≥ 0,

where

(2.5) ω1(t, x) := En

x

[

ω0(Rt)1I{t<T0}

]

, t, x ≥ 0,

(2.6) ω2(t, x) := En

x

[

f(t− T0)1I{t≥T0}

]

=

∫ t

0
φ(x, s)f(t− s) ds, t ≥ 0, x > 0.

Proof. - To obtain (2.4) it suffices to solve the Dirichlet problem for the
operator L − ∂/∂t on [0,∞[×[0, t] (see also [10], Proposition 1.2). ✷

Proposition 2.2. - The solution ω(t, x) of (2.1)-(2.3) (also) admits the
following Fokker-Planck representation

(2.7) y2n+1ω(t, y) =

∫ ∞

0
ω0(x) p

n

t (x, y)x
2n+1dx

×En

x

[

exp

(

−
∫ t

0
ϕ(s)dLs(R)

)

| Rt = y

]

, t, y ≥ 0,

where, if ω is given by (2.4),

(2.8) ϕ(t) := (1/f(t)) lim
x↓0

x2n+1(∂ω/∂x) (t, x), t ≥ 0,

Remark. - (i) Unlike formulae (2.5) and (2.6), formula (2.7) features the
“unknown” function ω both on its left and right hand sides.
(ii) The decomposition (2.4), ω = ω1 + ω2 yields a corresponding decompo-
sition ϕ = ϕ1 + ϕ2 (with obvious notation). In Proposition 2.4 below, fϕ1

and fϕ2 shall be given in a closed form, in terms respectively of ω0 and f .

Proof of Proposition 2.2. - Let ϕ be given by (2.8) and define

Mt := exp(−
∫ t

0
ϕ(s)dLs(R)) .
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We introduce, for t ≥ 0, x ≥ 0, the function ω̃(t, x) defined by

(a) < h(·), ω̃(t, ·) >ν := En

ω0ν [h(Rt)Mt] .

Here h is an arbitrary bounded positive Borel function and we denote

Pn

ω0ν(A) :=

∫ ∞

0
Pn

x(A)ω0(x)x
2n+1dx .

i) Let g : [0,∞[×[0,∞[→ [0,∞[ be a smooth function with compact support
disjoint of [0,∞[×{0}. Ito’s formula gives

g(t, Rt)Mt = g(0, x) +

∫ t

0
(∂g/∂x) (s,Rs)Ms dBs

+

∫ t

0
(∂g/∂s+ Lg) (s,Rs)Ms ds,

so, taking the expectation, we can write

< g(t, ·), ω̃(t, ·) >ν=< g(0, ·), ω0(·) >ν

+

∫ t

0
< (∂g/∂s+ Lg) (s, ·), ω̃(s, ·) >ν ds,

Taking the derivative with respect to t we get

(b) < g(t, ·), (∂ω̃/∂t) (t, ·) >ν=< (Lg)(t, ·), ω̃(t, ·) >ν .

Since the support of g is disjoint of [0,∞[×{0}, integrating by parts we
deduce

< g(t, ·), (∂ω̃/∂t) (t, ·) >ν=< g(t, ·), (Lω̃) (t, ·) >ν ,

Hence ω̃ satisfies (2.1).
ii) Let us consider u and v two smooth functions defined on [0,∞[ and
take now g : [0,∞[×[0,∞[→ IR a smooth function with compact support
such that g(t, x) := u(t)x2|n| + v(t) in a neighbourhood of [0,∞[×{0}. Since

R
2|n|
t − 2|n|Lt(R) is a martingale, Ito’s formula gives

g(t, Rt)Mt = g(0, x) +

∫ t

0
(∂g/∂x) (s,Rs)Ms dBs +

∫ t

0
Lg(s,Rs)Ms ds

+

∫ t

0
(∂g/∂s) (s,Rs)Ms ds+

∫ t

0
(2|n|u(s) − ϕ(s) v(s)) Ms dLs(R).
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iii) Assume that u, v, ϕ verify

(c) 2|n|u(s) − ϕ(s) v(s) = 0.

By the same arguments of i) and by (c), we obtain again (b). Since the
assumptions on the function g are different, let us detail the integration by
parts on the right hand of (b). Using the form (1.3) of the operator L we
can write,

< (Lg)(t, ·), ω̃(t, ·) >ν

=

(

1

2

∂g

∂x
(t, x)x2n+1ω̃(t, x)

)x↑∞

x↓0
− 1

2

∫ ∞

0

∂g

∂x
(t, x)x2n+1∂ω̃

∂x
(t, x)dx

=

(

1

2

∂g

∂x
(t, x)x2n+1ω̃(t, x)

)

x↓0
−
(

1

2
g(t, x)x2n+1∂ω̃

∂x
(t, x)

)x↑∞

x↓0

+
1

2

∫ ∞

0
g(t, x)

∂

∂x

(

x2n+1∂ω̃

∂x
(t, x)

)

dx

= |n|u(t) ω̃(t, 0) − v(t)

2
lim
x↓0

x2n+1∂ω̃

∂x
(t, x)+ < g(t, ·), (Lω̃)(t, ·) >ν .

Since ω̃ verifies (2.1), replacing the above equality in (b), we deduce

(d) 2|n|u(t) ω̃(t, 0) − v(t) lim
x↓0

x2n+1(∂ω̃/∂x) (t, x) = 0.

iv) Since u, v are arbitrary functions, combining (c) and (d) we get

(e) lim
x↓0

x2n+1∂ω

∂x
(t, x) − ω(t, 0)

ω̃(t, 0)
lim
x↓0

x2n+1∂ω̃

∂x
(t, x) = 0.

Moreover, ω̃ satisfies
ω̃(0, x) = ω0(x) , ∀x ≥ 0.

Since ω̃ and ω verify the same parabolic equation (2.1) with the same initial
and mixed boundary conditions (2.2) and (2.3), we deduce that ω̃ = ω.
v) Therefore, by (a) we deduce that, for every bounded positive Borel func-
tion h,

∫ ∞

0
h(y)ω(t, y) y2n+1dy =

∫ ∞

0
ω0(x)x

2n+1dx

×En

x

[

h(Rt) exp

(

−
∫ t

0
ϕ(s)dLs(R)

)]

.
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By conditioning with respect to Rt = y on the right hand side of the above
equality we obtain (2.7), since h is arbitrary. ✷

Now, the Dirichlet representation of ω naturally decomposes ω into
ω1 + ω2 and, in the next proposition, we also find this decomposed form
in the Fokker-Planck representation.

Proposition 2.3. - The decomposition ω = ω1 + ω2 appears as follows
in the Fokker-Planck representation: for t, y ≥ 0,

(2.9) y2n+1ω1(t, y) =

∫ ∞

0
ω0(x) p

n

t (x, y)x
2n+1dxPn

x [T0 > t | Rt = y]

= y2n
∫ ∞

0
ω0(x) p

|n|
t (x, y)x dx,

and

(2.10) y2n+1ω2(t, y) =

∫ ∞

0
ω0(x) p

n

t (x, y)x
2n+1dx

×En

x

[

exp

(

−
∫ t

0
ϕ(s)dLs(R)

)

1I{t≥T0} | Rt = y

]

,

or, equivalently,

(2.11) y2n+1ω2(t, y) =

∫ t

0
dsEn

0

[

exp

(

−
∫ t−s

0
ϕ(s+ v)dLv(R)

)

| Rt−s = y

]

×
∫ ∞

0
x2n+1ω0(x)φ(x, s) pnt−s(0, y) dx, t, y ≥ 0.

Here, pnt is given by (1.1), (1.1’), φ by (1.7) and ϕ by (2.8).

Proof. - The first equality in (2.9) is only the translation of the symme-
try of the semi-group of the killed Bessel process Π̄n

t , with respect to the
measure ν (see (1.5)). The second equality in (2.9) is obtained thanks to
formulae (1.1) and (1.4), from which the formula

Pn

x(T0 > t | Rt = y) = (I|n|/In)(xy/t)

follows. To get (2.11) we use the strong Markov property at T0. ✷

2.2. Analytic relations involving Abel’s transform

There exist some analytic relations between the functions ω0, f and ϕ
involving Abel’s transform (cf. Proposition 2.4 below).
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Recall that f is a continuous function such that f ∈ C1(]0,∞[) and
f(0) = 0. Let us introduce, for t ≥ 0, and −1 < n < 0, the constant

(2.12) cn := 2n+1Γ(n + 1)/Γ(|n|),

and the function

(2.12’) αf (t) := cn (Jn+1f ′)(t).

Recall that, from (1.14’), we have (J1αf )(t) = cn (Jn+1f)(t), hence

(2.13) kf :=

∫ 1

0
αf (t) dt = cn (Jn+1f)(1).

We now give the promised explicit representations of ϕ1 and ϕ2 (see the
remark following Proposition 2.2):

Proposition 2.4. - Assume that ϕ is given by (2.8) with ω the solu-
tion of (2.1)-(2.3). Write ϕ = ϕ1 + ϕ2, where

(2.8’) ϕi(t) := (1/f(t)) lim
x↓0

x2n+1(∂ωi/∂x) (t, x), i = 1, 2.

Then, we have

(2.14) (ϕ1f)(t) = (2n+1/Γ(|n|)) tn−1
∫ ∞

0
y ω0(y) e

−y2/2tdy, t > 0,

(2.15) (ϕ2f)(t) = −αf (t), t > 0,

and, consequently:

(2.16) (αf + ϕf)(t) = (2n+1/Γ(|n|)) tn−1
∫ ∞

0
y ω0(y) e

−y2/2tdy, t > 0.

Proof. We need to compute the limits in (2.8’). First, using (2.9) and
(1.1), we can write

(a) ω1(t, x) = (1/(txn))

∫ ∞

0
yn+1ω0(y) exp(−(x2 + y2)/2t)I|n|(xy/t) dy

Since

I|n|(y) ∼
(y/2)|n|

Γ(|n| + 1)
, I′|n|(y) ∼

(y/2)|n|−1

2Γ(|n|) , as y ∼ 0.
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(2.14) follows from (a) by direct calculation.
On the other hand, by (2.6) and (1.7), we can write

x2n (ω2(t, x) − ω2(t, 0)) = (2n/Γ(|n|))

×
(∫ t

0
sn−1e−x2/2s (f(t− s) − f(t)) ds− f(t)

∫ ∞

t
sn−1e−x2/2sds

)

,

from which we deduce

(b) (2|n|)−1(ϕ2 f)(t) = (2n/Γ(|n|))
(∫ t

0
sn−1 (f(t− s) − f(t)) ds+ tnf(t)/n

)

.

To obtain (2.15), we write in (b), f(t − s) − f(t) =
∫ t−s
t f ′(u) du, and,

by straighforward calculation, we find (2.12’). ✷

3. MAIN RESULTS

Before stating our new results, we explain the guiding idea behind them:
suppose ω0 and f are given. We shall write another form of (2.11), using
(2.6) and (2.16). For t = 1 and every y ≥ 0, we get

y

∫ 1

0
(2n+1/Γ(|n|)) sn−1e−y2/2sf(1 − s) ds

=

∫ 1

0
(αf + ϕf)(s) pn1−s(0, y) ds

×En

0

[

exp

(

−
∫ 1−s

0
ϕ(s+ v)dLv(R)

)

| R1−s = y

]

,

since, by (1.7),

x2n+1ω0(x)φ(x, s) = 2nΓ(|n|)−1xω0(x)s
n−1e−x2/2s

The first above equality was obtained using the two probabilistic represen-
tations (2.1)-(2.3) and Abel’s transform. We see that the given function
ω0 does not appear in the above equality. It suggests the following general
result, where, this time f and ϕ are given as new parameters:

Theorem 3.1. - Consider the continuous functions f : [0, 1] → [0,∞[ and
ϕ :]0, 1] → [0,∞[. Assume that f ∈ C1(]0, 1]), f(0) = 0 and that t|n|ϕ(t)
converges as t ↓ 0. If αf is given by (2.12’), then, for every y ≥ 0,
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(3.1)

∫ 1

0
(αf + ϕf)(1 − s) pns(0, y) ds

×En

0

[

exp

(

−
∫ s

0
ϕ(1 − s+ v)dLv(R)

)

| Rs = y

]

= (2n+1/Γ(|n|)) y
∫ 1

0
sn−1e−y2/2sf(1 − s) ds

or, equivalently, for any positive bounded Borel function h,

(3.1’)

∫ 1

0
(αf + ϕf)(1 − s) ds

×En

0

[

h(Rs) exp

(

−
∫ s

0
ϕ(1 − s+ v)dLv(R)

)]

= (2n+1/Γ(|n|))
∫ ∞

0
y h(y) dy

∫ 1

0
sn−1e−y2/2sf(1 − s) ds.

In Remark 4.13 we prove a reciprocal result to Theorem 3.1. As con-
sequences of this theorem, we can prove the following interesting results:
Propositions 3.2 and 3.3 below concern the Bessel process, whereas Propo-
sitions 3.5 and 3.6 below concern the Bessel bridge r (see also the end of the
section 1.1).

Proposition 3.2. - Consider a continuous increasing function f : [0, 1] →
[0,∞[ such that f ∈ C1(]0, 1]), f(0) = 0 and f ′(t) ∼ c tp (for some constants
c, p > 0) as t ↓ 0. We also assume, without loss of generality, that the
function f is chosen such that the constant kf in (2.13) equals 1. Consider
a random variable Z with the probability density function αf (1−s)1I[0,1](s),
independent of R. Then, for ϕ := αf/f , the random variables

(3.2) RZ and

∫ Z

0
ϕ(1 − Z + v) dLv(R)

are independent. Moreover,

(3.3)

∫ Z

0
ϕ(1 − Z + v) dLv(R)

(law)
= E(1).

Proposition 3.3. - Consider a continuous function ϕ :]0, 1] → [0,∞[ such
that t|n|ϕ(t) converges as t ↓ 0. For λ > 0, we denote

16



(3.4) Λϕ(a) := En

0

[

exp

(

−λ
∫ 1−a

0
ϕ(a+ v)dLv(R)

)]

, a ∈ [0, 1].

Then,

(3.5) (I + (λ/cn)Aϕ) Λϕ = 1.

where, cn is given by (2.12), and we denote, for a positive Borel function h,

(3.6) (Aϕh)(a) := J−n(ϕ̃h̃)(1 − a), a ∈ [0, 1].

Here and elsewhere h̃(a) := h(1 − a). Hence,

(3.7) Λϕ(a) =
∑

k≥0

(−λ/cn)k(Ak
ϕ1)(a), a ∈ [0, 1],

Corollary 3.4. - For any random variable Z > 0 a.s., independent of
R, the integral

(3.8) (2n+1/Γ(|n|))
∫ Z

0
(Z − v)ndLv(R)

is a standard exponential variable and is independent of Z.

In Remark 4.6 we prove a reciprocal result to Corollary 3.4.

Proposition 3.5. - Consider a continuous increasing function f : [0, 1] →
[0,∞[ such that f ∈ C1(]0, 1]), f(0) = 0 and f ′(t) ∼ c tp (for some constants
c, p > 0) as t ↓ 0 . We also assume, without loss of generality, that the
function f is chosen such that f(1) = 1/2, or, equivalently

(3.9) 2−nΓ(n + 1)−1
∫ 1

0
(1 − t)−n−1αf (t) dt = 1.

Consider a random variable Z with the probability density function

2−nΓ(n + 1)−1s−n−1αf (1 − s)1I[0,1](s),

and Z is independent of r. Then, for ϕ := αf/f ,
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(3.10)

∫ Z

0
ϕ(1 − Z + v) dLv(r)

(law)
= E(1).

Corollary 3.6. - If Z
(law)

= Z|n|,α, α > 0, is a beta random variable,
independent of r, then,

(3.10’) 2n+1Γ(n + 1) B(|n|, α)−1
∫ Z

0
(1 − Z + v)n dLv(r)

(law)
= E(1).

Proposition 3.7. - Consider a continuous function ϕ :]0, 1] → [0,∞[ such
that t|n|ϕ(t) converges as t ↓ 0. For λ > 0, we denote

(3.11) Ξϕ(a) := En

0

[

exp

(

−λ
∫ 1−a

0
ϕ(a+ v)dLv(r)

)]

, a ∈ [0, 1].

Then,

(3.12) (I + (λ/cn)Bϕ) Ξϕ = 1.

where, cn is given by (2.12), and we denote, for a positive Borel function h,

(3.13) (Bϕh)(a) := (1 − a)n+1J−n(ϕ̃ ǫ−n−1 h̃)(1 − a), a ∈ [0, 1]

(recall that ǫγ(s) = sγ). Hence,

(3.14) Ξϕ(a) =
∑

k≥0

(−λ/cn)k(Bk
ϕ1)(a), a ∈ [0, 1],

4. PROOFS AND REMARKS

Proof of Theorem 3.1. - (i) Let us denote ψ(t) := t|n|ϕ(t). It is enough
to consider (3.1) for f and ψ positive polynomials. Indeed, for general
functions f, ψ the result is obtained by a limiting procedure: there exist
positive polynomials fk and ψk, such that

fk → f, f ′k → f ′, ψk → ψ,

uniformly, when k ↑ ∞ (thus αfk
→ αf ).

(ii) As said in the beginning of the previous section, to get (3.1) we need to
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verify the equalities (2.11) (combined with (2.6)) and (2.16). Suppose that,
for given f , ϕ, the integral equation (2.16) has a solution, ω0. Then, section
2.1 asserts the existence of the solution ω(t, x) of the problem (2.1)-(2.3),
with boundary conditions f and ω0. Moreover, by (2.8), we can find a func-
tion, which we denote, for the moment, as ϕ̄. Since, by Proposition 2.4, ϕ̄
verifies (2.16) we conclude that ϕ̄ = ϕ. Finally, by Propositions 2.1-2.3 we
get (2.11). Therefore, we need to study the integral equation (2.16).
(iii) By composition with J−n in (2.16), and using (1.14’), and (2.12’), we
obtain

(a) Γ(n + 1) f(t) + (Γ(|n|)/2n+1) J−n(ϕf)(t)

= Γ(−n)−1
∫ ∞

0
y ω0(y) dy

∫ t

0
(t− u)−n−1un−1e−y2/2udu

(since f(0) = 0). Now we use the next equality

(b)

∫ t

0
(t− u)−n−1un−1e−y2/2udu = 2−nΓ(−n) t−n−1y2n e−y2/2t.

We can verify (b), by (1.8), (1.7) and (1.1’). Replacing (b) in (a) and
using again (1.1’) we obtain that (2.16) is equivalent to

(c) f(t) + (1/cn) J
−n(ϕf)(t) = Πn

tω0(0),

We need to prove the existence of a solution ω0 for (c).
(iv) Let us note that, for given f , ϕ, such that ϕ(t) = tnψ(t), with f, ψ
positive polynomials, J−n(ϕf) is also a positive polynomial. By (1.13),

J−n(ϕf)(t) = Γ(−n)−1
∫ t

0
(t− u)−n−1un(ψf)(u) du

= Γ(−n)−1
∫ 1

0
(1 − v)−n−1vn(ψf)(t v) dv,

and the right hand side is a positive polynomial in t.
(v) It suffices to prove the existence of a solution ω0 for

(c’) Πn

tω0(0) = π(t),

where π(t) is a positive polynomial, with π(0) = 0. Since, for p > 0,

Πn

t (ǫ2p)(0) = En

0(R
2p
t ) = tp En

0(R
2p
1 ),
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there is existence of a solution, ω0(x) of the equation (c’), which is a poly-
nomial in x, with ω0(0) = 0. ✷

Proof of Proposition 3.2. - First, we note that by the hypothesis on f ,
the function ϕ satisfies the assumptions of Theorem 3.1. Take λ > 0 and
apply (3.1’) with the function ϕ = αf/f replaced by λϕ. Then, for every
positive bounded Borel function h,

∫ 1

0
αf (1 − s) En

0

[

h(Rs) exp

(

−λ
∫ s

0
ϕ(1 − s+ v)dLv(R)

)]

ds

= (1 + λ)−1(2n+1/Γ(|n|))
∫ ∞

0
y h(y) dy

∫ 1

0
sn−1e−y2/2sf(1 − s) ds.

Since 1/(1 + λ) =
∫∞
0 exp(−(1 + λ)u) du, we obtain (3.2), noting that h is

arbitrary. Taking in the above equality h ≡ 1, by (2.13) and integrating
with respect to y, we get on the right hand side (1 +λ)−1 (because kf = 1).
We deduce (3.3) at once. ✷

Proof of Proposition 3.3. - It is enough to prove that Λϕ verifies (3.5).
We begin by proving that, for l a regular function,

(4.1)
Γ(|n|)
2n+1

∫ 1

0
α

δa
(s) l(s) ds = (1 − a)nl(1) + Γ(n + 1) (Jn+1 l̃′)(1 − a)

(with, l̃′(s) = −l′(1 − s)). Indeed, by (2.12’) and integrating by parts,

(Γ(|n|)/2n+1)

∫ 1

0
αf (s) l(s) ds = Γ(n + 1)

∫ 1

0
l(s) (Jn+1f ′)(s) ds

=

∫ 1

0
l(s) ds

∫ s

0
(s− u)nf ′(u) du =

∫ 1

0
f ′(u) du

∫ 1

u
(s− u)nl(s) ds

=

∫ 1

0
f ′(u) du

[

(1 − u)n+1

n + 1
l(1) −

∫ 1

u

(s− u)n+1

n + 1
l′(s) ds

]

= −
∫ 1

0
f(u) du

[

−(1 − u)nl(1) +

∫ 1

u
(s− u)nl′(s) ds

]

.

Taking f := δa, the Dirac delta function in the above equality, we get

(Γ(|n|)/2n+1)

∫ 1

0
α

δa
(s) l(s) ds = (1 − a)nl(1) −

∫ 1

a
(s− a)nl′(s) ds

= (1 − a)nl(1) −
∫ 1−a

0
(1 − a− v)nl′(1 − v) dv,
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from which we deduce (4.1).
Integrating with respect to y in (3.1) (with λϕ instead of ϕ), we obtain

(Γ(|n|)/2n+1)

∫ 1

0
(αf + λϕf)(s) Λϕ(s) ds =

∫ 1

0
(1 − s)nf(s) ds.

Take now l(s) := Λϕ(s) and f := δa and assume just a moment that Λϕ is
regular. In this case, using (4.1), the above equality becomes:

(1 − a)nΛϕ(1) + Γ(n + 1) (Jn+1Λ̃′
ϕ)(1 − a) +

λΓ(|n|)
2n+1

(ϕΛϕ)(a) = (1 − a)n,

or, since Λϕ(1) = 1,

an + Γ(n + 1) (Jn+1Λ̃′
ϕ)(a) + (λΓ(|n|)/2n+1) (ϕ̃ Λ̃ϕ)(a) = an.

By composition with J−n and by (1.14), we obtain,

Λϕ(1 − a) + (λ/cn) J
−n(ϕ̃ Λ̃ϕ)(a) = 1,

(since J−n(ǫn)(a) = Γ(n+1)). Moreover, this equality is true for continuous
Λϕ, so the regularity assumption can be removed. ✷

Remark 4.1. - Clearly, by (3.7) we get, for a ∈ [0, 1], and k ∈ IN∗,

(3.7’) En

0

[

(∫ 1−a

0
ϕ(a+ v)dLv(R)

)k
]

= (k!/ck
n
) (Ak

ϕ1)(a).

If a = 0, this expression for the moments is identical to (0.2), up to multi-
plication by 2, since, by (0.4), cnknΓ(|n|) = 1. The factor 2 is given by the
different normalizations in (0.1) and (1.9); the local time defined in (0.1) is
the double of that in (1.9). ✷

Remark 4.2. - We can prove the second part of Proposition 3.2, that
is (3.3), as a consequence of Proposition 3.3. Indeed, we need to compute
E[Λϕ(1 − Z)], where Z is a random variable with the probability density
function β̃f on [0, 1]. We can write

E [(AϕΛϕ)(1 − Z)] = E
[

J−n(ϕ̃ Λ̃ϕ)(Z)
]

= Γ(−n)−1
∫ 1

0
αf (1 − s) ds

∫ s

0
(s− u)−n−1(ϕ̃ Λ̃ϕ)(u) du

= Γ(−n)−1
∫ 1

0
(ϕ̃ Λ̃ϕ)(u) du

∫ 1−u

0
(1 − u− v)−n−1αf (v) dv

21



=

∫ 1

0
(ϕΛϕ)(1 − u) (J−nαf )(1 − u) du = cn

∫ 1

0
Λϕ(1 − u) (ϕf)(1 − u) du

= cn

∫ 1

0
Λϕ(1 − u)αf (1 − u) du = cn E [Λϕ(1 − Z)]

(since ϕf = αf ). Taking the expectation in (3.5) we get (1 + λ) E[Λϕ(1 −
Z)] = 1. Therefore, E[Λϕ(1 − Z)] is the Laplace transform of E(1). ✷

Remark 4.3. - In the particular case ϕ(t) := tβ+n, β > 0, we can per-
form more calculations. Indeed, by (3.6) and induction, we get, for k ∈ IN∗,

(

Ak
ϕ1
)

(0) =
1

Γ(|n|)k

1

kβ

k−1
∏

j=1

B(jβ, |n|).

Therefore, we obtain the moments

(4.2) En

0

[

(∫ 1

0
vβ+ndLv(R)

)k
]

= k!

(

1

2n+1Γ(n + 1)

)k 1

kβ

k−1
∏

j=1

B(jβ, |n|).

In [10] the case ϕ(t) := tn was considered (see Sec. 2.3), and the results
were obtained by a slightly different method. Explicit laws appeared for
beta random variables Z1,α, α > 0. ✷

Remark 4.4. - We consider ϕ(t) := (1 − t)β, β ≥ n. Then we get, by
(3.6) and induction, for k ∈ IN∗,

(

Ak
ϕ1
)

(a) = (1 − a)k(β−n)
k
∏

j=1

Γ((β + 1) + (j − 1) (β − n))

Γ(j (β − n) + 1)
.

Therefore,

(4.3) En

0

[

(∫ 1−a

0
(1 − a− v)β dLv(R)

)k
]

= (k!/ck
n
) (1 − a)k(β−n)

k
∏

j=1

Γ((β + 1) + (j − 1) (β − n))

Γ(j (β − n) + 1)
.

Remark 4.5. - If we take in (3.7’) ϕ = 1 and a = 0, by the above calcula-
tions with β = 0, we obtain the moment expressions

(4.4) En

0

[

(cnL1(R))k
]

= k!/Γ(k|n| + 1), k ∈ IN∗,
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that is the moments of a Mittag-Leffler random variable with parameter
|n| (see e.g. [7], p. 447 or [14], p. 129; see also [5], p. 452). This is equiv-
alent with the well known fact that the subordinator {τt : t ≥ 0} is stable
with index |n|:

(4.5) En

0

[

e−λτ1
]

= e−cnλ|n|
.

Here τ is the inverse of L(R), τt := inf{s : Ls(R) > t}, and satisfies the
scaling property:

{τt : t ≥ 0} (law)
= {a τant : t ≥ 0}.

We can write, for any k ∈ IN∗,

En

0

[

(cnL1(R))k
]

= En

0

[

cn/τ
k|n|
1

]

= ck
n
Γ(k|n|)−1

∫ ∞

0
λk|n|−1 En

0

[

e−λτ1
]

dλ.

By (4.4),

∫ ∞

0
λk|n|−1 En

0

[

e−λτ1
]

dλ = (k − 1)!/(|n| ck
n
) =

∫ ∞

0
λk|n|−1e−cnλ|n|

dλ.

and we deduce (4.5), using the injectivity of the Mellin transform. Assuming
(4.5), the above equality gives (4.4). ✷

Proof of Corollary 3.4. - We simply take in (4.3), β = n to obtain the
k-moments and the Laplace transform of (Γ(|n|)/2n+1) E(1). Then, by scal-
ing, we note that Λϕ does not depend on a ∈ [0, 1[. The independence
property announced in the corollary also follows by scaling. ✷

Another proof of Corollary 3.4. - To prove (3.8), we may assume that Z = 1,
by scaling.
i) We denote g := g1 = sup{s ≤ t : Rs = 0}. It is sufficient to prove that

(a) At := 2n+1Γ(|n|)−1
∫ t

0
(1 − v)ndLv(R), t ∈ [0, 1]

is the dual predictable projection of Ct := 1I{g≤t}, t ∈ [0, 1], that is

(b) E[hg] = E

[∫ 1

0
hv dAv

]

,

for every predictable process h ≥ 0 (see, e.g. [21], pp. 16-18). Indeed,
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we can follow the method in [2], p. 99. Since Ag = A1, taking in (b)
h = exp(−λA), we have, for every λ ≥ 0,

E[exp(−λA1)] = E

[∫ 1

0
exp(−λAv) dAv

]

= E [(1/λ)(1 − exp(−λA1))] .

Thus, we obtain E[exp(−λA1)] = 1/(1 + λ), the desired result.
ii) We shall verify (b). It is enough to show this formula, for hv := 1I[0,T ](v),
where T is a stopping time with values in [0, 1]:

(c) P(g ≤ T ) = E[AT ].

Using (1.7), we can write

Px(T0 > v) = 2nΓ(|n|)−1Φ(x2/v),

where we denoted Φ(y) :=
∫ y
0 s

−n−1e−s/2ds. Then,

P(g ≤ T | FT ) = 2nΓ(|n|)−1Φ(R2
T /(1 − T ))

= 2nΓ(|n|)−1Φ(XT /(1 − T )) = 2nΓ(|n|)−1Ψ(R
2|n|
T /(1 − T )|n|)

Here we denoted Ψ(y) := Φ(y1/|n|) and by {Xt : 0 ≤ t ≤ 1}, the square of
the Bessel process of index n, whose infinitesimal generator is:

L̃ = 2x (∂2/∂x2) + 2(1 + n) (∂/∂x).

Clearly, (L̃+ (∂/∂s))Φ(x/(1− s)) = 0. Using the fact that X
|n|
t − 2|n|Lt(R)

is a martingale (see section 1.3), by Ito’s formula we can write

E
[

2nΓ(|n|)−1Φ(XT /(1 − T ))
]

= E

[

2nΓ(|n|)−1
∫ T

0
2|n|Ψ′(0) (1 − v)ndLv(R)

]

.

Since Ψ′(0) = 1/|n|, we get

P(g ≤ T ) = 2n+1Γ(|n|)−1E

[

∫ T

0
(1 − v)ndLv(R)

]

= E[AT ],

by (a), and (c) is verified. ✷

Remark 4.6. - We can prove the following result which is, in some sense,
a reciprocal result of Corollary 3.4:

24



Assume that, for any a ∈ [0, 1[, the integral

(3.8’)

∫ 1−a

0
ϕ(a+ v) dLv(R)

is a standard exponential variable. Then

(3.8”) ϕ(t) = (2n+1/Γ(|n|)) (1 − t)n.

For the proof, we note, by (3.4), that, for any a ∈ [0, 1[, Λϕ(a) = 1/(1 + λ).
By Proposition 3.3, Λϕ verifies (3.5). Hence J−n(ϕ̃)(a) = cn. Since, by
(1.15), J−nǫn = Γ(n + 1), we conclude using the injectivity of Abel’s trans-
form. ✷

Proof of Proposition 3.5. - The right hand side of (3.1) can be written
as

(2n+1/Γ(|n|)) y
∫ 1

0
sn−1e−y2/2sf(1 − s) ds

= (2n+1/Γ(|n|)) y2n+1
∫ 1/y2

0
un−1e−1/2uf(1 − u y2) du.

We replace in (3.1) (with λϕ instead of ϕ) the above equality, the expression
(1.1’) for pns(0, y) and we simplify by y2n+1. Then, letting y ↓ 0, we get

2−nΓ(n + 1)−1
∫ 1

0
αf (1 − s) s−n−1 En

0

[

exp

(

−λ
∫ s

0
ϕ(1 − s+ v)dLv(r)

)]

ds

= (1 + λ)−1(2n+1/Γ(|n|)) f(1)

∫ ∞

0
un−1e−1/2udu

(recall that ϕf = αf ). Since (recall that f(1) = 1/2)

(2n+1/Γ(|n|)) f(1)

∫ ∞

0
un−1e−1/2udu = 2 f(1) = 1,

we get (3.10). To justify (3.9), we use (1.14’) and (2.12’):

1 = 2 (J−n(Jn+1f ′))(1) = 2 (Γ(|n|))−1
∫ 1

0
(1 − s)−n−1(Jn+1f ′)(s) ds

= 2−nΓ(n + 1)−1
∫ 1

0
s−n−1αf (1 − s) ds.

✷
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Proof of Corollary 3.6. - The result is obtained taking f(t) = (1/2) tα−n−1

in Proposition 3.5. ✷

Proof of Proposition 3.7. - Let us denote

(a) Λϕ(a; y) := En

0

[

exp

(

−λ
∫ 1−a

0
ϕ(a+ v)dLv(R)

)

| R1−a = y

]

and

(b) l(s) := (1 − s)−n−1e−y2/2(1−s)Λϕ(s; y).

Clearly, Ξϕ(a) = Λϕ(a; 0) and, for y = 0, l̃ = ǫ−n−1 Ξ̃ϕ. With these no-
tations and using (1.1’), (3.1), with λϕ instead of ϕ, can be written as

(c) 2−nΓ(n + 1)−1
∫ 1

0
(αf + λϕf)(s) l(s) ds

= (2n+1/Γ(|n|)) y−2n
∫ 1

0
sn−1e−y2/2sf(1 − s) ds.

Taking in (c) f := δa, the Dirac delta function, and using (4.1), we obtain

2nΓ(n + 1)−1(1 − a)nl(1) + 2n(Jn+1 l̃ ′)(1 − a) + (λΓ(|n|)/2Γ(n + 1)) (ϕl)(a)

= 4ny−2n(1 − a)n−1e−y2/2(1−a).

Since, by (b), l(1) = 0, we get

2n(Jn+1 l̃ ′)(a) + (λΓ(|n|)/(2Γ(n + 1))) (ϕ̃l̃)(a) = 4ny−2nan−1e−y2/2a,

or, by composition with J−n,

(d) l̃(a) + (λ/cn)J
−n(ϕ̃ ǫ−n−1 Λ̃ϕ(•; y))(a)

= 2nΓ(−n)−1y−2n
∫ a

0
(a− u)−n−1un−1e−y2/2udu

On the right hand side of (d), we make the change of variable u = v y2 to
get

l̃(a) + (λ/cn) J
−n(ϕ̃ ǫ−n−1 Λ̃ϕ(•; y))(a)

= 2nΓ(−n)−1
∫ a/y2

0
(a− v y2)−n−1vn−1e−1/2vdv.
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Then, letting y ↓ 0 in the above equality, we obtain,

a−n−1Ξ̃ϕ(a) + (λ/cn) J
−n(ϕ̃ ǫ−n−1 Ξ̃ϕ)(a) = a−n−1,

and making a straightforward calculation on its right side hand, we get
(3.12). ✷

Remark 4.7. - By (3.14) we get the following moment expressions: for
a ∈ [0, 1], and k ∈ IN∗,

(3.14’) En

0

[

(∫ 1−a

0
ϕ(a+ v)dLv(r)

)k
]

= (k!/ck
n
) (Bk

ϕ1)(a).

Remark 4.8. - We take ϕ(t) := tβ+n, β > 0, Then we get, by (3.6) and
induction, for k ∈ IN∗,

(

Bk
ϕ1
)

(0) =
1

Γ(|n|)k

k
∏

j=1

B(jβ, |n|).

Therefore, we obtain the moments

(4.6) En

0

[

(∫ 1

0
vβ+ndLv(r)

)k
]

= k!

(

1

2n+1Γ(n + 1)

)k k
∏

j=1

B(jβ, |n|).

Remark 4.9. As in [10], Sec. 1.4, we can use the moment (or the Laplace
transform) formulas to deduce some limit theorems. For example, by (4.6)
we can prove that, for β ↓ 0,

(4.7)
2n+1Γ(n + 1)√

δn

(

√

β

∫ 1

0
vβ+ndLv(r) −

1

2n+1Γ(n + 1)
√
β

)

(law)−→ N (0, 1).

Here, N (0, 1) denotes the standard normal distribution and

δn := (Γ′(1)/Γ(1)) − (Γ′(|n|)/Γ(|n|)), xB(x, |n|) = 1 + δnx+ o(x), x ↓ 0.

The proof of this result is similar to the proof of Theorem 1.27 in [10]. The
same result can be obtained for the Bessel local time using (4.2): for β ↓ 0,

(4.7’)
2n+1Γ(n + 1)√

δn

(

√

β

∫ 1

0
vβ+ndLv(R) − 1

2n+1Γ(n + 1)
√
β

)

(law)−→ N (0, 1).
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Remark 4.10. - Proposition 3.5 can be obtained as a consequence of Propo-
sition 3.7. Consider Z a random variable with density

2−nΓ(n + 1)−1s−n−1αf (1 − s)1I[0,1](s),

independent from the Bessel bridge r. We compute

E [(BϕΞϕ)(1 − Z)] = E
[

Zn+1J−n(ϕ̃ ǫ−n−1Ξ̃ϕ)(Z)
]

= 2−nΓ(n + 1)−1Γ(−n)
∫ 1

0
αf (1 − s) ds

∫ s

0
(s− u)−n−1(ϕ̃ Ξ̃ϕ)(u)u−n−1du

= 2−nΓ(n + 1)−1Γ(−n)
∫ 1

0
(ϕ̃ Ξ̃ϕ)(u)u−n−1du

∫ 1−u

0
(1 − u− v)−n−1αf (v) dv

= 2−nΓ(n + 1)−1
∫ 1

0
(ϕΞϕ)(1 − u)u−n−1(J−nαf )(1 − u) du

= 2Γ(|n|)−1
∫ 1

0
Ξϕ(1 − u)u−n−1(ϕf)(1 − u) du

= 2Γ(|n|)−1
∫ 1

0
Ξϕ(1 − u)u−n−1αf (1 − u) du = cnE [Ξϕ(1 − Z)]

(since αf = ϕf). Then, we take the expectation in (3.12) and we deduce
(3.10). ✷

Remark 4.11. - We can obtain (3.3) from (3.10) and vice-versa. Indeed,
by (1.10), it is not difficult to see that

(4.8) (Lt(r))t∈[0,1]

(law)
= (gnLg t(R))t∈[0,1].

Here, we denote g := g1 = sup{s < 1 : Rs = 0} which is independent
from (g−1/2Rg t : t ≤ 1), hence from (gnLg t(R) : t ≥ 0). From (4.8), we
obtain that, for any positive Borel function ψ,

g|n|
∫ 1

0
ψ(g v) dLv(r)

(law)
=

∫ 1

0
ψ(v) dLv(R).

Recall that (see section 1.4) g is a beta random variable with parameters
−n, n + 1. Then, by (3.14), to deduce (3.7) (both for a = 0), we need to
verify, for any k ∈ IN∗,
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(4.9) (Ak
ϕ1)(0) = B(−n, n + 1)−1

∫ 1

0
t−n−1(1 − t)nt−kn(Bk

ϕ(t •)1)(0) dt.

For k = 1 we can write, by (3.13),

B(−n, n+1)−1
∫ 1

0
t−n−1(1−t)nt−kn(Bk

ϕ(t •)1)(0) dt = B(−n, n+1)−1Γ(−n)−1

×
∫ 1

0
t−n−1(1 − t)nt−ndt

∫ 1

0
(1 − u)−n−1ϕ(t(1 − u))u−n−1du

= B(−n, n + 1)−1Γ(−n)−1
∫ 1

0
v−n−1ϕ(v) dv

∫ 1

v
(1 − t)n(t− v)−n−1dt

= Γ(−n)−1
∫ 1

0
v−n−1ϕ(v) dv = (Aϕ1)(0),

as we can see by making the changes of variables t(1 − u) = v and s =
(t− v)/(1− v). The same reasoning applies for arbitrary k. We leave to the
reader the proof of the fact that (3.14) can be obtained by (3.7). ✷

Remark 4.12. - Assume that the conditioning is {R1−a = y}, with ar-
bitrary y. Then a functional equation, similar to (3.5), can be written,
using (3.1):

(4.10) (I + (λ/cn)Aϕ)Ψϕ(•; y) = ψ(•; y)

where

(4.11) Ψϕ(a; y) := pn1−a(0, y)

×En

0

[

exp

(

−λ
∫ 1−a

0
ϕ(a+ v)dLv(R)

)

| R1−a = y

]

and

(4.12) ψ(a; y) := Γ(n + 1)−1Γ(−n)−1y

∫ a

0
(a− u)−n−1un−1e−y2/2udu.

Therefore, we get a similar expression as (3.7) for Ψϕ(a; y) with ψ(•; y)
instead of the constant function 1. ✷

Remark 4.13. - Here, we give a probabilistic explanation for the appear-
ance of Abel’s integral operator, using the Bessel meander. In fact, we can
state a reciprocal result of Theorem 3.1:
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Consider the continuous function f : [0, 1] → [0,∞[, such that f ∈ C1(]0, 1]),
f(0) = 0, and assume that the random variable Z is independent from the
Bessel process R, having the probability density function β(1 − s)1I[0,1](s).
Suppose that the random variable RZ has the probability density function
given by

(4.13) k−1
f (2n+1/Γ(|n|)) y 1I[0,∞[(y)

∫ 1

0
sn−1e−y2/2sf(1 − s) ds.

Then, the function β is an Abel transform of f ′. More precisely,

(4.14) β(t) = αf (t) = cn (Jn+1f ′)(t).

For the proof, we recall that, by (1.12) and (1.12’),

Rt
(law)

=
√
t− gtmt(1),

and mt(1) is independent of gt, being Rayleigh distributed. Let us denote,
for any positive bounded Borel function h,

Φh(s) :=

∫ ∞

0
h(y

√
s) y e−y2/2dy.

Then, by (4.13),

∫ 1

0
β̃(s) En

0 [Φh(s− gs)] ds = k−1
f (2n+1/Γ(|n|))

∫ 1

0
snΦh(s)f̃(s) ds.

Hence, the probability density function of the random variable Z − gZ is

(a) k−1
f (2n+1/Γ(|n|)) snf̃(s)1I[0,1](s).

On the other hand Z − gZ
(law)

= Z (1 − g1), with g1 independent from Z.
Recall that 1 − g1 is a beta random variable with parameters n + 1,−n.
Hence,

(b) E [l(Z − gZ)] = B(n + 1,−n)−1
∫ 1

0
l(y) dy

∫ 1

y
un(1 − u)−n−1β̃(y/u) du,

for any positive bounded Borel function l on [0, 1]. Combining (a) and
(b) we get, for y ∈ [0, 1],
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(c) k−1
f (2n+1/Γ(|n|)) (1 − y)nf(y)

= Γ(n + 1)−1Γ(−n)−1
∫ 1

1−y
un(1 − u)−n−1β(1 − (1 − y)/u) du.

We make on the right hand side of (c) the change of variable v = 1−(1−y)/u
and we get, after straightforward calculations,

f(y) = (1/cn) (J−nβ)(y).

We get the same result by composition with J−n in (4.14). ✷

APPENDIX

Formulae on integrals of Bessel local times

We gather here the main results obtained in [10] (these are denoted be-
tween brackets) and in the present paper.

Explicit laws

We denote by Lt(B) and Lt(b) the local times at 0 of the Brownian motion
B starting from 0, and of the Brownian bridge b; we denote by Lt(R) and
Lt(r) the local times at 0 of the Bessel process R, of index n ∈ ] − 1, 0[,
starting from 0, and of the Bessel bridge r. Here, Za,b denotes a beta random
variable with parameters a, b independent of the process for which the local
time is considered; in particular U = Z1,1 is a uniform random variable on
[0, 1] and V = Z 1

2
, 1
2

is an arcsine random variable. E(1) is the standard

exponential distribution and γ(2) is the gamma distribution of parameter 2.
c denotes a normalisation constant. The last passage time in 0 before time
1 is denoted g = sup{s ≤ 1 : Bs or Rs = 0}. Z is independent of the process
for which the local time is considered. λ is a strictly positive parameter. If
f ∈ C1(IR∗

+), with f(0) = 0, we denote by αf the function

αf (t) = (2n+1/Γ(|n|))
∫ t

0
(t− u)nf ′(u) du.

1) Brownian motion:
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(B1)

√
2π

B(1
2 , λ)

∫ Z1,λ

0

dLt(B)
√

1 − Z1,λ + t

(law)
= E(1) [1.18]

(B2)

√
2π

B(λ, 1
2)

∫ 1

0

dLt(B)
√

t+
Zλ,1

1−Zλ,1

(law)
=

√

π

2

∫ 1

0

dLt(B)
√

t+ U
1−U

(law)
= E(1) [1.25, 1.26]

(B3)

√
2π

B(λ, 1
2)

√

1 − Zλ, 1
2

∫ ∞

0

dLt(B)
√

(1 + t) (t+ Zλ, 1
2

)

(law)
= E(1) [2.25]

(B4)

√

2

π

∫ 1

0

dLt(B)√
1 − t

(law)
=

√

2

π

∫ ∞

1

dLt(B)
√

t(t− 1)

(law)
= E(1) [1.23,A.16], see also [A]

(B5) a

∫ ∞

0

dLa
t (B)

t

(law)
= E(1), (La local time at level a) [Rk.1.26, iv)]

(B6)
√

2 L1(B)
(law)

=
√

2 |B1|
(law)

= Mittag-Leffler(
1

2
) [Rk.1.26, i)], (4.4)

2) Brownian bridge:

(b1)

√
2π

B(λ, 1
2)

∫ 1

0

dLt(b)
√

t+
Z

λ, 1
2

1−Z
λ, 1

2

(law)
= E(1) [1.31]

(b2)

√

2

π

∫ 1

0

dLt(b)
√

t+ V
1−V

(law)
=

√

2

π

∫ 1

0

dLt(b)
√

1
V − t

(law)
= E(1) [1.32]

(b3)

√

2

π

∫ 1

0

dLt(b)
√

t+ 1−g
g

(law)
= E(1) (g

(law)
= Z 1

2
, 1
2

) [1.34]

(b4)

√

2

π

∫ 1

0

dLt(b)
√

t+ Z
1−Z

(law)
= γ(2), Z

(law)
=

1

cπ

log 1/u
√

u(1 − u)
1I[0,1](u) [1.36]
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(b5)
1√
π

∫ 1

2

0

dLt(b)
√

(1
2 − t)(1 − t)

(law)
=

1√
π

∫ 1

1

2

dLt(b)
√

t(t− 1
2)

(law)
= E(1) [1.23,A.16]

(b6) L1(b)
(law)

=
√

2 E(1) [Rk.1.26, iv)]

3) Bessel process:

(R1) 2|n|
∫ Z

0
ϕ(1−Z+t) dLt(R)

(law)
= E(1), Z

(law)
= c αf (1−u)1I[0,1](u) (3.3)

(R2)
2n+1Γ(n + 1)

B(|n|, λ)

∫ Z1,λ

0
(1 − Z1,λ + t)ndLt(R)

(law)
= E(1) [2.37], (3.3)

(R3)
2n+1Γ(n + 1)

B(|n|, λ)

∫

Z1,λ

1−Z1,λ

0
(1 + t)ndLt(R)

(law)
= E(1) [2.37], (3.3)

(R4)
2n+1

Γ(|n|)

∫ Z1,n+1

0
(1 − Z1,n+1 + t)ndLt(R)

(law)
= E(1) [2.37], (3.3)

(R5)
2n+1

Γ(|n|)

∫ Z

0
(Z − t)ndLt(R)

(law)
= E(1) (∀Z > 0) (3.8)

(R6)
2n+1

Γ(|n|)

∫ 1

0
(1 − t)ndLt(R)

(law)
= E(1) (3.8)

(R7)
2n+1

Γ(|n|)

∫ g or 1

0
(1−g+t)ndLt(R)

(law)
= E(1) (g

(law)
= Z|n|,n+1) (3.8, 4.7)

(R8)
2n+1Γ(n + 1)

Γ(|n|) L1(R)
(law)

= Mittag-Leffler(|n|) (4.3), see also [D − K]

4) Bessel bridge:

(r1) 2|n|
∫ Z

0
ϕ(1−Z+t) dLt(r)

(law)
= E(1), Z

(law)
= c

u−n−1αf (1 − u)

2nΓ(n + 1)
1I[0,1](u) (3.10)
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(r2)
2n+1Γ(n + 1)

B(|n|, λ)

∫ Z|n|,λ

0
(1 − Z|n|,λ + t)ndLt(r)

(law)
= E(1) (3.10)

(r3)
2n+1Γ(n + 1)

B(λ, |n|)

∫ 1

0

(

Zλ,|n|

1 − Zλ,|n|
+ t

)

n

dLt(r)
(law)

= E(1) [2.43]

(r4)
2n+1

Γ(|n|)

∫ 1

0

(

1 − g

g
+ t

)

n

dLt(r)
(law)

= E(1) (g
(law)

= Z|n|,n+1) (3.8, 4.7)

5) Ornstein-Uhlenbeck process:

(O1)

√
2π

B(λ, 1
2)

∫ ∞

0

dLt(O)
√

et

1−Z
λ, 1

2

− 1

(law)
= E(1) [2.21]

(O2)

√

2

π

∫ ∞

0

√
V dLt(O)√
et − V

(law)
= E(1) [2.23]

k-th moments

Here, k ∈ IN∗; β > 0; cn = 2n+1Γ(n+ 1)/Γ(|n|). For ϕ, h : [0, 1] → IR+ Borel
functions, we denote, for a ∈ [0, 1],

(Aϕh)(a) = Γ(|n|)−1
∫ 1−a

0
(1 − a− u)|n|−1(ϕh)(1 − u) du

and

(Bϕh)(a) = (1 − a)n+1Γ(|n|)−1
∫ 1−a

0
((1 − a− u)(1 − u))|n|−1(ϕh)(1 − u) du

1) Brownian motion:

(MB1) E0

[

(

√

1 − Zλ,1

∫ 1

0
(Zλ,1 + (1 − Zλ,1)t)

β−1/2 dLt(B)

)k
]
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= (k!) (2π)−k/2 (λ/(kβ + λ))
k−1
∏

j=0

B(jβ + λ, 1/2), λ > 0 [1.43]

(MB2) E0

[

(∫ 1

0
tβ−1/2dLt(B)

)k
]

= (k!) (2π)−k/2(kβ)−1
k−1
∏

j=1

B(jβ, 1/2) [1.47]

(MB3) E0

[

(∫ 1

0
tβ−1/2dLt(B)

)k
]

= 2β k(k−1)/



(2π)k/2βk
k−1
∏

j=1

Cjβ
2jβ



 , β ∈ IN∗ [Rk.1.26, ii)]

(MB4) E0

[

(∫ 1

0
tβ−1/2dLt(B)

)k
]

=
(k − 1)!

2k/2β

Γ(β)

Γ((k − 1)β + 1
2)

k−1
∏

j=1

β− 1

2
∏

i=1

(jβ − i), β − 1

2
∈ IN [Rk.1.26, ii)]

2) Brownian bridge:

(Mb1) E0

[

(

√

1 − Zλ,1/2

∫ 1

0

(

Zλ,1/2 + (1 − Zλ,1/2)t
)β−1/2

dLt(b)

)k
]

= (k!) (2π)−k/2
k
∏

j=1

B(jβ + λ, 1/2), λ > 0 [1.44]

(Mb2) E0

[

(∫ 1

0
tβ−1/2dLt(b)

)k
]

= (k!) (2π)−k/2
k
∏

j=1

B(jβ, 1/2) [1.48]

(Mb3) E0

[

(∫ 1

0
tβ−1/2dLt(b)

)k
]

= 2β k(k+1)/



(2π)k/2βk)
k
∏

j=1

Cjβ
2jβ



 , β ∈ IN∗ [Rk.1.26, ii)]
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(Mb4) E0

[

(∫ 1

0
tβ−1/2dLt(b)

)k
]

= (k!/2k/2) (Γ(β)/Γ(kβ +
1

2
))

k
∏

j=1

β− 1

2
∏

i=1

(jβ − i), β − 1

2
∈ IN [Rk.1.26, ii)]

3) Bessel process:

(MR1) En

0

[

(∫ 1−a

0
ϕ(a+ t) dLt(R)

)k
]

= (k!/ck
n
) (Ak

ϕ1)(a), a ∈ [0, 1] (3.7′)

(MR2) En

0

[

(∫ 1−a

0
(1 − a− t)β dLt(R)

)k
]

= (k!/ck
n
) (1 − a)k(β−n)

k
∏

j=1

Γ((β + 1) + (j − 1) (β − n))

Γ(j (β − n) + 1)
, a ∈ [0, 1[ (4.3)

(MR3) En

0

[

(∫ 1

0
tβ+ndLt(R)

)k
]

= k!

(

1

2n+1Γ(n + 1)

)k 1

kβ

k−1
∏

j=1

B(jβ, |n|) (4.2)

(MR4) En

0

[

e−λτt

]

= e−cnλ|n|t, (τt the inverse of Lt(R) ) (4.5)

4) Bessel bridge:

(Mr1) En

0

[

(∫ 1−a

0
ϕ(a+ t) dLt(r)

)k
]

= (k!/ck
n
)(Bk

ϕ1)(a), a ∈ [0, 1] (3.14′)

(Mr2) En

0

[

(∫ 1

0
tβ+ndLt(r)

)k
]

= k!

(

1

2n+1Γ(n + 1)

)k k
∏

j=1

B(jβ, |n|) (4.6)
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Limit theorems

Here δn = (Γ′(1)/Γ(1)) − (Γ′(|n|)/Γ(|n|)), δ−1/2 = log 4. We have the con-
vergence in law to the standard normal distribution of:

(LB1)

√

π

log 2

(

√

β

∫ 1

0
vβ−1/2dLv(B) − 1√

2πβ

)

, as β ↓ 0 [Rk.1.28]

(LB2)

√

π

2 log 2





1
√

log 1/ε

∫ 1

0

dLv(B)√
ε+ v

−
√

log 1/ε

2π



 , as ε ↓ 0 [1.53]

(LB3)

√

π

2 log 2





1
√

log 1/a2

∫ 1

0

dLa
v(B)√
v

−
√

log 1/a2

2π



 , as a ↓ 0 [1.56]

(LB4)

√

π

2 log 2





1
√

log (t/s)

∫ t

s

dLv(B)√
v

−
√

log (t/s)

2π



 , as s/t→ 0 [1.58]

(Lb1)

√

π

log 2

(

√

β

∫ 1

0
vβ−1/2dLv(b) −

1√
2πβ

)

, as β ↓ 0 [1.50]

(Lb2)

√

π

2 log 2





1
√

log 1/ε

∫ 1

0

dLv(b)√
ε+ v

−
√

log 1/ε

2π



 , as ε ↓ 0 [Rk.1.28]

(LR1)
2n+1Γ(n + 1)√

δn

(

√

β

∫ 1

0
vβ+ndLv(R) − 1

2n+1Γ(n + 1)
√
β

)

, as β ↓ 0 (4.7′)

(Lr1)
2n+1Γ(n + 1)√

δn

(

√

β

∫ 1

0
vβ+ndLv(r) −

1

2n+1Γ(n + 1)
√
β

)

, as β ↓ 0 (4.7)
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