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Introduction. A group G of finite order n and a field F determine in well

known fashion an algebra Gp of order n over F called the group algebra of G

over F. One fundamental problem(') is that of determining all groups H

such that Hf is isomorphic to Gp.

It is convenient to recast this problem somewhat: If groups G and H of

order n are given, find all fields F such that Gf is isomorphic to Hf (nota-

tionally: Gf=Hp). We present a complete solution of this problem for the

case in which G (and thus necessarily H) is abelian and F has characteristic

infinity or a prime not dividing n. The result, briefly, is that F shall contain

a certain subfield which is determined by the invariants of G and H and the

characteristic of F.

1. Multiplicities. If G is abelian of order n and F is a field whose char-

acteristic does not divide n, the group algebra Gf has the structure

(1) GF = D adF(Çd)
d\n

where f<j is a primitive ¿th root of unity, aa is a non-negative integer, and

a-dF(Çd) denotes the direct sum of a<¡ isomorphic copies of F(Çd). In fact,

each irreducible representation S of Gp maps Gf onto a field Fs^F and

maps the elements of G on wth roots of unity. The image of G is a subgroup of

the group of all nth roots of unity, thus is a cyclic group of some order divid-

ing n. It follows that Fs = F(f<¡) where f<¡ is a primitive dth root of unity.

Formula (1) expresses the fact that a complete set of irreducible representa-

tions of Gf over F include precisely a<¡ which map G onto a cyclic group of

order d. Now if £" is the root field over F of x" — 1 = 0 we have

(2) GK = Z «dtfd

where every K¿ = K(Cd) is isomorphic to £, ^,nd = n, and each «i is the

number of irreducible representations T of Gk mapping G on a cyclic group

of order d.

Lemma 1. The integer m in (2) is the number of elements of order d in G.

There is a one-to-one correspondence between the elements g of G and the
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i1) Proposed by R. M. Thrall at the Michigan Algebra Conference in the summer of 1947.
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representations T— Tg. The formulae(2) for this correspondence make it evi-

dent that g has order d if and only if Tg maps a basis of G onto a set of ele-

ments, the l.c.m. of whose orders is d. Then some element of G is mapped on

an element of order d, all others on elements of order not greater than d.

The map of G is thus a cyclic group of order d, and this proves the lemma.

Each irreducible representation 5 of GF over F may be extended to a rep-

resentation of Gk over K, the extension not altering the map of G. If 5 maps

GF onto £(f<¿) where the degree of F(Çd)/F is

(3) deg FCçd)/F = Vé,

then 5 maps Gk on the direct sum(3)

(4) F(£d)K = £<" © • • • © £<«"> = ViK,

thus giving rise to Vd irreducible representations T of Gk over K.

Lemma 2. If S maps G onto a cyclic group of order d, so does each representa-

tion T defined above.

Each element g in G is mapped by S on gs= ^gi, g,- in i£(<), and the cor-

responding irreducible representations over K are Tí: gTi = gi- It may be

seen(4) that the g¿ are obtainable from one another by automorphisms of

F(Çd)x leaving the elements of K invariant. Hence all the gt- have the same

minimum function over K, and all of them are primitive dth roots of unity if

gs is one. Lemma 2 follows immediately, and it follows that the 7\ into which

the representations 5 split are the only irreducible representations of Gk

mapping G on a cyclic group of order d. The ad choices of S give rise to ajOd

representations T, whence ni = a¿Od.

Theorem 1. The multiplicity ad in (1) is given(s) by ad = n¿/vd where nd is

the number of elements of order d in G and vd is deg F(C¿)/F.

Now let G and H be abelian of common order n = pi • • • pi for distinct

primes pi, so there are unique expressions G = GiX • • • XGk and H=Hi

X • • -XHk for G and H as direct products of groups G,- and Hi of order

iti = pf. Then:

Corollary 1. GF=HF if and only if GiF^HiFfor i = 1, • ■ • , A.

By hypothesis and Theorem 1

(2) A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, New York, 1945, p. 179.

(3) A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publications, vol.

24, New York, 1939, p. 31.
(4) Ibid.

(6) The authors are indebted to the referees for the simple approach to Theorem 1 which

has been presented here.
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Gf = S md/véF(ïd) &Mt,
d\n

Gíf = Z gid/vdFU;d),       Hip = Z hid/vdF(U)
d\ni d\ni

where the number of elements of order d in Gi is ga, in Hi is hid, and in G or

H is md. But if d\ ni, the elements of G having order d lie in G¡, so m¿ = gid and

likewise md = hid so gid — hid, whence Gíf^Híf- The converse is trivial.

In the remaining sections only the prime-power case is considered.

2. Cyclotomic fields. When n=pa for a prime p the notation in (1) will

be changed to

(5) GP = ¿ afiXi)
i=t>

where £< and a, are new symbols for fa and a,i, d = p\ This section explores

conditions under which F(ÍT¿) = F(f y). Taking ¿g/ we may and shall assume

that F(Çi) :£ F(fy), so the question now is concerned with the equality of these

fields. Let P always denote the prime subfield of F.

Lemma 3. Let i and j be positive integers such that i<j. Then F(£\) = F(Çf)

if and only if F has a subfield F0^P(Çj) such that F0(f,-) = F0(fy).

Proof. If Fo(f,-) =F0(fy), the field F(f¿) must contain fy. Conversely, sup-

pose F(Çi) = F(fy). The minimum function/(x) of J'y over F has degree s equal

to that of f,-, and is a factor of the minimum function m(x) of fy over P.

The coefficients of /(x) then must lie in the root field P(f y) of w(x) over P, and

hence generate a subfield F0 of P(fy) such that F0^F. Then F0(fy) èF0(f»),

and

deg FotfyVFo = s £ deg F0(rO/F0 = r è deg F(fc)/F = s,

whence r = 5, F0(f,-) = F0(J"y).

It is necessary now to make a brief detour because of some peculiarities

arising if P is finite. Suppose that

(6) P Û Pi£i) = • • • = 2>(f.) < P(f e+1) (e ^ 1)

if £ is odd, and

(7) P ^ F(f2) = • • • = P(fe) < F(fe+1) (« ^ 2)

if £ = 2. These equalities never occur if P = R but do occur if P is a finite

prime field whose characteristic is appropriately related to p (see Lemma 5).

Definition. Let p be a prime and let F be a prime field of characteristic

not equal to p. Then the integer e defined by (6) and (7) is called the cyclo-

tomic number of P relative to p (or cyclotomic ^-number of P).

Lemma 4. Let P be a finite prime field of characteristic ir, n be an integer not
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divisible by w, and P(f) be the root field over P of x" — l. Then deg P(Ç)/P = e

where e is defined as the exponent to which tt belongs modulo n.

Let P/ be a field of degree / over P so its nonzero quantities are roots of

x"—1 = 0, v = irf— 1. Then P¡ contains the rath roots of unity if n divides v.

Conversely, if P¡ contains a primitive rath root of unity, f, the equation

v — qn-\-r (0^r<n) leads to f'= 1 =f so r = 0, and ra divides v. The smallest

value of v = tcs— 1 obeying this condition is given by/=«. On the other hand

the smallest value surely belongs to P/ = P(Ç).

Now let n = pi, where p is a prime not equal to ir, and denote the cor-

responding integer e of Lemma 4 by t¿. Then the cyclotomic ¿»-number of P

is the integer e determined by the conditions €! = e2= • • • =ee<ee+i (p odd),

€2=í3= • • • =e«<e«+i (p = 2). Hence:

Lemma 5. The cyclotomic p-number of P is the maximum integer e such that

pe divides w' — l where e is the exponent to which ir belongs modulo p if p is odd,

or modulo 4 if p = 2.

The fact that P(U) <P(U+ù for every i¡ze is a consequence of the follow-

ing result.

Lemma 6. The extension P(Çe+i)/P(Çe) has degree S< = ^* (i= 1, 2, • • • ).

Writing €e = € we have S,-=ee+¿/e and know(6) that o¡ = p',j¿i, ee+i = p'e.

By Lemma 5, ir'=l+ap' where a is not divisible by p. A trivial induction

shows that

,»<■ = 1 + aiPe+i, (<n, p) = 1,

for i = 0, 1,2, • • • . This proves that te+i = pie.

Lemma 7. If p is an odd prime and P is any prime field of characteristic not

p, P(Çq) has the structure

(8) P(f,) = P(f0 X Lq,       deg LJP = power of p,

where Lq is unique. Moreover, Lq = P if q does not exceed the cyclotomic p-number

of P.

The proof of this result is similar to the known (7) proof for the case P = R.

Lemma 8. Let p be odd and q>\. Then the following conditions are equiva-

lent:

(i) F(U)-F(U), lái<S-
(ii) F(U) = F(U-i)= ■ ■ ■ -F(t¡).
(iii) F contains the field Lq defined by Lemma 7.

(6) A. A. Albert, Modern higher algebra, Chicago, 1937, p. 188, Theorem 21. The desired

result is obtained by repeated application of this reference theorem.

(7) Robert Fricke, Lehrbuch der Algebra, vol. 3, Braunschweig, 1928, p. 205.
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The condition (iii) implies that F(fi) contains L,(fi) =P(fs), F(fx)

= F(r«). s0 (Ü) follows. That (ii) implies (i) is obvious. Now we assume (i)

and use Lemma 3 to reduce considerations to the case F^P(Çq) = F(£"8). If

q^e where e is the cyclotomic ^-number of P, Lq = P'¿F so (iii) is valid.

Now let a be greater than e.

The field F(f,) is the composite FWP(J"<). Denoting the intersection

FPiP(fi) by F,-, we have

(9) deg F/Fi = deg F(?í)/P(íí) = deg P(f,)/P(f,-).

Also, deg P(^k)/P — p'hu, deg F/P = pav for suitable integers e*, a, m

= deg (P(fi)/P, and o a divisor of m. To complete preparations for substitut-

ing in (9) note that P(Çg)/P is cyclic, hence possesses a unique subfield of

any given degree dividing p'*u. Thus: deg Fi/P = gcd[pav, p'iu]=p"v where

M = min [a, e»]. From (9), pa->i = pc where c = eq — e,- = a — ¡x. Since q>e, we

have e3 — €,->0, ju<a, n = ti, so a = eQ, deg F/P = p"¡v. Every such subfield

F of P(f9) must contain the subfield Lq of degree ¿>e«.

For the case p = 2 similar results are obtainable. The extension P(Çq)/P

is cyclic of degree a power of 2 if P is finite, and for this case we define

(10) Lq = P   ii   q^e,       Lq = P(f„)    if    q > e,

where e is the cyclotomic number of P relative to p = 2. For P = R we have

P(r<i) =P(f2) X£5 where Lq is arbitrarily one of the fields

(ii) Lt = p(r, + j-;1),    £a = p(r3 - r;1)

and deg Lq/P = 2q~2. We then state without proof:

Lemma 9. £e¿ £ = 2 and q>2. Then the following conditions are equivalent:

(i)  F(Çq)=F(Çi), 2^i<q.
(ii) F(r8) = F(r3-i)= •■ ■ =Ftf2).

(iii)  F contains one of the fields Lq above.

3. Determination of the fields. Let G and H be abelian groups of common

prime-power order pa and let F be any field of characteristic not p. In this

section all fields F are determined such that Gf=Hf.

As in (5) we have

(12) Gf = ¿ af(ïà,       HF = J2 biFiU),
i=0 i-0

so there is a unique integer g = g(G, iï) defined as the maximum integer i

such that ai^bi. From Theorem 1 this integer is the maximum i such that

rtii^m where w,- and m are the numbers of elements of order p* in G and

H, respectively. Thus q is independent of F. Since m0 = wo=l, 3 is never less

than 2, but it may happen that q does not exist, that is, every «!,- = «,-. In
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this case we define q = 0.

Theorem 2. The group algebras GF and HF are isomorphic if and only if (a)

holds when p is odd, and (ß) or (y) holds when p = 2:

(a)  F^Lq defined by Lemma 7.

(ß) G and H have the same number of invariants and F contains one of the

fields Lq defined by Lemma 9.
(y) G and H have unequal numbers, y and rj, of invariants and F contains

P(Çq) where P is the prime subfield of F.

If q = 0 the theorem is trivial, so we assume g>0, hence g2:2. Note that

GF^HF if and only if A^B where

(13) A = ¿ aP(U),        B = ¿ biF(ti).
•=0 »=0

Suppose (a) holds. Then (Lemma 8) both A and B becomes £©ra£(fi)

for a suitable integer m, so A^B. If p = 2, F(Çi) = F, ai = 2?-l so

(14) A = 2TF © ¿ aiF(Çi),        B = 2"F © ¿ biFfa)
t'=2 t-2

whence (ß) implies that A =2~<F@mF(Ç2)^B. If (7) holds, A andB are diago-

nal over F and of the same order, hence isomorphic. Conversely, suppose A =B

and first let p be odd. The assumption that £(f3) is not isomorphic to £(£",■)

for i<q implies that A has precisely aq components £(f5) and B has precisely

bq such components. But then the fact that aq?¿bq conflicts with the iso-

morphism of A and B. Hence F(Çq) = £(f¿) for i<q so £5:L5. The proofs for

p = 2 are obtained in similar fashion.

The case in which £ is a prime field is interesting.

Theorem 3. Let G and H be abelian groups of order p". If R is the rational

number field, Gr^Hr if and only if G=H. If P is a finite prime field of char-
acteristic ttt^P, Gp=Hp if and only if q^e (where e is the cyclotomic p-number of

P) unless p = 2 and G and H have different numbers of invariants. In the latter

case Gp=Hp if and only if q^e and 7r=l (mod 4).

For F=R the decompositions (12) are unique. Hence the condition

Gr=Hr implies that g = 0, and for each integer k = ph dividing p", G and H

have the same number of elements of order k. This number is Nk(G)<f>(k)

where <p denotes the Euler ¡^-function and Nk(G)=Nk the number of cyclic

subgroups of order A in G. The numbers Nk have been determined (8) by

formulae which show that the group invariants are determined when the Nk

(?) G. A. Miller, Number of the sub-groups of any abelian group, Proc. Nat. Acad. Sei.

U. S. A. vol. 25 (1939) pp. 256-262; see also Yenchien Yeh, On prime power abelian groups,

Bull. Amer. Math. Soc. vol. 54 (1948) pp. 323-327.
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are specified. Thus G=H. The remaining parts of the theorem follow from

Theorem 2 and our lemmas.

To compute the "(/-number" directly from the invariants of G and H,

denote the latter by pe< (i=l, ■ • ■ , y) and ph (i=\, ■ ■ ■ , rf), respectively,

numbered in descending order of magnitude.

Theorem 4. Define X as the minimum integer i such that e^fi. Then

g = max [e\, f].

For proof, note that G = KXG, H=KXH where K has invariants pe%,

i=i, • • ■ , X — 1, and those of G and H are evident. Let the common order of

G and H be ñ and let the numbers of elements of order p* in G, H, and K,

respectively, be mi, ni, and A,-. Then i>e-¡, implies wíí = «A¿ and i>f\ implies

ni = ñki. For definiteness take e\>f, so i>e\ implies »ra¿ = ra,, q^e\. For

i = e\>f, however, ra< = «A,-, w,>ra¿. This proves that q = e\.

Purdue University,

Lafayette, Ind.
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