ABELIAN GROUP ALGEBRAS OF FINITE ORDER

BY
SAM PERLIS AND GORDON L. WALKER

Introduction. A group G of finite order n and a field F determine in well known fashion an algebra G_{F} of order n over F called the group algebra of G over F. One fundamental problem(${ }^{1}$) is that of determining all groups H such that H_{F} is isomorphic to G_{F}.

It is convenient to recast this problem somewhat: If groups G and H of order n are given, find all fields F such that G_{F} is isomorphic to H_{F} (notationally: $G_{F} \cong H_{F}$). We present a complete solution of this problem for the case in which G (and thus necessarily H) is abelian and F has characteristic infinity or a prime not dividing n. The result, briefly, is that F shall contain a certain subfield which is determined by the invariants of G and H and the characteristic of F.

1. Multiplicities. If G is abelian of order n and F is a field whose characteristic does not divide n, the group algebra G_{F} has the structure

$$
\begin{equation*}
G_{F}=\sum_{d \mid n} a_{d} F\left(\zeta_{d}\right) \tag{1}
\end{equation*}
$$

where ζ_{d} is a primitive d th root of unity, a_{d} is a non-negative integer, and $a_{d} F\left(\zeta_{d}\right)$ denotes the direct sum of a_{d} isomorphic copies of $F\left(\zeta_{d}\right)$. In fact, each irreducible representation S of G_{F} maps G_{F} onto a field $F_{S} \geqq F$ and maps the elements of G on nth roots of unity. The image of G is a subgroup of the group of all nth roots of unity, thus is a cyclic group of some order dividing n. It follows that $F_{S}=F\left(\zeta_{d}\right)$ where ζ_{d} is a primitive d th root of unity. Formula (1) expresses the fact that a complete set of irreducible representations of G_{F} over F include precisely a_{d} which map G onto a cyclic group of order d. Now if K is the root field over F of $x^{n}-1=0$ we have

$$
\begin{equation*}
G_{K}=\sum_{d \mid n} n_{d} K_{d} \tag{2}
\end{equation*}
$$

where every $K_{d}=K\left(\zeta_{d}\right)$ is isomorphic to $K, \sum n_{d}=n$, and each n_{d} is the number of irreducible representations T of G_{K} mapping G on a cyclic group of order d.

Lemma 1. The integer n_{d} in (2) is the number of elements of order d in G.
There is a one-to-one correspondence between the elements g of G and the

[^0]representations $T=T_{g}$. The formulae $\left({ }^{2}\right)$ for this correspondence make it evident that g has order d if and only if T_{g} maps a basis of G onto a set of elements, the 1.c.m. of whose orders is d. Then some element of G is mapped on an element of order d, all others on elements of order not greater than d. The map of G is thus a cyclic group of order d, and this proves the lemma.

Each irreducible representation S of G_{F} over F may be extended to a representation of G_{K} over K, the extension not altering the map of G. If S maps G_{F} onto $F\left(\zeta_{d}\right)$ where the degree of $F\left(\zeta_{d}\right) / F$ is

$$
\begin{equation*}
\operatorname{deg} F\left(\zeta_{d}\right) / F=v_{d}, \tag{3}
\end{equation*}
$$

then S maps G_{K} on the direct sum ${ }^{(3)}$

$$
\begin{equation*}
F\left(\zeta_{d}\right)_{K}=K^{(1)} \oplus \cdots \oplus K^{\left(v_{d}\right)}=v_{d} K, \tag{4}
\end{equation*}
$$

thus giving rise to v_{d} irreducible representations T of G_{K} over K.
Lemma 2. If S maps G onto a cyclic group of order d, so does each representation T defined above.

Each element g in G is mapped by S on $g^{S}=\sum g_{i}, g_{i}$ in $K^{(i)}$, and the corresponding irreducible representations over K are $T_{i}: g^{T_{i}}=g_{i}$. It may be seen $\left(^{4}\right)$ that the g_{i} are obtainable from one another by automorphisms of $F\left(\zeta_{d}\right)_{K}$ leaving the elements of K invariant. Hence all the g_{i} have the same minimum function over K, and all of them are primitive d th roots of unity if g^{s} is one. Lemma 2 follows immediately, and it follows that the T_{i} into which the representations S split are the only irreducible representations of G_{K} mapping G on a cyclic group of order d. The a_{d} choices of S give rise to $a_{d} v_{d}$ representations T, whence $n_{d}=a_{d} v_{d}$.

Theorem 1. The multiplicity a_{d} in (1) is given $\left({ }^{5}\right)$ by $a_{d}=n_{d} / v_{d}$ where n_{d} is the number of elements of order d in G and v_{d} is $\operatorname{deg} F\left(\zeta_{d}\right) / F$.

Now let G and H be abelian of common order $n=p_{1}^{\theta_{1}} \cdots p_{k}^{e_{k}}$ for distinct primes p_{i}, so there are unique expressions $G=G_{1} \times \cdots \times G_{k}$ and $H=H_{1}$ $\times \cdots \times H_{k}$ for G and H as direct products of groups G_{i} and H_{i} of order $n_{i}=p_{i}^{\theta_{i}}$. Then:

Corollary 1. $G_{F} \cong H_{F}$ if and only if $G_{i F} \cong H_{i F}$ for $i=1, \cdots, k$.
By hypothesis and Theorem 1

[^1]\[

$$
\begin{gathered}
G_{F}=\sum_{d \mid n} m_{d} / v_{d} F\left(\zeta_{d}\right) \cong H_{F}, \\
G_{i F}=\sum_{d \mid n_{i}} g_{i d} / v_{d} F\left(\zeta_{d}\right), \quad H_{i F}=\sum_{d \mid n_{i}} h_{i d} / v_{d} F\left(\zeta_{d}\right)
\end{gathered}
$$
\]

where the number of elements of order d in G_{i} is $g_{i d}$, in H_{i} is $h_{i d}$, and in G or H is m_{d}. But if $d \mid n_{i}$, the elements of G having order d lie in G_{i}, so $m_{d}=g_{i d}$ and likewise $m_{d}=h_{i d}$ so $g_{i d}=h_{i d}$, whence $G_{i F} \cong H_{i F}$. The converse is trivial.

In the remaining sections only the prime-power case is considered.
2. Cyclotomic fields. When $n=p^{\alpha}$ for a prime p the notation in (1) will be changed to

$$
\begin{equation*}
G_{F}=\sum_{i=0}^{\alpha} a_{i} F\left(\zeta_{i}\right) \tag{5}
\end{equation*}
$$

where ζ_{i} and a_{i} are new symbols for ζ_{d} and $a_{d}, d=p^{i}$. This section explores conditions under which $F\left(\zeta_{i}\right) \cong F\left(\zeta_{j}\right)$. Taking $i \leqq j$ we may and shall assume that $F\left(\zeta_{i}\right) \leqq F\left(\zeta_{j}\right)$, so the question now is concerned with the equality of these fields. Let P always denote the prime subfield of F.

Lemma 3. Let i and j be positive integers such that $i<j$. Then $F\left(\zeta_{i}\right)=F\left(\zeta_{j}\right)$ if and only if F has a subfield $F_{0} \leqq P\left(\zeta_{j}\right)$ such that $F_{0}\left(\zeta_{i}\right)=F_{0}\left(\zeta_{j}\right)$.

Proof. If $F_{0}\left(\zeta_{i}\right)=F_{0}\left(\zeta_{j}\right)$, the field $F\left(\zeta_{i}\right)$ must contain ζ_{j}. Conversely, suppose $F\left(\zeta_{i}\right)=F\left(\zeta_{j}\right)$. The minimum function $f(x)$ of ζ_{j} over F has degree s equal to that of ζ_{i}, and is a factor of the minimum function $m(x)$ of ζ_{j} over P. The coefficients of $f(x)$ then must lie in the root field $P\left(\zeta_{j}\right)$ of $m(x)$ over P, and hence generate a subfield F_{0} of $P\left(\zeta_{j}\right)$ such that $F_{0} \leqq F$. Then $F_{0}\left(\zeta_{j}\right) \geqq F_{0}\left(\zeta_{i}\right)$, and

$$
\operatorname{deg} F_{0}\left(\zeta_{j}\right) / F_{0}=s \geqq \operatorname{deg} F_{0}\left(\zeta_{i}\right) / F_{0}=r \geqq \operatorname{deg} F\left(\zeta_{i}\right) / F=s
$$

whence $r=s, F_{0}\left(\zeta_{i}\right)=F_{0}\left(\zeta_{j}\right)$.
It is necessary now to make a brief detour because of some peculiarities arising if P is finite. Suppose that

$$
\begin{equation*}
P \leqq P\left(\zeta_{1}\right)=\cdots=P\left(\zeta_{e}\right)<P\left(\zeta_{e+1}\right) \tag{6}
\end{equation*}
$$

if p is odd, and

$$
\begin{equation*}
P \leqq P\left(\zeta_{2}\right)=\cdots=P\left(\zeta_{e}\right)<P\left(\zeta_{e+1}\right) \tag{7}
\end{equation*}
$$

if $p=2$. These equalities never occur if $P=R$ but do occur if P is a finite prime field whose characteristic is appropriately related to p (see Lemma 5).

Definition. Let p be a prime and let P be a prime field of characteristic not equal to p. Then the integer e defined by (6) and (7) is called the cyclotomic number of P relative to p (or cyclotomic p-number of P).

Lemma 4. Let P be a finite prime field of characteristic π, n be an integer not
divisible by π, and $P(\zeta)$ be the root field over P of $x^{n}-1$. Then $\operatorname{deg} P(\zeta) / P=\epsilon$ where ϵ is defined as the exponent to which π belongs modulo n.

Let P_{f} be a field of degree f over P so its nonzero quantities are roots of $x^{\nu}-1=0, \nu=\pi^{f}-1$. Then P_{f} contains the nth roots of unity if n divides ν. Conversely, if P_{f} contains a primitive nth root of unity, ζ, the equation $\nu=q n+r(0 \leqq r<n)$ leads to $\zeta^{\nu}=1=\zeta^{r}$ so $r=0$, and n divides ν. The smallest value of $\nu=\pi^{f}-1$ obeying this condition is given by $f=\epsilon$. On the other hand the smallest value surely belongs to $P_{f}=P(\zeta)$.

Now let $n=p^{i}$, where p is a prime not equal to π, and denote the corresponding integer ϵ of Lemma 4 by ϵ_{i}. Then the cyclotomic p-number of P is the integer e determined by the conditions $\epsilon_{1}=\epsilon_{2}=\cdots=\epsilon_{e}<\epsilon_{e+1}$ (p odd), $\epsilon_{2}=\epsilon_{3}=\cdots=\epsilon_{\epsilon}<\epsilon_{\epsilon+1}(p=2)$. Hence:

Lemma 5. The cyclotomic p-number of P is the maximum integer e such that p^{e} divides $\pi^{\epsilon}-1$ where ϵ is the exponent to which π belongs modulo p if p is odd, or modulo 4 if $p=2$.

The fact that $P\left(\zeta_{i}\right)<P\left(\zeta_{i+1}\right)$ for every $i \geqq e$ is a consequence of the following result.

Lemma 6. The extension $P\left(\zeta_{e+i}\right) / P\left(\zeta_{e}\right)$ has degree $\delta_{i}=p^{i}(i=1,2, \cdots)$.
Writing $\epsilon_{e}=\epsilon$ we have $\delta_{i}=\epsilon_{e+i} / \epsilon$ and know $\left.{ }^{6}\right)$ that $\delta_{i}=p^{j}, j \leqq i, \epsilon_{e+i}=p^{i} \epsilon$. By Lemma $5, \pi^{\epsilon}=1+a p^{e}$ where a is not divisible by p. A trivial induction shows that

$$
\pi^{p^{i_{\epsilon}}}=1+a_{i} p^{e+i}, \quad\left(a_{i}, p\right)=1,
$$

for $i=0,1,2, \cdots$. This proves that $\epsilon_{\epsilon+i}=p^{i} \boldsymbol{\epsilon}$.
Lemma 7. If p is an odd prime and P is any prime field of characteristic not $p, P\left(\zeta_{q}\right)$ has the structure

$$
\begin{equation*}
P\left(\zeta_{q}\right)=P\left(\zeta_{1}\right) \times L_{q}, \quad \operatorname{deg} L_{q} / P=\text { power of } p \tag{8}
\end{equation*}
$$

where L_{q} is unique. Moreover, $L_{q}=P$ if q does not exceed the cyclotomic p-number of P.

The proof of this result is similar to the known ${ }^{(7)}$ proof for the case $P=R$.
Lemma 8. Let p be odd and $q>1$. Then the following conditions are equivalent:
(i) $F\left(\zeta_{q}\right)=F\left(\zeta_{i}\right), 1 \leqq i<q$.
(ii) $F\left(\zeta_{q}\right)=F\left(\zeta_{q-1}\right)=\cdots=F\left(\zeta_{1}\right)$.
(iii) F contains the field L_{q} defined by Lemma 7.

[^2]The condition (iii) implies that $F\left(\zeta_{1}\right)$ contains $L_{q}\left(\zeta_{1}\right)=P\left(\zeta_{q}\right), F\left(\zeta_{1}\right)$ $=F\left(\zeta_{q}\right)$, so (ii) follows. That (ii) implies (i) is obvious. Now we assume (i) and use Lemma 3 to reduce considerations to the case $F \leqq P\left(\zeta_{q}\right)=F\left(\zeta_{q}\right)$. If $q \leqq e$ where e is the cyclotomic p-number of $P, L_{q}=P \leqq F$ so (iii) is valid. Now let q be greater than e.

The field $F\left(\zeta_{i}\right)$ is the composite $F \cup P\left(\zeta_{i}\right)$. Denoting the intersection $F \cap P\left(\zeta_{i}\right)$ by F_{i}, we have

$$
\begin{equation*}
\operatorname{deg} F / F_{i}=\operatorname{deg} F\left(\zeta_{i}\right) / P\left(\zeta_{i}\right)=\operatorname{deg} P\left(\zeta_{q}\right) / P\left(\zeta_{i}\right) \tag{9}
\end{equation*}
$$

Also, $\operatorname{deg} P\left(\zeta_{k}\right) / P=p^{\epsilon} k u$, $\operatorname{deg} F / P=p^{a} v$ for suitable integers ϵ_{k}, a, u $=\operatorname{deg}\left(P\left(\zeta_{1}\right) / P\right.$, and v a divisor of u. To complete preparations for substituting in (9) note that $P\left(\zeta_{q}\right) / P$ is cyclic, hence possesses a unique subfield of any given degree dividing $p^{\epsilon_{q}} u$. Thus: $\operatorname{deg} F_{i} / P=\operatorname{gcd}\left[p^{a} v, p^{e_{i} u}\right]=p^{\mu} v$ where $\mu=\min \left[a, \epsilon_{i}\right]$. From (9), $p^{a-\mu}=p^{c}$ where $c=\epsilon_{q}-\epsilon_{i}=a-\mu$. Since $q>e$, we have $\epsilon_{q}-\epsilon_{i}>0, \mu<a, \mu=\epsilon_{i}$, so $a=\epsilon_{q}$, $\operatorname{deg} F / P=p^{\epsilon} q v$. Every such subfield F of $P\left(\zeta_{q}\right)$ must contain the subfield L_{q} of degree $p^{\epsilon q}$.

For the case $p=2$ similar results are obtainable. The extension $P\left(\zeta_{q}\right) / P$ is cyclic of degree a power of 2 if P is finite, and for this case we define

$$
\begin{equation*}
L_{q}=P \quad \text { if } \quad q \leqq e, \quad L_{q}=P\left(\zeta_{q}\right) \quad \text { if } \quad q>e, \tag{10}
\end{equation*}
$$

where e is the cyclotomic number of P relative to $p=2$. For $P=R$ we have $P\left(\zeta_{q}\right)=P\left(\zeta_{2}\right) \times L_{q}$ where L_{q} is arbitrarily one of the fields

$$
\begin{equation*}
L_{q}=P\left(\zeta_{q}+\zeta_{q}^{-1}\right), \quad L_{q}=P\left(\zeta_{q}-\zeta_{q}^{-1}\right) \tag{11}
\end{equation*}
$$

and $\operatorname{deg} L_{q} / P=2^{q-2}$. We then state without proof:
Lemma 9. Let $p=2$ and $q>2$. Then the following conditions are equivalent:
(i) $F\left(\zeta_{q}\right)=F\left(\zeta_{i}\right), 2 \leqq i<q$.
(ii) $F\left(\zeta_{q}\right)=F\left(\zeta_{q-1}\right)=\cdots=F\left(\zeta_{2}\right)$.
(iii) F contains one of the fields L_{q} above.
3. Determination of the fields. Let G and H be abelian groups of common prime-power order p^{α} and let F be any field of characteristic not p. In this section all fields F are determined such that $G_{F} \cong H_{F}$.

As in (5) we have

$$
\begin{equation*}
G_{F}=\sum_{i=0}^{\alpha} a_{i} F\left(\zeta_{i}\right), \quad H_{F}=\sum_{i=0}^{\alpha} b_{i} F\left(\zeta_{i}\right), \tag{12}
\end{equation*}
$$

so there is a unique integer $q=q(G, H)$ defined as the maximum integer i such that $a_{i} \neq b_{i}$. From Theorem 1 this integer is the maximum i such that $m_{i} \neq n_{i}$ where m_{i} and n_{i} are the numbers of elements of order p^{i} in G and H, respectively. Thus q is independent of F. Since $m_{0}=n_{0}=1, q$ is never less than 2 , but it may happen that q does not exist, that is, every $m_{i}=n_{i}$. In
this case we define $q=0$.
Theorem 2. The group algebras G_{F} and H_{F} are isomorphic if and only if (α) holds when p is odd, and (β) or (γ) holds when $p=2$:
(α) $F \geqq L_{q}$ defined by Lemma 7.
(β) G and H have the same number of invariants and F contains one of the fields L_{q} defined by Lemma 9.
$(\gamma) G$ and H have unequal numbers, γ and η, of invariants and F contains $P\left(\zeta_{q}\right)$ where P is the prime subfield of F.

If $q=0$ the theorem is trivial, so we assume $q>0$, hence $q \geqq 2$. Note that $G_{F} \cong H_{F}$ if and only if $A \cong B$ where

$$
\begin{equation*}
A=\sum_{i=0}^{q} a_{i} F\left(\zeta_{i}\right), \quad B=\sum_{i=0}^{q} b_{i} F\left(\zeta_{i}\right) . \tag{13}
\end{equation*}
$$

Suppose (α) holds. Then (Lemma 8) both A and B becomes $F \oplus m F\left(\zeta_{1}\right)$ for a suitable integer m, so $A \cong B$. If $p=2, F\left(\zeta_{1}\right)=F, a_{1}=2^{\gamma}-1$ so

$$
\begin{equation*}
A=2^{\gamma} F \oplus \sum_{i=2}^{q} a_{i} F\left(\zeta_{i}\right), \quad B=2 \eta F \oplus \sum_{i=2}^{q} b_{i} F\left(\zeta_{i}\right) \tag{14}
\end{equation*}
$$

whence (β) implies that $A=2^{\gamma} F \oplus m F\left(\zeta_{2}\right) \cong B$. If (γ) holds, A and B are diagonal over F and of the same order, hence isomorphic. Conversely, suppose $A \cong B$ and first let p be odd. The assumption that $F\left(\zeta_{q}\right)$ is not isomorphic to $F\left(\zeta_{i}\right)$ for $i<q$ implies that A has precisely a_{q} components $F\left(\zeta_{q}\right)$ and B has precisely b_{q} such components. But then the fact that $a_{q} \neq b_{q}$ conflicts with the isomorphism of A and B. Hence $F\left(\zeta_{q}\right)=F\left(\zeta_{i}\right)$ for $i<q$ so $F \geqq L_{q}$. The proofs for $p=2$ are obtained in similar fashion.

The case in which F is a prime field is interesting.
Theorem 3. Let G and H be abelian groups of order p^{α}. If R is the rational number field, $G_{R} \cong H_{R}$ if and only if $G \cong H$. If P is a finite prime field of characteristic $\pi \neq p, G_{P} \cong H_{P}$ if and only if $q \leqq e$ (where e is the cyclotomic p-number of $P)$ unless $p=2$ and G and H have different numbers of invariants. In the latter case $G_{P} \cong H_{P}$ if and only if $q \leqq e$ and $\pi \equiv 1(\bmod 4)$.

For $F=R$ the decompositions (12) are unique. Hence the condition $G_{R} \cong H_{R}$ implies that $q=0$, and for each integer $k=p^{h}$ dividing p^{α}, G and H have the same number of elements of order k. This number is $N_{k}(G) \phi(k)$ where ϕ denotes the Euler ϕ-function and $N_{k}(G)=N_{k}$ the number of cyclic subgroups of order k in G. The numbers N_{k} have been determined (${ }^{8}$) by formulae which show that the group invariants are determined when the N_{k}

[^3]are specified. Thus $G \cong H$. The remaining parts of the theorem follow from Theorem 2 and our lemmas.

To compute the " q-number" directly from the invariants of G and H, denote the latter by $p^{e_{i}}(i=1, \cdots, \gamma)$ and $p^{f_{i}}(i=1, \cdots, \eta)$, respectively, numbered in descending order of magnitude.

Theorem 4. Define λ as the minimum integer i such that $e_{i} \neq f_{i}$. Then $q=\max \left[e_{\lambda}, f_{\lambda}\right]$.

For proof, note that $G=K \times \bar{G}, H=K \times \bar{H}$ where K has invariants p_{i}, $i=1, \cdots, \lambda-1$, and those of \bar{G} and \bar{H} are evident. Let the common order of \bar{G} and \bar{H} be \bar{n} and let the numbers of elements of ordèr p^{i} in G, H, and K, respectively, be m_{i}, n_{i}, and k_{i}. Then $i>e_{\lambda}$ implies $m_{i}=\bar{n} k_{i}$ and $i>f_{\lambda}$ implies $n_{i}=\tilde{n} k_{i}$. For definiteness take $e_{\lambda}>f_{\lambda}$, so $i>e_{\lambda}$ implies $m_{i}=n_{i}, q \leqq e_{\lambda}$. For $i=e_{\lambda}>f_{\lambda}$, however, $n_{i}=\bar{n} k_{i}, m_{i}>n_{i}$. This proves that $q=e_{\lambda}$.

Purdue University,
Lafayette, Ind.

[^0]: Presented to the Society, April 16, 1948, and October 30, 1948, under the titles Finite abelian group algebras, I and II; received by the editors September 22, 1948 and, in revised form, April 29, 1949.
 ${ }^{(1)}$ Proposed by R. M. Thrall at the Michigan Algebra Conference in the summer of 1947.

[^1]: $\left.{ }^{(2}\right)$ A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, New York, 1945, p. 179.
 $\left.{ }^{(3}\right)$ A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publications, vol. 24, New York, 1939, p. 31.
 ${ }^{4}$) Ibid.
 ${ }^{(5)}$ The authors are indebted to the referees for the simple approach to Theorem 1 which has been presented here.

[^2]: $\left.{ }^{(}{ }^{6}\right)$ A. A. Albert, Modern higher algebra, Chicago, 1937, p. 188, Theorem 21. The desired result is obtained by repeated application of this reference theorem.
 ${ }^{(7)}$ Robert Fricke, Lehrbuch der Algebra, vol. 3, Braunschweig, 1928, p. 205.

[^3]: (8.) G. A. Miller, Number of the sub-groups of any abelian group, Proc. Nat. Acad. Sci. U. S. A. vol. 25 (1939) pp. 256-262; see also Yenchien Yeh, On prime power abelian groups, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 323-327.

