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Abelian Hurwitz–Hodge Integrals

P. Johnson, R. Pandharipande, & H.-H. Tseng

0. Introduction

0.1. Moduli of Covers

Let Mg,n be the moduli space of nonsingular, connected, genus-g curves over C

with n distinct points. LetG be a finite group. Given an element [C,p1, . . . ,pn]∈
Mg,n, we will consider principal G-bundles,

G �� P

π

��

C \ {p1, . . . ,pn},
(1)

over the punctured curve. Denote the G-action on the fibers of π by

τ : G× P → P.

The monodromy defined by a positively oriented loop around the ith puncture de-
termines a conjugacy class γi ∈ Conj(G). Let γ = (γ1, . . . , γn) be the n-tuple of
monodromies. The moduli space of covers Ag,γ(G) parameterizesG-bundles (1)
with the prescribed monodromy conditions. There is a canonical morphism

ε : Ag,γ(G)→ Mg,n

obtained from the base of theG-bundle. Both Ag,γ(G) and Mg,n are nonsingular
Deligne–Mumford stacks.

A compactification Ag,γ(G) ⊂ Ag,γ(G) by admissible covers was introduced
by Harris and Mumford in [18]. An admissible cover

[π, τ ]∈Ag,γ(G)

is a degree-|G| finite map of complete curves

π : D→ (C,p1, . . . ,pn)

together with a G-action
τ : G×D→ D

on the fibers of π satisfying the following properties:
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(i) D is a possibly disconnected nodal curve;
(ii) [C,p1, . . . ,pn]∈Mg,n is a stable curve;

(iii) π maps the nonsingular points to nonsingular points and nodes to nodes,

π(Dns) ⊂ C ns and π(D sing) ⊂ C sing;
(iv) [π, τ ] restricts to a principalG-bundle over the punctured nonsingular locus

πopen : Dopen → C ns \ {p1, . . . ,pn}
with monodromy γ ;

(v) distinct branches of a node η ∈D sing map to distinct branches of π(η)∈C sing

with equal ramification orders over π(η); and
(vi) the monodromies of the G-bundle πopen determined by the two branches of

C at η ∈C sing lie in opposite conjugacy classes.

Harris and Mumford originally considered only symmetric group�d monodromy,
but the natural setting for the construction is for all finite G.

An admissible cover may be alternatively viewed as a principal G-bundle over
the stack quotient [D/G] inducing a stable map to the classifying space

f : [D/G] → BG. (2)

(Note that [D/G] differs from C only by possible stack structure at the markings
pi and the nodes; in both cases, the order of the isotropy group is the order of the
local monodromy in G.) Then, Ag,γ(G) is simply a moduli space of stable maps
[2; 7],

Ag,γ(G) ∼= Mg,γ(BG)
(we do not trivialize the marked gerbes on the domain in the definition of
Mg,γ(BG)). The deformation theory of stable maps endows Ag,γ(G) with a
canonical nonsingular Deligne–Mumford stack structure. We take the stable maps
perspective here.

There are two flavors of such stable map theories. If the base C is required to
be connected as just described, we write M◦

g,γ(BG); if disconnected bases C are
allowed, we write M•

g,γ(BG). In the disconnected case, the genus g may be neg-
ative. If the superscript is omitted, the connected case is assumed.

Our results are restricted to abelian groups G. Here, Conj(G) is the set of ele-
ments of G. Of course, the cyclic groups Za will play the most important role.
WhenG is trivial, there is no extra monodromy data and the moduli space of maps
Mg,(0,...,0)(BZ1) specializes to Mg,n.

0.2. Hodge Integrals

LetR be an irreducible C-representation ofG. IfG is abelian, thenR is a character

φR : G→ C∗.

By associating to each map [f ] ∈Mg,γ(G) (as in (2)) the R-summand of the G-
representation H 0(D,ωD), we obtain a vector bundle



Abelian Hurwitz–Hodge Integrals 173

ER → Mg,γ(BG).
The rank of ER is locally constant and determined by the orbifold Riemann–Roch
formula discussed in Section1. The Hodge classes on Mg,γ(BG) are Chern classes
of ER,

λRi = ci(ER)∈H 2i(Mg,γ(BG), Q).
The ith cotangent line bundle Li on the moduli space of curves has fiber

Li |(C,p1,...,pn) = T ∗
pi
(C).

Descendent classes on Mg,n are defined by

ψi = c1(Li)∈H 2(Mg,n, Q).

Descendent classes ψ̄i on the space of stable maps are defined by pull-back via
the morphism

ε : Mg,γ(BG)→ Mg,n

to the moduli space of curves,

ψ̄i = ε∗(ψi)∈H 2(Mg,γ(BG), Q).
The Hodge integrals over Mg,γ(BG) are the top intersection products of the

classes {λRi }R∈Irr(G) and {ψ̄j}1≤j≤n. Linear Hodge integrals are of the form∫
Mg,γ (BG)

λRi ·
n∏
j=1

ψ̄
mj
j .

The term Hurwitz–Hodge integral was used in [4] to emphasize the role of the
covering spaces. See [3; 6; 8; 29] for further developments.

0.3. Hurwitz Numbers

Let g be a genus and let ν and µ be two (unordered) partitions of d ≥ 1. Let #(ν)
and #(µ) denote the lengths of the respective partitions. A Hurwitz cover of P1 of
genus g with ramifications ν and µ over 0,∞∈ P1 is a morphism

π : C → P1

satisfying the following properties:

(i) C is a nonsingular, connected, genus-g curve;
(ii) the divisors π−1(0),π−1(∞) ⊂ C have profiles equal to the partitions ν and

µ, respectively;
(iii) the map π is simply ramified over C∗ = P1 \ {0,∞}.
By condition (ii), the degree of π must be d. Two covers

π : C → P1, π ′ : C ′ → P1

are isomorphic if there exists an isomorphism of curves φ : C → C ′ satisfying
π ′ �φ = π. Each cover π has a naturally associated automorphism group Aut(π).



174 P. Johnson, R. Pandharipande, & H.-H. Tseng

By the Riemann–Hurwitz formula, the number of simple ramification points of
π over C∗ is

rg(ν,µ) = 2g − 2 + #(ν)+ #(µ).
Let Ur ⊂ C∗ be a fixed set of rg(ν,µ) distinct points. The set of rg(ν,µ)th roots of
unity is the standard choice. The double Hurwitz number Hg(ν,µ) is a weighted
count of the distinct Hurwitz covers π of genus g with ramifications ν and µ
over 0,∞∈ P1 and simple ramification over Ur. Each such cover is weighted by
1/|Aut(π)|. The count Hg(ν,µ) does not depend upon the location of the points
of Ur.

There are two flavors of Hurwitz numbers. The connected case defined pre-
viously will be denoted H ◦

g (ν,µ); if C is allowed to be disconnected, then the
Hurwitz count is denoted H •

g (ν,µ). Again, the absence of a superscript indicates
the connected theory.

Disconnected Hurwitz numbers are easily expressed as products in the center
Z�d of the group algebra of �d ,

H •
g (ν,µ) =

1

d!
(CνT

rg(ν,µ)Cµ)[Id]. (3)

Here,Cν andCµ are the sums in the group algebra of all elements of �d with cycle
types ν and µ (respectively) and T is the sum of all transpositions. The subscript
denotes the coefficient of the identity [Id].

Multiplication in Z�d is diagonalized by the representation basis. Hurwitz
numbers can be written as sums over characters of �d and conveniently expressed
as matrix elements in the infinite wedge representation. The latter formalism nat-
urally connects Hurwitz numbers to integrable systems [23; 26; 27].

0.4. Formula for Za

The formula for linear Hodge integrals is simplest when the monodromy group is
Za and the representation U is given by

φU : Za → C∗, φU(1) = e2πi/a.

Let γ = (γ1, . . . , γn) be a vector of nontrivial elements of Za ,

γi ∈ {1, . . . , a − 1}
(the length n may be taken to be 0, in which case γ = ∅). Let µ be a partition of
d ≥ 1 with parts µj and length #,

#∑
j=1

µj = d.

Let γ − µ denote the vector of elements of Za defined by

γ − µ = (γ1, . . . , γn,−µ1, . . . ,−µ#).
Whereas the parts of µ are unordered, an ordering is chosen for γ −µ. The vector
γ −µmay contain trivial parts. We will consider Hodge integrals over the moduli
space Mg,γ−µ(BZa).
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For nonemptiness, the parity condition

d −
n∑
i=1

γi = 0 modulo a (4)

is required. Nonnegativity,

d −
n∑
i=1

γi ≥ 0,

and boundedness,
γi + γj ≤ a ∀i �= j,

will also be imposed. If γ = ∅, then nonnegativity and boundedness are satisfied.
An automorphism of a partition is an element of the permutation group preserv-

ing equal parts. Let |Aut(γ )| and |Aut(µ)| denote the orders of the automorphism
groups. (Here, γ is considered as a partition by forgetting the ordering of the ele-
ments.) Let γ+ be the partition of d determined by adjoining

(
d − ∑n

i=1 γi
)
/a

parts of size a,
γ+ = (γ1, . . . , γn, a, . . . , a).

A calculation then shows that

rg(γ+ ,µ) = 2g − 2 + n+ #+ d

a
−

n∑
i=1

γi

a
.

Let the monodromy group Za and the representation φU be specified as before.
Our main result for linear Za-Hodge integrals is the following formula.

Theorem 1. Let γ = (γ1, . . . , γn) be nontrivial monodromies in Za satisfying
the parity, nonnegativity, and boundedness conditions with respect to the parti-
tion µ. Then

Hg(γ+ ,µ) = rg(γ+ ,µ)!

|Aut(γ )||Aut(µ)|a
1−g−∑n

i=1
γi
a
+∑#

j=1〈 µj

a 〉

·
#∏
j=1

µ
�µj

a �
j⌊
µj

a

⌋
!

∫
Mg,γ−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
.

In this equation, the integer and fractional parts of a rational number are denoted by

q = �q� + 〈q〉, q ∈Q.

The cotangent lines in the denominator on the far right are associated to the stack
points of the stable map domain corresponding to the parts of µ.

Theorem 1 is proved by virtual localization on the moduli space of stable maps
to the stack P1[a] with Za-structure at 0, following the arguments of [12; 16]. Non-
negativity and boundedness are used to control bubbling of the domain curve over
0. The space of stable maps to P1[a] is discussed in Section 1, and the proof is
given in Section 2. The formula is easily seen to determine all linear Za-Hodge
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integrals with respect to U in terms of double Hurwitz numbers. In fact, the set of
evaluations with γ = ∅ is sufficient. Conversely, every double Hurwitz number
is realized for a sufficiently large.

For the disconnected formula, we assume γ = ∅ and the parity condition d = 0
(mod a). (If γ �= ∅, then the nonnegativity condition may be satisfied globally
yet violated on connected components.) Now Theorem 1 holds in exactly the
same form:

H •
g (∅+ ,µ)

= rg(∅+ ,µ)!

|Aut(µ)| a
1−g+∑#

j=1〈 µj

a 〉
#∏
j=1

µ
�µj

a �
j⌊µj
a

⌋
!

∫
M•

g,−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
. (5)

The ELSV formula [9] for linear Hodge integrals on the moduli space of curves
arises from the a = 1 specialization of Theorem 1,

Hg(µ) = (2g − 2 + d + #)!
|Aut(µ)|

#∏
j=1

µ
µj
j

µj!

∫
Mg,#

∑g

i=0(−1)iλi∏#
j=1(1 − µjψj )

.

For a = 1, we must have γ = ∅.
The conditions γ allow for greater freedom in the a > 1 case. For example,

the proof of Theorem 1 yields a remarkable vanishing property. The monodromy
conditions γ satisfy negativity if

d −
n∑
i=1

γi < 0

and satisfy strong negativity if

d − n− d − ∑n
i=1 γi

a
< 0.

Strong negativity is easily seen to imply negativity.

Theorem 2. Let γ = (γ1, . . . , γn) be nontrivial monodromies in Za satisfying
the parity condition with respect to the partition µ. In addition, let γ satisfy at
least one of the following two conditions:

(i) negativity and boundedness; or
(ii) strong negativity.

Then, a vanishing result for Hurwitz–Hodge integrals holds:∫
Mg,γ−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
= 0.

A few examples of Theorems 1 and 2 for which alternative approaches to the inte-
grals are available are presented in Section 3.
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0.5. Abelian G

Since any faithful representationR of Za differs fromU by an automorphism of Za ,
Theorem 1 determines linear Hodge integrals with respect to R. Representations
of Za with kernels require an additional analysis.

Let G be an abelian group with group law written additively. Consider an irre-
ducible representation R,

φR : G→ C∗,
with associated exact sequence

0 −→ K −→ G
φR−→ Im(φR) ∼= Za −→ 0. (6)

The homomorphism φR induces a canonical morphism

ρ : Mg,γ(BG)→ Mg,φR(γ )(BZa).

The morphism ρ satisfies
ρ∗(λUi ) = λRi

and has the same degree over each component of Mg,φR(γ )(BZa). Therefore, lin-
ear Hodge integrals with respect toR can be calculated by multiplying the formula
of Theorem 1 by the degree of ρ.

In Section 4, the solution for arbitraryG and R is cast in a more appealing way.
When

φR(γ ) = −µ∈Za ,

Hodge integrals of the form∫
Mg,γ (BG)

∑∞
i=0(−a)iλRi∏#

j=1(1 − µjψ̄j )
are expressed in terms of Hurwitz numbers for Kd , the wreath product of K with
the symmetric group �d. Since the infinite wedge formalism for �d extends to a
Fock space formalism for the wreath product Kd , there is again a connection to
integrable systems [28].

Conjugacy classes in Kd are indexed by Conj(K)-weighted partitions of d,

µ̄ = {(µ1, κ1), . . . , (µ#(µ), κ#(µ))}.
Here, µ is a partition of d with parts µj , the weights κi ∈ Conj(K) are conjugacy
classes in K, and µ̄ is an unordered set of pairs. Let Aut(µ̄) denote the automor-
phism group of µ̄. Let Cµ̄ ∈ZKd be the element of the group algebra associated
to the conjugacy class µ̄. The transposition element T ∈ZKd is associated to the
conjugacy class of Kd indexed by

τ̄ = {(2, 0), (1, 0), . . . , (1, 0)},
where all the Conj(K)-weights are 0.
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The wreath product Kd has a forgetful map to �d that sends elements of cycle
type µ̄ to elements of type µ. The Kd -Hurwitz number Hg,K(ν̄, µ̄) counts the de-
gree d|K|-fold covers of P1 with monodromy in Kd given by ν̄ and µ̄ at 0,∞∈
P1 and by τ̄ at all the points of

Urg(ν,µ) ⊂ P1.

Because K ⊂ Kd is contained in the center, any such cover has a canonical K-
action that defines aK-bundle over a punctured Hurwitz cover counted byHg(ν,µ).
The connectivity requirement we place on covers counted byHg,K(ν̄, µ̄) is not that
the d|K|-fold cover be connected but only that the associated Hurwitz d-fold cover
be connected. Similarly, g is the genus of the d-fold cover.

The natural extension of formula (3) to disconnected Hurwitz covers for the
wreath product Kd is

H •
g,K(ν̄, µ̄) =

1

|Kd | (Cν̄T
rg(ν,µ)Cµ̄)[Id],

where the product on the right takes place in the group algebra of Kd.
Select an element x ∈G with φR(x) = 1. Let k = ax ∈K. Denote by −µ̄ the

#(µ)-tuple of elements of G defined by

−µ̄ = (κ1 − µ1x, κ2 − µ2x, . . . , κ#(µ) − µ#(µ) x).
Although the parts of µ̄ are unordered, an ordering is chosen for −µ̄. The parity
condition is now

#∑
j=1

κj − µj x = 0∈G.

Denote by ∅+(k) the conjugacy class given by

∅+(k) = {(a,−k), . . . , (a,−k)︸ ︷︷ ︸
d/a times

}.

Theorem 3. For weighted partitions µ̄ satisfying the parity condition, we have

Hg,K(∅+(k), µ̄)

= rg(∅+ ,µ)!

|Aut(µ̄)| a
1−g+∑#

j=1〈 µj

a 〉
#∏
j=1

µ
�µj

a �
j⌊µj
a

⌋
!

∫
Mg,−µ̄(BG)

∑∞
i=0(−a)iλRi∏#

j=1(1 − µjψ̄j )
.

Theorem 3 determines all linear Hurwitz–Hodge integrals for G and holds in ex-
actly the same form for the disconnected theoriesH •

g,K(∅+(k), µ̄) andM•
g,−µ̄(BG).

0.6. Future Directions

The ELSV formula has two immediate applications in Gromov–Witten theory.
The first is the determination of descendent integrals over Mg,n via asymptotics
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to remove the Hodge classes [21; 26]. The second is the exact evaluation of the
vertex integrals in the localization formula for P1 [24; 25]. The latter requires the
Hodge classes.

Since ε : Mg,γ(BG)→ Mg,n is a finite map, a geometric approach to the de-
scendent integrals is not strictly necessary [19]. However, for the calculation of the
Gromov–Witten theory of target curves with orbifold structure [20], Theorem 3 is
essential. The results may be viewed as a first step for orbifolds along the success-
ful line of exact Hodge integral formulas that have culminated in the topological
and equivariant vertices in ordinary Gromov–Witten theory.

Hurwitz–Hodge integrals can be viewed as pairings of tautological classes

ε∗(λRi )∈H 2i(Mg,n, Q)

against the descendents ψi. Given an action

α : G× {1, . . . , k} → {1, . . . , k}
on a set with k elements, there is a second map to the moduli space of curves. Let

C → Mg,γ(BG) and D → C
be (respectively) the universal domain curve and the universal G-bundle. A sec-
ond universal curve,

Dα = D ×G {1, . . . , k} → Mg,γ(BG),
is obtained by the mixing construction. We obtain

εα : Mg,γ(BG)→ Mgα,nα ,

where gα and nα are the genus and the number of distinguished sections (for which
we suppress the ordering issues) of the universal curve Dα. Two questions imme-
diately arise.

(i) Do the classes εα∗ (λRi ) lie in the tautological ring of Mgα,nα?
(ii) Do the pairings of εα∗ (λRi ) against the descendents of Mgα,nα admit simple

evaluations?

The answer to (i) is known [15] to be false for g = 1, but it may be true for g = 0.
See [11] for positive results related to (i) for the standard action of the symmetric
group �k in the case g = 0.
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1. Stable Relative Maps

1.1. Definitions

For a ≥ 1, let P1[a] be the projective line with a single stack point of order a at 0.
Let

〈ζa〉 ⊂ C∗, ζa = e2πi/a,

be the group of ath roots of unity. Locally at 0, P1[a] is the quotient stack C/〈ζa〉.
Alternatively, P1[a] is the ath-root stack of P1 along the divisor 0.

Let Mg,γ(P
1[a],µ) be the stack of stable relative maps to (P1[a],∞), where

γ = (γ1, . . . , γn) is a vector of nontrivial elements

1 ≤ γi ≤ a − 1, γi ∈Za ,

and µ is a partition of d ≥ 1 with parts µj and length #. The moduli space param-
eterizes maps

[f : (C,p1, . . . ,pn)→ P1[a]]∈Mg,γ(P
1[a],µ),

for which

(i) the domainC is a nodal curve of genus g with stack structure at pi determined
by γi and

(ii) relative conditions over ∞∈ P1[a] are given by the partition µ.

The isotropy group of pi ∈ C is the subgroup of Za generated by γi. Let ai de-
note the order of γi. The domain C, called a twisted curve, may have additional
stack structure at the nodes (see [2]).

We recall the Riemann–Roch formula for twisted curves (cf. [1, Thm. 7.2.1]).
LetC be a twisted curve whose nonsingular stack points are p1, . . . ,pn with cyclic
isotropy groups I1, . . . , In. The group Ii is identified with the ai th roots of unity
via the action on TpiC,

Ii
∼−→〈ζai〉 ⊂ C∗, ζai = e2πi/ai.

Let E be a locally free sheaf over the stack C. Then Ii acts on the restriction E|pi .
Let

E|pi =
⊕

0≤s≤ai−1

V ⊕es
s

be the direct sum decomposition, whereVs is the irreducible representation of Zai
associated to the character

φs : Ii → C∗, φs(ζai ) = ζ sai .
The age of E at pi is defined by

agepi(E) =
∑

0≤s≤ai−1

es
s

ai
.

The Riemann–Roch formula for twisted curves is given as follows:
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χ(C,E) = rk(E)(1 − g)+ deg(E)−
n∑
i=1

agepi(E). (7)

The virtual dimension of Mg,γ(P
1[a],µ) is calculated by the Riemann–Roch

formula (7). Let

[f : (C,p1, . . . ,pn)→ P1[a]]∈Mg,γ(P
1[a],µ).

Certainly, deg(f ∗TP1[a](−∞)) = d/a. By the quotient presentation of P1[a], the
character of f ∗T0,P1[a] at pi is

ζai  → ζ γi ai/aai
= ζ γia .

Therefore, agepi(f
∗TP1[a](−∞)) = γi/a and

vdim Mg,γ(P
1[a],µ) = 3g − 3 + n+ #+ χ(C, f ∗TP1[a](−∞))

= 3g − 3 + n+ #+ 1− g + d

a
−

n∑
i=1

γi

a

= 2g − 2 + n+ #+ d

a
−

n∑
i=1

γi

a
.

To simplify notation, let r denote this virtual dimension. Since r must be an in-
teger, Mg,γ(P

1[a],µ) is empty unless the parity condition d = ∑n
i=1 γi (mod a)

holds.

1.2. Hurwitz Numbers

We now impose the nonnegativity condition,

d −
n∑
i=1

γi ≥ 0.

Let Hg,a(γ,µ) denote the weighted count of degree-d representable maps from
nonsingular, connected, genus-g twisted curves with stack points of type γ to
P1[a] with profile µ over ∞ and with simple ramification over r fixed points in
P1[a] \ {0,∞}.
Lemma 1. Hg,a(γ,µ) is well-defined and equal to |Aut(γ )| ·Hg(γ+ ,µ).

Given a stack map [f : C → P1[a]]∈Mg,γ(P
1[a],µ) satisfying the simple ram-

ification condition over the r points, the associated coarse map

f c : Cc → P1

is a usual Hurwitz covering counted by Hg(γ+ ,µ). The representability condi-
tion implies that the point pi has ramification profile γi over 0 for the coarse map.
Conversely, we have the following result.

Lemma 2. LetCc be a nonsingular curve and let f c : Cc → P1 be a nonconstant
map. Then there is a unique (up to isomorphism) twisted curve (C,p1, . . . ,pm)
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and a representable morphism f : C → P1[a] whose induced map between coarse
curves is f c.

Proof. Since the natural map P1[a] → P1 is an isomorphism over P1[a] \ [0/Za],
we may consider the composite

Cc \ (f c)−1(0)
f c−→ P1 \ {0} ∼−→P1[a] \ {[0/Za]} ⊂ P1[a].

The lemma follows once we apply [2, Lemma 7.2.6].

To proceed, we need to identify the ramification profile of f c over 0. Since P1[a]
is a root stack, we may use the classification results on maps to root stacks proven
in [5]. According to [5, Thm. 3.3.6], maps considered in our stack Hurwitz prob-
lem are in bijective correspondence with maps f c : Cc → P1 from a coarse curve
Cc satisfying

(f c)∗ [0] =
n∑
i=1

γi[p̄i] + aD, (8)

where p̄1, . . . , p̄n ∈ Cc are distinct points and D ⊂ Cc is a divisor consisting of(
d − ∑n

i=1 γi
)
/a additional distinct points.

The proof of Lemma 1 is now complete. The factor |Aut(γ )| occurs because
the stack points of C are labeled whereas the corresponding ramification points on
the Hurwitz covers enumerated by Hg(γ+ ,µ) are not.

1.3. Branch Maps

There exists a basic branch morphism for stable maps,

br : Mg(P
1,µ)→ Sym2g−2+d+#(P1),

constructed in [12]. By composing with the coarsening map, we obtain

br : Mg,γ(P
1[a],µ)→ Sym2g−2+d+#(P1).

To proceed, we impose the boundedness condition,

γi + γj ≤ a ∀i �= j.
Lemma 3. If the parity, nonnegativity, and boundedness conditions are satisfied,
then

Im(br) ⊂
(
d − n− d − ∑n

i=1 γi

a

)
[0] + Symr(P1) ⊂ Sym2g−2+d+#(P1).

Proof. Let f : C → P1[a] be a Hurwitz cover counted by Hg,a(γ,µ). The
expression

E = d − n− d − ∑n
i=1 γi

a
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is the order of [0] in br([f ]). The claim of the lemma is simply that the minimum
order of [0] in br(f ) is achieved at such Hurwitz covers f.

The proof requires checking all possible degenerations of f over 0. If the stack
points p1, . . . ,pn do not bubble off the domain, then the claim follows easily as in
the coarse case. We leave the details to the reader.

A more interesting calculus is encountered if a subset of stack points p1, . . . ,pl
bubbles off the domain together over [0/Za]∈ P1[a]. We perform the analysis for
a single bubble. We can assume the bubble is of genus 0 because higher genus
increases the branching order. The multi-bubble calculation is identical.

The genus-0 bubble is attached to the rest of the curve inm stack points of type

δ1, . . . , δm ∈Za , 1 ≤ δj ≤ a,

on the noncollapsed side. The parity condition,

l∑
i=1

γi −
m∑
j=1

δj = ka, (9)

must be satisfied with k ∈Z.

The branch contribution over 0 of the bubbled map is at least

E ′ =
n∑

i=l+1

(γi − 1)+
m∑
j=1

(δj − 1)+ 2m− 2 + d −
∑n

i=l+1 γi −
∑m
j=1 δj

a
(a− 1).

All the terms on the right are obtained from the ramifications on the noncollapsed
side except for the 2m from them nodes of the bubble and the −2 from the bubble
itself; see [12]. Rewriting while using the parity condition (9), we find that

E ′ = E + l +m− 2 − k.
By connectedness and bubble stability, we have

m ≥ 1, l +m ≥ 3.

If k ≤ 0, we conclude that E ′ > E. If k ≥ 0, then k ≤ l − 2 by the boundedness
condition and the positivity of δ1. Again, E ′ > E.

By Lemma 3, we may view the branch map with restricted image,

br0 : Mg,γ(P
1[a],µ)→ Symr(P1).

The proof of Lemma 3 shows that the maps f : C → P1[a] satisfying [0] /∈
br0(f ) have no contraction over 0 and coarse profile exactly γ+. Nonsingularity
and Bertini arguments [12] then imply the following result.

Lemma 4. If the parity, nonnegativity, and boundedness conditions are satisfied,
then

Hg,a(γ,µ) =
∫

[Mg,γ (P1[a],µ)]vir
br∗0(H

r ),

where H ∈H 2(Symr(P1), Q) is the hyperplane class.
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2. Localization

2.1. Fixed Loci

The standard C∗-action on P1, defined by ξ · [z0, z1] = [z0, ξz1], lifts canonically
to C∗-actions on P1[a] and Mg,γ(P

1[a],µ). We will evaluate the integral∫
[Mg,γ (P1[a],µ)]vir

br∗0(H
r ) (10)

by virtual localization for relative maps [14, 17] following [12; 16]. We assume the
parity, nonnegativity, and boundedness conditions.

The first step is to define a lift of the C∗-action to the integrand. Certainly the
C∗-action lifts canonically to Symr(P1). A lift of H r can be defined by choosing
the C∗-fixed point r[0] ∈ Symr(P1). The tangent weights at [0/Za],∞ ∈ P1[a]
are t/a and −t , respectively. The equivariant Euler class of the normal bundle to
r[0] in Symr(P1) has weight r! t r.

The second step is to identify the C∗-fixed locus

Mg,γ(P
1[a],µ)C

∗ ⊂ Mg,γ(P
1[a],µ).

The components of the C∗-fixed locus lie over the r +1 points of Symr(P1)C
∗
. By

our lifting of H r, we need only consider

MC∗
0 = Mg,γ(P

1[a],µ)C
∗ ∩ br−1

0 (r[0]).

Because of the strong restriction on the branching, the maps

[f : C → P1[a]]∈MC∗
0

have a simple structure:

(i) C = C0 ∪ ∐#
j=1Cj ;

(ii) f |C0 is a constant map from a genus-g curve to [0/Za]∈ P1[a];
(iii) the coarse map f c|Cj : Ccj → P1 is a C∗-fixed Galois cover of degree µj for

j > 0; and
(iv) C0 meets Cj at a node qj .

The stack structure at qj ∈Cj is easily determined using the relationship (discussed
in Section1.2) between stack Hurwitz covers of P1[a] and ordinary Hurwitz covers
of P1. The stack structure at qj ∈ Cj is of type µj ∈ Za. The stack structure at
qj ∈C0 where Cj is attached is of the opposite type: −µj ∈Za. The map

f |C0 : (C,p1, . . . ,pn, q1, . . . , q#)→ [0/Za]

is an element of Mg,γ−µ(BZa).

The C∗-fixed locus may be identified with a quotient of a fibered product,

MC∗
0

∼= (Mg,γ−µ(BZa)×(ĪBZ#a)
P1 × · · · × P#)/Aut(µ),

where ĪBZa is the rigidified inertia stack of BZa and Pj is the moduli stack of
C∗-fixed Galois covers of degree µj . By the standard multiplicity obtained from
gluing stack Za-bundles, the projection
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MC∗
0 → (Mg,γ−µ(BZa)× P1 × · · · × P#)/Aut(µ) (11)

has degree
∏#
j=1

a
bj

, where bj is the order of µj ∈Za.

Fortunately, the residue integral over MC∗
0 in the virtual localization formula

for (10) is pulled back via (11). Instead of integrating over MC∗
0 , we will integrate

over
M̃C∗

0 = Mg,γ−µ(BZa)× P1 × · · · × P#
and multiply by

1

|Aut(µ)|
#∏
j=1

a

bj
.

2.2. Virtual Normal Bundle

With our choice of equivariant lifts, the virtual localization formula for (10) takes
the following form:∫

[Mg,γ (P1[a],µ)]vir
br∗0(H

r ) = 1

|Aut(µ)|
#∏
j=1

a

bj

∫
M̃C∗

0

r! t r

e(Normvir )
. (12)

The equivariant Euler class of the virtual normal bundle is

1

e(Normvir )
= e(H1(C, f ∗TP1[a](−∞)))
e(H 0(C, f ∗TP1[a](−∞)))

1∏#
j=1 e(Nj )

; (13)

see [14]. The last product is over the nodes of C, and Nj is the equivariant line
bundle associated to the smoothing of qj . The terms in (13) are computed via the
normalization sequence of the domain C. The various contributions over the com-
ponents C0,C1, . . . ,C# are computed separately.

First consider the collapsed componentC0. The spaceH 0(C0, f |∗C0
TP1[a](−∞))

is identified with the subspace of TP1[a](−∞)|[0/Za ] consisting of vectors invariant
under the action of the image of the monodromy representation πorb

1 (C0)→ Za.

Therefore, H 0 vanishes unless the monodromy representation is trivial, in which
case H 0 is 1-dimensional with weight t/a.

The trivial monodromy representation πorb
1 (C0)→ Za is possible only if γ = ∅

and, for all j,µj = 0 mod a. Even then, the locus with trivial monodromy is just a
component of Mg,(0,...,0)(BZa). (If g > 0 then there will typically be other com-
ponents as well.) The trivial monodromy representation locus will play a slightly
special role throughout the calculation. In the final formula, however, no different
treatment is required.

The space H1(C0, f |∗C0
TP1[a](−∞)) yields the vector bundle

B = (EU)∨
over Mg,γ−µ(BZa), whose rank may be calculated by the orbifold Riemann–Roch
formula. Over the component of the fixed locus where the monodromy represen-
tation πorb

1 (C0)→ Za is trivial, the rank of B is g. Otherwise, the rank is
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rB = g − 1+
n∑
i=1

γi

a
+

∑
µj �=0 mod a

(
1 −

〈
µj

a

〉)
. (14)

The H1 − H 0 contribution from the collapsed component to the localization
formula is

rB∑
i=0

(
t

a

)rB−i
ci(B) =

rB∑
i=0

(
t

a

)rB−i
(−1)iλUi . (15)

For the component where the monodromy representation is trivial, an additional
factor of a/t must be inserted in (15).

Next consider theH1−H 0 contribution from the C∗-fixed Galois covers. Since

deg(f |∗CjTP1[a](−∞)) = µj

a
,

we have

H k(Cj , f |∗CjTP1[a](−∞)) = H k

(
P1, OP1

(⌊
µj

a

⌋))
.

The H 0 weights are
t

µj
, 2
t

µj
, . . . ,

⌊
µj

a

⌋
t

µj
,

where the weight 0 is omitted. (The 0 weight is from reparameterization of the
domain Cj and is not in the virtual normal bundle.) The group H1 vanishes. The
H1 −H 0 contribution is

t−�µj

a �µ
�µj

a �
j⌊µj
a

⌋
!
.

Finally, consider the H1 −H 0 contribution from the nodal point qj . If µj �= 0
(mod a), then qj is a stack point and

H 0(qj , f
∗TP1[a](−∞)|qj ) = 0

as there is no invariant section. Ifµj = 0 (mod a), thenH 0(qj , f ∗TP1[a](−∞)|qj )
is 1-dimensional and contributes a factor t/a. Certainly, H1 vanishes here for di-
mension reasons.

The contribution from smoothing the node qj is the tensor product of the tan-
gent lines of the two branches incident to qj ,

e(Nj ) = 1

bj

(
−ψ̄j + t

µj

)
.

After putting the component calculations together in (13), we obtain the follow-
ing expression for for 1/e(Normvir ):

( rB∑
i=0

(
t

a

)rB−i
(−1)iλUi

)
·
#∏
j=1

(
t−�µj

a �µ
�µj

a �
j⌊µj
a

⌋
!

1
1
bj

(−ψ̄j + t
µj

))
·
#∏
j=1

(
t

a

)δ0,〈µj/a〉
.

Regrouping of terms yields
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∏#
j=1 bjµj

arB+∑#
j=1 δ0,〈µj/a〉


 #∏
j=1

µ
�µj

a �
j⌊µj
a

⌋
!


( rB∑

i=0

t rB−i(−a)iλUi
)

· t−
∑#
j=1�µj

a �
#∏
j=1

t δ0,〈µj/a〉

t − µjψ̄j
. (16)

For the component with trivial monodromy representation, a factor of a/t must be
inserted in the formulas for 1/e(Normvir ).

2.3. Proof of Theorem 1

Putting the calculations of Section 2.2 together and passing to the nonequivariant
limit, we obtain the following evaluation:∫

[Mg,γ (P1[a],µ)]vir
br∗0(H

r ) = r!

|Aut(µ)|
a#

arB+∑#
j=1 δ0,〈µj/a〉

·
#∏
j=1

µ
�µj

a �
j⌊µi
a

⌋
!

∫
Mg,γ−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
.

On the right side, we have included the fundamental class factors
#∏
j=1

1

µj

of the moduli spaces Pj . For the component with trivial monodromy representa-
tion, a factor of a must be inserted in the formula.

We can simplify the integral evaluation by using the calculation (14) of rB,

rB +
#∑
i=1

δ0,〈µj/a〉 − #

= g − 1+
n∑
i=1

γi

a
+

∑
µj �=0 mod a

(
1−

〈µj
a

〉)
+

( ∑
µj=0 mod a

1

)
− #

= g − 1+
n∑
i=1

γi

a
−

#∑
j=1

〈
µj

a

〉
.

This calculation is not valid for the component with trivial monodromy because
rB = g, not g − 1. The discrepancy is exactly fixed by the extra factor a required
for the trivial monodromy case. We conclude that∫

[Mg,γ (P1[a],µ)]vir
br∗0(H

r ) = r!

|Aut(µ)|a
1−g−∑n

i=1
γi
a
+∑#

j=1〈µj

a 〉

·
#∏
j=1

µ
�µj

a �
j⌊µi
a

⌋
!

∫
Mg,γ−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
(17)

holds uniformly. Theorem 1 is then obtained from Lemmas 1 and 4.
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In degenerate cases, unstable integrals may appear on the right side of the formula
in Theorem 1. The unstable integrals come in two forms and are defined by the
localization contributions:∫

M0,(0)(BZa)

∑
i≥0(−a)iλUi
(1 − xψ̄1)

= 1

a
· 1

x 2
;

∫
M0,(m,−m)(BZa)

∑
i≥0(−a)iλUi

(1 − xψ̄1)(1 − yψ̄2)
= 1

a
· 1

x + y .

With these definitions, Theorem 1 holds in all cases.
The disconnected formula (5) follows easily from the connected case by the

usual combinatorics of distributing ramification points to the components of Hur-
witz covers.

2.4. Proof of Theorem 2

Suppose γ satisfies the parity and strong negativity condition with respect to µ.
Since

δ = d − n− d − ∑n
i=1 γi

a
< 0,

the virtual dimension r of Mg,γ(P
1[a],µ) is greater than 2g − 2 + d + #. As a

consequence, we immediately obtain the vanishing∫
[Mg,γ (P1[a],µ)]vir

br∗(H r ) = 0, (18)

since H r = 0∈H ∗(Sym2g−2+d+#(P1), Q).
We may nevertheless calculate (18) by localization with the lift

H r = (2g − 2 + d + #)[0] · t−δ,
which does not vanish equivariantly. The analysis is identical to the calculations
of Sections 2.1–2.3. We find that the integral (18) is proportional (with nonzero
factor) to ∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)iλUi∏#

j=1(1 − µjψ̄j )
and therefore conclude the vanishing.

Assume now that strong negativity does not hold but that γ satisfies the parity,
negativity, and boundedness condition. By the proof of Lemma 3, we can use the
boundedness condition to show that the maps

f : C → P1[a]

satisfying [0] /∈ br0(f ) have no contraction over 0 and coarse profile determined
by γ. By the negativity condition, no such maps exists; hence [0] is always in
br0(f ). Therefore, ∫

[Mg,γ (P1[a],µ)]vir
br∗0(H

r ) = 0

and we conclude as before.
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3. Examples

3.1. Z2 Example

The Hodge bundle EU has a simple interpretation in the Z2 case. Let

C → Mg,γ(BZ2) and D → C
be (respectively) the universal domain curve and the universal Z2-bundle. Let

ε : Mg,γ(BZ2)→ Mg and ε̃ : Mg,γ(BZ2)→ Mg−1+n/2

be the maps to moduli obtained from C and D, respectively. The exact sequence

0 −→ ε∗(Eg) −→ ε̃∗(Eg−1+n/2) −→ EU → 0

then exhibits EU as the K-theoretic difference of the pulled-back Hodge bundles.
If g = 0, then the situation is even simpler:

EU ∼= ε̃∗(Eg−1+n/2) (19)

(the map ε is not well-defined here for stability reasons).
Consider the case of Theorem 1 when g = 0, γ = (1, 1), and µ = (1, 1). The

statement is

H0((1, 1), (1, 1)) = 2

2! 2!
21

∫
M0,(1,1,1,1)(BZ2 )

1− 2λU1
(1 − ψ̄1)(1 − ψ̄2)

.

The double Hurwitz number on the left is 1
2 . Expansion of the right side yields∫

M0,(1,1,1,1)(BZ2 )

1− 2λU1
(1 − ψ̄1)(1 − ψ̄2)

= 1

2

∫
M0,4

1

(1 − ψ1)(1 − ψ2)
− 2

∫
M0,(1,1,1,1)(BZ2 )

λU1

= 1− 2
∫

M0,(1,1,1,1)(BZ2 )

λU1 .

To evaluate the last integral, we observe that the map

ε̃ : M0,(1,1,1,1)(BZ2)→ M1,1,

where the first branch point is selected for the marking on the elliptic curve, is of
degree 6. Moreover, λU1 is the pull-back of λ1 under ε̃ by (19). Hence,

1− 2
∫

M0,(1,1,1,1)(BZ2 )

λU1 = 1− 2 · 6 · 1

24
= 1

2
.

3.2. Vanishing Example

The simplest example of the vanishing of Theorem 2 occurs for Z2. Let g = 0,

γ = (1, . . . ,1︸ ︷︷ ︸
n

),
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and µ = (1). By the parity condition, nmust be odd. Boundedness holds. For the
negativity condition, we require n ≥ 2. By Theorem 2(i),∫

M0,γ−µ(BZ2 )

∑
i≥0(−2)iλUi
1− ψ̄1

vanishes for all odd n ≥ 3.
We now use the identification of λUi with the Chern classes of the Hodge bundle

ε̃∗(E n−1
2
), whose fiber over

f : [D/Z2 ] → BZ2

is simply given by the space of differential forms on the genus- n−1
2 curve D. The

Chern roots of ε̃∗(E n−1
2
) can be identified by the vanishing sequence at a Weier-

strass point of D. The Weierstrass point can be chosen to lie above the mark-
ing corresponding to the single part of µ. The Chern roots of ε̃∗(E n−1

2
) are then

L, 3L, . . . , (n−2)L, whereL is the Chern class of the cotangent line of the Weier-
strass point. The class L on M0,γ−µ(BZ2) is 1

2 ψ̄1. Expanding the Chern roots,
we find that∫

M0,γ−µ(BZ2 )

∑
i≥0(−2)iλUi
1− ψ̄1

=
∫

M0,γ−µ(BZ2 )

∏ n−1
2
i=1(1 − (2i − 1)ψ̄1)

(1 − ψ̄1)

=
∫

M0,γ−µ(BZ2 )

n−1
2∏
i=2

(1 − (2i − 1)ψ̄1)

= 0,

where the last integral vanishes for dimension reasons.

3.3. Z∞ Example

An interesting feature of Theorem 1 is the possibility of studying the behavior for
large a. Let γ = (γ1, . . . , γn) determine a partition of d,

d =
n∑
i=1

γi.

Let µ = (d ) consist of a single part. For a > d, the rank of the Hodge bundle

EU → M0,γ−µ(BZa)

is 0 by (14). Since the parity, nonnegativity, and boundedness conditions hold for
a > d, we may apply Theorem 1 to conclude that

H0(γ, (d )) = (n− 1)!

|Aut(γ )| a
∫

M0,γ−µ(BZa)

1

1− dψ̄1

= (n− 1)!

|Aut(γ )| d
n−2,

which is a well-known formula for genus-0 double Hurwitz numbers.
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3.4. 1-point Series

For µ = (d ) consisting of a single part, the entire generating series for double
Hurwitz numbers was computed in [13] as

∑
g≥0

t 2g(−1)gHg(ν, (d )) = r! dr−1

|Aut(ν)|
∏
k≥1

(
sin(kt/2)

kt/2

)mk(ν)−δk,1
, (20)

where r = rg(ν, (d )) and mk(ν) is the number of times k appears as a part of ν.
(Note that we write Theorem 3.1 of [13] in terms of sin instead of sinh and di-
vide by |Aut(ν)| since we do not mark ramifications in our definition of Hurwitz
numbers.) Single-part double Hurwitz numbers are considerably simpler because
such covers are automatically connected and the only characters with nonzero
evaluation on the d-cycle are exterior powers of the standard (d− 1)-dimensional
representation.

Let γ = (γ1, . . . , γn) be a vector of nontrivial elements of Za satisfying the
boundedness condition. We will consider degrees d for which the parity and non-
negativity conditions are satisfied. Then

d −
n∑
i=1

γi = ab

for an integer b ≥ 0. Consider the generating series

Fγ(t, z) =
∞∑
g=0

g∑
l=−∞

t 2gzl
∫

Mg,γ−(d )(BZa)

ψ̄
2g−2+#(γ )+l
0 λUg−l ,

where ψ̄0 is the class corresponding to the point with monodromy −d.
The double Hurwitz number formula of Theorem 1 is

Hg(γ+ , (d ))

= r!

|Aut(γ )| a
1−g−∑n

i=1
γi
a
+〈da 〉 d�

d
a�⌊
d
a

⌋
!

·
g∑

l=−∞
dr−b−1+l(−a)g−l

∫
Mg,γ−(d )(BZa)

ψ̄ r−b−1+l
0 λUg−l

= (−1)g
ad r−1r!

(
d
a

)⌊∑
γi
a

⌋
|Aut(γ )|

(
b +

⌊∑
γi

a

⌋)
!

g∑
l=−∞

(−d
a

)l ∫
Mg,γ−(d )(BZa)

ψ̄ r−b−1+l
0 λUg−l

or, equivalently,

∑
g≥0

(−1)gt 2gHg(γ+ , (d )) = adr−1r!

|Aut(γ )|
(
b +

⌊∑
γi

a

⌋)
!

(
d

a

)⌊∑
γi
a

⌋
Fγ

(
t,
−d
a

)
,

where r = rg(γ+ , (d )). After combining with (20), we obtain
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Fγ

(
t,
−d
a

)
= 1

a

(
b +

⌊∑
γi

a

⌋)
!

b!

(
a

d

)⌊∑
γi
a

⌋ ∏
k≥1

(
sin(kt/2)

kt/2

)mk(γ+)−δk,1
(21)

for b ≥ 0.

Theorem 4. Fγ(t, z) equals

1

a

(
−z− ∑ γi

a
+ ∑⌊∑

γi

a

⌋)
!(−z− ∑ γi

a

)
!

(−z)−
⌊∑

γi
a

⌋(
sin(at/2)

at/2

)−z−∑ γi
a

·
∏
k≥1

(
sin(kt/2)

kt/2

)mk(γ )−δk,1
.

Proof. Using the standard polynomial expansion(
−z− ∑ γi

a
+ ∑⌊∑

γi

a

⌋)
!(−z− ∑ γi

a

)
!

=
(
−z−

∑ γi

a
+

∑⌊∑
γi

a

⌋)
· · ·

(
−z−

∑ γi

a
+ 1

)
,

we see the t 2g coefficients of both sides of Theorem 4 are Laurent polynomials in
z. Equation (21) shows Theorem 4 holds for all evaluations of the form z = −d/a,
where

d −
n∑
i=1

γi = ab

and b is a nonnegative integer. Since there are infinitely many such evaluations,
the coefficient Laurent polynomials in z must be equal for all t 2g.

If we specialize Theorem 4 to the case where γ = ∅, we obtain

1

a
+

∑
g>0

g∑
l=0

t 2gzl
∫

Mg,1(BZa)

ψ̄
2g−2+l
1 λUg−l =

1

a

(
at/2

sin(at/2)

)z
t/2

sin(t/2)
. (22)

If γ = ∅ and a = 1, we recover

1+
∑
g>0

g∑
l=0

t 2gzl
∫

Mg,1

ψ
2g−2+l
1 λg−l =

(
t/2

sin(t/2)

)z+1

(23)

(first calculated in [10]).
In (22), the term λUg vanishes for dimensional reasons except over the trivial

monodromy component, where it agrees with the usual λg. Indeed, setting z = 0
in (22) yields

1

a
+

∑
g>0

t 2g
∫

Mg,1(BZa)

ψ
2g−2
1 λUg = 1

a

t/2

sin(t/2)
,

which is the expected contribution from (23) with a factor of 1/a coming from the
automorphisms.
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4. Abelian Groups

4.1. Pull-back

For an abelian group G and irreducible representation R, recall the sequence (6):

0 −→ K −→ G
φR−→ Im(φR) ∼= Za −→ 0.

By construction, R ∼= φR∗(U). The homomorphism φR induces a canonical map

ρ : Mg,γ(BG)→ Mg,φR(γ )(BZa)

by sending a principal G-bundle to its quotient by K.

Lemma 5. ER ∼= ρ∗(EU).
Proof. Recall that E → Mg,n(BH ) is the bundle whose fiber over

[f ] : [D/H ] → BH ∈Mg,n(BH )
is H 0(D,ωD). The latter can be understood as the space of 1-forms α on the nor-
malization D̃ of D with possible simple poles with opposite residues at the two
preimages of each node qi.

Let ρ̃ be the map between the universal principalG- and Za-curves that induces
ρ. We obtain

dρ̃ : ρ∗(E)→ E

by pulling back differential forms. An easy verification shows ρ̃ is well-defined
even at points in the moduli space Mg,γ(BG) for which the G-curve is nodal.

The map dρ̃ is injective on each fiber because the pull-back of a nonzero dif-
ferential form by a finite surjective map is nonzero. Certainly dρ̃ carries the sub-
bundle ρ∗(EU) to the subbundle ER. These bundles have the same dimension by
the Riemann–Roch formula for twisted curves. Hence, dρ̃ is an isomorphism.

The map ρ does not preserve the isotropy groups at the marked points. However,
since the classes ψ̄i are pulled back from Mg,n, we have

ρ∗(ψ̄) = ψ̄.
By Lemma 5, we conclude that the integrand in Theorem 3 is exactly the integrand
of Theorem 1 pulled back via ρ.

4.2. Degree

The degree of ρ is determined by the following result.

Lemma 6. We have

deg(ρ) =
{ 0,

∑
i γi �= 0;

|K|2g−1,
∑

i γi = 0.
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Proof. Consider a nonsingular curve [C,p1, . . . ,pn]∈Mg,n. Let

? = π1(C \ {p1, . . . ,pn}) =
〈
?i,Aj ,Bj

∣∣∣∣
n∏
i=1

?i

g∏
j=1

[Aj ,Bj ]

〉
,

where ?i is a loop around pi and the loops Aj ,Bj are the standard generators
of π1(C).

The elements of Mg,γ(BG) lying above [C,p1, . . . ,pn] are in bijective corre-
spondence with the homomorphisms ϕ : ?→ G with

ϕ(?i) = γi. (24)

(Note that composition is written multiplicatively in ? but additively inG.) Since
G is abelian, ϕ([Aj ,Bj ]) = 0. Hence, the parity condition

n∑
i=1

γi = 0 (25)

must be satisfied for Mg,γ(BG) to be nonempty.
If the parity condition holds, then the images of Aj and Bj are completely

unconstrained. There are |G|2g homomorphisms φ satisfying (24). Stated in terms
of homomorphisms, the map ρ corresponds to the composition of ϕ : ?→ Gwith
φR : G→ Za. Since there are |K| elements of G in the preimage of any element
of Za , there are |K|2g elements in a generic fiber of ρ. SinceG is abelian, a cover
in Mg,γ(BG) has automorphism group G. A cover in the image of ρ only has
automorphism group Za. Thus, the degree of ρ is |K|2g−1.

Although Mg,φR(γ )(BZa) may have several components, Lemma 6 implies that
the degree of ρ is the same over each component. In the nonabelian case, the sit-
uation is much more complicated. For example, let η be the conjugacy class of a
3-cycle in �3, let

s : �3 → Z2

be the sign representation, and let

ρ : M1,η(B�3)→ M1,0(BZ2)

be the map induced by s. The space M1,0(BZ2) consists of two components, one
with trivial monodromy and one with nontrivial monodromy. There are covers
in M1,η(B�3) lying above the nontrivial monodromy component. If t1 �= t2 ∈
�3 are two transpositions, then [t1, t2 ] is a 3-cycle. On the other hand, there are
no elements of M1,η(B�3) lying above the trivial monodromy component. All
the monodromy in such a cover would lie in the abelian group Z3 = ker(s), and
there are no such covers with nontrivial monodromy about the one marked point
by (25). The formula in Theorem 1 considers all components of Mg,φR(γ )(BZa) at
once; a more nuanced approach would be required to understand Hurwitz–Hodge
integrals for nonabelian groups, even for 1-dimensional representations.

In the disconnected case ρ : M•
g,γ(BG)→ M•

g,φR(γ )(BZa), Lemma 6 has the
following minor complications.
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(i) The monodromy condition
∑

i γi = 0 ∈ G cannot be checked globally and
must be verified separately on each domain component.

(ii) The number of components matters; for disconnected curves with h compo-
nents, each of which satisfies the monodromy requirements, the degree of ρ
is |K|2g−2+h.

When ρ is nonzero, the degree |K|2g−2+h is independent ofG and the monodromy
conditions (25). The only role these conditions play is in determining when the
degree is nonzero.

4.3. Wreath Hurwitz Numbers

The wreath product Kd is defined by

Kd = {(k, σ) | k = (k1, . . . , kd)∈Kd, σ ∈�d},
(k, σ)(k ′, σ ′) = (k + σ(k ′), σσ ′).

Conjugacy classes of Kd are determined by their cycle types [22]. Since K is
abelian, for each m-cycle (i1i2 · · · im) of σ, the element kim + kim−1 + · · · + ki1
is well-defined. The resulting Conj(K)-weighted partition of d is called the cy-
cle type of (k, σ). Two elements of Kd are conjugate exactly when they have the
same cycle type.

We index the conjugacy classes ofKd by Conj(K)-weighted partitions of d. Let

ν̄ = {(ν1, ι1), . . . , (ν#(ν), ι#(µ))},
µ̄ = {(µ1, κ1), . . . , (µ#(µ), κ#(µ))}

be two such partitions. Let ν∗ be the partition having parts νj with a partial label-
ing given by ιj . Then

Aut(ν∗) = Aut(ν̄).

The Hurwitz number Hg(ν∗,µ∗) counts covers with the additional labeling data,

Hg(ν
∗,µ∗) = |Aut(ν)|

|Aut(ν∗)|
|Aut(µ)|
|Aut(µ∗)|Hg(ν,µ).

Lemma 7. Hg,K(ν̄, µ̄) is the count of the covers π : C → P1 enumerated
by Hg(ν∗,µ∗) with multiplicity mπ. The multiplicity mπ is the automorphism-
weighted count of principal K-bundles on C \ π−1({0,∞}) with monodromy ιi at
pi ∈π−1(0) and κj at qj ∈π−1(∞).
Proof. Let π ′ : D → P1 be a cover counted by Hg,K(ν̄, µ̄). By definition, π ′ is a
d|K|-fold cover of P1 with monodromies ν̄, µ̄, and τ̄ over 0, ∞, and the points of
Ur , respectively.

Each such cover has an associated cover π : C → P1 counted by Hg(ν∗,µ∗).
Algebraically, the cover is obtained by the forgetful mapKd → �d. Geometrically,
the cover is obtained by taking the quotient ofD by the diagonal subgroupK ⊂ Kd.
There is a natural map f : D → C. Away from the preimages of 0, ∞, and Ur ,
the map f is a principal K-bundle.
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Consider the point pi ∈ π−1(0) corresponding to a cycle νi that is labeled with
ιi ∈ K. A small loop winding once around pi on C has an image that winds νi
times around 0. But we know that the monodromy for π ′ : D → P1 around 0 is
given by ν̄. By the definition of the cycle type, the monodromy of f around pi is
ιi . An identical argument shows that the monodromy at qi over ∞ is κi and that
the monodromy around all preimages of a point in Ur is zero.

The process just described is reversible. We start with a d-fold cover π ′ : C →
P1 counted byHg(ν∗,µ∗) and a principalK-bundle f : D→ C with monodromy
ιi around pi and κi around qi. Then, the composition π = π ′�f is a cover counted
by Hg,K(ν̄, µ̄).

In other words, if ρ ′ : Mg,ι∪κ(BK)→ Mg,#(λ)+#(µ) is the natural map, then

Hg,K(ν̄, µ̄) = deg(ρ ′)Hg(ν∗,µ∗).

4.4. Proof of Theorem 3

By Lemma 5, we can compute the integral in Theorem 3 by computing the analo-
gous Hurwitz–Hodge integral (appearing in Theorem 1) over Mg,−µ(BZa) and
then multiplying by the degree of

ρ : Mg,−µ̄(BG)→ Mg,−µ(BZa).

On the other hand, by Lemma 7 we can calculate Hg,K(∅+(k), µ̄) by computing
Hg(∅+ ,µ), multiplying by the degree of

ρ ′ : Mg,(−k)d/a∪κ(BK)→ Mg,d/a+#(µ),

and correcting for the difference in the sizes of the automorphism groups Aut(µ)
and

Aut(µ̄) = Aut(µ∗).

Thus, to deduce Theorem 3 from Theorem 1, we need only check that the de-
grees of ρ and ρ ′ agree. By Lemma 6, the degrees agree when nonzero. The last
step is to check whether the parity condition (25) is the same for ρ and ρ ′. For ρ,
the parity condition is

0 =
#∑
j=1

(−µ̄)j =
#∑
j=1

(κj − µj x) =
#∑
j=1

κj − dx.

For ρ ′, the parity condition is

0 = −d
a
k +

#∑
j=1

κj .

Since ax = k, the conditions are equivalent.

As in the faithful case, unstable integrals may appear on the right side of the for-
mula in Theorem 3. These unstable terms are defined in a completely analogous
manner and extend Theorem 3 to all contributions:
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∫
M0,(0)(BG)

∑
i≥0(−a)iλRi
1 − xψ̄1

= 1

|G| ·
1

x 2
,

∫
M0,(m,−m)(BG)

∑
i≥0(−a)iλRi

(1 − xψ̄1)(1 − yψ̄2)
= 1

|G| ·
1

x + y .

Alternatively, using a theory of stable maps relative to a stack divisor at ∞, The-
orem 3 could be proved in a manner closely parallel to the proof of Theorem 1.
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