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Abelian Ideals of a Borel Subalgebra

and Long Positive Roots

Dmitri I. Panyushev

Let b be a Borel subalgebra of a simple Lie algebra g. Let Ab denote the set of all

Abelian ideals of b. It is easily seen that any a ∈ Ab is actually contained in the nilpo-

tent radical of b. Therefore, a is determined by the corresponding set of roots. More pre-

cisely, let t be a Cartan subalgebra of g lying in b and let ∆ be the root system of the

pair (g, t). Choose ∆+, the system of positive roots, so that the roots of b are positive.

Then a = ⊕γ∈Igγ, where I is a suitable subset of ∆+ and gγ is the root space for γ ∈ ∆+.

It follows that there are finitely many Abelian ideals and that any question concerning

Abelian ideals can be stated in terms of combinatorics of the root system.

An amazing result of D. Peterson says that the cardinality of Ab is 2rk g. His ap-

proach uses a one-to-one correspondence between the Abelian ideals and the so-called

minuscule elements of the affine Weyl group Ŵ. An exposition of Peterson’s results is

found in [5]. Peterson’s work appeared to be the point of departure for active recent in-

vestigations of Abelian ideals, ad-nilpotent ideals, and related problems of representa-

tion theory and combinatorics [1, 2, 3, 4, 5, 6, 7, 8]. We consider Ab as poset with respect

to inclusion, the zero ideal being the unique minimal element of Ab. Our goal is to study

this poset structure. It is easily seen that Ab is a ranked poset; the rank function attaches

to an ideal its dimension. It was shown in [8] that there is a one-to-one correspondence

between the maximal Abelian ideals and the long simple roots of g. (For each simple

Lie algebra, the maximal Abelian ideals were determined in [10].) This correspondence

possesses a number of nice properties, but the very existence of it was demonstrated in
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a case-by-case fashion. Here, we give a conceptual explanation of that empirical obser-

vation. More generally, we prove that

(i) there is a natural mapping τ :
o

Ab → ∆+
l , where

o

Ab is the set of all nontrivial

Abelian ideals and ∆+
l is the set of long positive roots, see Proposition 2.5.

We say that τ(I) is the rootlet of I;

(ii) each fibre Abµ := τ−1(µ) is a poset in its own right, and we prove that Abµ con-

tains a unique maximal and a unique minimal element, see Theorem 3.1;

(iii) if I is a maximal Abelian ideal, then τ(I) is a (long) simple root. Restricting τ

to Abmax, the set of maximal Abelian ideals, yields the above correspon-

dence.

The uniqueness of maximal and minimal elements suggests that they can have a nice

description. For any µ ∈ ∆+
l , we explicitly describe the minimal ideal in Abµ and the

corresponding minuscule element of Ŵ (see Theorem 4.2). Let I(µ)min denote the minimal

element of Abµ. The collection of these ideals has a transparent characterization. Given

I ∈
o

Ab, we have I = I(µ)min for some µ if and only if all roots of I are not orthogonal to θ,

the highest root (see Theorem 4.3). We also determine the generators of the ideals I(µ)min.

In Section 5, the structure of posets Abµ is considered. It is shown that #(Abµ) >

1 if and only if (µ, θ) = 0. A criterion is also given for #(Abµ) > 2. In fact, we can give

a general description of Abµ and, in particular, of the maximal element I(µ)max ∈ Abµ.

This description is in accordance with (actually, is inspired by) our computations for all

simple Lie algebras, but we cannot give yet a general case-free proof. This description

shows that any Abµ is isomorphic to the poset of all ideals sitting inside of an Abelian

nilpotent radical. More precisely, there are a regular1 simple subalgebra g(µ) ⊂ g and

a maximal parabolic subalgebra p(µ) ⊂ g(µ) with Abelian nilpotent radical pnil
(µ) such that

Abµ is isomorphic to the poset of all Abelian b(µ)-ideals in pnil
(µ). As is well known, the latter

is isomorphic to the weight poset of a fundamental representation of the Langlands dual

Lie algebra g∨
(µ) [9, 11]. Since this fundamental representation is minuscule, the weight

poset of it is isomorphic to the Bruhat poset W(µ)/W
(µ)
ϕ . Here, W(µ) is the Weyl group

of g(µ) (or g∨
(µ)) and W

(µ)
ϕ is the stabilizer of the fundamental weight in question. Such

posets are also called minuscule. This completely solves the problem of describing the

structure of Abµ.

In Section 6, the general theory developed so far is illustrated with examples re-

lated to all simple Lie algebras. We compute #(Abµ) for each µ ∈ ∆+
l . For sln, sp2n, G2,

and F4, an explicit description of the posets Abµ is given. In case of sln, an algorithm is

presented for writing out the minuscule element corresponding to an Abelian ideal.

1This means that the subalgebra is normalized by t.
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Our proofs are based on the relationship between the Abelian ideals and the mi-

nuscule elements in the affine Weyl group. We repeatedly use the procedure of extension

of Abelian ideals that follows from this relationship.

1 Preliminaries on Abelian ideals

1.1 Main notation

Let ∆ be the root system of (g, t) and let W be the usual Weyl group. For α ∈ ∆, gα is the

corresponding root space in g. ∆+ is the set of positive roots and ρ = (1/2)
∑

α∈∆+ α. Π =

{α1, . . . , αp} is the set of simple roots in ∆+.

We set V := tQ = ⊕p
i=1Qαi and denote by (·, ·) a W-invariant inner product on V.

As usual, µ∨ = 2µ/(µ, µ) is the coroot for µ ∈ ∆. Letting V̂ = V ⊕ Qδ ⊕ Qλ, we extend the

inner product (·, ·) on V̂ so that (δ, V) = (λ, V) = (δ, δ) = (λ, λ) = 0 and (δ, λ) = 1.

∆̂ = {∆ + kδ | k ∈ Z} is the set of affine real roots and Ŵ is the affine Weyl group.

Then ∆̂+ = ∆+ ∪ {∆ + kδ | k ≥ 1} is the set of positive affine roots and Π̂ = Π ∪ {α0}

is the corresponding set of affine simple roots. Here α0 = δ − θ, where θ is the highest

root in ∆+. The inner product (·, ·) on V̂ is Ŵ-invariant.

For αi (0 ≤ i ≤ p), we let si denote the corresponding simple reflection in Ŵ. If

the index of α ∈ Π̂ is not specified, then we merely write sα. The length function on Ŵ

with respect to s0, s1, . . . , sp is denoted by l. For any w ∈ Ŵ, we set

N̂(w) =
{
α ∈ ∆̂+ | w(α) ∈ −∆̂+

}
. (1.1)

If w ∈ W, then N̂(w) ⊂ ∆+ and we also write N(w) = N̂(w) in this case.

1.2 Abelian ideals

Let a ⊂ b be an Abelian ideal. It is easily seen that a ⊂ [b, b]. Therefore a = ⊕α∈Igα for

a subset I ⊂ ∆+, which is called the set of roots of a. As our exposition will be mostly

combinatorial, an Abelian ideal will be identified with the respective set of roots, that is,

I is said to be an Abelian ideal, too. Whenever we want to explicitly indicate the context,

we say that a is a geometric Abelian ideal, while I is a combinatorial Abelian ideal. In

the combinatorial context, the definition of an Abelian ideal (subalgebra) can be stated

as follows: I ⊂ ∆+ is an Abelian ideal if the following two conditions are satisfied:

(a) for any µ, ν ∈ I, we have µ + ν �∈ ∆;

(b) if γ ∈ I, ν ∈ ∆+, and γ + ν ∈ ∆, then γ + ν ∈ I.

If I satisfies only (a), then it is called an Abelian subalgebra.
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Following Peterson, an element w ∈ Ŵ is said to be minuscule if N̂(w) is of the

form {δ − γ | γ ∈ I}, where I is a subset of ∆+. It was shown by Peterson that such an I

is a combinatorial Abelian ideal and, conversely, each Abelian ideal occurs in this way,

see [3, Proposition 2.8] and [5]. Hence one obtains a one-to-one correspondence between

the Abelian ideals of b and the minuscule elements of Ŵ. If w ∈ Ŵ is minuscule, then Iw

(resp., aw) is the corresponding combinatorial (resp., geometric) Abelian ideal. That is,

Iw =
{
γ ∈ ∆+ | δ − γ ∈ N̂(w)

}
, aw = ⊕α∈Iwgα. (1.2)

Conversely, given I ∈ Ab, we write w〈I〉 for the respective minuscule element. Notice that

dim aw = #
(
Iw

)
= l(w). (1.3)

Accordingly, being in combinatorial (resp., geometric) context, we speak about cardinal-

ity (resp., dimension) of an ideal. Throughout the paper, I or Iw stands for a combinato-

rial Abelian ideal.

2 Generators of Abelian ideals and long positive roots

Given an Abelian ideal I, we say that γ ∈ I is a generator of I if γ − α �∈ I for all α ∈ ∆+.

Clearly, this is equivalent to the fact that I \ {γ} is still an Abelian ideal. Conversely, if κ

is a maximal element of ∆+ \ I (i.e., (κ + ∆+) ∩ ∆ ⊂ I) and (κ + I) ∩ ∆ = ∅, then I ∪ {κ} is

an Abelian ideal. These two procedures show that the following proposition is true.

Proposition 2.1. Suppose I ⊂ J are two Abelian ideals. Then there is a chain of Abelian

ideals I = I0 ⊂ I1 ⊂ · · · ⊂ Im = J such that #(Ii+1) = #(Ii) + 1. In other words, Ab is a

ranked poset, with cardinality (dimension) of an ideal as the rank function. �

In the geometric setting, the set of generators has the following description. For

an ideal a = ⊕γ∈Igγ ⊂ b, there is a unique t-stable space ã ⊂ a such that a = [b, a] ⊕ ã.

Then γ is a generator of I if and only if it is a weight of ã.

However, we need a description of generators of I in terms of the respective mi-

nuscule element. As usual, we write γ > 0 (resp., γ < 0), if γ ∈ ∆̂+ (resp., γ ∈ −∆̂+). Let

w ∈ Ŵ be minuscule. Because αi �∈ N̂(w) (i = 1, . . . , p), any reduced decomposition of w

must end up with s0. Let w = si1
· · · · · sirs0 be a reduced decomposition. As is well known,

one then has

N̂(w) =
{
α0, s0

(
αir

)
, s0sir

(
αir−1

)
, . . . , s0sir · · · si2

(
αi1

)}
=:

{
δ − θ, δ − γr, . . . , δ − γ1

}
.

(2.1)
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Here γi ∈ ∆+ and Iw = {θ, γr, . . . , γ1}. By construction, we have δ − γ1 = s0sir · · · si2
(αi1

)

and hence w(δ − γ1) = −αi1
. Thus, any reduced decomposition of w induces a total

ordering on the set N̂(w). Moreover, w takes the last element in N̂(w) to −Π̂, that is,

w(δ − γ1) = −αi1
.

It follows that if we “shorten” w, that is, consider the element w ′ = si1
w, then

N̂(w) = N̂(w ′) ∪ {δ − γ1} and w ′(δ − γ1) = αi1
. In particular, w ′ is also minuscule.

Theorem 2.2. Suppose γ ∈ Iw. Then γ is a generator of Iw if and only if w(δ − γ) ∈ −Π̂.

�
Proof. “⇐”. Suppose w(δ−γ) = −αi. This means that w−1(αi) = γ−δ < 0. Therefore, there

exists a reduced decomposition of w starting with si, that is, w = siw
′, where l(w ′) =

l(w) − 1. Hence N̂(w ′) = N̂(w) \ {δ − γ} and w ′ is still a minuscule element. Thus, Iw \ {γ}

is an Abelian ideal.

“⇒”. Suppose w(δ − γ) �∈ −Π̂, that is, w(δ − γ) = −κ1 − κ2, where κi ∈ ∆̂+. Then

w−1(κ1) + w−1(κ2) = −(δ − γ) < 0. Assume for definiteness that w−1(κ2) < 0. Since

w−1(−κ2) > 0 and w(w−1(−κ2)) < 0, we have w−1(−κ2) ∈ N̂(w), that is,w−1(−κ2) = δ−γ2

for some γ2 ∈ Iw ⊂ ∆+. It follows that w−1(−κ1) = δ−γ−δ+γ2 ∈ ∆. As w(γ2−γ) = −κ1 < 0

and w is minuscule, we must have γ2 − γ < 0. Thus γ is not a generator of Iw. �

Remark 2.3. By a result of Cellini and Papi [3, Theorem 2.6], to any ad-nilpotent ideal

of b (not necessarily Abelian), one may attach a unique element of Ŵ. Then one can ex-

tend Theorem 2.2 to this setting. However, the proof becomes more involved, since the

procedure of shortening does not work for the corresponding elements of Ŵ. We hope to

consider related problems in a subsequent publication.

Theorem 2.4. Let Iw be an Abelian ideal and γ ∈ ∆+ \ Iw. Then Iw∪ {γ} is an Abelian ideal

if and only if w(δ − γ) ∈ Π̂. �

Proof. “⇐”. Suppose w(δ − γ) = αi. Then l(siw) = l(w) + 1 and N̂(siw) = N̂(w) ∪ {δ − γ}.

That is, siw is again minuscule and hence Iw ∪ {γ} is an Abelian ideal.

“⇒”. It is clear that γ is a generator for Iw ∪ {γ} =: Iw̃. By Theorem 2.2, we then

have w̃(δ − γ) ∈ −Π̂. Assume that it is −αi. Then w = siw̃ and w(δ − γ) = αi. �

Given a nontrivial minuscule w ∈ Ŵ, it was noticed before that w(αi) > 0, i ∈
{1, . . . , p}, and w(α0) < 0. We study the last element. Let ∆+

l denote the subset of long

roots in ∆+. In the simply laced case, all roots are proclaimed to be long.

Proposition 2.5. If w is a nontrivial minuscule element, then w(α0) + δ ∈ ∆+
l . �

Proof. Since w(α0) is negative, we can write w(α0) = −kδ − γ0, where k ∈ {0, 1, 2, . . . } and

γ0 ∈ ∆. Recall that α0 = δ − θ.
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(a) Assume k ≥ 2. Then w(2δ − θ) = −(k − 1)δ − γ0 < 0. This contradicts the fact

that w is minuscule.

(b) Assume k = 0. Then w(δ − θ) = −γ0 and γ0 ∈ ∆+. It is clear that w ∈ Ŵ \ W.

Write the expression of θ through the simple roots θ =
∑p

i=1 niαi and set γi = w(αi).

Then
∑p

i=1 niγi = γ0 + δ. Since γi’s are positive and γ0 ∈ ∆, there exists a unique i0 ∈
{1, . . . , p} such that ni0

= 1, γi0
∈ δ + ∆, and γi ∈ ∆ for i �= i0. It follows that the elements

−γ0, γj (j ≥ 1, j �= i0) form a basis for ∆. Hence there is w ′ ∈ W which takes −γ0, γj (j �= i0)

to α1, . . . , αp. Because w ′(γi0
) ∈ δ+∆ and the elements w ′(γi) (i = 0, 1, . . . , p) form a basis

for ∆̂, we see that w ′(γi0
) = α0. Thus, w ′w takes Π̂ to itself and hence w ′w = 1. This is

however impossible since w �∈ W.

Thus, k = 1 and µ := w(α0) + δ = w(2δ − θ) ∈ ∆. Since δ is isotropic and θ is long,

µ is long as well. Finally, since w is minuscule, 2δ − θ �∈ N̂(w). Hence µ is positive. �

Let
o

Ab denote the set of all nontrivial Abelian ideals. By Proposition 2.5, one ob-

tains the mapping

τ :
o

Ab −→ ∆+
l , (2.2)

which is given by

τ
(
Iw

)
= w

(
α0

)
+ δ. (2.3)

The long positive root τ(Iw) is said to be the rootlet of the Abelian ideal Iw. Note that the

ideal {θ} is the unique minimal element of
o

Ab and, by Peterson’s result, #(
o

Ab) = 2rk g − 1.

Theorem 2.6. (1) The mapping τ is onto.

(2) If the rootlet of Iw is not simple, that is, w(α0) + δ ∈ ∆+ \ Π, then Iw is not

maximal.

(3) If ∆ is simply laced and τ(Iw) is not simple, then there are at least two maxi-

mal Abelian ideals containing Iw. �

Proof. (1) We perform a descending induction on the height of the rootlet of an ideal. The

rootlet with maximal height is θ. Here one takes w = s0. Then Is0
= {θ} and τ(Is0

) = θ.

The induction step goes as follows. If µ = τ(Iw) and µ �∈ Π, then there exists an α ∈ Π

such that (α, µ) > 0. Then µ ′ = sα(µ) = µ − nαα ∈ ∆+
l and ht(µ ′) = ht(µ) − nα. Notice that

nα = 1 if and only if α is long. Set µ ′′ = µ − α. It is again a positive root (not necessarily

long).

We have w(δ − θ) = −δ + µ ′′ + α. Hence w−1(µ ′′) + w−1(α) = 2δ − θ. It follows that

w−1(µ ′′) = (k + 2)δ − µ1 and w−1(α) = −kδ − µ2, for some k ∈ Z and µ1, µ2 ∈ ∆+ such that

µ1 + µ2 = θ.
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As w is minuscule, neither of the elements in the right-hand side is negative (for

instance, if w−1(α) were negative, i.e., k ≥ 0, then w(µ2) = −kδ − α2 < 0, which contra-

dicts the fact that w is minuscule). It follows that k + 2 > 0 and −k > 0, hence k = −1. In

particular, we have w(δ − µ2) = α ∈ Π. It then follows from Theorem 2.4 that w ′ = sαw

is again a minuscule element and Iw ′ = Iw ∪ {µ2}. The previous formulae show that

τ(Iw ′) = sα(µ) = µ ′. Obviously, any positive long root can be obtained from θ through

a suitable sequence of simple reflections. Hence the assertion.

(2) The previous argument also shows that if τ(Iw) �∈ Π, then Iw is contained in a

larger Abelian ideal.

(3) As above, µ = τ(Iw). Making use of the induction argument from part (1), we

may reduce the problem to the case where ht(µ) = 2. Then µ = α1 + α2, the sum of two

simple roots. Again the argument from part (1) (with α1 and α2 in place of µ ′′ and α)

shows that there are two different Abelian extensions of Iw; namely, Iw1
= Iw ∪ {µ1} and

Iw2
= Iw ∪ {µ2}, where w−1(α1) = δ − µ1 and w−1(α2) = δ − µ2. But Iw ∪ {µ1, µ2} is not

Abelian since µ1 + µ2 = θ. �

Remark 2.7. In the doubly-laced case, it may happen that the rootlet of an Abelian ideal

is not simple, but the ideal lies in a unique maximal one. For instance, let g be the simple

Lie algebra of type F4. We use Vinberg-Onishchik’s numbering of simple roots [13]. If

µ = 2α2+α3, then τ−1(µ) consists of two ideals (of dimensions 7 and 8). In the notation of

Table 6.1 τ−1(µ) = {I ′′7 , I ′8}. The only maximal ideal containing these two is I9. Denoting by

Πl the set of long simple roots in Π, we record an important consequence of the theorem.

Corollary 2.8. If Iw is a maximal Abelian ideal, then w(α0) + δ ∈ Πl. �

Thus, denoting by Abmax the set of all maximal Abelian ideals, we obtain the map-

ping

τ̄ : Abmax −→ Πl, (2.4)

which is the restriction of τ to Abmax. By Theorem 2.6, τ̄ is onto. We prove below that τ̄ is

actually one-to-one. It turns out that the correspondence obtained between the maximal

Abelian ideals and the long simple roots is precisely the one described in [8]. So that our

present results provide an a priori proof for some empirical observations in [8].

3 Basic properties of posets Abµ

Given µ ∈ ∆+
l , let Abµ denote the fibre of µ for τ :

o

Ab → ∆+
l . The following useful equality

is a consequence of Peterson’s result:
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µ∈∆+

l

#
(
Abµ

)
= 2rk g − 1. (3.1)

Each Abµ is a poset in its own right, and it appears that cutting
o

Ab into pieces parametr-

ized by ∆+
l has a number of good properties.

Theorem 3.1. For any µ ∈ ∆+
l ,

(i) the poset Abµ contains a unique maximal and a unique minimal element;

(ii) the dimension of the minimal Abelian ideal in Abµ is equal to 1 + (ρ, θ∨ − µ∨);

(iii) if I, J ∈ Abµ and I ⊂ J, then any intermediate ideal also belongs to Abµ. In

particular, Abµ is a ranked poset. �

The proof of this result consists of several parts. The uniqueness of the minimal

(resp., maximal) element will be proved in Proposition 3.5 (resp., Proposition 3.7), and

the dimension formula for the minimal ideal is proved in Theorem 4.2. The latter is a by-

product of an explicit description of the minimal ideal in Abµ obtained in Section 4. Part

(iii) is proved in Corollary 3.3.

To prove the theorem, we look at the procedure of extension of Abelian ideals in

more details. If I, J ∈ Ab, dim J = dim I + 1, and I ⊂ J, then we say that J is an (Abelian)

elementary extension of I. Given I = Iw, it follows from Theorem 2.4 that an elementary

extension of Iw is possible if and only if w(δ − γ) = αi ∈ Π̂ for some γ ∈ ∆+. Then one

can replace w with w ′ = siw and Iw with Iw ′ = Iw ∪ {γ}. The passage w → siw is also

said to be an elementary extension (via the reflection si). We realize what happens with

the rootlet under this procedure. Recall that ∆ (or, more generally, the root lattice) has a

standard partial order; one writes µ � ν, if ν − µ is a sum of positive roots.

Proposition 3.2. Suppose Iw ′ is an elementary extension of Iw, as above. Then τ(Iw ′) =

si(τ(Iw)) � τ(Iw). Moreover, if w ′ = s0w (i.e., i = 0), then τ(Iw) = τ(Iw ′). �

Proof. Set ν := w(α0) + δ, the rootlet of Iw. Then the rootlet of Iw ′ is siw(α0) + δ =

si(ν − δ) + δ = si(ν). We have two equalities:

w(δ − γ) = αi, w(δ − θ) = ν − δ. (3.2)

Consider two possibilities for i:

(a) i �= 0. Here we have

(
αi, ν

)
=

(
αi, ν − δ

)
= (δ − γ, δ − θ) = (γ, θ) ≥ 0, (3.3)

as δ is isotropic. It follows that si(ν) = ν − (ν, α∨
i )αi � ν;
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(b) i = 0. As α0 = δ − θ, we obtain

0 ≤ (γ, θ) = (ν − δ, δ − θ) = −(ν, θ) ≤ 0. (3.4)

Hence (γ, θ) = (ν, θ) = 0 and s0w(α0) + δ = s0(ν) = ν. �

Corollary 3.3. If I, J ∈
o

Ab and I ⊂ J, then τ(J) � τ(I). In particular, if I, J ∈ Abµ, then any

intermediate ideal also belongs to Abµ. �

Proof. Obviously, for any pair I ⊂ J of Abelian ideals there is a sequence of elementary

extensions that makes J from I. �

The following result will be our main tool in induction arguments.

Proposition 3.4. Let I = Iw be an Abelian ideal. Suppose I has two different elementary

extensions I1 = I∪ {γ1} and I2 = I∪ {γ2}. Write siw for the minuscule element correspond-

ing to Ii, i = 1, 2.

(1) If Ĩ := I1 ∪ I2 is not Abelian, then τ(I1) = α2, τ(I2) = α1, and τ(I) = α1 + α2.

Moreover, α1, α2 ∈ Πl.

(2) If Ĩ is Abelian, then s1s2 = s2s1 and w〈Ĩ〉 = s1s2w.

(3) If τ(I) = τ(I1), then Ĩ is Abelian as well and τ(I2) = τ(Ĩ). �

Proof. The equalities siw = w〈Ii〉 and Ii = I ∪ {γi} mean together that

w
(
δ − γi

)
= αi ∈ Π̂, i = 1, 2. (3.5)

(1) Assume that I1 ∪ I2 is not Abelian. Since both I1 and I2 are Abelian, the only

possibility for this is that γ1 + γ2 ∈ ∆+.

If γ1 + γ2 �= θ, then there is an α ∈ Π such that γ1 + γ2 + α is a (positive) root.

Then γ1 + α ∈ ∆ or γ2 + α ∈ ∆ (the proof is left to the reader). If, for instance, the second

condition is satisfied, then γ2 + α ∈ I and γ1 ∈ I1, which contradicts the fact that I1 is

Abelian. Hence γ1 + γ2 = θ.

Now, taking the sum of equations (3.5) yields

α1 + α2 = w
(
2δ − γ1 − γ2

)
= w(δ − θ) + δ = τ(I). (3.6)

Since τ(I) ∈ ∆+
l , we have α1, α2 ∈ Πl. It follows that τ(I1) = s1(α1 + α2) = α2 and τ(I2) =

s2(α1 + α2) = α1.

(2) The presence of the elementary extension I1 �→ I1 ∪ {γ2} = Ĩ shows that w〈Ĩ〉 =

s2 · w〈I1〉 = s2s1w and s2w(δ − γ1) ∈ Π̂. The latter means that s2(α1) is a simple root. It

follows that s2(α1) = α1 and hence s2s1 = s1s2.
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(3) Under the assumption τ(I) = τ(I1), the first case cannot occur. Hence Ĩ is

Abelian. Since s1 and s2 commute, we have s2s1w(α0) + δ = s2(ν) = s2w(α0) + δ, that

is, τ(Ĩ) = τ(I2). �

Proposition 3.5. For any µ ∈ ∆+
l , the poset Abµ has a unique minimal element. �

Proof. Assume Ĩ1 and Ĩ2 are two different minimal elements of Abµ. Clearly, I := Ĩ1 ∩ Ĩ2 is

again an Abelian ideal, but τ(I) is strictly less than µ.

The ideal Ĩ1 can be obtained from I via a chain of elementary extensions, say

I −→ I ∪ {
κ1

} −→ · · · −→ I ∪ {
κ1, . . . , κn

}
= Ĩ1. (3.7)

Similarly, let I → I ∪ {η1} be the first step in the chain of extensions leading from I to Ĩ2.

Set I(k, 0) = I ∪ {κ1, . . . , κk} and I(k, 1) = I ∪ {κ1, . . . , κk, η1}, 0 ≤ k ≤ n. By construction,

I(0, 1) and I(k, 0) are Abelian ideals. Consider the sequence of statements depending on

k: (Ck) I(k, 0) �= Ĩ1, I(k, 1) is Abelian, µ = τ(Ĩ1) � τ(I(k, 1)).

Claim 3.6. For any k ≥ 0, (Ck) implies (Ck+1). �

Note that (C0) is true. (The last inequality follows from the equality τ(Ĩ1) = τ(Ĩ2)

and Corollary 3.3.) Therefore, granting the claim, we conclude that (Cn) is also true. But

this is nonsense since I(n, 0) = Ĩ1. This contradiction shows that Abµ cannot have two

minimal elements. Thus, it remains to prove the claim.

Proof of the claim. By assumption, we have two elementary extensions:

I(k, 0) −→ I(k + 1, 0), I(k, 0) −→ I(k, 1). (3.8)

If w := w〈I(k, 0)〉, then w〈I(k, 1)〉 = s ′w and w〈I(k+1, 0)〉 = s ′′w for some simple reflections

s ′ and s ′′.

(1) Assume that I(k+1, 1) is not Abelian. Applying Proposition 3.4(1) to the above

triplet of ideals,we obtain τ(I(k, 0)) = α ′+α ′′, τ(I(k+1, 0)) = α ′, and τ(I(k, 1)) = α ′′,where

α ′, α ′′ ∈ Πl. Since I(k + 1, 0) ⊂ Ĩ1, we have τ(Ĩ1) = α ′. On the other hand, our assumptions

give τ(Ĩ1) � τ(I(k, 1)) = α ′′. Whence α ′ � α ′′. This contradiction shows that I(k + 1, 1) is

Abelian.

(2) Since I(k + 1, 1) is Abelian, Proposition 3.4(2) says that

s ′s ′′ = s ′′s ′, w〈I(k + 1, 1)〉 = s ′s ′′w. (3.9)
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It follows that

τ
(
I(k + 1, 0)

)
= s ′′(τ(

I(k, 0)
))

= τ
(
I(k, 0)

)
− n ′′α ′′,

τ
(
I(k, 1)

)
= s ′(τ(

I(k, 0)
))

= τ
(
I(k, 0)

)
− n ′α ′,

(3.10)

for some n ′, n ′′ ≥ 0. By the hypothesis

τ
(
Ĩ1

)
� τ

(
I(k, 1)

)
= τ

(
I(k, 0)

)
− n ′α ′, (3.11)

and, since I(k + 1, 0) ⊂ Ĩ1,

τ
(
Ĩ1

)
� τ

(
I(k + 1, 0)

)
= τ

(
I(k, 0)

)
− n ′′α ′′. (3.12)

Hence τ(Ĩ1) � τ(I(k, 0)) − n ′s ′ − n ′′s ′′ = τ(I(k + 1, 1)).

(3) If I(k + 1, 0) = Ĩ1, then the inequalities in the previous part of the proof imply

that

τ
(
I(k, 0)

)
− n ′′α ′′ � τ

(
I(k, 0)

)
− n ′α ′. (3.13)

Hence n ′ = n ′′ = 0. Then µ = τ(Ĩ1) = τ(I(k, 0)). Thus, I(k, 0) is smaller than Ĩ1 and has the

same rootlet, which contradicts the minimality of Ĩ1. Hence I(k + 1, 0) �= Ĩ1, and the claim

is proved. �

This completes the proof of Proposition 3.5. �

In what follows, I(µ)min stands for the minimal element of Abµ.

Proposition 3.7. For any µ ∈ ∆+
l , the poset Abµ has a unique maximal element. �

Proof. By Proposition 3.5, any ideal I ⊂ Abµ can be obtained from I(µ)min via a chain

of elementary extensions. Moreover, it follows from Corollary 3.3 that each ideal in this

chain belongs to Abµ. Another consequence is that if I, J ∈ Abµ, then I ∩ J ∈ Abµ as well.

Suppose I1, I2 ∈ Abµ. We prove that I1 ∪ I2 ∈ Abµ. Consider the set I2 \ I1 and pick

there a maximal element with respect to “�,” say γ2. Arguing by induction, it suffices to

prove that I1 ∪ {γ2} lies in Abµ. Similarly, take a maximal element ν1 ∈ I1 \ I2. Applying

Proposition 3.4(3) to the ideal I = I1 ∩ I2 ∈ Abµ and the roots ν1 and γ2, we conclude that

I ∪ {ν1, γ2} is in Abµ. If I ′ := I ∪ {ν1} �= I1, then take a maximal element ν2 ∈ I1 \ I ′. Then

one applies Proposition 3.4(3) to I ′ and ν2, γ2. We eventually obtain I1 ∪ {γ2} ∈ Abµ.

Since I1∪I2 ∈ Abµ for any pair I1, I2 ∈ Abµ, we see that Abµ has a unique maximal

element. �
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Corollary 3.8. The map τ̄ : Abmax → Πl is bijective. �

Proof. It follows from Corollary 2.8 and Proposition 3.7 that the maximal Abelian ideals

are precisely the maximal elements of the posets Abα, α ∈ Πl. �

In what follows, I(µ)max stands for the maximal element of Abµ. We also say that

I(µ)min is the µ-minimal and I(µ)max is the µ-maximal ideal.

4 µ-minimal ideals and their properties

In this section, an explicit description of I(µ)min is given for any µ ∈ ∆+
l . We also charac-

terize the set of all µ-minimal ideals and find the generators of I(µ)min.

Theorem 4.1. Let w ∈ W be an element of minimal length such that w(θ) = µ. Then

(1) l(w) = (ρ, θ∨ − µ∨);

(2) N(w−1) = {γ ∈ ∆+ | (γ, µ∨) = −1}.

In particular, the set {u ∈ W | u(θ) = µ} contains a unique element of minimal length.

�

Proof. (1) Recall that (ρ, α∨) = 1 for all α ∈ Π. A straightforward calculation shows that

(ρ, sα(ν)∨) = (ρ, ν∨) − (α, ν∨) for ν ∈ ∆ and α ∈ Π. Since µ is long and positive, we have

(α, µ∨) ≥ −1. Hence

(
ρ, sα(µ)∨

) ≤ (
ρ, µ∨

)
+ 1. (4.1)

If w ∈ W is a minimal length element such that w(µ) = θ and w = si1
· · · sik

is a reduced

decomposition, then N(w) ⊃ N(sij
· · · sik

) for any 1 ≤ j ≤ k. Hence, sij
· · · sik

(µ) > 0

for all j. Therefore, arguing by induction and using (4.1), we conclude that k = l(w) ≥
(ρ, θ∨ − µ∨). On the other hand, if µ ∈ ∆+

l and µ �= θ, then one can always find an α ∈ Π

such that (α, µ∨) = −1. This means that starting with µ and moving up, one can reach θ

after applying exactly (ρ, θ∨ − µ∨) simple reflections.

(2) Set ∆+
µ (i) = {γ ∈ ∆+ | (γ, µ∨) = i}. We are to show that ∆+

µ (−1) = N(w−1). Let

us compare the cardinalities of these two sets. By the first part of the proof, #N(w−1) =

(ρ, θ∨ − µ∨). On the other hand, one has the system of two equations

(
ρ, µ∨

)
= 1 +

1

2

(
#∆+

µ (1) − #∆+
µ (−1)

)
,

2
(
ρ, θ∨

)
− 2 = #∆θ(1) = #∆µ(1) = #∆+

µ (1) + #∆+
µ (−1).

(4.2)
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The first equality stems from the very definition of ρ, whereas in the second equation we

use the fact that θ is dominant and that µ and θ are W-conjugate. From the above system,

we deduce that #∆+
µ (−1) = (ρ, θ∨ − µ∨) = #N(w−1).

On the other hand, if γ ∈ ∆+
µ (−1), then (w−1(γ), θ∨) = −1. Hence, w−1(γ) is nega-

tive and N(w−1) ⊃ ∆+
µ (−1). �

Notice that we also proved that if u ∈ W is any element taking θ to µ, then N(u−1)

⊃ ∆+
µ (−1). In what follows, we write wµ for the unique element of minimal length in W

that takes θ to µ.

Theorem 4.2. Set w̃µ = wµs0 ∈ Ŵ. Then

(1) w̃µ(α0) + δ = µ;

(2) w̃µ is minuscule;

(3) the ideal Iw̃µ is contained in {γ ∈ ∆+ | (γ, θ) > 0};

(4) Iw̃µ = I(µ)min, the minimal element of Abµ, and #(Iw̃µ) = (ρ, θ∨ − µ∨) + 1. �

Proof. (1) Obvious.

(2) Suppose (ρ, θ∨ − µ∨) = k ≥ 1 and let wµ = sik
· · · si1

be a reduced decomposi-

tion. We argue by induction on k. Set u := sik−1
· · · si1

∈ W and ν := u(θ). Then l(u) = k−1

and sik
(ν) = µ. Using Theorem 4.1, we obtain

k − 1 ≥ (
ρ, θ∨ − ν∨

)
=

(
ρ, θ∨ − µ∨

)
−

(
αik

, ν∨
)

= k −
(
αik

, ν∨
)
. (4.3)

Since ν is long, (αik
, ν∨) = 1. It follows that (ρ, θ∨−ν∨) = k−1 and hence u = wν. Set w̃ν =

wνs0. By the induction assumption, w̃ν is minuscule. To prove that w̃µ = sik
w̃ν is minus-

cule, one has to verify that w̃ν(δ−γik
) = αik

for some γik
∈ ∆+ (see Theorem 2.4). In other

words, it should be proved that δ − w̃−1
ν (αik

) ∈ ∆+. We have w̃−1
ν (αik

) = s0w−1
ν (αik

) and

(
θ,w−1

ν

(
αik

))
=

(
wν(θ), αik

)
=

(
ν, αik

)
> 0. (4.4)

Equation (4.4) shows that w−1
ν (αik

) ∈ ∆+ and (α0, w−1
ν (αik

)) < 0. Therefore, s0w−1
ν (αik

) =

w−1
ν (αik

) − θ + δ. Thus, δ − w̃−1
ν (αik

) = θ − w−1
ν (αik

) ∈ ∆+, and we are done.

(3) Again, we argue by induction on l(wµ). Using the notation of the previous part

of the proof, it suffices to observe that Iw̃µ = Iw̃ν ∪ {θ − w−1
ν (αik

)} and (w−1
ν (αik

), θ∨) = 1.

(4) If Iw̃µ were not minimal in Abµ, then one could shorten w̃µ, so that to obtain

a minuscule element giving the ideal with the same rootlet. But this is impossible for

length reason, as wµ has minimal possible length among the elements taking θ to µ. The

dimension of this ideal is already computed in Theorem 4.2. Finally, #(Iw̃µ) = l(w̃µ) =

l(wµ) + 1. �
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Thus, we have completed the proof of Theorem 3.1.

Set H = {γ ∈ ∆+ | (θ, γ) > 0}. It is the set of the roots for the standard Heisenberg

subalgebra of g. That is, h = ⊕γ∈Hgγ is a Heisenberg subalgebra of g. Clearly, h is a non-

Abelian ideal of b.

The previous exposition shows that one has a distinguished collection of Abelian

ideals {I(µ)min | µ ∈ ∆+
l } and the corresponding subset of minuscule elements of Ŵ. These

sets admit the following characterizations.

Theorem 4.3. The following conditions are equivalent for Iw ∈
o

Ab:

(i) Iw = I(µ)min for some µ ∈ ∆+
l ;

(ii) Iw ⊂ H;

(iii) w = w ′s0, where w ′ ∈ W. �

Proof. (i)⇒(ii). This is proved in Theorem 4.2.

(ii)⇒(iii). Assume that a reduced decomposition of w ′ contains s0, say w ′ =

w2s0w1. Since s0w1s0 is also minuscule (see Section 2), we may assume, without loss of

generality, that w2 = 1, that is, a reduced decomposition of w ′ begins with s0. Hence,

there is the elementary extension w1s0 → s0w1s0. It was already shown that in this case

one adds to the ideal Iw1s0
a root which is orthogonal to θ, see Proposition 3.2(b).

(iii)⇒(i). We argue by induction on l(w ′). Suppose a reduced decomposition of w ′

starts with si, that is, w = siw
′′s0 and w ′′s0 is also minuscule. By the induction hypoth-

esis, Iw ′′s0
= I(ν)min, where ν = w ′′(θ). Then w ′′ = wν and l(w ′′) = (ρ, θ∨ − ν∨). Set µ =

si(ν) = w ′′(θ). Then µ = τ(Iw) and our goal is to prove that siw
′′ = wµ. Since w ′′s0 →

siw
′′s0 is an elementary extension, we have w ′′s0(δ − γ) = αi ∈ Π for some γ ∈ ∆+. It fol-

lows that s0(δ−γ) �= δ−γ. This yields (θ∨, γ) = 1 and s0(δ−γ) = θ−γ. Hence w ′′(θ−γ) =

αi. Therefore,

(
αi, ν

∨
)

=
(
w ′′(θ − γ), w ′′(θ∨

))
=

(
θ − γ, θ∨

)
= 1. (4.5)

This equality implies that (ρ, θ∨ −µ∨) = (ρ, θ∨ −ν∨)+ 1 = 1+ l(w ′′) = l(w ′). By Theorem

4.1, this means that w ′ = siw
′′ ∈ W is the shortest element taking θ to µ, and we are done.

�

Corollary 4.4. There is a natural one-to-one correspondence between the Abelian b-

ideals in the Heisenberg subalgebra and the long positive roots. �

The next result describes the order relation on the set of µ-minimal ideals.

Theorem 4.5. For any µ, ν ∈ ∆+
l , I(µ)min ⊂ I(ν)min if and only if ν � µ, that is, the poset of

µ-minimal elements is anti-isomorphic to the poset (∆+
l ,�). �
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Proof. “⇒”. This is contained in Corollary 3.3.

“⇐ ′”. We show that wν = w ′wµ, where l(w ′) = (ρ, µ∨ − ν∨). Indeed,

(a) the inequality l(w ′) ≥ l(wν) − l(wµ) = (ρ, µ∨ − ν∨) is clear;

(b) the opposite inequality can be proved by induction. Set µ − ν =
∑

α∈Π kαα,

where kα ≥ 0. Since |µ| = |ν|, we obtain (ν,
∑

kαα) < 0. Hence, there

exists an α ∈ Π such that kα > 0 and (α, ν) < 0. Then ν � sα(ν) =

ν + (|µ|2/|α|2)α � µ. (One should use here the fact that, since µ and

ν are long, kα is divisible by |µ|2/|α|2.)

Thus, the minuscule element w̃ν is obtained from w̃ν via a sequence of elementary exten-

sions and hence I(µ)min ⊂ I(ν)min. �

Finally, we give a description of the generators for µ-minimal ideals. If w = s0,

then Is0
= {θ} and everything is clear. So that we may assume that µ �= θ, that is, w̃µ =

wµs0 and wµ �= 1.

Proposition 4.6. For µ �= θ, there is a bijection between the generators of I(µ)min and the

roots α ∈ Π such that α + µ ∈ ∆ (i.e., (α, µ∨) = −1). The generator corresponding to such

an α is w−1
µ (α + µ). �

Proof. By Theorem 2.2, γ ∈ ∆+ is a generator if and only if wµs0(δ − γ) = −α ∈ Π̂. By

Theorem 4.2(3), (γ, θ) > 0. Therefore, the left-hand side is equal to wµ(θ − γ) = µ − wµ(γ)

and µ + α = wµ(γ) ∈ ∆. Hence α ∈ Π and µ + α is a root.

This argument can be reversed. Given α ∈ Π such that (α, µ∨) = −1, we set γ =

w−1
µ (α + µ). As (α + µ, µ∨) �= −1, it follows from Theorem 4.1(2) that γ > 0. The rest is

clear. �

5 More on the structure of Abµ

We already know that each Abµ contains a unique maximal and a unique minimal ele-

ment. In this section, we first answer the question: when is the cardinality of Abµ equal

to one? An important observation concerning cardinality stems from Proposition 3.2. It

was proved there that the elementary extension via the reflection s0 does not affect the

rootlet; and in this case the rootlet of an ideal has to be orthogonal to θ. What we prove

now is that this gives a necessary and sufficient condition for #(Abµ) > 1.

Theorem 5.1. (i) #(Abµ) > 1 if and only if (µ, θ) = 0 (i.e., µ �∈ H).

(ii) If (µ, θ) = 0, then the nonempty poset Abµ \ {I(µ)min} has a unique minimal

element, say I ′. Here I ′ = I(µ)min ∪ {γ}, where γ = w−1
µ (θ). The corresponding minuscule

element is s0w̃µ = s0wµs0. �
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Proof. (i) In view of Theorem 3.1, it is clear that #(Abµ) > 1 if and only if I(µ)min has

an elementary extension that does not change the rootlet. So, we stick to considering

possible elementary extensions of I(µ)min. This is based on the explicit description in

Theorem 4.2.

(1) Since µ is the rootlet, we have

w̃µ(δ − θ) = µ − δ. (5.1)

Suppose there is an elementary extension of I(µ)min, that is, we have a

γ ∈ ∆+ such that

w̃µ(δ − γ) = α ∈ Π̂. (5.2)

There are two possibilities for α:

(a) α = αi ∈ Π. Rewriting (5.2) as s0(δ−γ) = w−1
µ αi,we see that s0(δ−γ) ∈

∆. This can only happen if (α0, δ − γ) > 0, that is, (θ, γ) > 0

(and then s0(δ − γ) = θ − γ). Combining (5.1) and (5.2), we

obtain (µ, αi) > 0 and hence si(µ) �= µ. Thus, any elemen-

tary extension via a simple reflection from W changes the

rootlet of I(µ)min;

(b) α = α0. Here we get the following chain inequalities:

0 ≤ (θ, γ) = (δ − θ, δ − γ) = (µ − δ, δ − θ) = −(µ, θ) ≤ 0. (5.3)

Thus, we have the conclusion: if I(µ)min has an extension that does not

change the rootlet, then this extension uses the reflection s0, and the con-

dition (µ, θ) = 0 should be satisfied. This proves the “only if” part.

(2) Suppose (θ, µ) = 0. We wish to find an elementary extension of I(µ)min that

does not change the rootlet µ. Recall that w̃µ = wµs0. Take γ = w−1
µ (θ).

From the description of w−1
µ (see Theorem 4.1(2)), it follows that θ �∈

N(w−1
µ ), that is, γ ∈ ∆+. Furthermore, (γ, θ) = (wµ(γ), wµ(θ)) = (θ, µ) = 0.

Hence w̃µ(δ−γ) = δ−θ = α0 and s0(µ) = µ. Thus, I(µ)min∪{γ} is an Abelian

ideal lying in Abµ.

(ii) This is essentially proved in the previous part of proof, since s0 is the only

possible reflection that can be used for constructing an elementary extension of I(µ)min

with the rootlet µ. �

Remark 5.2. We have proved that, for I(µ)min, there is at most one elementary extension

which lies inside Abµ, and, if exists, this extension always exploits the reflection s0. But
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if I ∈ Abµ is not minimal, then there can exist an elementary extension via si (i �= 0) that

does not change the rootlet.

Now, we accomplish the following step in describing cardinality of Abµ, that is,

a criterion will be given for #(Abµ) > 2. We already know that the condition (µ, θ) = 0 is

necessary.

Proposition 5.3. Suppose µ ∈ ∆+
l and (µ, θ) = 0. Then #(Abµ) > 2 if and only if there

exists αi ∈ Π such that (αi, θ
)

> 0 and (αi, µ
)

= 0.

If these conditions are satisfied for αi, then one more element of Abµ, which cov-

ers I ′ = I(µ) ∪ {w−1
µ (θ)}, is

I ′′ = I(µ)min ∪ {
w−1

µ (θ), w−1
µ

(
θ − αi

)}
. (5.4)

�

Proof. In view of Theorem 5.1(ii), it is clear that #(Abµ) > 2 if and only if I ′ = Is0wµs0

has an elementary extension with the same rootlet. So, we stick to considering possible

extensions of Is0wµs0
.

“⇐”. We show that sis0wµs0 is again minuscule and the corresponding rootlet

is again µ. The second condition is satisfied, since (αi, µ) = 0 and hence si(µ) = µ.

The condition that sis0wµs0 is minuscule is equivalent, in view of Theorem 2.4, to that

s0wµs0(δ − γ) = αi for some γ ∈ ∆+, that is, δ − s0w−1
µ s0(αi) ∈ ∆+. Using the definition of

wµ and the assumptions, the last expression is equal to w−1
µ (θ−αi). Since (µ, θ−αi) = 0,

we deduce from Theorem 4.1(2) that θ − αi �∈ N(w−1
µ ), that is, w−1

µ (θ − αi) is positive.

“⇒”. Suppose there is an elementary extension of Is0wµs0
that does not affect µ,

that is, there is a γ ∈ ∆+ such that

s0wµs0(δ − γ) = αi (5.5)

and si(µ) = µ. Clearly, i �= 0, that is, αi ∈ Π. Since si(µ) = µ, we have (αi, µ) = 0. Thus, it

remains to prove that (αi, θ) > 0. If not, then (αi, θ) = 0 and hence s0(αi) = αi. Then (5.5)

can be written as δ − γ = s0w−1
µ (αi). As (θ,w−1

µ (αi)) = (µ, αi) = 0, the right-hand side is

equal to w−1
µ (αi) ∈ ∆. This contradiction proves that (αi, θ) > 0. �

Remark 5.4. If g �= sln, then there is only one simple root that is not orthogonal to θ. In

any case, this condition is easy to verify in practice.

Actually, we can give a description of I(µ)max and Abµ, which is consistent with

both the previous results and our computations in Section 6, but we cannot find a gen-

eral case-free proof yet. In order to provide a stronger motivation and more evidences in
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favour of the following description, we look again at previous results of this section. We

have proved that

(i) if (µ, θ) = 0, then Abµ = {I(µ)min};

(ii) if (µ, θ) > 0 and there is no simple roots α ∈ Π such that (θ, α) > 0 and (α, µ) =

0, then Abµ = {I(µ)min, I ′}, where I ′ = I(µ)min ∪ {γ} and γ = w−1
µ (θ);

(iii) if (µ, θ) > 0 and α ∈ Π satisfies the conditions (θ, α) > 0 and (α, µ) = 0, then

one can further extend I ′ as follows: I ′′ = I ′ ∪ {γ ′}, where γ ′ = w−1
µ (θ−α).

These first steps of constructing extensions show that each time one adds to I(µ)min some

roots that are orthogonal to µ. Moreover, the following proposition is true.

Proposition 5.5. Suppose α1, . . . , αt is a chain of simple roots such that (θ, α1) > 0, (αi,

αi+1) > 0 (i = 1, . . . , t − 1), and (θ, µ) = (α1, µ) = · · · = (αt, µ) = 0. Then #(Abµ) ≥ t + 1.

More precisely,

{
I(0), I(1), . . . , I(t)} ⊂ Abµ, (5.6)

where I(0) = I(µ)min and I(i+1) = I(i) ∪ {w−1
µ (θ − α1 − · · · − αi)}. �

Proof. Argue by induction on t. The induction step is the same as the proof of Proposition

5.3. �

After this preparations, we can state a general description of I(µ)max and Abµ.

Let Γ̃ be the extended Dynkin diagram of g. It has the “usual” nodes that correspond to

the roots in Π and the “extra” node corresponding to −θ. Let us delete from Γ̃ all nodes

such that the corresponding roots are not orthogonal to µ. The remaining graph can be

disconnected. Let Γµ denote the connected component of it that contains the node corre-

sponding to −θ. For instance, if (µ, θ) > 0, then Γµ = ∅. Clearly, Γµ is the Dynkin diagram

of a regular simple Lie subalgebra of g. Call this subalgebra g(µ). If α1, . . . , αk are all sim-

ple roots of g that correspond to the usual nodes of Γµ, then {θ,−α1, . . . ,−αk} can be taken

as a set of simple roots for g(µ), and one can consider the respective set of positive roots.

Let b(µ) be the Borel subalgebra corresponding to the chosen set of positive roots, and let

b−
(µ) be the opposite Borel subalgebra. With this convention, let p(µ) ⊃ b(µ) be the maximal

parabolic subalgebra of g(µ) determined by θ (i.e., θ is the only simple root of g(µ) that is

not a root of the Levi subalgebra of p(µ)). Let Mµ be the set of roots of pnil
(µ), the nilpotent

radical of p(µ). It is obvious that the nilpotent radical constructed in this way is Abelian,

that is, for any γ ∈ Mµ the coefficient of θ can be only 1. Thus,

Mµ =

{
θ −

k∑
i=1

ciαi | ci ≥ 0

}
∩ ∆. (5.7)
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Notice that {α1, . . . , αk} is a proper subset of Π, since µ �= 0. Therefore Mµ ⊂ ∆+. Explicit

computations show that one always has

I(µ)max = I(µ)min ∪ w−1
µ

(
Mµ

)
. (5.8)

Furthermore, to get all (combinatorial) Abelian ideals in Abµ, one should exploit in (5.8)

arbitrary subsets A ⊂ Mµ such that the corresponding geometric subspace ⊕γ∈Agγ ⊂
pnil

(µ) be b−
(µ)-stable. At this point, we can use the following general property of Abelian

nilpotent radicals: Let b and b− be opposite Borel subalgebras of g (i.e., b ∩ b− = t). Sup-

pose p ⊃ b is a parabolic subalgebra such that pnil is Abelian, and let E be a b−-stable

subspace of pnil. If Ē is the unique t-stable complement of E, then Ē is also b-stable. (The

proof is straightforward and left to the reader.)

In our situation, this means that ⊕γ∈Agγ is b−
(µ)-stable if and only if ⊕γ∈Agγ ⊂

pnil
(µ) is b(µ)-stable, where A = Mµ \ A. In other words, A ⊂ Mµ gives rise to an element of

Abµ if and only if A is a combinatorial b(µ)-ideal. It follows that Abµ is anti-isomorphic

to the poset of b(µ)-ideals in pnil
(µ). The posets of ideals in Abelian nilpotent radicals are

known as minuscule posets (see, e.g., [9, 11]). In particular, any minuscule poset is self-

dual, that is, it has an order-reversing involution. Therefore, the prefix “anti” in the above

statement can be removed.

Although we cannot provide a priori proofs for all results described after (5.8),

some ingredients can be derived without case-by-case verification. First, since each root

in Mµ is orthogonal to µ, we have, by Theorem 4.1(2), that w−1
µ (Mµ) ⊂ ∆+. Second, us-

ing the definition of I(µ)min, it is not hard to prove that any subset I(µ)min ∪ w−1
µ (A) is an

Abelian subalgebra of ∆+. However, we cannot proof a priori that all these subsets are

ideals in ∆+ and these do lie in Abµ. Still, a direct verification shows that this construc-

tion gives the correct description in all cases.

Remark 5.6. In a recent preprint [12], Suter also studies partition of Ab into subposets

parameterized by the long positive roots. But his technique is different from ours, and

the proofs are based, to a great extent, on case-by-case considerations.

6 Examples

Here, we present our computations for all simple Lie algebras.

6.1 g = sln

We assume that b is the space of upper triangular matrices. Then the positive roots are

identified with the pairs (i, j), where 1 ≤ i < j ≤ n. Here, αi = (i, i + 1) and θ = (1, n).
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s0sn−1sn−2

s1

s2

si−1

sj

· · ·

· · ·

(i,j)

Figure 6.1 Filling of the hook.

An Abelian b-ideal is represented by a right-aligned Ferrers diagram such that the num-

ber of rows plus the number of columns is at most n. The unique northeast corner of the

diagram corresponds to θ and the southwest corners give the generators of the corre-

sponding ideal (see also [8, Theorem 3.3]). In this case, it is easy to explicitly describe

the posets Abµ. If µ = (i, j), then

I(i, j)max =
{
(p, q) | j ≤ q, p ≤ i

}
,

I(i, j)min =
{
(1, q) | j ≤ q

} ∪ {
(p, n) | 2 ≤ p ≤ i

}
.

(6.1)

In other words, I(i, j)max is the rectangle with the low-left corner at (i, j) and I(i, j)min is

the “northeast” hook contained in this rectangle, see also Figure 6.1. Here #I(i, j)max =

i(n + 1 − j) and #I(i, j)min = n + i − j. It follows that #I(i, j)max = #I(i, j)min if and only if

i = 1 or j = n, that is, precisely for the roots that are not orthogonal to θ. It is not hard to

compute that

#Ab(i,j) =

(
n + i − j − 1

i − 1

)
. (6.2)

This shows again that #Ab(i,j) = 1 if and only if i = 1 or j = n. This equality is also

in accordance with Proposition 5.3. It is curious to observe that the assignment (i, j) �→
#Ab(i,j) gives exactly the Pascal triangle (rotated through the angle 45◦).

There is an explicit algorithm for writing out the minuscule element for any I ∈
o

Ab, which can be interpreted as a filling of the respective hook (see Figure 6.1). Namely,

the minuscule element corresponding to I(i, j)min equals (si−1 · · · s2s1)(sj · · · sn−2sn−1)s0.

Note that the products in parentheses, which correspond to the leg and the arm

of the hook, commute, so that their order is irrelevant. For an arbitrary Abelian ideal,

one should decompose the corresponding Ferrers diagram as the union of “northeast”
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s0s9s8s7s6s5

s1s0s9s8

s2s1s0

s3s2

Figure 6.2 Decomposition and filling

of the Ferrers diagram for an Abelian

ideal in sl10 .

hooks, and then fill in each hook according to the above rule. The resulting minuscule

element is the product of the corresponding hook elements; the first factor corresponds

to the smallest hook, and so forth. The best way for understanding all this is to look at

the concrete example.

Consider the Abelian ideal I in sl10 with generators (1, 5), (2, 7), (3, 8), and (4, 9).

Here, the Ferrers diagram is decomposed as the union of three hooks and the correspond-

ing filling is depicted in Figure 6.2. Therefore, the respective minuscule element is w〈I〉 =

s0(s2s1) · · · s0.

6.2 g = so2n+1 or so2n

In the standard notation, the set of long positive roots is

∆+
l =

{
εi ± εj | 1 ≤ i < j ≤ n

}
. (6.3)

Here, θ = ε1 +ε2 and H∩∆+
l = {εi±εj | i = 1, 2, j ≥ 3}∪ {θ}. By Theorem 5.1, #(Abµ) = 1 for

any µ ∈ H∩∆+
l . By Proposition 5.3, we obtain #(Abε1−ε2

) = 2 and #(Abε3±εj
) = 2 (j ≥ 4).

Straightforward computations for the other roots show that #(Abεi±εj
) = 2i−2, if i ≥ 3.

We demonstrate how all this is related to the description of Abµ in Section 5.

Take, for instance, µ = αn−2 = εn−2 − εn−1 for so2n. Then

g(µ) =




0, if n = 4,

sl2, if n = 5,

so2n−6, if n ≥ 6.

(6.4)

For n ≥ 6, the Abelian nilpotent radical in g(µ) corresponding to θ has dimension

(n−3)(n−4)/2. This number is just the difference dim I(αn−2)max−dim I(αn−2)min. Hence,



1910 Dmitri I. Panyushev

dim I(αn−2)max = (n− 3)(n− 4)/2+ 2n− 3 = (n2 − 3n+ 6)/2 (cf. [8, Figure 3]). In this case,

g(µ)  g∨
(µ) and #(Abµ) is the dimension of the half-spinor representation of so2n−6, that

is 2n−4.

6.3 g = sp2n

In this case, there is only a few long roots

∆+
l =

{
2εi | 1 ≤ i ≤ n

}
, (6.5)

and θ = 2ε1. We have I(2εi)min = {ε1 + εi, . . . , ε1 + ε2, 2ε1} and I(2εi)max = {εk + εj | k ≤
j ≤ i}. The sole generator of I(2εi)min (resp., I(2εi)max) is ε1 + εi (resp., 2εi). The minuscule

element w〈I(2εi)min〉 is si−1 · · · s2s1s0. Using the matrix presentation of sp2n (see, e.g., [8,

3.3]), it is easily seen that there is a one-to-one correspondence between the ideals in

Ab2εi
and the Abelian ideals of sp2i−2. Therefore, #(Ab2εi

) = 2i−1. It is also possible to

give an algorithm for writing out the minuscule element corresponding to an Abelian

ideal in terms of filling a shifted Ferrers diagram.

6.4 g = F4

Here, we have 12 long positive roots and 15 nontrivial Abelian ideals. The set H ∩ ∆+
l

consists of 9 roots. Hence, the fibre Abµ contains a unique ideal for these 9 roots and

consists of two ideals for the other 3 roots. The computations of rootlets and minuscule

elements are presented in Table 6.1. We follow the numbering of simple roots from [13,

Table 1], and the root
∑4

i=1 ciαi is denoted by (c1c2c3c4). For instance, θ = (2432). The

notation In means that the ideal has cardinality n. To distinguish different ideals with

the same cardinality, we use “prime”. The third, fourth, and fifth columns represent the

ideal, the corresponding minuscule element, and the rootlet, respectively.

The maximal Abelian ideals are I ′′′8 and I9.

6.5 g = G2

Here #(
o

Ab) = #(∆+
l ) = 3, so that everything is easy. Let α (resp., β) be the short (resp.,

long) simple root. Then

I1 = {3α + 2β}, w
〈
I1

〉
= s0, τ

(
I1

)
= 3α + 2β;

I2 = {3α + 2β, 3α + β}, w
〈
I2

〉
= sβs0, τ

(
I2

)
= 3α + β;

I3 = {3α + 2β, 3α + β,β}, w
〈
I3

〉
= sαsβs0, τ

(
I3

)
= β.

(6.6)
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Table 6.1 The Abelian b-ideals in F4 .

No. #I I w〈I〉 τ(I)

1 1 {θ} s0 θ

2 2 {θ,2431} s4s0 2431

3 3 {θ,2431,2421} s3s4s0 2421

4 4 {θ,2431,2421,2321} s2s3s4s0 2221

5 5 I′
5 = I4 ∪ {2221} s3s2s3s4s0 2211

6 5 I′′
5 = I4 ∪ {1321} s1s2s3s4s0 0221

7 6 I′
6 = I′

5 ∪ {2211} w′
6 = s4s3s2s3s4s0 2210

8 6 I′′
6 = I′

5 ∪ {1321} = I′′
5 ∪ {2221} w′′

6 = s1s3s2s3s4s0 0211

9 7 I′
7 = I′

6 ∪ {2210} w′
7 = s0w′

6 2210

10 7 I′′
7 = I′

6 ∪ {1321} = I′′
6 ∪ {2211} w′′

7 = s1w′
6 = s4w′′

6 0210

11 7 I′′′
7 = I′′

6 ∪ {1221} w′′′
7 = s2w′′

6 0011

12 8 I′
8 = I′

7 ∪ {1321} = I′′
7 ∪ {2210} w′

8 = s1w′
7 = s0w′′

7 0210

13 8 I′′
8 = I′′

7 ∪ {1221} = I′′′
7 ∪ {2211} w′′

8 = s2w′′
7 = s4w′′′

7 0010

14 8 I′′′
8 = I′′′

7 ∪ {0221} w′′′
8 = s3w′′′

7 0001

15 9 I9 = I′
8 ∪ {1221} = I′′

8 ∪ {2210} w9 = s2w′
8 = s0w′′

8 0010

Table 6.2

E6 E7 E8

m1 21 33 57

m2 9 15 27

m3 4 8 16

m4 — 4 10

m5 — — 6

m6 2 2 3

m8 — — 1

m12 — 1 —∑
imi 26 − 1 27 − 1 28 − 1

6.6 g = En, n = 6, 7, 8

Set ∆+
(i) = {µ ∈ ∆+ | #(Abµ) = i} and mi = #∆+

(i). Note that ∆+
(1) = H. The output of

our calculations of numbers mi is given in Table 6.2, where we include only the rows

containing nonzero entries. The last row is the control one.
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Table 6.3

E6 E7 E8

∆+
(1) c6 > 0 c6 > 0 c1 > 0

∆+
(2)

c6 = 0

c3 > 0

c6 = 0

c5 > 0

c1 = 0

c2 > 0

∆+
(3) {α1 + α2,α2,α4 + α5,α4}

c6 = c5 = 0

c4 > 0

c1 = c2 = 0

c3 > 0

∆+
(4) —

c6 = c5 = c4 = 0

c7 > 0or c3 > 0

c1 = c2 = c3 = 0

c4 > 0

∆+
(5) — —

c1 = c2 = c3 = c4 = 0

c5 > 0

∆+
(6) {α1,α5} {α2,α1 + α2} {α8,α6,α6 + α7}

∆+
(8) — — {α7}

∆+
(12) — {α1} —

An explicit description of the subsets ∆+
(i) is also obtained (see Table 6.3). Again,

we follow the numbering of simple roots from [13] and denote the root
∑n

i=1 ciαi by

(c1c2· · ·cn). For instance, the highest root of E6 (resp.,E7) is (1 2 3 2 1 2) (resp., (1 2 3 4 3 2 2)).
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