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1 Introduction and conclusions

There are two typical types of half-BPS boundary conditions in 3d N = 4 gauge theories.

One is the N = (0, 4) chiral half-BPS boundary condition. It can be constructed in the

brane setup [1, 2] and has interesting dualities [3] under mirror symmetry [4–6]. Such a

chiral BPS boundary condition admits canonical deformations that lead to the boundary

Vertex Operator Algebras (VOAs) [7]. It can be further generalized by coupling to the

quarter-BPS corner configurations of 4d N = 4 super Yang-Mills (SYM) theory [8–11],

which played an important role in the Geometric Langlands program.

The other type is the N = (2, 2) non-chiral half-BPS boundary condition. In the

presence of Ω-deformations, one obtains from 3d N = 4 gauge theories the quantized

Coulomb and Higgs branch algebras [12]. The N = (2, 2) half-BPS boundary condition

defines a pair of modules of the quantized Coulomb and Higgs branch algebras [13]. In

the case of Abelian gauge theories, the Coulomb and Higgs branches are hypertoric vari-

eties [14–17] and there are three basic classes of boundary conditions [13], i.e. the Neumann

boundary condition, the generic Dirichlet boundary condition and the exceptional Dirichlet

boundary condition. It is argued [13] that the Neumann and generic Dirichlet boundary

conditions are exchanged while the exceptional Dirichlet boundary conditions are invariant

under mirror symmetry [4–6]. It gives a physical underpinning to the Symplectic Duality

program [18, 19].

In this paper we test the conjectured dualities of N = (2, 2) non-chiral half-BPS

boundary conditions under mirror symmetry by computing half-indices for the UV bound-

ary conditions in 3d N = 4 Abelian gauge theories in terms of the UV formulas for the 3d

half-indices of the Neumann b.c. [20–22] and of the Dirichlet b.c. [23] for gauge theories.

The half-index can be considered as a partition function on S1 × HS2 with a boundary

condition on ∂(S1 × HS2) = S1 × S1 where HS2 is a hemisphere. It can realize the

holomorphic block [24, 25] with the appropriate choice of the UV boundary conditions, as

recently demonstrated for SQED in [26] and for the ADHM theory in [27] by choosing the

exceptional Dirichlet boundary conditions and using supersymmetric localization.

Our results confirm that the Neumann boundary condition is dual to the generic Dirich-

let boundary condition for its mirror theory and that these dualities are generalized by

including Wilson line operators to the Neumann boundary conditions and vortex lines to

the generic Dirichlet boundary conditions.1 On the other hand, we find that a naive mir-

ror symmetry between exceptional Dirichlet boundary conditions does not “always” hold.

The half-indices of exceptional Dirichlet boundary conditions physically realize the vertex

functions [30] which are defined as generating functions for the K-theoretic equivariant

counting [30–39] of quasimaps to a hypertoric variety. The triangular matrix obtained

from the elliptic stable envelope [32] shows that the half-index of the exceptional Dirichlet

boundary condition generically transforms into a certain linear combination of the half-

indices of the exceptional Dirichlet boundary conditions under mirror symmetry.

The two deformations which are compatible with the two distinct topological

twists [40, 41] which are called the H-twist (or mirror Rozansky-Witten twist) and the

1See [28, 29] for mirror symmetry of line operators in 3d N = 4 gauge theories.
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C-twist (or Rozansky-Witten twist) enforce specializations of the fugacity t to q
1
4 and

q−
1
4 at the level of indices (see [11]). In these limits the quarter- and half-indices of the

N = (0, 4) chiral supersymmetric configurations coincide with certain characters of the

corner and boundary VOAs [3, 7, 8, 11]. For the N = (2, 2) half-BPS boundary condi-

tions, the two deformations compatible with the H- and C-twist correspond to the two

Ω-deformations which lead to the quantized Coulomb and Higgs branch algebras. Conse-

quently, these limits of the N = (2, 2) half-indices can lead to the reduced indices which

count the generators in the quantized Coulomb and Higgs branch algebras. In fact, it has

been recently argued in [26, 27] that for the boundary conditions preserving at least a

maximal torus of the flavor symmetry, the two limits of the hemisphere partition function

reproduce the characters of modules of the quantized Coulomb and Higgs branch algebras

by checking explicitly for the exceptional Dirichlet and Verma modules in SQED and the

ADHM theory. In this paper we discuss the reduced indices as these specializations of the

N = (2, 2) half-indices of other boundary conditions which define other modules, including

Neumann and generic Dirichlet boundary conditions which may contain line operators.

1.1 Structure

In section 2 we introduce half-indices which count the local operators preserving N = (2, 2)

supersymmetry at a boundary of 3d N = 4 supersymmetric field theories. In section 3

we compute the half-indices of N = (2, 2) half-BPS boundary conditions in 3d N = 4

Abelian gauge theories. We confirm the dualities of boundary conditions by showing two

half-indices perfectly agree with each other. We also discuss the H-twist and C-twist limits

of half-indices that count the operators corresponding to the modules of the quantized

Coulomb and Higgs branch algebras. In appendix A we present the notations of q-series.

In appendix B we show several terms in the expansions of indices.

1.2 Open problems

There are a variety of interesting questions which we leave for future work:

• The N = (2, 2) half-BPS boundary conditions can be generalized by including bound-

ary degrees of freedom which couple to the bulk fields. The corresponding half-indices

should be viewed as generalizations of the elliptic genera [42–44] for 2d N = (2, 2)

supersymmetric gauge theories. It would be interesting to study the half-indices for

enriched Neumann boundary conditions involving the 2d bosonic matter which may

require to deform the contour prescription [3] and realize the integral expression of

the vertex functions [32, 33]. The dualities of such boundary conditions will also gen-

eralize Hori-Vafa mirror symmetry [45] as well as the dualities of N = (2, 2) half-BPS

boundary conditions.

• For non-Abelian gauge theories, there should be more general boundary conditions as

we can choose arbitrary subgroup H of G as an unbroken gauge symmetry. A natural

question is to explore singular boundary conditions whose existence is argued for the

N = (0, 4) half-BPS boundary conditions in 3d N = 4 gauge theories [1] as well as the

– 3 –
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BPS-boundary conditions in 5d SYM theory [46, 47], 4d N = 4 SYM theory [48–51]

and in 2d N = (2, 2) gauge theories [52]. It is interesting to address the geometric

and representation theoretic questions about enumerative K-theory of quasimaps to

Nakajima varieties for non-Abelian theories by studying half-indices and check non-

Abelian mirror symmetry of exceptional Dirichlet boundary conditions in terms of

the pole subtraction matrix obtained from the elliptic stable envelope [32].

• The brane construction of the N = (2, 2) half-BPS boundary conditions is presented

in [1] by generalizing the Hanany-Witten configuration [53]. It is intriguing to extend

the constructions and dualities of the N = (2, 2) half-BPS boundary conditions by

using the brane techniques.

• For the ADHM theory the N = (2, 2) half-BPS boundary conditions can describe

open M2-branes ending on an M5-brane. The quantized Coulomb branch algebra

is the spherical part of the rational Cherednik algebra associated with the Weyl

group [54]. It would be nice to clasify the UV boundary conditions and their modules

in the quantized Coulomb and Higgs branch algebras and evaluate the half-indices.

In particular, the UV exceptional Dirichlet boundary conditions defining the Verma

modules for isolated vacua will be important as the twisted traces over the Verma

modules are basic building blocks in the algebraic formula [55] of the sphere partition

functions and correlation functions2 as well as other partition functions [27].

2 Indices

2.1 Definition

The half-index is defined by3

II(t, x; q) = TrOp(−1)F qJ+
H+C

4 tH−Cxf (2.1)

where the trace is taken over the cohomology of preserved supercharges. F is the Fermion

number operator and J is the U(1)J rotation in the two-dimensional plane. C and H

are the Cartan generators of the SU(2)C and SU(2)H R-symmetry groups in 3d N = 4

supersymmetric field theories. f are the Cartan generators of other global symmetries.

We choose the fugacity so that the power of q is always strictly positive for local

operators by a unitarity bound. Therefore the half-index can be regarded as a formal

power series in q and the Lauranet polynomials in the other fugacities.

2.2 3d indices

The 3d N = 4 superalgebra takes the form:{
QAȦα , QBḂβ

}
= −2εABεȦḂσµαβPµ + 2εαβ

(
εABZȦḂ + εȦḂZAB

)
(2.2)

2See [56, 57] for a generalization to 4d bulk-3d boundary system.
3Also see [3, 11] for N = (0, 4) chiral supersymmetric case.
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where α, β are the Lorentz indices, A,B are the SU(2)H indices and Ȧ, Ḃ are the SU(2)C
indices. ZAB and ZȦḂ are the central charges. The 3d N = 4 supercharges QAȦα carry the

charges

Q11̇
− Q12̇

− Q21̇
− Q22̇

− Q11̇
+ Q12̇

+ Q21̇
+ Q22̇

+

U(1)C + − + − + − + −
U(1)H + + − − + + − −

(2.3)

The 3d N = 4 hypermultiplet involves a pair of complex scalars X, Y forming a

doublet of SU(2)H and a pair of complex fermions ψX+ , ψY+ forming a doublet of SU(2)C .

The charges of the 3d N = 4 hypermultiplet are given by

X Y ψX+ ψY+ ψ
X
− ψ

Y
−

U(1)C 0 0 − − + +

U(1)H + + 0 0 0 0

(2.4)

The 3d N = 4 Abelian vector multiplet consists of a 3d gauge field Aµ, three scalars,

which we denote by real and complex scalars σ, ϕ forming the SU(2)C triplet, and two

complex fermions (λα, ηα). The charges of the 3d N = 4 vector multiplet are given by

Aµ σ ϕ λ± λ± η± η±
U(1)C 0 0 2 + − + −
U(1)H 0 0 0 + − − +

(2.5)

We introduce the half-indices of N = (2, 2) half-BPS boundary conditions preserving

Q11̇
− , Q22̇

− , Q12̇
+ and Q21̇

+ in 3d N = 4 gauge theories from the field content of a UV theory [58]

obtained by counting operators constructed from the fields.

2.2.1 3d N = 4 matter multiplets

The operators from the 3d N = 4 hypermultiplet which contribute to index are

∂nzX ∂nz Y ∂nz ψ
X
− ∂nz ψ

Y
−

U(1)f + − + −
U(1)J n n n+ 1

2 n+ 1
2

U(1)C 0 0 + +

U(1)H + + 0 0

fugacity qn+
1
4 tx qn+

1
4 tx−1 −qn+

3
4 t−1x −qn+

3
4 t−1x−1

(2.6)

The index for the 3d N = 4 hypermultiplet is4

I3d HM(t, x; q) =
(q

3
4 t−1x; q)∞(q

3
4 t−1x−1; q)∞

(q
1
4 tx; q)∞(q

1
4 tx−1; q)∞

. (2.7)

4We follow the convention in [59] for the full-index of 3d N = 4 gauge theories.
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Similarly, the operators of the twisted hypermultiplet which contribute to the index are

∂nz X̃ ∂nz Ỹ ∂nz ψ̃
X

− ∂nz ψ̃
Y

−
U(1)f + − + −
U(1)J n n n+ 1

2 n+ 1
2

U(1)C + + 0 0

U(1)H 0 0 + +

fugacity qn+
1
4 t−1x qn+

1
4 t−1x−1 −qn+

3
4 tx −qn+

3
4 tx−1

(2.8)

Let us consider N = (2, 2) supersymmetric boundary conditions for the 3d N = 4

hypermultiplet. The basic boundary conditions are [60]

B′+ : Y |∂ = 0, ∂2X|∂ = 0,

B′− : X|∂ = 0, ∂2Y |∂ = 0,
(2.9)

where x2 is the coordinate normal to the boundary. Analogously, the N = (2, 2) super-

symmetric boundary conditions for the 3d N = 4 twisted hypermultiplet are

B+ : Ỹ |∂ = 0, ∂2X̃|∂ = 0,

B− : X̃|∂ = 0, ∂2Ỹ |∂ = 0.
(2.10)

The half-index of the N = (2, 2) boundary condition B′+ for the 3d N = 4 hypermul-

tiplet is given by

II3d HM
+ (t, x; q) =

(q
3
4 t−1x; q)∞

(q
1
4 tx; q)∞

= II3d CM
N (q

1
4 tx; q)× II3d CM

D (q
1
4 tx−1; q) (2.11)

and the half-index of N = (2, 2) boundary condition B′− for 3d N = 4 hypermultiplet is

II3d HM
− (t, x; q) =

(q
3
4 t−1x−1; q)∞

(q
1
4 tx−1; q)∞

= II3d CM
N (q

1
4 tx−1; q)× II3d CM

D (q
1
4 tx; q) (2.12)

where

II3d CM
N (x; q) =

1

(x; q)∞
, II3d CM

D (x; q) = (qx−1; q)∞ (2.13)

represent the Neumann and Dirichlet half-indices for a 3d N = 2 chiral multiplet [20, 21].

In the H-twist limit t → q
1
4 , the half-index (2.11) becomes 1. This indicates that the

free hypermultiplet has no Coulomb branch local operator. On the other hand, in the

C-twist limit t → q−
1
4 , the half-index (2.11) reduces to 1

1−x . The factor corresponds to a

bosonic generator of the algebra for the Higgs branch.
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The half-indices for the 3d N = 4 twisted hyper can be obtained by replacing t with

t−1. We have

II3d tHM
+ (t, x; q) =

(q
3
4 tx; q)∞

(q
1
4 t−1x; q)∞

= II3d CM
N (q

1
4 t−1x; q)× II3d CM

D (q
1
4 t−1x−1; q) (2.14)

and

II3d tHM
− (t, x; q) =

(q
3
4 tx−1; q)∞

(q
1
4 t−1x−1; q)∞

= II3d CM
N (q

1
4 t−1x−1; q)× II3d CM

D (q
1
4 t−1x; q). (2.15)

2.2.2 3d N = 4 gauge multiplets

The charges of operators in the 3d N = 4 vector multiplet which contribute to the index are

Dn
z (σ + iρ) Dn

zϕ Dn
z λ

3d
− Dn

z η
3d
−

G adj adj adj adj

U(1)J n n n+ 1
2 n+ 1

2

U(1)C 0 2 − −
U(1)H 0 0 − +

fugacity qnsα qn+
1
2 t−2sα −qnsα −qn+

1
2 t2sα

(2.16)

where ρ := A2 is a normal component of gauge field that combines with the real scalar

σ to form a complex scalar. The fugacities s take values in the complexified torus TC of

gauge group G and α are roots of G. The perturbative index for the 3d N = 4 U(1) vector

multiplet is

I3d pert U(1)(t; q) =
(q

1
2 t2; q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis
. (2.17)

The Neumann b.c. N ′ for the 3d N = 4 vector multiplet is [1, 13]

N ′ : F2µ|∂ = 0, D2ϕ|∂ = 0, Dµσ|∂ = 0 (2.18)

The half-index of the N =(2, 2) Neumann b.c. N ′ for the 3d N =4 U(1) vector multiplet is

II3d U(1)
(2,2)N ′ (t; q) =

(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis

= II3d N = 2 U(1)
N × II3d CM

N (q
1
2 t−2; q) (2.19)

where

II3d N = 2 U(1)
N = (q)∞

∮
ds

2πis
(2.20)
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is the Neumann half-index of the 3d N = 2 vector multiplet [20–22] and the contour is

taken as a unit circle around the origin.5 The half-index of the N = (2, 2) Neumann b.c.

for the 3d N = 4 U(N) vector multiplet is

II3d U(N)
(2,2)N ′ =

1

N !

(q)N∞

(q
1
2 t−2; q)N∞

∮ N∏
i=1

dsi
2πisi

∏
i 6=j

(
si
sj

; q
)
∞(

q
1
2 t−2 si

sj
; q
)
∞

(2.21)

where the contour is taken as a n-torus around the origin.

The Dirichlet b.c. D′ for the 3d N = 4 vector multiplet is [1, 13]

D′ : Fµν |∂ = 0, D2σ = 0, Dµϕ = 0. (2.22)

The N = (2, 2) Dirichlet b.c. D′ for 3d N = 4 U(1) vector multiplet leads to the following

perturbative contribution to the half-index

II3d U(1)
(2,2)D′ (t; q) =

(q
1
2 t2; q)∞
(q)∞

= II3d N = 2 U(1)
D × II3d CM

D (q
1
2 t−2; q). (2.23)

As 2d N = (2, 2) gauge theory arises from 3d N = 4 gauge theory on a segment with

Neumann b.c. N ′ at each end, we have

II3d U(1)
(2,2)N ′ × II3d U(1)

(2,2)N ′

I3d pert U(1)
= I2d (2, 2) U(1). (2.24)

On the other hand, when a 3d N = 4 U(1) gauge theory is placed on a segment with

Neumann b.c. N ′ and Dirichlet b.c. D′, we have

II3d U(1)
(2,2)N ′ × II3d U(1)

(2,2)D′

I3d pert U(1)
= 1. (2.25)

This would imply that the resulting 2d theory is a trivial theory.

There are important non-perturbative contributions to indices from monopole oper-

ators. The monopole operator in the bulk is a disorder operator described as a singular

solution to the BPS equations

F = ∗Dσ, D ∗ σ = 0. (2.26)

For the Abelian G = U(1) gauge theory, the basic solution is a Dirac monopole

σ =
m

2r
(2.27)

where r is a radial distance from the singularity and m ∈ Z is quantized according to

a magnetic flux through a two-sphere surrounding the singularity. Monopole operator

5As discussed in [3], when 2d charged bosonic matter fields exist, the contour will be modified. In this

paper we focus on the case with no 2d charged bosonic matter fields supported at the boundary.
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on the boundary for G = U(1) can be similarly defined by (2.27) as a singular solution

to (2.26) on a half-space x2 ≥ 0. The boundary monopole operator carries charge which

is specified by a magnetic flux through a hemisphere surrounding the singularity. It is

compatible with the Dirichlet boundary conditions for the vector multiplet because they

give Neumann boundary conditions for σ + iγ, which admit the semi-classical description

of a BPS Abelian monopole operator v ∼ e
1
g2 (σ+iγ).

Hence the half-index of the Dirichlet b.c. D′ for the U(1) gauge multiplet has the non-

perturbative contributions from the boundary monopole operators. The non-perturbative

contributions are completed by the following formula [23]:

II3d U(1)
(2,2)D′ (t; q) =

(q
1
2 t2; q)∞
(q)∞

∑
m∈Z

ykeffm × [matter index](qmu) (2.28)

where u is the fugacity for the boundary U(1)∂ global symmetry arising as the broken U(1)

gauge symmetry and y are the fugacities for other global symmetries involving boundary

anomalies. The magnetic fluxes are represented by {m} and take integer values. As we will

see, for the generic Dirichlet boundary condition and the exceptional Dirichlet boundary

condition, the fugacity u should be specialized as the boundary matter fields acquire non-

trivial vevs.

As for the twisted hypermultiplet, the half-indices for the 3d N = 4 twisted vector can

be obtained by replacing t with t−1.

2.3 2d indices

When the 3d bulk theory is empty and the boundary 2d degrees of freedom are turned on,

our N = (2, 2) half-index of 3d N = 4 theory reduces to the elliptic genus. It is a weighted

trace encoding short representations in the spectrum [61–65] of the N = (2, 2) theory.

The elliptic genera for gauge theories with Lagrangian descriptions can be evaluated by

counting free fields [42–44].

We would like to formulate the elliptic genus as an operator counting generating func-

tion, which can be naturally defined in the NS-NS sector.6

The H-twist limit t → q
1
4 leads to the specialized genera Ia,c counting local operators

which are left antichiral and right chiral. The C-twist limit t→ q−
1
4 yields the specialized

genera Ic,c counting local operators which are both chiral on the left and right. The

specialized genera can be defined even for non-conformal N = (2, 2) theories where some

R-symmetries are broken provided that the shortening conditions for the restricted set of

( chiral × chiral ) or ( antichiral × chiral ) operators can be formulated.

More precisely, the two specialized genera can exist for the non-conformal theories

when one of the R-symmetries is preserved:{
U(1)H = U(1)V preserved: I(c,c) exists

U(1)C = U(1)A preserved: I(a,c) exists
. (2.29)

6Our convention for NS-NS sector genus is related to that in [66] by setting t to y
1
2 .
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2.3.1 2d N = (2, 2) chiral multiplet

The operators from the 2d N = (2, 2) chiral multiplet which contributes to the index are

∂nz φ ∂n+1
z φ ∂nz ψ− ∂nz ψ−

U(1)f + − + −
U(1)J n n+ 1 n+ 1

2 n+ 1
2

U(1)C = U(1)A 0 0 + −
U(1)H = U(1)V 2r −2r 2r − 1 1− 2r

fugacity qn+
r
2 t2rx qn+1− r

2 t−2rx−1 −qn+
1
2
+ r

2 t2r−2x −qn+
1
2
− r

2 t2−2rx−1

(2.30)

The index of 2d N = (2, 2) chiral multiplet with canonical R-charge 2r is

I2d (2, 2) CMr(t, x; q) =
(q

1
2
+ r

2 t2r−2x; q)∞(q
1
2
− r

2 t2−2rx−1; q)∞

(q
r
2 t2rx; q)∞(q1−

r
2 t−2rx−1; q)∞

= q
1
4 t−1

ϑ1(q
− 1+r

2 t2(1−r)x−1; q)

ϑ1(q
− r

2 t−2rx−1; q)
. (2.31)

When we assign canonical R-charge 1 to a neutral chiral multiplet, the index becomes

1 because the bosonic and fermionic contributions cancel out.

The index of the twisted chiral multiplet of canonical R-charge −2r can be obtained

from the chiral multiplet index (2.31) by setting t→ t−1

I2d (2, 2) tCM(t, x; q) =
(q

1
2
+ r

2 t−2r+2x; q)∞(q
1
2
− r

2 t−2+2rx−1; q)∞

(q
r
2 t−2rx; q)∞(q1−

r
2 t2rx−1; q)∞

= q
1
4 t
ϑ1(q

− 1+r
2 t−2(1−r)x−1; q)

ϑ1(q
− r

2 t2rx−1; q)
. (2.32)

2.3.2 2d N = (2, 2) vector multiplet

The charges of operators from the 2d N = (2, 2) vector multiplet are given by

Dn
z (σ2d + iρ2d) Dn+1

z (σ2d − iρ2d) Dn
z λ

2d Dn+1
z λ

2d

G adj adj adj adj

U(1)J n n+ 1 n+ 1
2 n+ 3

2

U(1)C = U(1)A 2 −2 + −
U(1)H = U(1)V 0 0 + −

fugacity qn+
1
2 t−2sα qn+

1
2 t2sα −qn+1sα −qn+1sα

(2.33)

The index of the 2d N = (2, 2) U(1) vector multiplet is

I2d (2, 2) U(1)(t; q) =
(q)2∞

(q
1
2 t2; q)∞(q

1
2 t−2; q)∞

∮
JK

ds

2πis

= −iq−
1
4 t

η(q)3

ϑ1(q
− 1

2 t2; q)

∮
JK

ds

2πis
(2.34)
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where η(q) and ϑ1(x; q) are the Dedekind eta function and Jacobi theta function (see

appendix A). Here the subscript “JK” in the contour integral implies the Jeffrey-Kirwan

(JK) residue prescription involving a contour integral around poles for the charged chiral

multiplets of, say, negative charge [42, 43, 67].

The index of the 2d N = (2, 2) U(N) vector multiplet is

I2d (2, 2) U(N)(t; q)

=
1

N !

(q)2N∞

(q
1
2 t2; q)N∞(q

1
2 t−2; q)N∞

∮
JK

N∏
i=1

dsi
2πisj

∏
i 6=j

(
si
sj

; q
)
∞

(
q sisj ; q

)
∞(

q
1
2 t2 sisj ; q

)
∞

(
q

1
2 t−2 sisj ; q

)
∞

=
1

N !

[
−iq−

1
4 tη(q)3

ϑ1(q
− 1

2 t2; q)

]N ∮
JK

N∏
i=1

dsi
2πisi

∏
i 6=j

ϑ1

(
si
sj

; q
)

ϑ1

(
q−

1
2 t2 sisj ; q

) . (2.35)

The index of the 2d N = (2, 2) vector multiplet of non-Abelian gauge group G takes

the form

I2d (2, 2) G(t; q) =
1

|Weyl(G)|

[
−iq−

1
4 tη(q)3

ϑ1(q
− 1

2 t2; q)

]rk(G)

×
∮
JK

∏
α∈root(G)

dsα

2πisα
ϑ1(s

α; q)

ϑ1(q
− 1

2 t2sα; q)
. (2.36)

2.4 Flip

The N = (2, 2) boundary conditions B′+ and B′− in (2.9) can be related by a transformation

that adds the 2d N = (2, 2) chiral multiplet supported at the boundary [13]. Let us start

with the b.c. B′+ and add a boundary superpotential

Wbdy = X|∂φ+ · · · (2.37)

Then the chiral multiplet scalar filed φ plays the role of the Lagrange multiplier that

requires the Dirichlet b.c. X|∂ = 0 for X whereas the boundary superpotential allows Y

to fluctuate since the condition Y |∂ = 0 is modified as Y |∂ = φ. This implies that the

coupling to a boundary N = (2, 2) chiral multiplet flips B′+ to B′−.

The flip operation is translated into the identity

II3d HM
+ (t, x; q)× I

2d (2, 2) CM
r= 1

2 (t, x−1; q) = II3d HM
− (t, x; q) (2.38)

at the level of the indices.

3 Abelian dualities of N = (2, 2) boundary conditions

In this section, we evaluate the half-indices for 3d N = 4 Abelian gauge theories obeying

the N = (2, 2) half-BPS boundary conditions.

In the Abelian gauge theories there are three basic boundary conditions [13]:
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1. Neumann boundary condition

N ′ε : F2µ|∂ = 0, D2ϕ|∂ = 0, σ|∂ = 0,{
Yi|∂ = 0 for εi = +

Xi|∂ = 0 for εi = −
. (3.1)

It preserves the full gauge symmetry G. The vevs of the hypermultiplet scalar fields

obeying the Dirichlet b.c. are set to zero. It can preserve the flavor symmetry GH
but break the topological symmetry GC .

2. generic Dirichlet boundary condition

D′ε,c : Aµ|∂ = 0, ϕ|∂ = 0, ∂2σ|∂ = 0,{
Yi|∂ = ci for εi = +

Xi|∂ = ci for εi = −
. (3.2)

It completely breaks the gauge symmetry G. The vevs of the hypermultiplet scalar

fields obeying the Dirichlet b.c. are “generic”. It preserves the topological symmetry

GC but breaks the flavor symmetry GH .

3. exceptional Dirichlet boundary condition

D′EXε,j : Aµ|∂ = 0, ϕ|∂ = mC, ∂2σ|∂ = 0,{
Yi|∂ = cδij for εi = +

Xi|∂ = cδij for εi = −
. (3.3)

It completely breaks the gauge symmetry G. The vevs of the hypermultiplet scalar

fields obeying the Dirichlet b.c. are chosen so that the flavor symmetry GH is pre-

served. It preserves both GH and GC and is compatible with complex FI and mass

deformations.

We find several identities of half-indices which show dualities of the UV boundary conditions

for a pair of mirror theories:

Neumann b.c. ↔ generic Dirichlet b.c.

exceptional Dirichlet b.c. ↔ exceptional Dirichlet b.c.
(3.4)

The dualities between the Neumann b.c. and the generic Dirichlet b.c. can be general-

ized by introducing Wilson and vortex line operators.

The supersymmetric Wilson lineWR in representationR of the gauge group G inserted

at the origin of the (z, z) plane is defined by

WR = TrRP exp i

∫
x2≤0
z=z=0

(A2 − iσ)dx2 (3.5)
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where TrR is a trace in representation R. This manifestly breaks the SU(2)C R-symmetry

down to U(1)C and preserves the SU(2)H R-symmetry. For the Neumann boundary con-

dition, the boundary operator at the end of the Wilson line WR is required to represent in

the conjugate representation R of G. The Neumann half-index is modified by inserting a

character χR(s) of the representation R in the integrand.

The vortex line Vk for an Abelian flavor symmetry is a disorder operator which requires

the singular profile A ∼ kdθ of the connection near the origin z = z = 0 where z and z are

complex coordinates on the two-dimensional plane. It can be viewed as an insertion of k

units of flux

Fzz = 2πkδ(2)(z, z). (3.6)

In the holomorphic gauge the singular configuration takes the form Az ∼ k/z and Az = 0

which can be obtained from a smooth configuration by a complex gauge transformation

g(z) = zk. In the presence of the vortex line Vk the charged matter fields have a zero

or pole of order ∼ k at the origin so that their spins are shifted by −k units times their

charges. Hence the vortex line Vk shifts the fugacity of the indices:

Vk : x→ q−kx. (3.7)

Schematically, we find that the duality (3.4) under mirror symmetry is generalized by

inserting the line operators as

Neumann b.c. + W−k ↔ generic Dirichlet b.c. + V−k (3.8)

where W−k is a Wilson line of charge −k ending on the boundary, which admits bound-

ary operators of gauge charge k. In a similar manner to the line operators in the bulk

theory [28, 29], the Wilson and vortex lines are swapped under mirror symmetry.

We also discuss that the H-twist and C-twist limits [3, 11] of the half-indices lead to the

reduced indices which count the boundary operators corresponding to the modules which

arise from the N = (2, 2) half-BPS boundary conditions for the quantized Coulomb and

Higgs branch algebras.

3.1 SQED1 and a twisted hypermultiplet

Let us begin with the simplest pair of mirror theories, that is SQED1 with a gauge group

G = U(1) and one hypermultiplet (X,Y ) of charge +1 and a free twisted hypermultiplet

(X̃, Ỹ ).

In the presence of an Ω-background, the Higgs branch chiral ring turns into a non-

commutative algebra called the quantized Higgs branch algebra. The quantized Higgs

branch algebra for a single twisted hypermultiplet is generated by twisted hypermultiplet

scalars X̃ and Ỹ obeying

[X̃, Ỹ ] = 1. (3.9)

It is the Weyl algebra.
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The quantized Coulomb branch algebra for SQED1 is generated by a vector multiplet

scalar ϕ and Abelian monopoles v± with

v±ϕ = (ϕ± 1)v±,

v+v− = ϕ+
1

2
,

v−v+ = ϕ− 1

2
. (3.10)

It is also the Weyl algebra with

v+ = X̃, v− = Ỹ , ϕ = Ỹ X̃ +
1

2
. (3.11)

3.1.1 SQED1 with N ′+ and twisted hyper with B+,c
Let us consider the Neumann b.c. for SQED1. The half-index for the Neumann b.c. N ′+
takes the form

II3d SQED1

N ′+
(t; q) =

(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx; q)∞

(q
1
4 tsx; q)∞︸ ︷︷ ︸
II3d HM

+ (s)

(3.12)

where the contour is chosen as a unit circle. In this case, there is no boundary global

symmetry. So the H-twist nor C-twist limit can lead to non-trivial reduced indices of the

quantum algebras.

The half-index (3.12) can be evaluated by picking residues at poles s = q−
1
4
+nt−1 from

the charged hypermultiplet. We get

II3d SQED1

N ′+
(t; q) =

∞∑
n=0

(q
1
2 t2; q)n
(q)n

q
n
2 t−2n

=
(q)∞

(q
1
2 t−2; q)∞

= II3d tHM
+ (t, x = q

1
4 t−1; q) (3.13)

where we have used the q-binomial theorem. We see that the half-index (3.12) is equal to the

N = (2, 2) half-index for the twisted hypermultiplet with the special flavor fugacity value

x = q
1
4 t−1. The specialization of the flavor fugacity of the twisted hypermultiplet resulting

from the broken flavor symmetry will correspond to the deformation of the regular Dirichlet

b.c. to the generic Dirichlet b.c. This shows the simplest duality between the N = (2, 2)

Neumann b.c. N ′+ for SQED1 and the N = (2, 2) half-BPS boundary condition

B+,c : Ỹ |∂ = c, ∂2X̃|∂ = 0 (3.14)

for a free twisted hypermultiplet that breaks the flavor symmetry. In this case, the topo-

logical symmetry in SQED1 and the flavor symmetry in a free twisted hyper are broken

completely.
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One can modify the half-index by including a line operator W−k of charge −k < 0

inserted along {0} × S1 ⊂ D2 × S1. The half-index for the Neumann b.c. N ′+ with Wilson

line of charge −k < 0 for SQED1 is computed as

II3d SQED1
N ′,+;W−k(t, x; q) =

(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx; q)∞

(q
1
4 tsx; q)∞︸ ︷︷ ︸
II3d HM

+ (s)

s−k

= q
k
4 tkxk

∞∑
n=0

(q
1
2 t2; q)n
(q)n

q
n
2
+knt−2n

= q
k
4 tkxk

(q1+k; q)∞

(q
1
2
+kt−2; q)∞

= II3d tHM
+;V−k (t, x = q

1
4 t−1; q) (3.15)

where we have used the q-binomial theorem. The half-index now depends on the flavor

fugacity x. We can view the expression in the third line as the half-index of the twisted

hyper obeying the b.c. B+,c with a vortex line V−k for a flavor symmetry as an insertion

of k units of flux that shifts the spin of all charged operators by k units. The additional

prefactor q
k
4 tkxk is understood as the effective Chern-Simons coupling.

Therefore (3.15) shows that the Neumann b.c. N ′+ with Wilson line W−k of charge

−k < 0 is dual to the b.c. B+,c with a vortex line V−k for a flavor symmetry of the twisted

hypermultiplet. In the C-twist limit the half-index (3.15) becomes xk.

3.1.2 SQED1 with D′+,c and twisted hyper with B+

Next consider the boundary condition for SQED1 or the twisted hyper preserving the

boundary global symmetry, i.e. topological or flavor symmetry.

For SQED1, the topological symmetry can be preserved for the Dirichlet boundary

condition. The half-index of the Dirichlet b.c. D′+ for SQED1 takes the form

II3d SQED1

D′+
(t, u, x; q) =

(q
1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

(q
3
4
+mt−1u; q)∞

(q
1
4
+mtu; q)∞︸ ︷︷ ︸

II3d HM
+ (qmu)

q
m
4 t−mxm (3.16)

where u is the fugacity for the boundary global symmetry G∂ = U(1) generated by a

constant transformations of the gauge symmetry at the boundary and x is the fugacity for

the topological symmetry.

For the generic Dirichlet b.c.

D′+,c : D′ for vector mult., Y |∂ = c, ∂2X|∂ = 0 (3.17)

where c 6= 0 is a generic constant value, the boundary global symmetry G∂ is completely

broken. Accordingly, the half-index of the generic Dirichlet b.c. D′+,c can be obtained
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from (3.16) by specializing the fugacities of the hypermultiplets as u = q
1
4 t:

II3d SQED1

D′+,c
(t, x; q) =

(q
1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

(q1+m; q)∞

(q
1
2
+mt2; q)∞︸ ︷︷ ︸

II3d HM
+ (q

1
4 +mt)

q
m
4 t−mxm (3.18)

where the sum over m has contributions only from non-negative integers. In the H-twist

limit, the half-index (3.18) reduces to

II3d SQED1

D′(H)
+,c

(x) =
∑
m=0

xm =
1

1− x
. (3.19)

This counts the bosonic operators in the quantized Coulomb branch algebra of SQED1.

For a free twisted hypermultiplet, the flavor symmetry is realized for the N = (2, 2)

boundary condition B+ given by (2.10). The half-index is

II3d tHM
+ (t, x; q) =

(q
3
4 tx; q)∞

(q
1
4 t−1x; q)∞

(3.20)

where x is the fugacity for the flavor symmetry. In the H-twist limit, the half-index (3.20)

reduces to 1/(1− x). This coincides with (3.19) and simply counts the bosonic generators

in the quantized Higgs branch algebra of the twisted hypermultiplet.

Making use of Ramanujan’s summation formula7

1ψ1(a; b; q, z) =
∑
m∈Z

(a; q)m
(b; q)m

zm =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, (3.21)

with a = q
1
4 tux and b = q

3
4 t−1ux one can show that the half-index (3.18) agrees with the

half-index (3.20):

II3d SQED1

D′+,c
(t, x; q) = II3d tHM

+ (t, x; q) (3.22)

This demonstrates that the generic Dirichlet b.c. D′+,c for SQED1 is dual to the basic

half-BPS boundary condition B+ for a free twisted hypermultiplet !

3.2 T[SU(2)]

Next consider the N = (2, 2) half-BPS boundary condition for SQED2 which flows to the

superconformal theory T[SU(2)]. The theory is self-mirror with a topological symmetry

GC = SU(2) and a flavor symmetry GH = SU(2) which are exchanged under mirror

symmetry. We denote the mirror description consisting of the twisted supermultiplets by
˜T[SU(2)].

The quantized Higgs branch algebra Ĉ[MH ] is generated by the meson operators

F = X1Y2, E = X2Y1, H = X1Y1 −X2Y2 (3.23)

7It was firstly found by Ramanujan [68] and later proven by Andrews [69], Hahn [70], Jackson [71],

Ismail [72] and Andrews and Askey [73].
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with

[F,H] = 2F, [E,H] = −2E, [E,F ] = H, (3.24)

and

(H + iζ + 1)(−H + iζ − 1) = 4X1Y1Y2X2 = 4FE, (3.25)

(H + iζ − 1)(−H + iζ + 1) = 4X2Y2Y1X1 = 4EF. (3.26)

It is the central quotient of the universal enveloping algebra U(sl2) with a constraint fixing

the Casimir to −1
4(ζ2 + 1) or equivalently the spin to −1

2 ±
i
2ζ.

The quantized Coulomb branch algebra Ĉ[MC ] is generated by

v±ϕ = (ϕ± 1)v±,

v+v− =

(
ϕ+

1

2

)(
ϕ− im+

1

2

)
,

v−v+ =

(
ϕ− 1

2

)(
ϕ− im− 1

2

)
(3.27)

where ϕ is a vector multiplet scalar and v± are Abelian monopole operators. The quantized

Coulomb branch algebra Ĉ[MC ] is again the central quotient of the universal enveloping

algebra U(sl2) with

E = −v−, F = v+, H = 2ϕ. (3.28)

3.2.1 T[SU(2)] with N ′++ and ˜T[SU(2)] with D+−,c with D+-,c

The half-index of Neumann b.c. N ′++ for T[SU(2)] is computed as

IIT[SU(2)]
N ′++

(t, xα; q) =
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx1; q)∞

(q
1
4 tsx1; q)∞︸ ︷︷ ︸

II3d HM
+ (sx1)

· (q
3
4 t−1sx2; q)∞

(q
1
4 tsx2; q)∞︸ ︷︷ ︸

II3d HM
+ (sx2)

(3.29)

where the fugacites xα with x1x2 = 1 are coupled to the Higgs branch symmetry

GH =SU(2).

By picking residues at poles s = q−
1
4
+nt−1xα of the two charged hypermultiplets, we

obtain

IIT[SU(2)]
N ′++

(t, xα; q)

=
(q

1
2 t2; q)∞
(q)∞

(q
1
2 t−2x−11 x2; q)∞(q

1
2 t2x1x

−1
2 ; q)∞

(x−11 x2; q)∞(qx1x
−1
2 ; q)∞

∞∑
n=0

(q1+n; q)∞(q1+nx1x
−1
2 ; q)∞

(q
1
2
+nt2; q)∞(q

1
2
+nt2x1x

−1
2 ; q)∞

qnt−4n

+
(q

1
2 t2; q)∞
(q)∞

(q
1
2 t−2x1x

−1
2 ; q)∞(q

1
2 t2x−11 x2; q)∞

(x2; q)∞(qx−2; q)∞

∞∑
n=0

(q1+n; q)∞(q1+nx−11 x2; q)∞

(q
1
2
+nt2; q)∞(q

1
2
+nt2x−11 x2; q)∞

qnt−4n.

(3.30)
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It follows that the sum of residues simplifies as

IIT[SU(2)]
N ′++

(t; q) =
(q)∞

(q
1
2 t−2; q)∞

. (3.31)

Consequently it has no dependence on the flavor fugacity xα so that the C-twist limit of

the half-index (3.29) becomes

IIT[SU(2)]

N ′(C)
++

= 1. (3.32)

This is consistent with the fact [13] that the Higgs branch image for the boundary condition

N ′++ admits no boundary operator and it corresponds to a trivial module of the quantized

Higgs branch algebra.

It is expected that the Neumann b.c. N ′++ for T[SU(2)] is dual to the generic Dirichlet

b.c. D+−,c for the mirror ˜T[SU(2)] which corresponds to a trivial module of the quantized

Coulomb branch algebra [13]. The half-index of the Dirichlet b.c. D+− for the mirror
˜T[SU(2)] takes the form

II
˜T[SU(2)]
D+−

(t, u, xα, zβ ; q)

=
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q
3
4
+mtuz1; q)∞

(q
1
4
+mt−1uz1; q)∞︸ ︷︷ ︸

II3d tHM
+ (qmuz1)

· (q
3
4
−mtu−1z−12 ; q)∞

(q
1
4
−mt−1u−1z−12 ; q)∞︸ ︷︷ ︸
II3d tHM
− (qmuz2)

(
x1
x2

)m
(3.33)

where xα with x1x2 = 1 are the fugacities for the topological symmetry while zβ with

z1z2 = 1 are the fugacities for the flavor symmetry. By setting z1 = z−12 = q
1
4 t−1 and

u = 1, we find the half-index of the generic Dirichlet b.c. D+−,c for the mirror ˜T[SU(2)]:

II
˜T[SU(2)]
D+−,c

(t, xα; q) =
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q1+m; q)∞

(q
1
2
+mt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mt−1)

· (q1−m; q)∞

(q
1
2
−mt−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4 +mt)

(
x1
x2

)m
(3.34)

This has no dependence on the fugacities xα as the perturbative term with m = 0 only

remains. In fact, we find that

IIT[SU(2)]
N ′++

(t; q) = II
˜T[SU(2)]
D+−,c

(t; q). (3.35)

This confirms that the Neumann b.c. N ′++ for T[SU(2)] is dual to the generic Dirichlet b.c.

D+−,c for the mirror ˜T[SU(2)].

When we include a Wilson line of charge −k < 0, the Neumann b.c. N ′++ allows

charged operators on the boundary as the k-th symmetric power of the fundamental [13].

The half-index is given by

IIT[SU(2)]
N ′++;W−k

(t, xα; q) =
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx1; q)∞

(q
1
4 tsx1; q)∞︸ ︷︷ ︸

II3d HM
+ (sx1)

· (q
3
4 t−1sx2; q)∞

(q
1
4 tsx2; q)∞︸ ︷︷ ︸

II3d HM
+ (sx2)

s−k (3.36)
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In the C-twist limit, we find

IIT[SU(2)]

N ′(C)
++ ;W−k

(t, x; q) =

∮
ds

2πis

1

(1− sx1)(1− sx2)
s−k =

k∑
i=0

xi1x
k−i
2 (3.37)

which counts the k-th symmetric power of the fundamental.

The half-index (3.36) can be evaluated by picking up residues of poles at s =

q−
1
4
+mt−1x−11 and the sum over the integers m can be extended as

II
˜T[SU(2)]
D+−,c;V−k

(t, xα; q)

=
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q1+m+k; q)∞

(q
1
2
+m+kt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +m+kt−1)

(q1−m; q)∞

(q
1
2
−mt−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4 +mt)

q
k
4 tkxm+k

1 x−m2 . (3.38)

This takes the form of the half-index of the generic Dirichlet b.c. D+−,c for the mir-

ror ˜T[SU(2)] with a vortex line V−k for a flavor symmetry which shifts the spin of the

twisted hypermultiplet by k units. The factor q
k
4 tkxk1 corresponds to the effective Chern-

Simons terms.

3.2.2 T[SU(2)] with N ′+− and ˜T[SU(2)] with D++,c

The half-index of the Neumann b.c. N ′+− for T[SU(2)] is

IIT[SU(2)]
N ′+−

(t, xα; q) =
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx1; q)∞

(q
1
4 tsx1; q)∞︸ ︷︷ ︸

II3d HM
+ (sx1)

· (q
3
4 t−1s−1x−12 ; q)∞

(q
1
4 ts−1x−12 ; q)∞︸ ︷︷ ︸
II3d HM
− (s−1x−1

2 )

(3.39)

where xα is the fugacity for the flavor symmetry with x1x2 = 1. In this case the integral

receives contributions from poles only at s = q
1
4
+ntx−12 . Expanding the integral as a sum

over their residues, we find

IIT[SU(2)]
N ′+−

(t, xα; q) =
(q

1
2 t2; q)∞
(q)∞

∞∑
n=0

(q1+n; q)∞(q1+nx1x
−1
2 ; q)∞

(q
1
2
+nt2; q)∞(q

1
2
+nt2x1x

−1
2 ; q)∞

q
n
2 t−2n. (3.40)

which depends on the flavor fugacity xα. In the C-twist limit the half-index (3.39) reduces to

IIT[SU(2)]

N ′(C)
+−

(xα) =

∮
ds

2πis

1

(1− sx1)(1− s−1x−12 )
=

1

1− x1
x2

(3.41)

where we have picked a pole at s = x−12 . The C-twist limit (3.41) counts the gauge-invaraint

boundary bosonic operators of an irreducible highest-weight Verma module of the quantized

Higgs branch algebra corresponding to the boundary condition N ′+− for T[SU(2)] [13].

In contrast to the boundary condition N ′++, the Neumann b.c. N ′+− is expected to be

dual to the generic Dirichlet b.c. D++,c for the mirror ˜T[SU(2)] that leads to an infinite
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dimensional irreducible Verma module. The half-index of the Dirichlet b.c. D++ for the

mirror ˜T[SU(2)] takes the form

II
˜T[SU(2)]
D++

(t, u, xα, zβ ; q)

=
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q
3
4
+mtuz1; q)∞

(q
1
4
+mt−1uz1; q)∞︸ ︷︷ ︸

II3d tHM
+ (qmuz1)

(q
1
4
+mtuz2; q)∞

(q
1
4
+mt−1uz2; q)∞︸ ︷︷ ︸

II3d tHM
+ (qmuz2)

q
m
2 t2m

(
x1
x2

)m
. (3.42)

The half-index of the generic Dirichlet b.c. D++,c for the mirror ˜T[SU(2)] is obtained

from (3.42) by setting z1 = z2 = 1 and u = q
1
4 t−1:

II
˜T[SU(2)]
D++,c

(t, xα; q) =
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q1+m; q)∞

(q
1
2
+mt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mt−1)

(q1+m; q)∞

(q
1
2
+mt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mt−1)

q
m
2 t2m

(
x1
x2

)m
,

(3.43)

where the flavor symmetry is broken completely and xα are the fugacities for the topological

symmetry. In the C-twist limit we get

II
˜T[SU(2)]

D(C)
++,c

(xα) =
∞∑
m=0

(
x1
x2

)m
=

1

1− x1
x2

, (3.44)

which counts the bosonic generators for an infinite dimensional irreducible Verma module

in the quantum Coulomb branch algebra corresponding to D++,c for the mirror ˜T[SU(2)].

We find that

IIT[SU(2)]
N ′+−

(t, xα; q) = II
˜T[SU(2)]
D++,c

(t, xα; q). (3.45)

This demonstrates the duality between the Neumann b.c. N ′+− for T[SU(2)] and the generic

Dirichlet b.c. D++,c for the mirror ˜T[SU(2)].

A generalization of (3.39) is to add a Wilson line of charge −k < 0. The half-index is

then evaluated as

IIT[SU(2)]
N ′+−;W−k

(t, xα; q) =
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

(q
3
4 t−1sx1; q)∞

(q
1
4 tsx1; q)∞︸ ︷︷ ︸

II3d HM
+ (sx1)

· (q
3
4 t−1s−1x−12 ; q)∞

(q
1
4 ts−1x−12 ; q)∞︸ ︷︷ ︸
II3d HM
− (s−1x−1

2 )

s−k.

(3.46)

The C-twist limit of the half-index (3.46) can be evaluated as

IIT[SU(2)]

N ′(C)
+−

(xα) =

∮
ds

2πis

1

(1− sx1)(1− s−1x−12 )
s−k =

xk1
1− x1

x2

(3.47)

from the residue of a pole at s = x−11 .
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We find that the half-index (3.46) agrees with

II
˜T[SU(2)]
D++,c;V−k

(t, xα; q)

=
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q1+m+k; q)∞

(q
1
2
+m+kt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +m+kt−1)

(q1+m; q)∞

(q
1
2
+mt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mt−1)

q
m
2
+ k

4 t2m+kxm+k
1 x−m2 . (3.48)

This can be viewed as the half-index of the generic Dirichlet b.c. D++,c for the mirror

˜T[SU(2)] with a vortex line V−k for a flavor symmetry under which one of the twisted hyper-

multiplet is charged. The factor q
k
4 tkxk1 is interpreted as the effective Chern-Simons terms.

3.2.3 T[SU(2)] with D′EXε,i and ˜T[SU(2)] with DEXε,i

The exceptional Dirichlet boundary conditions provide a candidate for thimble boundary

conditions which resemble a vacuum of the theory. T[SU(2)] has two massive vacua and

there are 22 different types of the Lagrangian splitting of the two hypermultiplets labeled

by the sign vector ε = (∗, ∗). Therefore T[SU(2)] admits 2 × 22 = 8 different exceptional

Dirichlet boundary conditions

D′EXε,j :

{
Yi|∂ = cδij εi = +

Xi|∂ = cδij εi = −
, ϕ|∂ = −mj

C (3.49)

where j = 1, 2 labels the choice of chiral multiplet from j-th hypermultiplet and mj
C is the

complex mass parameter for the j-th hypermultiplet. The half-index of the exceptional

Dirichlet b.c. D′EXε,i for T[SU(2)] can be derived from the half-index of the Dirichlet b.c.

D′ε for T[SU(2)],8 by setting u to q
1
4 tx−1i .

By specializing the fugacity as u = q
1
4 tx−12 , we get the half-index of the exceptional

Dirichlet b.c. D′EX++,2:

IIT[SU(2)]
D′EX++,2

(t, xα, zβ ; q) =
(q

1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

(q1+mx1
x2

; q)∞

(q
1
2
+mt2 x1

x2
; q)∞︸ ︷︷ ︸

II3d HM
+ (q

1
4 +mt

x1
x2

)

(q1+m; q)∞

(q
1
2
+mt2; q)∞︸ ︷︷ ︸

II3d HM
+ (q

1
4 +mt)

q
m
2 t−2m

(
z1
z2

)m

(3.50)

where xα and zβ are the fugacities for the flavor and topological symmetries with x1x2 =

z1z2 = 1. The sum over the magnetic fluxes turns out to receive contributions only from

m ≥ 0.

For the half-index of the exceptional Dirichlet b.c. for T[SU(2)] one finds the well-

defined reduction in both H-twist and C-twist limits.9 In the H-twist limit the half-

index (3.50) reduces to

IIT[SU(2)]

D′(H)
EX++,2

(zβ) =
∞∑
m=0

(
z1
z2

)m
=

1

1− z1
z2

. (3.51)

8It is obtained from (3.42) by exchanging t with t−1 and xα with zα.
9Also see [26].
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This simply counts the bosonic operators in the quantized Coulomb branch algebra of

T[SU(2)].

In the C-twist limit only the term with m = 0 in the sum survives as it cancels the

prefactor so that the half-index (3.50) becomes

IIT[SU(2)]

D′(C)
EX++,2

(xα) =
1

1− x1
x2

, (3.52)

which counts the bosonic generators in the quantized Higgs branch algebra of T[SU(2)].

It is expected that the exceptional Dirichlet b.c. maps to the exceptional Dirichlet

b.c. under mirror symmetry. In fact, we find that the half-index (3.50) matches with the

half-index

II
˜T[SU(2)]
DEX++,2

(t, xα, zβ ; q) =
(q

1
2 t−2; q)∞
(q)∞︸ ︷︷ ︸

II3d Ũ(1)
(2,2)D

∑
m∈Z

(q1+mz1
z2

; q)∞

(q
1
2
+mt−2 z1z2 ; q)∞︸ ︷︷ ︸

II3d tHM
+

(
q

1
4 +mt−1 z1

z2

)
(q1+m; q)∞

(q
1
2
+mt−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mt−1)

q
m
2 t2m

(
x1
x2

)m

(3.53)

of the exceptional Dirichlet b.c. DEX++,2 for the mirror ˜T[SU(2)] where the fugacities xα
and zβ are now coupled to the topological and flavor symmetries in contrast to (3.50). This

shows that the exceptional Dirichlet b.c. D′EX++,2 for T[SU(2)] is dual to the exceptional

Dirichlet b.c. DEX++,2 for the mirror ˜T[SU(2)] !

On the other hand, the exceptional Dirichlet b.c. D′EX++,1 for T[SU(2)] is not simply

dual to the exceptional Dirichlet b.c. DEX++,1 for the mirror ˜T[SU(2)] since the half-index

of D′EX++,1 for T[SU(2)] does not coincide with that of DEX++,1 for the mirror ˜T[SU(2)].

As we will see in section 3.2.4, D′EX++,1 turns out to be dual to a mixture of two boundary

conditions.

Next consider the exceptional Dirichlet b.c. D′EX+−,1 for T[SU(2)]. By specializing the

fugacity u = q
1
4 tx−11 of the half-index of the Dirichlet b.c. D′+− for T[SU(2)], we get the

half-index

IIT[SU(2)]
D′EX+−,1

(t, xα, zβ ; q) =
(q

1
2 t2; q)∞
(q)∞

∑
m∈Z

(q1+m; q)∞

(q
1
2
+mt2; q)∞

(q
1
2
−mt−2 x1

x2
; q)∞

(q−mx1
x2

; q)∞

(
z1
z2

)m
(3.54)

of the exceptional Dirichlet b.c. D′EX+−,1. Although the half-index (3.54) is different from

the half-index (3.50), it also gives rise to the reduced indices (3.51) and (3.52) in the H-twist

and C-twist limits respectively. The half-index (3.54) has the following series expansion in q:

IIT[SU(2)]
D′EX+−,1

(t, xα, zβ ; q) =
1

1− x1
x2

−
x1
x2
− z1

z2

1− x1
x2

q
1
2 t−2 + · · · , (3.55)

which begins with 1
1−x1/x2

. Such behavior in the analysis of superconformal indices indi-

cates a bad setup as the superconformal assignment of R-charges ensures that the half-index

starts with 1 + · · · and contains positive powers of q. We find that the half-index which
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has a nice behavior can be obtained by adding the 2d chiral multiplet of R-charge +2 and

that it matches with the half-index of the exceptional Dirichlet b.c. D′EX++,1 for T[SU(2)]:

IIT[SU(2)]
D′EX+−,1

(t, xα, zβ ; q)× I2d (2, 2) CMr=1

(
t,
x2
x1

)
= IIT[SU(2)]

D′EX++,1
(t, xα, zβ ; q)

= 1 +

[
t2
(
x2
x1

)
+

1

t2

(
z1
z2

)]
q

1
2 +

[
−
(
x2
x1

)
−
(
z1
z2

)
+ t4

(
x2
x1

)2

+
1

t4

(
z1
z2

)2
]
q + · · ·

(3.56)

This indicates that the exceptional Dirichlet b.c. D′EX+−,1 for T[SU(2)] with a boundary

chiral multiplet of R-charge +2 is equivalent to the exceptional Dirichlet b.c. D′EX++,1 for

T[SU(2)] in the IR.

Note that the half-index (3.54) can be alternatively written as

IIT[SU(2)]
D′EX+−,1

(t, xα, zβ ; q) = I2d (2, 2) CMr=0

(
t,
x1
x2

)
× IIT[SU(2)]

D′EX++,1
(t, xα, zβ ; q). (3.57)

Also we can formally get the half-index

IIT[SU(2)]
D′EX+−,2

(t, xα, zβ ; q) =
(q

1
2 t2; q)∞
(q)∞

∑
m∈Z

(q1+mx1
x2

; q)∞

(q
1
2
+mt2 x1

x2
; q)∞

(q
1
2
−mt−2; q)∞

(q−m; q)∞

(
z1
z2

)m
(3.58)

of the exceptional Dirichlet b.c. D′EX+−,2 for T[SU(2)] by specializing the fugacity u =

q
1
4 tx−12 of the half-index of the Dirichlet b.c. D′+−, however, (3.58) has explicit infinite

factor in the series. The half-index which starts with 1+ · · · can be obtained by multiplying

by the reduced index of a boundary 2d chiral multiplet of R-charge +2. We find that

IIT[SU(2)]
D′EX+−,2

(t, xα, zβ ; q)× I2d (2, 2) CMr=1(t, 1) = IIT[SU(2)]
D′EX++,2

(t, xα, zβ ; q)

= II
˜T[SU(2)]
DEX++,2

(t, xα, zβ ; q). (3.59)

This indicates that the exceptional Dirichlet b.c. D′EX+−,2 with a 2d chiral multiplet of

R-charge +2 which cancels the contributions of a zeromode is equivalent in the IR to the

boundary condition D′EX++,2 or the boundary condition DEX++,2 for the mirror ˜T[SU(2)].

For the exceptional Dirichlet b.c. D′EX−+,i with i = 1, 2, we get similar relations:

IIT[SU(2)]
D′EX−+,1

× I2d (2, 2) CMr=1 (t, 1) = IIT[SU(2)]
D′EX++,1

, (3.60)

IIT[SU(2)]
D′EX−+,2

× I2d (2, 2) CMr=1

(
t,
x1
x2

)
= IIT[SU(2)]

D′EX++,2

= II
˜T[SU(2)]
DEX++,2

. (3.61)

Again although the half-indices of the exceptional Dirichlet b.c. D′EX−−,i with i = 1, 2

also behave badly, one finds the well-behaved half-indices after multiplying by the indices
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of 2d chiral multiplets:

IIT[SU(2)]
D′EX−−,1

× I2d (2, 2) CMr=1(t, 1)× I2d (2, 2) CMr=1

(
t,
x2
x1

)
= IIT[SU(2)]

D′EX++,1
, (3.62)

IIT[SU(2)]
D′EX−−,2

× I2d (2, 2) CMr=1(t, 1)× I2d (2, 2) CMr=1

(
t,
x1
x2

)
= IIT[SU(2)]

D′EX++,2

= II
˜T[SU(2)]
DEX++,2

. (3.63)

To summarize, the exceptional Dirichlet b.c. D′EXε,1 and D′EXε,2 with ε 6= (++) in-

volving certain boundary 2d chiral multiplets are expected to be equivalent in the IR to

D′EX++,1 and D′++,2 whose half-indices behave nicely in such a way that their first terms

in the expansions start with 1. The relations (3.54), (3.59) and (3.60)–(3.63) will be physi-

cally interpreted as the flips of boundary conditions according to the coupling to boundary

chiral multiplets as discussed in section 2.4.

3.2.4 Vertex function and elliptic stable envelope

The vertex functions V [30] are defined as generating functions for the K-theoretic equiv-

ariant counting of the quasimaps. They depend on Kähler parameter zi and equivariant

parameters xi and satisfy two sets of q-difference equations which involve q-shifts of z-

variables and q-shifts of x-variables respectively.

Aganagic and Okounkov [32] argued that vertex functions V of a Nakajima variety

or a hypertoric variety X which appears as the Higgs branch of 3d N = 4 gauge theories

have a physical interpretation as partition functions on S1 ×C with a boundary condition

at infinity on C. In the following we precisely express the vertex functions in terms of

the half-indices for the exceptional Dirichlet boundary conditions in such a way that the

fugacities for the topological and flavor symmetries are identified with the Kaähler and

equivariant parameters.

The vertex function for the two fixed points in X = T ∗CP1 which is identified with

the Higgs branch of T[SU(2)] has the components taking the form [33]

V1 = xη1
ϕ(τ)

ϕ(q)

ϕ(τx1/x2)

ϕ(x1/x2)
F

[
~ ~x2

x1

q q x2
x1

∣∣∣∣∣ τz
]
, (3.64)

V2 = xη2
ϕ(τ)

ϕ(q)

ϕ(τx2/x1)

ϕ(x2/x1)
F

[
~ ~x1

x2

q q x1
x2

∣∣∣∣∣ τz
]
, (3.65)

where

ϕ(x) := (x; q)∞, (3.66)

F

[
~x1/xl ~x2/xl, · · ·
qx1/xl qx2/xl, · · ·

∣∣∣∣ z
]

:=

∞∑
m=0

zm
∏
i

(~xi/xl; q)m
(qxi/xl; q)m

. (3.67)
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By setting τ = q
1
2 t−2, ~ = q

1
2 t2 and z = z1/z2 we can write the vertex function as

V1 = xη1
(q

1
2 t−2; q)∞
(q)∞

× I2d (2, 2) CMr=0

(
t,
x1
x2

; q

)
× IIT[SU(2)]

D′EX++,1
(t, xα.zβ ; q)

= xη1
(q

1
2 t−2; q)∞
(q)∞

× IIT[SU(2)]
D′EX+−,1

(t, xα.zβ ; q), (3.68)

V2 = xη2
(q

1
2 t−2; q)∞
(q)∞

× I2d (2, 2) CMr=0

(
t,
x2
x1

; q

)
× IIT[SU(2)]

D′EX++,2
(t, xα.zβ ; q)

= xη2
(q

1
2 t−2; q)∞
(q)∞

× IIT[SU(2)]
D′EX−+,2

(t, xα.zβ ; q), (3.69)

where we have used (3.57) to get (3.68). Therefore up to the extra factors which do not

depend on the Kähler and equivariant parameters, the components of the vertex function

V1 and V2 can be identified with the half-indices of the exceptional Dirichlet b.c. D′EX+−,1
and D′EX−+,2.

It is argued [33, 37] that a new vertex function VC,l that solves the same set of q-

difference equations and is analytic in a chamber10

C : |x1| < |x2| (3.70)

can be obtained through the relation

VC,l =
∑
m

VmB
m
C,l. (3.71)

Here

Bm
C,l =

(
B1

C,1 B1
C,2

B2
C,1 B2

C,2

)

=

(
UC,1

1
θ(~)e

−1(x1) 0

UC,1
θ(~x1/zx2)

θ(~x1/x2)θ(~/z)e
−1(x2) UC,2

θ(x1/x2)
θ(~x1/x2)θ(~)e

−1(x2)

)
(3.72)

is a triangular matrix called the pole subtraction matrix for chamber C where

θ(x) := (x; q)∞(qx−1; q)∞, (3.73)

UC,1 = exp
log(x1) log(~/z)− log(x1) log(~)

log(q)
, (3.74)

UC,2 = exp
log(x2) log(~2/z)− (log(x1) + log(x2)) log(~)

log(q)
, (3.75)

e−1(x) = exp
log(x) log(z)

log(q)
. (3.76)

The triangular matrix (3.72) is determined by the elliptic stable envelope [32]. The

elliptic stable envelope StabI is defined for a symplectic variety X endowed with a Hamil-

tonian action of an algebraic torus T as a class in elliptic cohomology of X where I is a

10Note that V1 and V2 are analytic for |z1| < |z2|.
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set of the torus fixed points. It is described by a matrix as the restrictions of the elliptic

cohomology classes to the fixed points define a matrix whose elements are theta functions

of two sets of parameters associated to X; the equivariant parameters xi, which are coor-

dinates on the torus T and the Kähler parameters zi, which are coordinates on the torus

Pic(X)T ⊗ E where Pic(X)T is a lattice as the equivariant Picard group and E = C∗/qZ

is a family of elliptic curves parametrized by |q| < 1.

For X = T ∗CP1 we have the elliptic stable envelope [32, 33].

StabEll
C,l(z, xi) =

∏
i<l θ(xi/z)θ(~lxl/xz)

∏
i>l θ(~xi/x)

θ(~l/z)
(3.77)

of a fixed point labeled by l in X = T ∗CP1 in the chamber C. This is identified with the

triangular matrix (3.72) up to the normalization.

The new vertex function VC,l can be described by the half-indices of the exceptional

Dirichlet b.c. DEX+−,1 and DEX++,2 for the ˜T[SU(2)]:

VC,1 = x
η#

1

1

(q)∞(q
1
2 t2; q)∞

II
˜T[SU(2)]
DEX+−,1

(t, xα.zβ ; q), (3.78)

VC,2 = x
η#

2

1

(q)∞(q
1
2 t2; q)∞

I2d (2, 2) tCMr=0
(
t, z−1; q

)
× II

˜T[SU(2)]
DEX++,2

(t, xα.zβ ; q). (3.79)

Corresponding to the relation (3.71) for l = 1, we find that

II
˜T[SU(2)]
DEX+−,1

= IIT[SU(2)]
D′EX+−,1

+ F (q
1
2 t2)F

(
z1x2
z2x1

)
C

(
x2
x1

)
C

(
z1
z2

)
× IIT[SU(2)]

D′EX++,2
(3.80)

where F (x) = θ(x) is the index of a 2d N = (0, 2) Fermi multiplet and C(x) = 1/θ(x)

is the index of a 2d N = (0, 2) chiral multiplet. This relates the half-index of the ex-

ceptional Dirichlet b.c. DEX+−,1 for the ˜T[SU(2)] to a mixture of two half-indices of the

exceptional Dirichlet boundary conditions D′EX+−,1 and D′EX++,2 for T[SU(2)]. According

to the relation (3.80), we see that

IIT[SU(2)]
D′EX++,1

= II
˜T[SU(2)]
DEX++,1

× I2d (2, 2) CMr=1

(
x2
x1

)
× I2d (2, 2) tCMr=0

(
z1
z2

)
+ II

˜T[SU(2)]
DEX++,2

× F (q
1
2 t2)F

(
x1z2
x2z1

)
C

(
q

1
2 t2

x2
x1

)
C

(
z1
z2

)
. (3.81)

This shows that a naive mirror symmetry between D′EX++,1 for T[SU(2)] and DEX++,1 for

˜T[SU(2)] does not hold, but rather D′EX++,1 is mirror to a mixture of DEX++,1 and DEX++,2

for ˜T[SU(2)].11

The relation (3.71) for l = 2 associates the half-index of the exceptional Dirichlet

b.c. D′EX++,2 for T[SU(2)] to the half-index of the exceptional Dirichlet b.c. DEX++,2 for

˜T[SU(2)]. It physically implies the duality between the exceptional Dirichlet b.c. D′EX++,2

for T[SU(2)] and the exceptional Dirichlet b.c. DEX++,2 for ˜T[SU(2)] as we have found the

equivalence of the half-indices (3.50) and (3.53).

11The author thanks Davide Gaiotto for suggesting this idea.
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3.3 SQEDNf and ˜[1]− (1)Nf−1 − [1]

Now consider SQEDNf with gauge group G = U(1) and Nf ≥ 3 hypermultiplets (Xi, Yi).

It has the flavor symmetry GH = PSU(Nf ) and the topological symmetry is GC = U(1). It

is mirror to the ANf−1 quiver gauge theory with a gauge group G̃ =
∏Nf−1
i=1 U(1)i and Nf

bifundamental twisted hypermultiplets (X̃i, Ỹi), which we denote by ˜[1]− (1)Nf−1 − [1] [4].

The charges of the bifundamental twisted hypermultiplets in the mirror theory are given by

G̃ = U(1)1 ×U(1)2 × · · · ,×U(1)Nf−1 U(1)×U(1)

(X̃1, Ỹ1) (−, 0, 0, · · · , 0, 0) (+, 0)

(X̃2, Ỹ2) (+,−, 0, · · · , 0, 0) (0, 0)

(X̃3, Ỹ3) (0,+,−, · · · , 0, 0) (0, 0)
...

...
...

(X̃Nf−1, ỸNf−1) (0, 0, 0, · · · ,+,−) (0, 0)

(X̃Nf , ỸNf ) (0, 0, 0, · · · , 0,+) (0,−)

(3.82)

where U(1)×U(1) is broken down to the G̃H = U(1) flavor symmetry of the mirror quiver

gauge theory.

The quantized Higgs branch algebra Ĉ[MH] of SQEDNf is obtained from Nf copies

of the Heisenberg algebra generated by Xi, Yi with [Xi, Yj ] = δij by restricting to gauge

invariant operators and imposing the complex moment map condition

Nf∑
i=1

: XiYi : +ζC = 0. (3.83)

It is generated by the meson operators

Fi = XiYi+1, Ei = Xi+1Yi, Hi = XiYi −Xi+1Yi+1, (3.84)

which obey

[Fi, Hj ] = 2Fiδij , [Ei, Hj ] = −2Eiδij , [Ei, Fj ] = Hiδij , (3.85)

where i = 1, · · · , Nf − 1. It is identified with a central quotient of the universal enveloping

algebra U(slNf ) of slNf where Ei, Fi are the raising operators and the lowering operators.

The quantized Coulomb branch algebra Ĉ[MC ] of SQEDNf is

v±ϕ = (ϕ± 1)v±,

v+v− =

(
ϕ+

1

2

)Nf−1∏
i=1

(
ϕ− imi +

1

2

)
,

v−v+ =

(
ϕ− 1

2

)Nf−1∏
i=1

(
ϕ− imi −

1

2

)
. (3.86)
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3.3.1 SQEDNf with N ′+···+−···− and ˜[1]− (1)Nf−1 − [1] with D−···−+···+,c

The Neumann b.c. for SQEDNf is labeled by a sign vector ε = (ε1, ε2, · · · , εNf ) with Nf

elements:

N ′ε : N ′ for vector mult., B′εi =

{
Yi|∂ = 0, D2Xi|∂ = 0 εi = +

Xi|∂ = 0, D2Yi|∂ = 0 εi = −
(3.87)

where i = 1, · · · , Nf .

In order for the moment map condition (3.83) to annihilate the identity operator on

the boundary, the complex FI parameter should be fixed as ζC = −1
2

∑Nf
i=1 εi. Consequently

we find that ∑
εi=+

XiYi +
∑
εi=−

YiXi (3.88)

annihilates the identity operator because Yi = 0 for εi = + and Xi = 0 for εi = −.

For the Neumann b.c. N ′+···+−···− with the sign vector of N+ positive elements corre-

sponding to the boundary condition B′+ and N− negative elements corresponding to the

boundary condition B′−, the half-index is computed as

II
SQEDNf
N ′+···+−···−

(t, xα; q)

=
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

N+∏
α=1

(q
3
4 t−1sxα; q)∞

(q
1
4 tsxα; q)∞︸ ︷︷ ︸

II3d HM
+ (sxα)

N++N−∏
β=N++1

(q
3
4 t−1s−1x−1β ; q)∞

(q
1
4 ts−1x−1β ; q)∞︸ ︷︷ ︸
II3d HM
− (sxα)

(3.89)

where xα are the fugacities associated to the Higgs branch symmetry GH . For N+ 6= 0 and

N− 6= 0, the flavor symmetry GH is broken down to the Levi subgroup.

It is conjectured [13] that the Neumann b.c. for SQEDNf is dual to the generic Dirichlet

b.c. for the mirror quiver gauge theory. The half-index of the Dirichlet b.c. D−···−+···+ for

the mirror quiver gauge theory can be expressed as

II
˜

[1]−(1)Nf−[1]
D−···−+···+

(t, ui, xα, zβ ; q)

=
(q

1
2 t−2; q)

Nf−1
∞

(q)
Nf−1
∞︸ ︷︷ ︸

II3d Ũ(1)
⊗Nf−1

(2,2)D

∑
m1,··· ,mNf−1∈Z

×

(
q

3
4
+m1tu1

z1
; q
)
∞(

q
1
4
+m1t−1 u1

z1
; q
)
∞︸ ︷︷ ︸

II3d tHM
−

(
q−m1

z1
u1

)

(
q

3
4
+m2−m1tu2

u1
; q
)
∞(

q
1
4
+m2−m1t−1 u2

u1
; q
)
∞︸ ︷︷ ︸

II3d tHM
−

(
qm1−m2

u1
u2

)
· · ·

(
q

3
4
+mN+

−mN+−1t
uN+

uN+−1
; q
)
∞(

q
1
4
+mN+

−mN+−1t−1
uN+

uN+−1
; q
)
∞︸ ︷︷ ︸

II3d tHM
−

(
q
mN+−1−mN+

uN+−1

uN+

)
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×

(
q

3
4
+mN+

−mN++1t
uN+

uN++1
; q
)
∞(

q
1
4
+mN+

−mN++1t−1
uN+

uN++1
; q
)
∞︸ ︷︷ ︸

II3d tHM
+

(
q
mN+

−mN++1
uN+
uN++1

)
· · ·

(
q

3
4
+mN++N−−1t

uN++N−−1

z2
; q
)
∞(

q
1
4
+mN+ t−1

uN++N−−1

z2
; q
)
∞︸ ︷︷ ︸

II3d tHM
+

(
q
mN++N−−1

uN++N−−1

z2

)

× q
1
2
mN+ t2mN+

(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−2

xNf−1

)mNf−2
(
xNf−1

xNf

)mNf−1

(3.90)

where ui, xα and zβ are the fugacities for the boundary global symmetry resulting from

constant gauge transformations, the topological symmetry and flavor symmetry respec-

tively.

From (3.90) we find the half-index

II
˜

[1]−(1)Nf−[1]
D−···−+···+,c

(t, xα; q)

=
(q

1
2 t−2; q)

Nf−1
∞

(q)
Nf−1
∞︸ ︷︷ ︸

II3d Ũ(1)
⊗Nf−1

(2,2)D

∑
m1,··· ,mNf−1∈Z

(q1+m1 ; q)∞

(q
1
2+m1t−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4
−m1 t)

(q1+m2−m1 ; q)∞

(q
1
2+m2−m1t−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4
−m2+m1 t)

· · · (q1+mN+
−mN+−1 ; q)∞

(q
1
2+mN+

−mN+−1t−2; q)∞︸ ︷︷ ︸
II3d tHM
− (q

− 1
4
−mN+

+mN+−1 t)

× (q1+mN+
−mN++1 ; q)∞

(q
1
2+mN+

−mN++1t−2; q)∞︸ ︷︷ ︸
II3d tHM

+ (q
1
4
+mN+

−mN++1 t−1)

(q1+mN++1−mN++2 ; q)∞

(q
1
2+mN++1−mN++2t−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4
+mN++1−mN++2 t−1)

· · · (q1+mN++N−−1 ; q)∞

(q
1
2+mN++N−−1t−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4
+mN++N−−1 t−1)

× q
1
2mN+ t2mN+

(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−2

xNf−1

)mNf−2
(
xNf−1

xNf

)mNf−1

(3.91)

of the generic Dirichlet b.c. D−···−+···+,c with N− twisted hypermultiplets obeying B+,c and

N+ twisted hypermultiplets obeying the boundary condition B−,c for the mirror quiver

gauge theory ˜[1]− (1)Nf−1 − [1] by specializing the fugacities as

z1 = q
N−−N+

8 t−
N−−N+

2 z2 = q−
N−+N+

8 t
N−−N+

2 ,

ui =

q
N−−N+

8
+ i

4 t−
N−−N+

2
−i i = 1, · · · , N+

q
3N++N−

8
− i

4 t−
3N++N−

2
+i i = N+ + 1, · · · , N+ +N− − 1

(3.92)

Making use of the identity (3.22), one can show that the half-index (3.89) is equal to

the half-index (3.91). This shows that the Neumann b.c. N ′+···+−···− for SQEDNf is dual to

the generic Dirichlet b.c. D−···−+···+,c for the mirror quiver gauge theory ˜[1]− (1)Nf−1 − [1]!

In particular, for N− = 0 (or N+ = 0), there is only the identity operator forming a

trivial module. In fact, the half-indices (3.89) and (3.91) become

II
SQEDNf
N ′+···+

(t; q) = II
˜

[1]−(1)Nf−[1]
D−···− (t; q) =

(q)∞

(q
1
2 t−2; q)∞

(3.93)
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which has no dependence on the fugacity x. Correspondingly, the C-twist limit of the

half-index (3.93) is trivial as N ′+···+ for SQEDNf does not admit any boundary operator

in the quantum Higgs branch algebra. Equivalently, the Dirichlet boundary condition of

the mirror quiver gauge theory does not contain any non-trivial operator in the quantum

Coulomb branch algebra.

When N+ 6= 0 and N− 6= 0, the Neumann b.c. for SQEDNf defines the infinite-

dimensional module consisting of gauge invariant operators with the form

∏
εi=+

Xai
i

∏
εi=−

Y bi
i |Nε〉 (3.94)

with
∑
ai −

∑
bi = 0. Here |Nε〉 is the state in the quantum mechanics created by the

Neumann boundary condition obeying Yi|Nε〉 = 0 for εi = + and Xi|Nε〉 = 0 for εi = −.

Correspondingly, the C-twist limit of the half-indices (3.89) and (3.91) become

II
SQEDNf

N ′(C)
+···+−···−

(x) =

∮
ds

2πis

N+∏
α=1

1

1− sxα

N++N−∏
β=N++1

1

1− s−1x−1β

= II
˜

[1]−(1)Nf−[1]
D(C)
−···−+···+,c

(x) =

∞∑
mN+=0

mN+∑
mN+−1=0

· · ·
m3∑
m2=0

m2∑
m1=0

mN+∑
mN++1=0

mN+
+1∑

mN++2=0

· · ·
mN+N−−2∑

mN++N−−1=0

×
(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−2

xNf−1

)mNf−2
(
xNf−1

xNf

)mNf−1

=

N++N−∑
β=N++1

N+∏
α=1

N++N−∏
γ=N++1
γ 6=β

1(
1− xα

xβ

)(
1− xβ

xγ

) . (3.95)

This counts the boundary operators which survive for the Neumann b.c. N ′+···+−···− in the

quantized Higgs branch algebra of SQEDNf or equivalently those for the generic Dirichlet

b.c. D−···−+···+,c in the quantized Coulomb branch algebra of the quiver gauge theory

˜[1]− (1)Nf−1 − [1].

The Neumann b.c. N ′+···+−···− for SQEDNf can be modified by adding a Wilson line

of charge −k under the U(1) gauge symmetry. The half-index reads

II
SQEDNf
N ′+···+−···−;W−k

(t, xα; q)

=
(q)∞

(q
1
2 t−2; q)∞

∮
ds

2πis︸ ︷︷ ︸
II3d U(1)

(2,2)N′

N+∏
α=1

(q
3
4 t−1sxα; q)∞

(q
1
4 tsxα; q)∞︸ ︷︷ ︸

II3d HM
+ (sxα)

N++N−∏
β=N++1

(q
3
4 t−1s−1x−1β ; q)∞

(q
1
4 ts−1x−1β ; q)∞︸ ︷︷ ︸
II3d HM
− (sxα)

s−k (3.96)

By expanding the integrand in terms of the identity (3.22) and performing the inte-
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gration over s, we find that the generalized Neumann half-index (3.96) coincides with

II
˜

[1]−(1)Nf−[1]
D−···−+···+,c;V0,··· ,0−k,0,··· ,0

(t, xα; q)

=
(q

1
2 t−2; q)

Nf−1
∞

(q)
Nf−1
∞︸ ︷︷ ︸

II3d Ũ(1)
⊗Nf−1

(2,2)D

∑
m1,··· ,mNf−1∈Z

× (q1+m1 ; q)∞

(q
1
2
+m1t−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4−m1 t)

(q1+m2−m1 ; q)∞

(q
1
2
+m2−m1t−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4−m2+m1 t)

· · · (q1+mN+
−mN+−1+k; q)∞

(q
1
2
+mN+

−mN+−1+kt−2; q)∞︸ ︷︷ ︸
II3d tHM
− (q

− 1
4−mN+

+mN+−1 t)

× (q1+mN+
−mN++1 ; q)∞

(q
1
2
+mN+

−mN++1t−2; q)∞︸ ︷︷ ︸
II3d tHM

+ (q
1
4 +mN+

−mN++1 t−1)

(q1+mN++1−mN++2 ; q)∞

(q
1
2
+mN++1−mN++2t−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mN++1−mN++2 t−1)

· · · (q1+mN++N−−1 ; q)∞

(q
1
2
+mN++N−−1t−2; q)∞︸ ︷︷ ︸

II3d tHM
+ (q

1
4 +mN++N−−1 t−1)

× q
1
2
mN+

+ k
4 t2mN+

+k

(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−2

xNf−1

)mNf−2
(
xNf−1

xNf

)mNf−1

xkN+
. (3.97)

This will be identified with the half-index of the generic Dirichlet b.c. D−···−+···+,c with

a flavor vortex V0,··· ,0,−k,0,··· ,0 for the mirror quiver gauge theory ˜[1]− (1)Nf−1 − [1] where

the vortex shifts the spins of N+-th twisted hypermultiplet by k units.

3.3.2 SQEDNf with D′+···+−···−,c and ˜[1]− (1)Nf−1 − [1] with N−···−+···+

Let us consider the Dirichlet boundary conditions for SQEDNf . The half-index of the

Dirichlet b.c. D′+···+−···− for SQEDNf takes the form

II
SQEDNf
D′+···+−···−

(t, xα, zβ ; q)

=
(q

1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

N+∏
α=1

(q
3
4
+mt−1uxα; q)∞

(q
1
4
+mtuxα; q)∞︸ ︷︷ ︸

II3d HM
+ (qmuxα)

N++N−∏
β=N++1

(q
3
4
−mt−1u−1x−1β ; q)∞

(q
1
4
−mtu−1x−1β ; q)∞︸ ︷︷ ︸
II3d HM
− (qmuxβ)

× q
N+−N−

4
mt−(N+−N−)m

(
z2
z1

)m
(3.98)

where u, zα and xα are the fugacities for the boundary global symmetry arising from

constant gauge transformations, the topological symmetry and the flavor symmetry.
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From (3.98) we get the half-index

II
SQEDNf
D′+···+−···−,c

(t, zα; q)

=
(q

1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

(q1+m; q)
N+
∞

(q
1
2
+mt2; q)

N+
∞︸ ︷︷ ︸

II3d HM
+ (q

1
4 +mt)N+

(q1−m; q)
N−
∞

(q
1
2
−mt2; q)

N−
∞︸ ︷︷ ︸

II3d HM
− (q−

1
4 +mt−1)N−

× q
N+−N−

4
mt−(N+−N−)m

(
z2
z1

)m
(3.99)

of the generic Dirichlet b.c. D′+···+−···−,c by specializing the fugacities as

xα =

q
N−

2(N++N−) t
2N−

N++N− α = 1, · · ·N+

q
− N+

2(N++N−) t
− 2N+
N++N− α = N+ + 1, · · · , N+ +N−

u = q
N+−N−

4(N++N−) t
N+−N−
N++N− (3.100)

The generic Dirichlet b.c. D′+···+−···−,c for SQEDNf is expected to be dual to the Neu-

mann b.c. for the mirror quiver theory. The half-index of the Neumann b.c. N−···−+···+ for

the mirror quiver theory ˜[1]− (1)Nf−1 − [1] is evaluated as

II
˜

[1]−(1)Nf−[1]
N−···−+···+

(t, zα; q)

=
(q)

Nf−1
∞

(q
1
2 t2; q)

Nf−1
∞

∮ Nf−1∏
i=1

dsi
2πisi︸ ︷︷ ︸

II3d Ũ(1)
Nf−1

(2,2)N

×

(
q

3
4 t s1z1 ; q

)
∞(

q
1
4 t−1 s1z1 ; q

)
∞︸ ︷︷ ︸

II3d tHM
−

(
z1
s1

)

N+−2∏
i=1

(
q

3
4 t si+1

si
; q
)
∞(

q
1
4 t−1 si+1

si
; q
)
∞︸ ︷︷ ︸

II3d tHM
−

(
si
si+1

)

N++N−−2∏
i=N+−1

(
q

3
4 t si
si+1

; q
)
∞(

q
1
4 t−1 si

si+1
; q
)
∞︸ ︷︷ ︸

II3d tHM
+

(
si
si+1

)

(
q

3
4 t
sN−+N+−1

z2
; q
)
∞(

q
1
4 t−1

sN−+N+−1

z2
; q
)
∞︸ ︷︷ ︸

II3d tHM
+

( sN−+N+−1

z2

)
(3.101)

where zα are now the fugacities for the flavor symmetry. We can evaluate (3.101) by

expanding the integrand with the help with (3.22) and integrating over s. We find that

the half-indices (3.99) and (3.101) are equivalent

II
SQEDNf
D′+···+−···−,c

(t, zα; q) = II
˜

[1]−(1)Nf−[1]
N−···−+···+

(t, zα; q). (3.102)

This demonstrates the duality between the generic Dirichlet b.c. D′+···+−···−,c for SQEDNf

and the Neumann b.c. for the mirror quiver theory !

The half-indices (3.99) and (3.101) have non-trivial dependence on fugacities zα only

when N− = 0 (or N+ = 0). Otherwise they are evaluated as

II
SQEDNf
D′+···+−···−,c

(t; q) = II
˜

[1]−(1)Nf−[1]
N−···−+···+

(t; q) =
(q)

Nf−1
∞

(q
1
2 t2; q)

Nf−1
∞

. (3.103)
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For N− = 0 the H-twist limits of the half-indices (3.99) and (3.101) are

II
SQEDNf

D′(H)
+···+−,c

(zα) = II
˜

[1]−(1)Nf−1−[1]
N (H)
−···−

(zα) =
1

1− z2
z1

(3.104)

They count the operators for the boundary condition D′+···+,c of the quantized Coulomb

branch algebra for SQEDNf or equivalently those for the boundary condition N−···− of

the quantized Higgs branch algebra for the mirror quiver gauge theory. For all other

cases the half-indices become 1 in the H-twist limit. This is consistent with the fact that

the Coulomb branch images of the generic Dirichlet b.c. D′+···+,c and D′−···−,c give rise to

infinite dimensional irreducible Verma modules while the Coulomb branch images of all

other D′+···+−···−,c lead to one-dimensional trivial modules.

When a Wilson line is added, the half-index of the Neumann b.c. for the mirror quiver

theory ˜[1]− (1)Nf−1 − [1] is generalized in a more interesting fashion. Let us consider the

Neumann b.c. N−···− and introduce a Wilson lineW−ka1 ,−ka2 ,··· ,−kaj which carries the gauge

charge −kak under the ak-th gauge factor where 1 ≤ j ≤ Nf − 1 and a1 < a2 < · · · < aj .

We can evaluate the half-index as

II
˜

[1]−(1)Nf−[1]
N−···−;W−ka1 ,−ka2 ,··· ,−kaj

(t, zα; q)

=
(q)

Nf−1
∞

(q
1
2 t2; q)

Nf−1
∞

∮ Nf−1∏
i=1

dsi
2πisi︸ ︷︷ ︸

II3d Ũ(1)
Nf−1

(2,2)N

s
−ka1
a1 s

−ka2
a2 · · · s

−kaj
aj

×

(
q

3
4 t s1z1 ; q

)
∞(

q
1
4 t−1 s1z1 ; q

)
∞︸ ︷︷ ︸

II3d tHM
−

(
z1
s1

)

Nf−2∏
i=1

(
q

3
4 t si+1

si
; q
)
∞(

q
1
4 t−1 si+1

si
; q
)
∞︸ ︷︷ ︸

II3d tHM
−

(
si
si+1

)

(
q

3
4 t z2
sNf−1

; q

)
∞(

q
1
4 t−1 z2

sNf−1
; q

)
∞︸ ︷︷ ︸

II3d tHM
−

(
sNf−1

z2

)
. (3.105)

We can compute the Neumann half-index (3.105) by using the relation (3.22). We find

that the half-index (3.105) agrees with

II
SQEDNf
D′+···+;V−r1,−r2,··· ,−rj

(t, zα; q)

=
(q

1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

× (q1+m; q)n0
∞

(q
1
2
+mt2; q)n0∞︸ ︷︷ ︸

II+(q
1
4 +mt)n0

(q1+m+r1 ; q)n1
∞

(q
1
2
+m+r1t2; q)n1∞︸ ︷︷ ︸

II+(q
1
4 +m+r1 t)n1

(q1+m+r2 ; q)n2
∞

(q
1
2
+m+r2t2; q)n2∞︸ ︷︷ ︸

II+(q
1
4 +m+r2 t)n2

· · · (q1+m+rj ; q)
nj
∞

(q
1
2
+m+rj t2; q)

nj
∞︸ ︷︷ ︸

II+(q
1
4 +m+rj t)nj

× q
Nfm

4
+ 1

4

∑j
i=1 aikai t−Nfm−

∑j
i=1 aikai

(
z2
z1

)m
z
−
∑j
i=1 kai

1 (3.106)
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where

ni =


Nf − aj i = 0

aj−i+1 − aj−i 1 ≤ i ≤ j − 1

a1 i = j

(3.107)

and

ri =

j∑
k=j−i+1

kak . (3.108)

The half-index (3.106) takes the form of a generalization of the half-index (3.99) of the

generic Dirichlet b.c. D′+···+,c for SQEDNf with an insertion of a vortex line V−r1,··· ,−rj for

boundary global symmetries which shifts spins of the i-th set of ni hypermultiplets by ri
units where i = 1, · · · , j.

3.3.3 SQEDNf with D′EXε.i and ˜[1]− (1)Nf−1 − [1] with DEXε,i

For SQEDNf there are Nf × 2Nf exceptional Dirichlet boundary conditions D′EXε,j given

by (3.49) where ε = (∗, · · · , ∗) is a sign vector with Nf entries and j = 1, · · · , Nf labels the

choice of a single chiral multiplet in Nf hypers to assign a non-trivial vev. The half-index

of the exceptional Dirichlet b.c. D′EXε,i for SQEDNf can be derived from the half-index of

the Dirichlet b.c. D′ε by setting u to q
1
4 tx−1i .

For example, we obtain from (3.98) with N− = 0 the half-index of the exceptional

Dirichlet b.c. D′EX+···+,Nf for SQEDNf

II
SQEDNf
D′EX+···+,Nf

(t, xα, zβ ; q)

=
(q

1
2 t2; q)∞
(q)∞︸ ︷︷ ︸

II3d U(1)

(2,2)D′

∑
m∈Z

Nf∏
α=1

(
q1+m xα

xNf
; q
)
∞(

q
1
2
+mt2 xα

xNf
; q
)
∞︸ ︷︷ ︸

II3d HM
+

(
q

1
4 +mtxα

x1

)
q
Nfm

4 t−Nfm
(
z1
z2

)m
(3.109)

by setting the fugacity u = q
1
4 tx−1Nf . Due to the cancellations for m < 0 the half-

index (3.109) can be computed by taking a sum over the non-negative integers m. The

half-index (3.109) has a nice behavior as the series expansion starts with 1 + · · · .
In the H-twist limit the half-index (3.109) becomes (3.51) which counts the boundary

operators in the quantized Coulomb branch algebra of SQEDNf .

In the C-twist limit only the term with m = 0 in the half-index (3.109) survives so

that it reduces to

II
SQEDNf

D′(C)
EX+···+,Nf

(xα) =

Nf−1∏
α=1

1

1− xα
xNf

, (3.110)
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which counts the boundary operators corresponding to the Verma module in the quantized

Higgs branch algebra of SQEDNf .

It is expected that the exceptional Dirichlet b.c. for SQEDNf is related to the excep-

tional Dirichlet b.c.

DEXε,j :

{
Ỹi|∂ = cδij εi = +

X̃i|∂ = cδij εi = −
(3.111)

for the mirror quiver gauge theory where i, j = 1, · · · , Nf . The half-index of the exceptional

Dirichlet b.c. DEXε,j for the mirror quiver gauge theory can be also obtained by specializing

the fugacity ui, i = 1, · · · , Nf − 1 as

ui =

q
i
4 t−iz1 for i = 1, · · · , j − 1

q
Nf−i

4 t−(Nf−i)z2 for i = j, · · · , Nf − 1
. (3.112)

The half-index of the exceptional Dirichlet b.c. DEX−···−+,Nf for the mirror quiver theory

is given by

II
˜

[1]−(1)Nf−[1]
DEX−···−+,Nf

(t, xα, zβ ; q)

=
(q

1
2 t−2; q)

Nf−1
∞

(q)∞︸ ︷︷ ︸
II3d Ũ(1)

⊗Nf−1

D

∑
m1,··· ,mNf−1∈Z

× (q1+m1 ; q)∞

(q
1
2
+m1t−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4−m1 t)

Nf−2∏
i=1

(q1+mi+1−mi ; q)∞

(q
1
2
+mi+1−mit−2; q)∞︸ ︷︷ ︸

II3d tHM
− (q−

1
4−mi+1+mi t)

(
q
Nf+2

4
+mNf−1t−Nf+2 z1

z2
; q
)
∞(

q
Nf
4

+mNf−1t−Nf z1z2 ; q
)
∞︸ ︷︷ ︸

II3d tHM
+

(
q

Nf−1

4 +mNf−1
t
−Nf+1 z1

z2

)
× q

mNf−1

2 t
2mNf−1

(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−1

xNf

)mNf−1

, (3.113)

which can be obtained from (3.90) by specializing the fugacity ui for the boundary global

symmetry as constant gauge transformations as ui = q
i
4 t−iz1.

The H-twist limit of the half-index is

II
˜

[1]−(1)Nf−[1]
D(H)

EX−···−+,Nf

=
1

1− z1
z2

(3.114)

where the term with m1 = · · · = mNf−1 = 0 only remains. This now counts the boundary

operator in the quantized Higgs branch algebra of the mirror quiver theory.
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In the C-twist limit, the half-index (3.113) turns into

II
˜

[1]−(1)Nf−[1]
DEX−···−+,Nf

(xα)

=

∞∑
mNf−1=0

mNf−1∑
mNf−2=0

· · ·
m3∑
m2=0

m2∑
m1=0

(
x1
x2

)m1
(
x2
x3

)m2

· · ·
(
xNf−1

xNf

)mNf−1

=

Nf−1∏
α=1

1

1− xα
xNf

, (3.115)

which now counts the boundary operators corresponding to the Verma module in the

quantized Coulomb branch algebra of the mirror quiver gauge theory.

Moreover, we find that the half-indices (3.109) agrees with (3.113):

II
SQEDNf
D′EX+···+,Nf

(t, xα, zβ ; q) = II
˜

[1]−(1)Nf−[1]
DEX−···−+,Nf

(t, xα, zβ ; q) (3.116)

This shows that the exceptional Dirichlet b.c. D′EX+···+,Nf for SQEDNf is dual to the

exceptional Dirichlet b.c. DEX−···−+,Nf for the mirror quiver gauge theory !

The half-indices of the exceptional Dirichlet b.c. D′EXε,j for SQEDNf with ε 6=
(+,+, · · · ,+) are related to the half-index of the exceptional Dirichlet b.c. D′EX++···+,j
by multiplying the 2d chiral multiplet indices:

II
SQEDNf
D′EXε,j

×
∏

i s.t. εi = −
I2d (2, 2) CMr=1

(
t,
xi
xj

)
= II

SQEDNf
D′EX+···+,j

. (3.117)

Again this describes flips of the boundary conditions by coupling to the 2d chiral multiplets.

The vertex function for the Nf fixed points in X = T ∗CPNf−1 is given by [33]

Vl = (xl)
ηϕ(τ)

ϕ(q)

∏
i 6=l

ϕ(τxl/xi)

ϕ(xl/xi)
F

[
~x1/xl ~x2/xl, · · ·
qx1/xl qx2/xl, · · ·

∣∣∣∣∣τNf/2z
]
. (3.118)

For τ = q
1
2 t−2, ~ = q

1
2 t2 and z = z1/z2 the vertex function can be expressed in terms of

the half-indices of exceptional Dirichlet boundary conditions for SQEDNf :

Vl = xη1
(q

1
2 t−2; q)∞
(q)∞

×
∏
i 6=l

I2d (2, 2) CMr=0

(
t,
xl
xi

; q

)
× II

SQEDNf
D′EX++···+,l

. (3.119)

For X = T ∗CPNf−1 the pole subtraction matrix which generates a new vertex function

VC,l analytic in a chamber

C : |xj | < |xi|, for j < i (3.120)

from the vertex function Vl through the relation (3.71) is [33]

Bm
C,l = UC,l

∏
i<l

θ
(
xi
xm

)
θ
(
~xi
xm

) θ
(

~lxl
xmz

)
θ
(
~xl
xm

) 1

θ
(
~l
z

)e(z, xm)−1 (3.121)
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with

Bm
C,l = 0, m < l. (3.122)

We note that the half-indices of the exceptional Dirichlet b.c. DEXε,j for the mirror quiver

gauge theory are the analytic functions of the variables xα in the chamber (3.120) and that

there are Nf different sets labeled by j. We expect that they realize the Nf components of

new vertex function VC,l and the relation (3.71) describes the precise mirror transformation

of the half-indices of the exceptional Dirichlet b.c. In fact, for l = Nf the relation (3.71)

simply maps a single component VNf to a single component VC,Nf as a concequence of the

triangular property (3.122) of the pole subtraction matrix. This naturally reproduces the

duality (3.116) between the exceptional Dirichlet b.c. D′EX+···+,Nf for SQEDNf and the

exceptional Dirichlet b.c. DEX−···−+,Nf for the mirror quiver gauge theory. For l 6= Nf

the relation (3.71) indicates that a naive mirror symmetry between the two exceptional

Dirichlet b.c. does not hold.

Acknowledgments

The author would like to thank Mathew Bullimore, Samuel Crew, Nick Dorey, Hitoshi

Konno, Douglas J Smith and Daniel Zhang for useful discussions and comments. He

especially thanks Davide Gaiotto for sharing ideas and suggesting improvement of a draft

of the paper. This work is supported by STFC Consolidated Grant ST/P000371/1.

A Notations

We use the standard notation by defining q-shifted factorial

(a; q)0 := 1, (a; q)n :=

n−1∏
k=0

(1− aqk), (q)n :=

n∏
k=1

(1− qk), n ≥ 1,

(a; q)∞ :=

∞∏
k=0

(1− aqk), (q)∞ :=

∞∏
k=1

(1− qk) (A.1)

where a and q are complex numbers with |q| < 1.

The Dedekind eta function is

η(q) = q
1
24

∞∏
k=0

(1− qk). (A.2)

The Jacobi theta function is

ϑ1(x; q) = −iq
1
8x

1
2

∞∏
k=0

(1− qi)(1− xqk)(1− x−1qk−1). (A.3)

B Series expansions of indices

We explicitly show several terms in the expansions of indices obtained by using Mathe-

matica, from which we can check the equalities of the indices resulting from the dualities

of boundary conditions.

– 37 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
3

B.1 Neumann b.c. N ′ε and generic Dirichlet b.c. Dε,c

We have checked that the half-index (3.89) of the Neumann b.c. N ′ε for SQEDNf and the

half-index (3.91) of the generic Dirichlet b.c. Dε.c for the mirror quiver gauge theory agree

up to O(q10) for Nf = 3, 4.

B.1.1 SQED3 and ˜[1]− (1)2 − [1]

IISQED3

N ′ε
II

˜[1]−(1)2−[1]
Dε,c series expansions

+++ −−− 1+q
1
2 t−2+q(−1+t−4)+q

3
2 t−6+q2(−1+t−8)+q

5
2 (t−10−t−2)+q3t−12+···

++− −−+ 1+q
1
2 (t−2+t2(x1+x2)x−1

3 )+q(t−4+t4(x2
1+x1x2+x2

2)x−2
3 −(x1+x2+x3)x−1

3 )+···

+−− −++ 1+q
1
2 (t−2+t2x1x

−1
2 x−1

3 (x2+x3))+q(−1+t−4+x1x
−1
2 x−1

3 (x2+x3)+t4x2
1x
−2
2 x−2

3 (x2
2+x2x3+x2

3))+···

−−− +++ 1+q
1
2 t−2+q(−1+t−4)+q

3
2 t−6+q2(−1+t−8)+q

5
2 (t−10−t−2)+q3t−12+···

(B.1)

B.1.2 SQED4 and ˜[1]− (1)3 − [1]

IISQED4

N ′ε
II

˜[1]−(1)3−[1]
Dε,c series expansions

++++ −−−− 1+q
1
2 t−2+q(−1+t−4)+q

3
2 t−6+q2(−1+t−8)+q

5
2 (t−10−t−2)+q3t−12+···

+++− −−−+ 1+q
1
2 (t−2+t2(x1+x2+x3)x−1

4 )+q(t−4+t4(x2
1+x2

2+x2x3+x2
3+x1(x2+x3))x−2

4 −(x1+x2+x3+x4)x4)+···

++−− −−++
1+q

1
2 (t−2+t2(x1+x2)(x3+x4)x

−1
3 x−1

4 )+q(t−4+t4(x2
1+x1x2+x2

2)(x
2
3+x3x4+x2

4)x
−2
3 x−2

4

−(x3x4+x1(x3+x4)+x2(x3+x4))x
−1
3 x−1

4 )+···

+−−− −+++
1+q

1
2 (t−2+t2x1(x

−1
2 +x−1

3 +x−1
4 ))+q(−1+t−4−x1x

−1
2 −x1(x3+x4)x

−1
3 x−1

4

+t4x2
1(x

2
3x

2
4+x2x3x4(x3+x4)+x2

2(x
2
3+x3x4+x2

4))x
−2
2 x−2

3 x−2
4 )+···

−−−− ++++ 1+q
1
2 t−2+q(−1+t−4)+q

3
2 t−6+q2(−1+t−8)+q

5
2 (t−10−t−2)+q3t−12

(B.2)

B.2 Generic b.c. D′ε,c and Neumann b.c. Nε

We have checked that the half-index (3.99) of the generic Dirichlet b.c. D′ε,c for SQEDNf

and the half-index (3.101) of the Neumann b.c. Nε for the mirror quiver gauge theory agree

up to O(q10) for Nf = 3, 4.

B.2.1 SQED3 and ˜[1]− (1)2 − [1]

IISQED3

D′ε,c
II

˜[1]−(1)2−[1]
Nε series expansions

+++ −−− 1+2q
1
2 t2+q

3
4 t−3x1x

−1
2 +q(−2+3t4)−q

5
4 t−1x1x

−1
2 +q

3
2 (−2t2+4t6+t−6x2

1x
−2
2 )+q

7
4 t−3x1x

−1
2 +···

++− −−+ 1+2q
1
2 t2+q(−2+3t4)+q

3
2 (−2t2+4t6)+q2(−1−2t4+5t8)+2q

5
2 t2(−2−t4+3t8)+q3(2−4t4−2t8+7t12)+···

+−− −++ 1+2q
1
2 t2+q(−2+3t4)+q

3
2 (−2t2+4t6)+q2(−1−2t4+5t8)+2q

5
2 t2(−2−t4+3t8)+q3(2−4t4−2t8+7t12)+···

−−− +++ 1+2q
1
2 t2+q

3
4 t−3x2x

−1
1 +q(−2+3t4)−q

5
4 t−1x2x

−1
1 +q

3
2 (−2t2+4t6+t−6x2

2x
−2
1 )+q

7
4 t−3x2x

−1
1 +···
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B.2.2 SQED4 and ˜[1]− (1)3 − [1]

IISQED3

D′ε,c
II

˜[1]−(1)3−[1]
Nε series expansions

++++ −−−−− 1+3q
1
2 t2+q(−3+6t4+t−4x1x

−1
2 )+q

3
2 (−6t2+10t6−t−2x1x

−1
2 )+q2(−9t4+15t8+t−8x2

1x
−2
2 +t−4x1x

−1
2 )+···

+++− −−−+ 1+3q
1
2 t2+q(−3+6t4)+q

3
2 (−3+5t4)+q2(−3+5t4)+3q

5
2 t2(−2−4t4+7t8)+q3(5−12t4−15t8+28t12)+···

++−− −−++ 1+3q
1
2 t2+q(−3+6t4)+q

3
2 (−3+5t4)+q2(−3+5t4)+3q

5
2 t2(−2−4t4+7t8)+q3(5−12t4−15t8+28t12)+···

+−−− −+++ 1+3q
1
2 t2+q(−3+6t4)+q

3
2 (−3+5t4)+q2(−3+5t4)+3q

5
2 t2(−2−4t4+7t8)+q3(5−12t4−15t8+28t12)+···

−−−− ++++ 1+3q
1
2 t2+q(−3+6t4+t−4x2x

−1
1 )+q

3
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−1
1 )+q2(−9t4+15t8+t−4x2x

−1
1 +t−8x4

2x
−2
1 )+···

(B.4)

B.3 Exceptional Dirichlet b.c. D′EXε and DEXε

We have confirmed that the half-index (3.109) of the exceptional Dirichlet b.c. D′EXε for

SQEDNf and the half-index (3.113) of the exceptional Dirichlet b.c. DEXε for the mirror

quiver gauge theory coincide with each other up to O(q10) for Nf = 3, 4.

B.3.1 SQED3 and ˜[1]− (1)2 − [1]

IISQED3

D′EXε
II

˜[1]−(1)2−[1]
DEXε

series expansions

+++,3 −−+,3
1+q

1
2 t2(x1+x2)x
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3 +q

3
4 t−3z1z
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5
4 t−1z1z
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2

q
3
2 (t6(x3

1+x
2
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2+x
3
2)x
−2
3 −t2(x1+x2)(x1+x2−x3)x

−2
3 +t−6z2

1z
−2
2 )+···

(B.5)

B.3.2 SQED4 and ˜[1]− (1)3 − [1]

IISQED3

D′EXε
II

˜[1]−(1)3−[1]
DEXε

series expansions

++++,4 −−−+,4

1+q
1
2 t2(x1+x2+x3)x

−1
4 +q(t4(x2

1+x
2
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3
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2
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3
3+x

2
1(x2+x3)+x1(x2

2+x2x3+x2
3))x

−3
4

−t2(x1+x2+x3)2+t2(x1+x2+x3)x
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2 )+···
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local and global structure, Astérisque 384 (2016) 1 [arXiv:1208.3863].

[19] T. Braden, A. Licata, N. Proudfoot and B. Webster, Quantizations of conical symplectic

resolutions II: category O and symplectic duality, Astérisque 384 (2016) 75.
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