Journal of Mathematical Sciences, Vol. 99, No. 4, 2000

ABELIAN THEOREMS FOR A CLASS OF PROBABILITY DISTRIBUTIONS IN R4
AND THEIR APPLICATION

A. Nagaev and A. Zaigraev (Torui, Poland) UDC 519.2

A class of multidimensional absolutely continuous distributions is considered. Each of them has a moment-generating
function that is finite in a bounded set S and, therefore, generates a family of so-called conjugate or associated
distributions. At the focus of our attention are the limiting distributions for this family that appear as the conjugating
parameter tends to the boundary of S. As in the one-dimensional case, each such limiting distribution can be obtained
as a consequence of an Abelian theorem.

1. Introduction

Let P be a probability measure defined on the Borel sets of R%, d > 1, and f(s) be its moment-generating function,
that is,

f(s) = / ¢! P(dz).
R
By (-,-) we denote the inner product. Suppose that the set
S=(s€ R f(s) <o0)
is not empty and its dimensionality equals d.

The moment-generating function plays a role of great importance in the large-deviation theory. Its basic properties
are discussed in [1-5]. The present paper aims to make a contribution toward the further development of this theory.
At the focus of our attention is the case when S is, being always convex, bounded.

Let Sy be the interior of §. If § is bounded and 0 € Sy, then Sy can be represented as

So={s: s=te, 0 <t<h(e), ec S}
It is convenient to call A(e) the shape function of S or simply the shape of S.

Obviously, for 0 < t < h(e), u > 0 the Markov inequality holds, that is,

P(z: {(e,z) > u) < f(te)e ™. (1.1)

In what follows, we assume that P is absolutely continuous. Denote its density by p(z).
Further, assume that
p(z) = b(z)e~Ilete), (1.2)
where e; = |z|"!z and
0< inf a(e) £ sup a(e) < co.
ecSd~-1 e€ Si-1

If p(z) is of the form (1.2) and b(z) does not grow too fast as || — oo, then f(s) is finite for some S with 0 € Sp.

Intuitively, it is a(e) that determines the shape of S. The following proposition justifies this conjecture.

ProrosITION 1.1. Assume that in (1.2)
(1 +]z))P <b(z) Ser(1+ ]2, B>0, cx>0. (1.3)

Then
17,
. a(e)
h(e) = f —.
(e) (eES"‘l‘?(e.e)>0) (e,s)
2°. For the shape function h(e) of any bounded open convex set Sy that contains 0, there exists p(x) of the form (1.2)
such that the interior of S = (s: f(s) < 00) is Sp. As a(e) in (1.2) one may take
ale) = sup h(e){(e, ).
(c€SH~1L (e.£)>0)

Proceedings of the Seminar on Stability Problems for Stochastic Models, Vologda, Russia, 1998, Part II.

1454 1072-3374/00/9904-1454$25.00 © 2000 Kluwer Academic/Plenum Publishers



The question arises: What can be said about the asymptotic behavior of f(s) as s — 3S? The answer requires
additional restrictions imposed on both a(e) and b(z) in (1.1). Our goal is to establish a multidimensional analog of
the following fact.

Let d =1 and

p(z) = e *"Tr,(z), (1.4)

where s > 0 and r,(x) is of regular variation as  — oo with the exponent o > —1. When 7 1 0,
fGa=T)~T(1 4 @) r(v71). (1.5)

This is one of the simplest forms of the so-called Abelian theorem (see, e.g., [12]).
First, we need a relevant multidimensional analog of (1.4) and (1.5). Having it in mind, we introduce the following
notion of regular variation that, in essence, coincides with that given in [11, Sec. 5.4.2].
Let A(e) be a nonnegative function defined on S%-1.
Definition 1.2. We say that b(z), r € R?, is the function of (a, A)-regular variation in the cone C = (z € R%:
Alez) > 0) if
b(z) = rallel)(Mex) + u(z)), (1.6)

where r4(t) is of regular, in Karamata’s sense, variation as ¢ — oo with the exponent a while

lim sup |u(z)| =0.

|z]| =00 e, eCy

Denote A(e) = a(e) — h(e){e,s). We need the following assumptions:
(A) For a given direction e, the set arg min(.ese-1, (¢ .¢y>0) @(€)/ (e, ) consists of a single point &' = £'(e).
(B) A(e) in a neighborhood of ¢’ admits the representation

Ale) = %(s — ) TA®e = ') + o(le — ).

Here A is a nonnegative definite matrix, and its rank equals d — 1. Furthermore, Ae’ = 0.
(C) For all sufficiently small 4,
inf  A(e) =¢(8) > 0.

le—e')>6

By A;, 7 =1,...,d — 1, we denote the nonzero eigenvalues of A.
Consider the class of densities of the form (1.2), where b(x) is of (o, A)-regular variation in (x: |e; — e| < §), while
in (z: |ez —e| > &) we have
b(z) < (1 + [z))”

for some 3 > 0.

THEOREM 1.3. Let p(z) be of the form (1.2) with & > —(d + 1)/2. Assume that A(e) is continuous for |e —¢'| < &
and (A), (B), and (C) hold. Then as 7 | 0(cf. (1.5)),

F((h(e) = )e) = cag(e)r ™D 2ro (r71)(1 + 0(1)),

where d
Ca = F<a + %1) (2m)(d-1)/2

and
g(e) = Me'(e)){e’ (e), &)~ +D2 (A1 L Agy) T2

The question arises: How does f(s) behave as s approaches 8S alongside some other direction? It turns out that
there exists a cone of admissible directions in which the form of the Abelian theorem is, in essence, preserved.

THEOREM 1.4. If the conditions of Theorem 1.3 hold, then, for any arbitrarily small 7 > 0 and 7} 0,
f(h(e)e — 7€) = cagle, &)~ 4D/ 2ro (71)(1 + 0(1))
uniformly in é, (¢’,&) > n. Here
gle, &) = A(e'(e))(e'(e), &)=+ N/Z(A L Ag_y) V2
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Consider the measures Ps(A), s € S, defined as

I Xa@)e*plz) do
P4 = )

These measures are called conjugate or associated to P. They proved to be useful in the large-deviation theory. When
one deals with large deviations of arbitrarily large order it is required to learn much about the asymptotic properties
of P, as s — 0S5 (see, e.g., [8-10]). The following theorem is devoted to such a case. Before stating it, we consider an
orthogonal matrix C that reduces A to a diagonal matrix that is CTAC = Ay, where

M O ... 0 O
0 A ... 0 0
A= 1 o e I
0 0 ... Ay O
0o 0 ... 0 0
Set
A1 O 0
— 0 A 0
A():—’ . :
0 0 ... Ay
and T = (z1,...,Tq-1) for 2 = (zy,...,24) € R%

THEOREM 1.5. Assume that the conditions of Theorem 1.3 hold and s = (h{e) — T)e, 7 — 0. Then (7€}, 7~/
CT (e — €)) converges in P,-distribution to a random vector (p,() such that P(C4 = 0) = 1 and

PoediCeB) = [aa)( [ ir, (ari/2) as) ar,
A B

where
Tcx+(d—l)/2<51’ e)n+_(d+l)/2e-r(z'.e)

%a(r) = T{c + (d + 1)/2) '

r >0,

while
2 1
wx,(2) = (2m)~E@=D/2(x) L Ag-g)Y? exp<—§z77\-oz) , z€RL

Thus |£| as a limiting, with respect to P,, distribution has the gamma distribution, while the limiting distribution
for e — ¢’ is a mixture of normal distributions. That mixture can also be represented in the following form:

o wys Ta+d) R
P(C € B) = (271’) (d-1)/ m(/\l ...Ad-l)l/2Z<1 + EZTA()Z> dz.

It is a nonstandard multidimensional Student distribution (see, e.g., [7, p. 134]).
The paper is organized as follows. Sections 2 and 3 contain the proofs of Proposition 1.1 and Theorem 1.3, respec-
tively. The proofs of Theorems 1.4 and 1.5 are sketched in Sec. 4.

2. Proof of Proposition 1.1

From now on, ¢ denotes any positive constant whose concrete value is of no importance. This means that c+¢ = ¢,
¢ = c, etc. By w(t), we denote any nonnegative function such that lim; ., w(¢) = 0 while # varies within {-1,1].
Set for e € §4-!
PO(u) = P((£,€) >u), u€R.

We should show that
. —log pe) (u)
lim —=— V'

u—oo u

h(e) (27)
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as u — oo (see (1.1)).
From (1.2) and (1.3) it follows that for all sufficiently large u

C_

P. = > |zl—ﬂe-|=|0(=z) dzx < P‘c)(‘u) < 2cy / |I|ﬁe—lrlﬂ(=x) dz = P,.

lx}{e,er)2u |x{{e,er)2u
The change of variables
z; = reg, i=1,...,d-1, x4 = sign(zg)r(l — 2 — - —3_)V2,

having Jacobian r?=1|ey|~! with |4} = (1 — &2 —--- — €2_,)/2, leads to

Pamc [ rriiene dryga(a)

r{c,e)2u
where £ = (1,...,64)7, le] = 1. From now on, x4—1 is the normalized Haar measure on Sd-1,
Since for any ¢ > 0 and B as 2z = o
(=)

/rﬁe'" dr ~ c~1zPe ",

2z

we have as u = o©
e—ua(s)/(:,e)

a(e)(, ey Ep+a—1 Xd~1 (de). (2.8)

Pi ~ Cu:tﬁ+d—1 /

(e.e)>0

It is readily seen that both integrals converge. Denote them, respectively, by Is.
Let &’ > 0 be arbitrarily small. Set

r d—1, < a(s) < 7
E (EES 1 hie) £ e < h(e)+46" ).
Obviously,
I_ > e~ u(r(e)+d) / a(e) e, e)P 74 xy_ g (de). (2.9)

El
Estimate I, as

I

IA

+ / =1+ I>.
E'  (e,e)>0,e¢E’
It is clear that
I < e~uh(e) /a(s)'l(s,e)‘ﬁ_d+1 Xd—1(de) = ce™*Me),
2
Since for ¢ ¢ E’

Eiénél(a(e) — h(e){e,e}) > csienbf:’(l ~ h(e){e,€)/a(e)) > c(l - Wh)(i)-—i)'

we obtain for all sufficiently large u

I, < e7uh(® a(e)" e, e) P4+ exp(~((€,€)) ™) xa-1(de) < ce M supe~ttPreTl = ce™ R,
>0

{e,e)>0,e¢ E’

Thus
I, < cemvh(®, (2.10)

Uniting (2.8)~(2.10) yields
C,u—ﬁ+d—le—uh(e) < P(e)(u) < cuB+d-1e—uh(e)’
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whence (2.7) follows immediately. The first statement of Propesition 1.1 is proved.
Let S be a bounded open convex set. Consider its support function

o(z) = sup(z,y), z€ R,
yeS
and the so-called Minkowski function
m(z) =inf(t: t>0, t7'z€S), zeR

It is well known that (see, e.g., {12])

m(z)= s M
(¥ (z.9)>0) oY)
and, therefore, (e.6)
e, &
O B e oSS
Since m(e) = 1/h(e), it follows that
h(e) = inf ole)

(e (e.£)>0) (€,€)
In other words, in order to come to the form h(e), we should choose a(e) = o(e) in (1.2). Thus, the second statement
is also proved.
3. Proof of Theorem 1.3
Assume for the time being that &’ = ¢’(e) = (0,...,0,1)7 and A = A,.
Set for brevity s = (h(e) — T)e, and let
Xi=(z: |z| > L, lez —€'| < M7TV?),  Xo=(z: |z} > L, MTV? < |e, —€'| < &),

Xay=(z: |z|>L, |e; —¢€'|248"), Xe=(z: |2| <L),

where L > 0 and M > 0 are arbitrarily large, while 0 < 8’ < 4 is arbitrarily small. Obviously,

4
f(s) = fils) (3.11)
=]
with
fils) = f e**)p(z) dz.
X,

It is worth recalling that in X; U X, the function b(z) admits representation (1.6). Consider the function r, (). It is
of regular variation and, therefore, r,(t) = t“{{t}, where I{t) slowly varies as t — co. From the well-known Karamata
representation (see, e.g., (6, Chap. VIII]) it follows that for any n > 0 there exists L > 0 such that for min(p,7) > L
(r
e

Let us estimate f;(s) in (3.11) one after another. Represent X as follows:

~
~—

lmin((?‘//’)", (r/p)™") < < 2max((r/p)", (r/p)™"). (3.12)

2

=

X1 =X UX1aU X, (3.13)

where
Xn=XiNn{z: [Il < N—IT—l),

Xpa=X,n(x: N 'r71 < |z < N77Y),
Xi3=X1N(z: |z} 2 Nr71),
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and N > 0 is arbitrarily large. Denote

fu(s) = / et p(z) dz. (3.14)
Xix
Set & = (e1,...,€4-1)T. If € X, then for € = e, we have |g| = O(7'/2) and |eq — 1| = O(7). Furthermore,
(e — )T Aole — €') = ETAGE, (3.15)

where as above Ay is the (d — 1) x (d — 1) diagonal matrix with the diagonal (A1,..., Ag—1).
In view of (3.13) and (3.14), we have

fra(s) = MNi(1/7) / |z|* exp(—|z|(A(e) + (e, €))) dz(1 + o(1)).
Xi2
From (B) and (3.15), taking into account that £4 = 1 + O(7), we easily obtain
falg=xenam [ [ e exp (- 387 RoF - rrea ) dr de(1 + o).
N-l<rr<N [g|l<Mri/2
Making the change of variables r7 = u, = 7~1/2 yields
fiz(s) = 7= @+¥D2)(1/7)(cag(e) + bw(min(M, N))), (3.16)

where

Co = I‘(a + -"l—;—1> (2m)ld-1)/2

and
gle) = AN e' &)~ @+D/2(det Kg) ™ /2 = A(e){e", ) T2 (0 L xay) TR

From (B), taking into account that |(e,e) — e4| = O(7'/2), we obtain

N—l,r—l

fu(s) < 2sup A(e) / rallz]) exp(~[2l(A(e) + T(e,€))) dz < ¢ / r°+"-‘l(r)( / e-"'?'*df)dr.

X L [El< Mr1/2
In view of (3.12), we continue

N-1 N-!
f“(s) < CT—a—(d+l)/2 / Tn+(d—l)/21(T/T) dr < CT—O_(d+1)/2l(1/T) / ra+(d——1)/2—n dr < c,r—a—(d+1)/2l(1/_r)w(N)
0

0

provided that 0 < 7 < min(1, & + (d + 1)/2). Similarly,

fra(s) < 2sup A(e) / ra(le) exp(~|zl(A(e) + (e, €)) dz < ¢ / r°+""1(r)e-°"( / emerlel® a‘E) dr.
Xia N/r IEl<Mr1/2

Taking advantage of (3.12), we get

o
fsls) S erme sz [[rer @0/ e ar
N

oo
< CT_,,_(d+1)/gl(1/T)/ra+(d-1)/2+'qe—cr dr < cr_"_(d“)/zl(l/r)w(N).
N
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Thus,
fi(s) = 77T @21 /7)(cag(e) + w(min(M, N))).

Before estimating f2(s), note that for z € X, we have |g] < §’ and |eq — 1] < 6. Moreover,
(e = €T Ao(e — ') > cfgf.

That is why

Sfa(s) < 2sup A(e) /ra(|z|)e'°"||glz'°|’|’ dx < c/ r‘”'d'll(r)e’c""< / e~crlEl df) dr.

Xz L [E12(1/2)Mr1/2
Represent
o0 N—l,r—l oo
Jrwnaer( [ oo ]
L [ZF>(1/2)MT1/2 L N-1r-1

The first integral on the right-hand side is estimated as f11(s). As to the second one, it is easily seen that

o0
/ r°+d"ll(r)e"°" / e—crlE’ dE> dr
N-Tr-1 IE12(1/2) Mr1/3

)
< pma—(d+1)/2 / ra+d_1l(r/7_)e—cr / e—(C/N)IEI: dE) dr.

N-1 [Z12(1/2)M

Obviously,

«

/ retd=li(r/r)e™ " dr ~ I(1/7),

N-1
while
e~{/NIEP gz = pra=1uy(M?/N).
ZFiz(1/2)M

Therefore,

fa(s) = 7o~ EN2Y( /)M (M3 /N).
From (C) it follows that

fols) < / b(z)e =IO+ T gz < / kel dr, By > B,
R-l

R

provided T is sufficiently small. Therefore,
f3(s) = 0(1).
Finally,
fa(s) = O(1).
Since L, M, N, and &' are arbitrary from (3.11) and (3.17)—(3.20), it follows that

£(s) ~ cag(e)r ™o D211 /7).

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Let us turn to the general case. Denote by C an orthogonal matrix such that CTAC = Ag. It is obvious that

'(e) = Ceg with &g = (0,...,0,1)T. Set for 0 < 7 < h{e), s = (h(e) — T)e

f(s) = [ e*C=p(Cz)dz.
/
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From (B) it follows that
1
A(Ce) = 3 (e~ £0)T Ao(e — £0) + o(je — £o[?).

It remains to apply (3.21). Theorem is proved.

4. On the Proofs of Theorems 1.4 and 1.5

Here we give a sketch of the proofs of these statements.
Proof of Theorem 1.4. Let s = h(e)e — 7é. Then

(s,z) — |zla(e) = —|z|(A(e) + 7(&,€)).
Suppose that ¢’ = (0,...,0,1)7 and A = Ag. If 2 € X3, then
(@,€) = (&,€') + O(r'/?) = &4 + O(rV/?).
Therefore, fi2(s) acquires the form
fr2(s) = MeN(Q/7) / / ratd-l exp(—%ETKoE - édrr) dr dg(1 + o(1)),
N=1<rr<N [gl<MTi/?
and instead of (3.1G) we obtain
fra(s) = 770 D/21(1 /1) (cag(e, €) + bw(min(M, N))) (4.22)
uniformly in é4 > 7 > 0. The rest of the proof needs, in essence, no alteration. So, we get
| f(s) = cagle, &)7™*"EV21/T)(1 + 0(1)).

If e’ #(0,...,0,1)T, we should argue as in the proof of Theorem 1.3.

Proof of Theorem 1.5. As in the proof of Theorem 1.3, consider, first, the simplest case ¢’ = (,...,0,1)7,
A =Aq. Let t > 0, 7, > 7y > 0 be arbitrary and

X, =(z: 1 < Tlz| <72, |€2 ~ €| < tTP/3).

Repeating the argument that led to (3.21), one easily obtains

/e("’)P(z) dr = /\(e')r“"("*l)/"’l(l/‘r)/r"*"“e"‘"( / e'('/"’)?rx“?df) dr(l +o(1))
X- 1 (HES]
or
/e<"’)p(.1:) dz = 2m) 4 D/2 (A L A TYRAE ) T D2 (1 7)
X,

X /r"*(d"”/ze""‘< / r(d"”/"’wxo('irl/"’) dE) dr(1 + o(1)).
ri 1)<t
It remains to recall the definition of the conjugate measure and to apply Theorem 1.3. It is easily seen that instead of
the cubes |e, — '] < tT1/2 we could take, say, parallelograms or ellipses.
The general case €’ # (0,...,0,1)T requires obvious alterations (cf. the proof of Theorem 1.4).
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