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A B E L I A N  T H E O R E M S  F O R  A C L A S S  O F  P R O B A B I L I T Y  D I S T R I B U T I O N S  I N  / ~  
A N D  T H E I R  A P P L I C A T I O N  

A.  N a g a e v  a n d  A. Z a i g r a e v  (Torufi, Poland) UDC 519.2 

A class of multidimensional absolutely continuous distributions is considered. Each of them has a moment-generating 
function that is finite in a bounded set S and, therefore, generates a family of so-called conjugate or associated 
distributions. At the focus of our attention are the limiting distributions for this family that appear as the conjugating 
parameter tends to the boundary orS.  As in the one-dimensional case, each such limiting distribution can be obtained 
as a consequence of an Abelian theorem. 

1. I n t r o d u c t i o n  

Let P be a probability measure defined on the Borel sets of R d, d > 1, and f (s )  be its moment-generat ing function, 
that is, 

f ( s )  = / e(S,ae)  P(dx).  

R, t  

By (-,-} we denote the inner product. Suppose that the set 

S = (  s E  Rd: f ( s )  < cx~) 

is not empty and its dimeusionality equals d. 
The moment-generating function plays a role of great importance in the large-deviation theory. Its basic properties 

are discussed in [1-5]. The present paper  aims to make a contr ibut ion toward the further development of this theory. 
At the focus of our attention is the case when S is, being always convex, bounded. 

Let S0 be the interior of S. If S is bounded and 0 6 So, then So can be represented as 

S 0 = { s :  s = t e ,  O < t < h(e), e E Sd-1}. 

It is convenient to call h(e) the shape [unction of S or simply the shape of S. 
Obviously, for 0 < t < h(e), u > 0 the Markov inequality holds, that  is, 

P(z :  (e,x) > u) < f ( t e )e  -t~. (1.1) 

In what follows, we assume that  P is absolutely continuous. Denote its density by p(x). 
Further, assume that 

p(x) = b(x)e -I'la('=), (1.2) 

where e~ = [x l - lx  and 
0 <  inf a(e) < sup a(e) < c~. 

eE S J -  a eE S ' l -  t 

If p(x) is of the form (1.2) and b(x) does not grow too fast as Izl -+ ~ ,  then f ( s )  is finite for some S with 0 E So. 
Iutuitively, it is a(e) that determines the shape of S. The following proposition justifies this conjecture. 

PaOPOSITION 1.1. Assume that in (1.2) 

c_(1 + Izl) - ~  ___ b(x) < c+(1 + Izl) ~, /3 > 0, c~: > 0. (1.3) 

Then 
17. 

h(e) = inf a(e) 

2 ~ For the shape function h(e) of any bounded open convex set So that contains O, there exists p(x) of the form (1.2) 
such that the interior o r s  = (s: f ( s )  < ~ )  is So. As a(e) in (1.2) one may take 

a(e) = sup h(E)(e, e). 
(~ESa- L: (r >0) 
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The question arises: What  can be said about the asymptot ic  behavior o f / ( s )  as s --~ OS? The answer requires 
additional restrictions imposed on both a(e) and b(x) in (1.1). Our goal is to establish a multidimensional analog of 
the following fact. 

Let d = 1 and 
p(z)  = : ~ ' r ~ ( ~ ) ,  (1.4) 

where s+ > 0 and r~(x) is of regular variation as x -+ co with the exponent a > -1 .  When v $ 0, 

f(s+ -.)~r(l+~):~o(.-'). (1.5) 

This is one of the simplest forms of the so-called Abelian theorem (see, e.g., [12]). 
First ,  we need a relevant multidimensional analog of (1.4) and (1.5). Having it in mind, we introduce the following 

notion of regular variation that, in essence, coincides with tha t  given in [11, Sec. 5.4.2]. 
Let A(e) be a nonnegative function defined on S a-1. 
D e f i n i t i o n  1.2. We say that  b(x), x E R d, is the function of (a,  A)-regular variation in the  cone Cx = (x E R d : 

~(e~) > 0) if 
b(x) -- ~o(]~])(A(e=) + u(x)), (16)  

where r,~(t) is of regular, in Karamata 's  sense, variation as t --+ oo with the exponent a while 

lim sup lu(z)[ = 0. 

Denote A(e) _-_ a(E) - h(e)(e,e). We need the following assumptions: 
(A) For a given direction e, the set argmin(ees~-~: (~.~)>o) a(e)/(e ,~)  consists of a single point  e '  = g(e).  
(B) A(~) in a neighborhood of r admits the representation 

1 ~')rh(~ 4)  + o(l~ - ~,]2). A(~) = ~ ( ~ -  

Here A is a nonnegative definite matrix, and its rank equals d -  1. Furthermore, Ae' -- 0. 
(C) For all sufficiently small 5, 

inf A(e) ---- c(5) > 0. 
]E-~']>a 

By A#, j = 1 . . . .  , d - 1, we denote the nonzero eigenvalues of A. 
Consider the class of densities of the form (1.2), where b(x) is of (a,  A)-regular variation in (x:  ]e= - e[ < 5), while 

i n ( x :  [ e = - e [ > 6 )  wehave  
b(~) < (1 + [~l) ~ 

for some/'3 > 0. 

THEOREM 1.3. Let p(x) be o[ the [orm (1.2) with e > - ( d  + 1)/2. Assume that A(e) is continuous for [e - g] < 5 
and (A), (B), and (C) hold. Then as v $ 0 (cs (1.5)), 

f ( (h(e)  - r )e)-- - -c~g(e)T-(d+l) /2r~(r-1)( l+o(1)) ,  

where 

and 

co = F ( a  + (21r) (a-I)/2 

g(e) = A(E'(e))(g(e), e>-~-(d+D/2(Az . . .  Ad-] )-1/2. 

The  question arises: How does f ( s )  behave as s approaches OS alongside some other direction? It turns out tha t  
there exists a cone of admissible directions in which the form of the Abelian theorem is, in essence, preserved. 

THEOREM 1.4. I f  the conditions of  Theorem 1.3 hold, then, for any arbitrarily small 77 > 0 and ~" ~. 0, 

f ( h ( e ) e  - ~ )  = cog(e, ~)~-(~+1)/2r~(~-1)(1 + o(1)) 

uniformly in ~, (~', ~) >_ 71. Here 

g(e, ~) = A(e'(e))(g(e), ~)-=- (a+ l ) /2 (A1. . .  Ad-1 ) - i /2 .  
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Consider the measures  P~(A), s E S, defined as 

P , ( A )  = 

f XA (x)e('"OP(x) dx 
Ra 

f ( s )  

These  measures are called conjugate or assodated to  P .  T h e y  proved to be useful in the  large-deviat ion theory. W h e n  
one deals with  large dev ia t ions  of arbi trar i ly large o rde r  i t  is required to learn  much a b o u t  the  asymptot ic  proper t ies  
of P~ as s --~ OS (see, e.g., [8-10]). The  following t h e o r e m  is devoted to such a case. Before s t a t i ng  it, we consider an  
or thogonal  mat r ix  C t h a t  reduces A to a diagonal  m a t r i x  t h a t  is CTAC = A0, where 

= 

~ ~ 
A2 . . .  0 

i : "'- " 

l0  0 
0 . . .  0 

Set 

A I 0 . . .  0 
_ A2 . . .  0 
Ao = . ... : 

0 . . .  Ad_ 1 

and  - = = x (zl . . . .  ,Zd-1) for z (z l  . . . . .  x4) E R d. 

THEOREM 1.5. Assume that the conditions of Theorem 1.3 hold and s = (h(e) - v)e, 7" --+ O. Then (7"[~[, 7"-1/2 
CT(e~ -- e')) converges in P~-distribution to a random vector (p, r such that P(~'d = O) = 1 and 

P(p 6 A; ~ 6 B) = / q a ( r ) ( / r ( d - D / 2 ~ X o ( z r l / 2 ) d z )  dr, 

A B 

where 

while 

ra+ld-1)12(~ ', e)o+!d+l)12e-r(~',e) 
q,~(r)= F ( c ~ + ( d + l ) / 2 )  , r > 0 ,  

t p-xo(z)=(2zr)-(d-l) /2(A1.. .Ad_l)l /2exp(--~zT-'Aoz),  z E R  d-1. 

Thus  [El as a limiting, w i th  respect  to P,,  d i s t r i b u t i o n  has  the  gamma d i s t r ibu t ion ,  while the  l imiting d is t r ibut ion  
for e~ - g is a mix ture  of no rma l  distributions.  T h a t  m i x t u r e  can also be represented  in the  following form: 

P(~ E B) = (27r) -Id-1)/2 F(a  + d) 
r (o  + (d + 1)/2) 

(A1...Ad_l)I/2 / l l  + l z T - A o z ) - a - d d z .  

B 

It  is a nons tandard  mul t id imens iona l  Student d i s t r i b u t i o n  (see, e.g., [7, p. 134]). 
The  paper  is organized as follows. Sections 2 a n d  3 con ta in  the proofs of P ropos i t ion  1.1 and  Theorem 1.3, respec- 

tively. The  proofs of T h e o r e m s  1.4 and 1.5 are ske tched  in Sec. 4. 

2. Proof of Proposition 1.1 

From now on, c denotes any positive constant whose concrete value is of no importance. This means that c + c = c, 

c 2 = c, etc. By ~(t), we denote any nonnegative function such that limt--,~ w(t) = 0 while 8 varies within [-I, i]. 

Set for e E S a-1 
P(~) (u )=P( (~ , e )  > u ) ,  u E R  1. 

We should show tha t  

l i r a  - l o g  P ( ~ ) ( . )  = h(e) ( 2 . 7 )  
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as u -'~ oo (see (1.1)). 
From (1.2) and (1.3) it follows that for all sufficiently large u 

c_/ 
2 

Ix[-#e -I~1"('~) dx < P(')(u) < 2c+ f Jxl#e -I=1"(~-) dx = P+. 

The change of variables 

~i = TEl, i = l , . . . , d - 1 ,  Xd = sign(xa)r(1 - ~ . . . . .  r 1/2, 

having Jacobian r a - '  kal- '  with I~al = (1 -~2  . . . . .  ~_1)1/2, leads to 

f r• e--ra(~) P+ = c ] dr Xd-l(ca) ,  

where ~ = ( e l , - . - ,Ca )  T, I~[ = 1. From now on, Xa-1 is the normalized Haar measure on S d-1. 
Since for any c > 0 and/3 as z ~ ~ 

f T"13e -er  dr ~ c- lz~3e-eZ,  

z 

we have as u ~ oo 
e-Ua(e)/ (e,e) f 

P:~ ,,, cu• / a(~)<~, e) • Xd- ,  (ca). 
(E,e)>0 

It is readily seen that  both integrals converge. Denote them, respectively, by I+. 
Let 5' > 0 be arbitrarily small. Set 

(2.8) 

a(~) ) 
E'  = �9 �9 Sd- I :  h(e) < ~ < h(e) + 5' . 

Obviously, 

[_ _> e - ' ( h ( r  '~ Xd-I(Ca). 

E' 

Estimate I+ as 

,+ <-/+ / = Ii +12. 

It is clear that  
I1 <_ e -uh(') / a(~)-' (-', e) -~-d+' X.-l(d~) = ce -"h('). 

E ~ 

Since for r ~ E '  

i n f ( a ( e ) - h ( e ) ( e , r  i n f ( 1 - h ( e ) ( e , e ) / a ( E ) )  >_c 1 h ( e ) + 5 ' ] '  

we obtain for all sufficiently large u 

(2.9) 

/ ,  
12 <_ e -uh(e) / 

J 

(~ , e )>0 ,~E '  

a(E) -1 (E, e) - ; J -d+l  exp(-((E, e>)- l )  X d - 1  (de) < ce -uh(e) sup e- t t  ~+d- 1 = ce-Uh(e). 
t>0 

Thus 

Uniting (2.8)-(2.10) yields 

I+ < ce -uh(e). 

CU--'3"t-d--le -uh (e )  < P ( r  <~ clLl3wd-le -uh(e), 

(2.1o) 
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whence (2.7) follows immediately. The first s tatement of Proposition 1.1 is proved. 
Let S be a bounded open convex set. Consider its support  function 

,~(z) = suv(~, y>, z ~ R ~, 
yES 

and  the so-called l~Linkowski function 

rn(x) = inf(t: t > 0 ,  t - l x  e S),  x �9 R a. 

It  is well known that (see, e.g., [121) 

and,  therefore, 

Since re(e) = 1/h(e), it follows that  

(x, y) 
re(x) = sup 

(e, e / 
re(e) = sup , e E Sd-1. 

(~ {e,~}>o) a(~) 

inf o'(e) 
h(e )  = (~ (o,~>>o) (e,r 

In  other words, in order to come to the form h(e), we should choose a(e) = or(e) in (1.2). Thus,  the second s tatement  
is also proved. 

3. P r o o f  of  T h e o r e m  1.3 

Assume for the time being that  e' = e'(e) = (0 , . . .  ,0, 1) T and A = A0. 
Set for brevity s -- (h(e) - ~-)e, and let 

X l = ( X :  [ x l > L ,  ]ex--E '[<MT1/2) ,  X 2 = ( x :  [ x [ > L ,  Mr1/2 < [ e ~ - e ' [  < ~ ' ) ,  

Xa = (x: ]x[ > L, ]ex - r -> ~'), X4 = (x: ]x] < L), 

where L > 0 and M > 0 are arbitrarily large, while 0 < 5' < 5 is arbitrarily small. Obviously, 

4 

f ( s )  = ~ f , (s)  (3.11) 

with 
I -  

s  = / e($,x)ig(x) dx. 

X, 

It  is worth recalling that  in X1 U X.~ the function b(x) admits representation (1.6). Consider the function r~ (t). It  is 
of regular variation and, therefore, rc~(t) = t'~l(t), where l(t) slowly varies as t --* oo. From the welt-known Karama ta  
representation (see, e.g., [6, Chap. VIII]) it follows that for any r />  0 there exists L > 0 such that  for rain(p, r) > L 

l(,-) 
l min((r/p)",  ( r /p) -" )  < ~ 2max((r /p)" ,  (r /p)-n) .  (3.12) 

Let us estimate f i(s) in (3.11) one after another. Represent X1 as follows: 

X1 = X n  UX12 UXla ,  (3.13) 

where 
X u  = Xl n (z: Ix[ < N-Xr- ' ) ,  

Xl2 = X, n (x: N - ' r - '  <_ ]xl < Nv-1) ,  

X I a = X 1 N ( x :  [ x [ > N r - 1 ) ,  
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and N > 0 is arbi t rar i ly  large. Denote 

fik(s) = f 
Xik 

Set - = E (r ,ed-1) T. If z E X1, then for e = e~ we have I~] - O 0  "~/2) and ]~d 1[ = O(r) .  Furthermore,  

(3.14) 

(3.15) 

where as above A0 is the (d - 1) x (d - 1) diagonal mat r ix  with the diagonal  (A1 . . . . .  Ad-1). 
In view of (3.13) and (3.14), we have 

fl2(S) ---- )~(~')l(1/7") f Ixl ~ exp(- - Ix l (A(E)  + T(e, e))) dx(1 + o(1)). 
Xt2 

From (B) and (3.15), taking into account that  ed = 1 + O(v),  we easily obta in  

f'2(s) = A(E')I(I//T)f f r~+d-'exp(--2"gT-A~ drdg(l§176 
N - l  < r r < N  1~1< ~ / r i / 2  

Making the change of variables rr = u, -~ = r-ll2-g yields 

flo.(s) = ~'-~-(d+O/2l(1/r)(c,,g(e) + Ow(min(M, N))), (3.16) 

where 

and 
g(e) = A(E')(e', e)-"-(d+1)/2(det-Ao) -I/2 = A(~')(E', e)-'~-r Ad_l) -I/2. 

From (B), taking into account that  [(e,E) - ed[ = O(TIP'), we obta in  

/~(s) S 2supA(~) f r~(]zl)exp(-Ixl(A(~) + T(e,E))) dx _ c 
Xl l  

N-IT-I 

L vgl<M-rl/2 

In view of (3.12), we continue 

N-X N - 1  

f,,(s) <_ c r  -~'-(d+x)/2 / r"+(d-1)/2l(r/,)dr <_ cv-"-fd+O/21(1/v) / r ~+ (d - ' ) / 2 - "  dr <_ cr-"-(d+')/2l(1/vlw(Y) 
0 0 

provided tha t  0 < r / <  rain(l ,  ct + (d + 1)/2). Similarly, 

oo 

f13(s) < 2suepA(~ ) f ra([x[)exp(-[x[(A(r ~ c  f r~ '+a-! ' l ( r )e  . . . .  ( f e-Cd~""- ~ )  dr. 

X~3 N/r Igl<Mr~/2 

Taking advantage of (3.12), we get 

fla(s) <__ c r-~-(a+O/2 f r~+(d-O/21(r/~) e-c~ dr 
N 

< cv-~-(d+l)/21(1/v) / r~+(a-D/2+~e -or dr ~ C~'-'~-(d+O/2I(1/T)w(N). 

N 
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Thus, 
f, (s) = 7"-r g(e) + &z(min(M, N))). 

Before estimating f2(s), note tha t  for x E X2 we have I~1 < ~' and I~a - 11 < c~ a .  Moreover, 

(e - d ) r A o ( ~  -- d )  ~ clrl e. 

(3.17) 

That is why 

f~(s) <2supA(e) /r,~([xl)e-~l~ll,12-~l~l, dx<_c f r~+d-'l(r)e . . . .  ( /  e-c=l~l~'dg) dr" 
X, Z le-]>_(ll2)M'r112 

Represent 
N - I t  - I  oQ 

/ "~ .... ( f e-='zt'eOd"= f + f 
L ['g[>_(1/2)Mrl/~ L N - ~ r  - I  

The first integral on the r ight-hand side is estimated as fH (s). As to the second one, it is easily seen that  

f r~+d-ll(r)e . . . .  ( f  e-~lrl~dg) dr 
N-Ir - I  le-]>_(1/2)M~.l/2 

Obviously, 

while 

Therefore, 

From (C) it follows that  

N-~ 1~1>(I/2)M 

f r~+Z-ll(r/~')e -r dr ~/(l/v),  
N - I  

f e -(e/N)I'~]" cl~ = Md-lw(.Pd2/N). 
1~[>_(1/2)M 

f2(s) = r-~-(d+I)/21(1/r)OMd-lw(M2/N) �9 

Rd R .l 

(3.18) 

provided ~- is sufficiently small. Therefore, 
f3(s) : O(1). (3.19) 

Finally, 
f4(s) ---- O(I) .  (3.20) 

Since L, M, N, and ~' are arbi t rary  from (3.11) and (3.17)-(3.20), it follows that 

f(s) ,,, C a g ( e ) T - a - - ( d + l ) / 2 l ( 1 / T ) .  (3.21) 

Let us turn to the general case. Denote by C an orthogonal matrix such that CTAC = A0. It is obvious that 
e'(e) = Ceo with e0 = (0 . . . . .  0, 1) T. Set for 0 < r < h(e), s = (h(e) - r)e 

Rd 
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From (B) it follows that  

1 -- ~0)TA0(~ to) + O(IC ~012). zx(c~) = ~(~ - - 

It remains to apply (3.21). Theorem is proved. 

4. O n  t he  P roo f s  o f  T h e o r e m s  1.4 a n d  1.5 

Here we give a sketch of the proofs of these s ta tements .  

P r o o f  of  T h e o r e m  1.4. Let s = h(e)e - 7"~. T h e n  

<s,x> - I x l a ( e )  = - I x I ( A ( ~ )  + ~<~ ,E) ) ,  

Suppose that e' = (0 , . . .  ,0, 1) T and A = Ao. If x E X12, then 

<~,~> = (~,~')  + O ( .H / " )  = ~., + o ( r U 2 ) .  

Therefore, fla.(s) acquires the form 

fl~(s)= A(~')l(1/r) f f 
N-I<r~-<N I'~[<bI~-*/~- 

r T m r a+d-1 e x p ( - - ~  A 0 ~ - ~ a r r ) d r d ' g ( l + o ( 1 ) ) ,  

and instead of (3.16) we obtain 

fn(s) = r-~-(d+l)/2l(1/r)(c,,g( e, e) + Ow(min(M, N))) (4.22) 

uniformly in ~a >_ ,7 > 0. The rest of the proof needs, in essence, no alteration. So, we get 

f(s) = cog(e, ~)7"-~-(d+l)/2l(1/r)(1 + o(1)). 

If E' # (0 , . . . ,  0, 1) T, we should argue as in the proof of Theorem 1.3. 

P r o o f  of T h e o r e m  1.5. As in the proof of Theorem 1.3, consider, first, the simplest case r = (0 , . . .  ,0,1) T, 
A = A0. Let t > 0, r2 > r l  > 0 be arbitrary and 

Z r  -- (z: r l  < Tlxl < 7"2, le~--E'l < t r l /2)  �9 

Repeating tile argument  that  led to (3.21), one easily obtains  

r 2  

/ e(~,=)p(x) dx = )~($l)~--(~-(d+l)/21(1/r) / ?'c'+d-le-rea I / e-(r/2)iT~u~ d-51dr(l + ~ 
X~ r~ [~[<t 

o r  / e(~'=)p(x) dx ( 2 r c ) ( ' / - D / 2 ( A I  �9 �9 �9 Ad-I)-I/2A(~')F-~-(d+I)/21(I/T) 
X~ 

X}rC,§ . . . . .  C / r(d-l)/2~P~~176 
rl [~l<t 

It remains to recall the definition of the conjugate measure  and to apply Theorem 1.3. It is easily seen that instead of 
the cubes lex - E' I < tv 1/2 we could take, say, parallelograms or ellipses. 

The general case E' ~s ( 0 , . . . ,  0, 1) T requires obvious alterations (cf. the proof of Theorem 1.4). 
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