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Abstract

Spinster (Spin) in Drosophila or Spinster homolog 1 (Spns1) in vertebrates is a putative lysosomal H+-carbohydrate
transporter, which functions at a late stage of autophagy. The Spin/Spns1 defect induces aberrant autolysosome formation
that leads to embryonic senescence and accelerated aging symptoms, but little is known about the mechanisms leading to
the pathogenesis in vivo. Beclin 1 and p53 are two pivotal tumor suppressors that are critically involved in the autophagic
process and its regulation. Using zebrafish as a genetic model, we show that Beclin 1 suppression ameliorates Spns1 loss-
mediated senescence as well as autophagic impairment, whereas unexpectedly p53 deficit exacerbates both of these
characteristics. We demonstrate that ‘basal p53’ activity plays a certain protective role(s) against the Spns1 defect-induced
senescence via suppressing autophagy, lysosomal biogenesis, and subsequent autolysosomal formation and maturation,
and that p53 loss can counteract the effect of Beclin 1 suppression to rescue the Spns1 defect. By contrast, in response to
DNA damage, ‘activated p53’ showed an apparent enhancement of the Spns1-deficient phenotype, by inducing both
autophagy and apoptosis. Moreover, we found that a chemical and genetic blockage of lysosomal acidification and
biogenesis mediated by the vacuolar-type H+-ATPase, as well as of subsequent autophagosome-lysosome fusion, prevents
the appearance of the hallmarks caused by the Spns1 deficiency, irrespective of the basal p53 state. Thus, these results
provide evidence that Spns1 operates during autophagy and senescence differentially with Beclin 1 and p53.
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Introduction

Autophagy is an evolutionarily conserved intracellular catabolic

process whereby cytoplasmic proteins and organelles are engulfed

into autophagosomes and subsequently degraded in autolyso-

somes, following fusion with lysosomes. Biologically significant

roles of autophagy have been illuminated in a variety of

physiological and pathophysiological conditions, such as occurs

during the adaptation to nutrient starvation, the clearance of

damaged proteins and cell organelles, development, cell survival

and death, tumor progression and suppression, elimination of

pathogens, and aging [1]. It has also been suggested that

autophagy can have a beneficial effect on longevity in many

lower organisms from yeast to flies, although a clear role in lifespan

extension still remains elusive in vertebrates [2]. Furthermore,

several interventions that promote longevity, including caloric

restriction and chemical treatment with rapamycin, have exploited

their impact through autophagy [3].

Zebrafish is an ideal organism to study the entire developmental

process ex utero and are easily accessible for both experimental and

genetic manipulations. Therefore, the zebrafish model system has

become a popular platform to explore the mechanisms of human

diseases [4]. Recently in our laboratory, we screened mutagenized

zebrafish embryos for the altered expression of senescence-

associated b-galactosidase (SA-b-gal), which is a versatile senes-

cence biomarker widely used in both cellular senescence and

organismal aging studies [5,6,7]. SA-b-gal has also been utilized

for various detection of embryonic/larval senescence in our studies

and those of others [8,9,10,11]. We successfully validated the use

of embryonic SA-b-gal production as a valuable screening tool by
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analyzing over 500 zebrafish mutants [12]. Of our identified

mutants, the highest SA-b-gal activity was found to be associated

with an insertion in the gene denoted ‘‘not really started’’ (nrs)

(currently denoted as zebrafish spinster homolog 1, spns1), which is a

homolog of Drosophila spinster, a gene that regulates aging and

lifespan in flies [13]. Zebrafish harboring a homozygous mutation

in the spns1 gene revealed embryonic/larval lethality, associated

with yolk opaqueness and senescence [12,14]. Adult zebrafish with

a heterozygous deletion of spns1 show accelerated signs of aging,

including an increased accumulation of the ‘‘aging pigment’’

lipofuscin in the muscle and liver, and have shortened lifespan

[12]. Spinster has been implicated in a lysosomal storage function

in flies [13,15], and Spns1 deficiency leads to impaired autophagic

termination and lysosome reformation problems in the mamma-

lian cell culture system [16]. However, it remains unknown how

Spns1 physiologically and pathophysiologically has an impact on

autophagic homeostasis in conjunction with senescence in higher

organisms in vivo, where we lack an appropriate vertebrate model

system except for zebrafish.

Beclin 1, an autophagic regulator, is essential for early

embryonic development, and is a haploinsufficient tumor

suppressor [17]. During starvation of cultured cells, the accumu-

lation of large and long-lasting autolysosomes caused by Spns1

deficiency is attenuated by concurrent beclin 1 knockdown,

suggesting dependence on autophagy induction and progression

[16]. p53, the most extensively characterized tumor suppressor, is

a master regulator with pleiotropic effects on genomic stability, cell

cycle, proliferation, cell death, tumorigenesis, stress response,

senescence and energy metabolism, and is also involved in

autophagic regulation [18]. p53 had been exclusively considered

as a positive regulator of autophagy [19], but was recently found

also to act as an autophagic inhibitor [20,21]. Thus, the role of

p53 in autophagy regulation requires further study since it may

underlie key aspects of metabolism, aging, and cancer biology.

We examined the impact of Spns1 impairment on the

autophagic process and on the induction of embryonic senescence

in zebrafish, in order to clarify how autolysosomal processing is

linked to these two tumor suppressors, Beclin 1 and p53. In this

study, we found that inhibition of Beclin 1 can attenuate the yolk

opacity and senescence caused by the Spns1 defect, whereas

deficiency of ‘‘basal’’ p53 augments them (‘‘basal’’ meaning in the

absence of extrinsic genotoxic stress, e.g., ultraviolet light).

Conversely, p53 ‘‘activated’’ by DNA damage apparently induced

autophagy and apoptosis, intensifying the Spns1-deficient pheno-

type. Moreover, a chemical and genetic blockage of lysosomal

acidification by inhibition of vacuolar-type H+-ATPase (v-ATPase)

prevented the appearance of the hallmarks of Spns1 deficiency

irrespective of the p53 state, while at the same time preventing

autophagosome-lysosome fusion. Our findings thus suggest that

Spns1 is critically involved in lysosomal acidification and

trafficking during autophagy, and acts in the same pathway as

Beclin 1 and p53 in the regulation of senescence.

Results

Accumulation of cytoplasmic membranous inclusions
and LC3 puncta in spns1-mutant fish
Spin/Spns1 has been implicated in the regulation of autoph-

agic lysosomal homeostasis in mammalian cells and flies [15,16].

In fact, in zebrafish, electron microscopy revealed that compared

with the wild-type control, spns1-mutant larvae accumulated

cytoplasmic membranous inclusions corresponding to late en-

dosomal, autophagic, and lysosomal structures in the hypodermal

and retinal epithelial cells (Figure S1A). To verify that the

autophagic process of spns1-deficient (spns1hi891/hi891) vertebrates

is fundamentally disturbed, we generated EGFP-tagged microtu-

bule-associated protein 1 light chain 3 (LC3) transgenic zebrafish

with the spns1-mutant background. In the resulting EGFP-LC3-

transgenic spns1-mutant [Tg(CMV:EGFP-LC3); spns1hi891/hi891]

fish line, grossly enhanced EGFP intensity was observed

throughout the body in comparison with the original

Tg(CMV:EGFP-LC3) line [22,23] (Figure 1A). In addition,

intracellular localization of EGFP-LC3 was detectable as

aggregated puncta in periderm or basal epidermal cells of the

skin (above the eye on the head or in the caudal fin) and epithelial

cells of several other organs including yolk sac, retina, and liver

(Figure 1B), suggesting excessive autophagosome and/or auto-

lysosome accumulation.

To gain additional information concerning the site of action of

Spns1, we examined LC3 conversion as a hallmark of autophagy

induction in whole zebrafish embryos by immunoblotting to

distinguish the autophagosome-associated phosphatidylethanol-

amine-conjugated LC3-II from the cytosolic LC3-I form by

showing the increased mobility of LC3-II. In spns1 mutants, both

endogenous LC3-II and exogenous EGFP-LC3-II were detected

at higher levels (Figure 1C).

Extending our analysis to a second animal model, we also

examined autophagy activity in Caenorhabditis elegans containing a

loss-of function mutation in the gene homologous to spin-1

(C13C4.5) [24]. Similar to our results in zebrafish, the C. elegans

spin-1 mutation conferred augmented autophagic induction, as

demonstrated by the increased expression and cytoplasmic

aggregation of the EGFP::LGG-1 reporter gene product (LGG-1

is the ortholog of LC3) in seam cells of mutant animals (Figure
S1B and C). We found the spin-1 mutant worms were more

sensitive to starvation-induced death (Figure S1D), consistent

with defective autophagy. In addition, decrease of Spns1 in

heterozygous zebrafish as well as loss of Spin-1 in homozygous

worms resulted in significant reductions in their adult lifespan

(Figure S1E and F). These data suggest that across these

different species, the defects in the spns1/spin-1 gene induce

autophagic abnormality with excessive autophagosomes and/or

autolysosomes, potentially leading to the accumulation of

Author Summary

Spinster homolog 1 (Spns1) in vertebrates, as well as
Spinster (Spin) in Drosophila, is a hypothetical lysosomal
H+-carbohydrate transporter, which functions at a late
stage of autophagy. The Spin/Spns1 defect induces
aberrant autolysosome formation that leads to embryonic
senescence and accelerated aging symptoms, while the
molecular mechanisms of the pathogenesis are unknown
in vivo. Using zebrafish, we show that Beclin 1 suppression
ameliorates Spns1 loss-mediated senescence as well as
autolysosomal impairment, whereas p53 deficit unexpect-
edly exacerbates these characteristics. We demonstrate
that basal p53 activity has a certain protective role(s)
against the Spns1 defect via suppressing autophagosome-
lysosome fusion, while p53 activated by ultraviolet
radiation amplifies the Spns1 deficit. In addition, we found
that excessive lysosomal biogenesis and prolonged sub-
optimal acidification, modulated by v-ATPase, could be the
primary reason for the appearance on the hallmarks of
Spns1 deficiency. Our findings thus suggest that Spns1 is
critically involved in lysosomal acidification and trafficking
during autophagy, and differentially acts in a pathway with
Beclin 1 and p53 in the regulation of senescence.

Spns1 Deficiency in Zebrafish
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Figure 1. Aberrant autophagosome and autolysosome formation in spns1-mutant zebrafish. (A) Yolk opaqueness and LC3 puncta
formation in spns1-mutant zebrafish embryos. For EGFP-LC3 transgenic spns1-mutant [Tg(CMV:EGFP-LC3);spns1hi891/hi891] fish siblings, bright-field and
fluorescence images of wild-type (wt) control (upper) and spns1 mutant (spns12/2) (lower) embryos at 84 hpf are shown. The black arrow indicates
the yolk-opaqueness phenotype in the spns1 mutant. The gross expression of EGFP-LC3 at head and trunk in the spns1-mutant animal is relatively
stronger than in the wt animal. Occasionally, however, a high intensity signal can be observed at the liver region in the mutant (as seen in D). Scale
bar, 250 mm. (B) EGFP-LC3 punctate compartments in the liver cells of the spns1 mutant. Through high magnification (6600) confocal microscopy,
intracellular EGFP-LC3 puncta were visualized in live animals at 84 hpf. Nuclei were counterstained with Hoechest 33342 (blue), and peri-nuclear
EGFP-LC3 puncta were evident in the spns1 mutant, but not in wt animals. Scale bar, 10 mm. (C) Immunoblotting to detect the conversion of LC3-I to
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undegraded macromolecules and organelles in cells of mutant

animals, which subsequently have a shortened life expectancy.

Lysosomal, but not mitochondrial, abnormalities in the
pathogenesis of spns1 mutants
Spin/Spns1 is a multi-pass transmembrane protein localized in

late endosomes and lysosomes [15,25]. In mammalian cells,

however, Spns1 has been reported to occasionally localize to

mitochondria [26]. To elucidate a potential relationship between

lysosomal and mitochondrial biogenesis with the pathogenesis

induced by the Spns1-defective animals in vivo, we performed

double staining of these two organelles by using LysoTracker

(red) and MitoTracker (green) probes. In whole animal images,

we found prominent increases of LysoTracker intensity in spns1-

mutant fish, whereas no significant difference was detected by

MitoTracker staining (Figure S2A). By further utilizing

Tg(CMV:EGFP-LC3);spns1hi891/hi891 animals, concurrent Lyso-

Tracker staining revealed significant numbers of intracellular

yellow (both green- and red-positive) puncta. Since the EGFP

green signal is normally lost by quenching in acidic compart-

ments such as the lysosome [27], this finding suggests the

existence of insufficiently acidic autolysosomes (Figure 1D and
E). In contrast, staining with a mitochondrial superoxide

indicator, MitoSOX, revealed no critical abnormality of super-

oxide generated in the mitochondria (Figure S2B). These results
suggest that Spns1 deficiency fundamentally leads to impaired

lysosomal and/or autolysosomal acidification, but not to any

significant modulation of mitochondrial biogenesis and oxidative

stress.

Formation of enlarged mal-acidic cellular deposits
caused by the Spns1 defect
Autophagosomes subsequently fuse with lysosomes to degrade

their contents. The Spns1 defect causes excessively enlarged

undegraded deposits of autolysosomal compartments in cells [16].

The inability of spns1 mutants to degrade protein aggregates,

despite the apparent induction of autophagosomes, prompted us

to ask whether Spns1 is required for degradation of autophagic

cargos by ensuring proper acidification in autolysosomes. To

address this question, we generated EGFP-LC3;mCherry-LC3
double-transgenic zebrafish [Tg(CMV:EGFP-LC3;mCherry-LC3);

spns1hi891/hi891] to determine the acidification efficiency. As EGFP

fluorescence is lost in acidic compartments, but mCherry red

fluorescence is not, the coexpression of EGFP-LC3 and mCherry-

LC3 can label insufficiently acidified autolysosomes as well as

non-acidic autophagosomes to produce yellow fluorescence

(positive for both green EGFP and red mCherry), whereas acidic

autolysosomes would only show a red fluorescent signal.

To first validate that the EGFP signal was decreased or lost by

quenching in acidic autolysosomes of wild-type animals, we

utilized two lysosomal protease inhibitors, pepstatin A, an

inhibitor of cathepsins D and E, and E-64-d, an inhibitor of

cathepsins B, H and L. Because these inhibitors can target the

proteases without altering autolysosomal acidity, we anticipated

that the EGFP signal would only be reduced in truly acidic

vesicles. In wild-type animals, as expected, only the large

punctate signals of EGFP-LC3 were faded, whereas neither the

LysoTracker nor mCherry-LC3 signals were affected (Figure

S2C and D). On the other hand, as shown in Figure 1F, once

spns1 morpholino antisense oligonucleotide (MO) was injected

into the GFP- and mCherry-LC3-double transgenic fish embryos

to knockdown the gene expression, we observed a prominent

increase in the number of yellow-fluorescent enlarged intracel-

lular vesicles as compared with those in standard control MO-

injected animals, consistent with the accumulation of insufficient-

ly acidified autolysosomes. The EGFP-LC3-positive vesicles in

the spns1 mutants were further confirmed to be autolysosomes by

the co-expression of a mCherry-tagged lysosomal membrane

marker, lysosomal-associated membrane protein 1 (Lamp1)

(Figure 1G). mCherry-LC3-positive enlarged vesicular aggrega-

tions that accumulated in the spns1-mutant fish were suppressed

by expression of EGFP-tagged Spns1 vector (Spns1 WT) but not

by that of an empty EGFP vector or an EGFP-tagged mutant

Spns1 vector (Spns1 E153K; presumably disrupted for the

transporter activity) [15,16] (Figure 1H).

In addition, the vast majority of EGFP-LC3-positive vesicles

in spns1 mutants were found to be still positive for a fluorogenic

lysosomal substrate DQ Red BSA at the earlier phenotypic

stages (,60 hours post fertilization; hpf) (Figure S2E). DQ Red

BSA fluoresces upon lysosomal degradation due to dequench-

ing; the released peptide fragments are brightly fluorescent.

Thus, the autolysosomes of spns1-mutant fish appeared to still

contain hydrolytic activity at least in early autolysosomes,

indicating that the primary reason for the retained EGFP-LC3

signal is probably due to suboptimal acidity at later stages.

Therefore, the observed increase in both EGFP-LC3 and

mCherry-LC3 double-positive yellow fluorescent intracellular

vesicles in spns1-mutant fish could be attributed to ineffective or

insufficient acidification (‘‘mal-acidification’’) at the late auto-

lysosomal stage.

LC-II. Using an anti-LC3 antibody, both endogenous LC3 and transgenic (exogenous) EGFP-LC3 expression was detected and an increase of LC3-II
conversion/accumulation was seen in the spns1 mutant compared with wt fish at 84 hpf. (D–F) Identification of autophagosome and autolysosome/
lysosome formation in the spns1 mutant. (D, E) LysoTracker (DND-99; red) staining of EGFP-LC3 transgenic spns1-mutant [Tg(CMV:EGFP-LC3);
spns1hi891/hi891] embryos was performed at 84 hpf. At the whole animal levels (D), the EGFP-LC3 signal is relatively higher throughout in the spns1
mutant than in wild type, and a particularly strong signal can be seen in the liver, as shown in (A). In the head and trunk portions of the animals (D), a
distinctive increase in the intensity of LysoTracker can be observed in the spns1 mutant. At the intracellular level (E), several small LC3 spots and
largely diffuse green signal in the cells and cytosolic LysoTracker staining is seen. A number of enlarged LC3- and LysoTracker-positive yellow
punctate structures can be seen in the spns1 mutant by confocal microscopy at a higher magnification (inset; enlarged from dotted square area). (F)
EGFP-LC3 and mCherry-LC3 double-transgenic [Tg(EGFP-LC3:mCherry-LC3)] zebrafish were used to monitor autolysosome formation in spns1 MO-
injected embryos at 84 hpf. A number of enlarged yellow LC3 puncta were detected in the spns1morphant, while only small yellow LC3 spots can be
seen in control-injected embryos. Nuclei were counterstained with 49, 6-diamidino-2-phenylindole, dihydrochloride (DAPI). Scale bar, 250 mm in (D).
Scale bar, 10 mm in (E, F). Quantification of data presented in D (n = 12), E (n = 6), and F (n = 6) is shown in the right graph; the number (n) of animals is
for each genotype. Three independent areas (periderm or basal epidermal cells above the eye) were selected from individual animals. (G) Transgenic
expression of mCherry-Lamp1 in wt [Tg(CMV:EGFP-LC3)] and spns1-mutant [Tg(CMV:EGFP-LC3);spns1hi891/hi891] animals 84 hpf. Scale bar, 10 mm. (H)
Transgenic expression of EGFP-Vector (vector), EGFP-wild-type Spns1 (spns1 WT), or EGFP-mutant Spns1 (spns1 E153K) in [Tg(CMV:mCherry-
LC3);spns1hi891/hi891] animals at 84 hpf. Scale bar, 10 mm. Quantification of data presented in H is shown for ratio of yolk opaqueness phenotype
(n = 48), mCherry intensity (red) (n = 6), and merge intensity of EGFP and mCherry (yellow) (n = 6) in the right graphs; the number (n) of animals is for
each genotype. Three independent areas (periderm or basal epidermal cells above the eye) were selected from individual animals. Error bars
represent the mean 6 standard deviation (S.D.), *p,0.005; ns, not significant.
doi:10.1371/journal.pgen.1004409.g001
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Figure 2. Knockdown of beclin 1 suppresses the Spns1 deficiency in zebrafish. (A) Schematic representation of the zebrafish beclin 1
(zbeclin 1) gene, its mRNA and protein products. A splice-blocking beclin 1 MO was designed to overlap the intron-exon boundary at the 59-splice
junction of exon 4 in the zebrafish beclin 1 gene. To detect aberrantly spliced RNA products, two forward primers were designed for exon 3 (EX3
primer) and exon 4 (EX4 primer), and one reverse primer was designed for exon 7 (EX7 primer) within the beclin 1 gene. The zebrafish beclin 1 gene
has a total of 11 exons having three unique domains [BH3 domain, coiled-coil (CCD) domain, and evolutionarily conserved (ECD) domain], and the
beclin 1MO was anticipated to disrupt the BH3 domain encoded by exon 4 and exon 5. (B) Splicing detection of zbeclin 1mRNA by RT-PCR. Amplified
PCR fragments show the intact sizes of the two amplicons for EX3-EX7 and EX4-EX7 following control (water) injection or only spns1 MO injection.
Either beclin 1 MO (12 ng/embryo) injection or coinjection of spns1 MO (4 ng/embryo) and beclin 1 MO (12 ng/embryo) generated a skipping of exon
4 (beclin 1Dexon4). This was detected by the presence of an altered EX3-EX7 amplicon and undetectable EX4-EX7 product. The deletion of exon 4 was
confirmed by sequencing. Injected embryos were harvested for total RNA isolation at 54 hpf. (C and D) Rescue of the spns1 morphant by beclin 1
knockdown. (C) The yolk opaqueness phenotype appearance in control-injected (water), spns1 MO-injected, and spns1 and beclin 1 MOs-coinjected
embryos was followed through 72 hpf. At 24 hpf, opaqueness commenced from the yolk extension region, which had almost disappeared or was
severely damaged (more than 95% of spns1 MO-injected animals) with an extension of opacity to the entire yolk at 48 hpf. By 72 hpf, yolk
opaqueness became highly dense throughout most of the spns1MO-injected embryos, which usually died within another 24 h. Scale bar, 250 mm. (D)
Clarification of the yolk opaqueness phenotype in spns1 morphants at 72 hpf. As described in (C), more than 95% of the spns1 MO-injected embryos
showed a ‘mostly opaque’ yolk at 48 hpf, and such embryos subsequently died. Animals showing a ‘partially opaque’ yolk could sometimes be
recovered and subsequently survived 96 h and beyond. beclin 1MO coinjection dramatically increased (more than 10 times) the animal numbers with
the partial yolk opaque phenotype. (E) Survival curve for spns1morphant and spns1;beclin 1-double morphant larvae (log rank test: x2= 162.5 on one
degree of freedom; p,0.0001).
doi:10.1371/journal.pgen.1004409.g002
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Figure 3. Knockdown of beclin 1 suppresses abnormal autolysosomal puncta formation and embryonic senescence caused by
Spns1 deficiency in zebrafish. (A) Effect of beclin 1 knockdown on EGFP-LC3 puncta formation in spns1-depleted zebrafish embryos. Injection of
control (water) injection, spns1 MO (4 ng/embryo) or coinjection of spns1 MO (4 ng/embryo) and beclin 1 MO (12 ng/embryo) into Tg(CMV:EGFP-LC3)
fish was performed to assess whether the beclin 1 knockdown reduces or eliminates aggregated LC3 puncta induced by Spns1 depletion at 84 hpf.
Scale bar, 10 mm. Quantification of data presented in panel A (n = 12) is shown in the right graph; the number (n) of animals is for each morphant or
water-injected control. Three independent areas (periderm or basal epidermal cells above the eye) were selected from individual animals. (B) Effect of
beclin 1 knockdown on EGFP-GABARAP as well as mCherry-LC3 puncta formation in spns1-depleted zebrafish embryos. Injection of control (water),
spns1 MO or coinjection of spns1 MO and beclin 1 MO into Tg(CMV:EGFP-GABARAP;mCherry-LC3) fish was performed to evaluate whether the beclin 1
knockdown reduces or eliminates the aggregation of GFP-GABARAP puncta in comparison with those of LC3 caused by the Spns1 depletion at
84 hpf. Scale bar, 10 mm. Quantification of data presented in the top row (green; EGFP) (n = 9), middle row (red; mCherry) (n = 12), and bottom row
(yellow; merge of EGFP and mCherry) (n = 9) in panel B is shown in the right graphs; the number (n) of animals is for each morphant or water-injected
control. Three independent areas (periderm or basal epidermal cells above the eye) were selected from individual animals. (C) Effect of beclin 1
knockdown on embryonic senescence in spns1 morphant. By using the same injection samples [injection of control (water), spns1 MO or coinjection
of spns1 MO and beclin 1 MO into Tg(CMV:EGFP-GABARAP;mCherry-LC3) fish], SA-b-gal staining was performed to assess whether the beclin 1
knockdown has any impact on the embryonic senescence caused by Spns1 depletion at 84 hpf. Representative images of individual fish by bright
field (BF, live samples) and SA-b-gal (SABG) staining are shown in the upper and middle panels, respectively. Scale bar, 250 mm. Lower panels are
larger magnification images of corresponding SA-b-gal samples shown in the middle panels and the fluorescence images of nuclei counterstained
with DAPI. Scale bar, 10 mm. Quantification of data presented in the middle row (SABG) in panel C (n = 12) is shown in the right graph; the number (n)
of animals is for each morphant or water-injected control. Error bars represent the mean 6 S.D., *p,0.005.
doi:10.1371/journal.pgen.1004409.g003
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Rescue of the Spns1 deficit in zebrafish by suppression of
Beclin 1
Based on a recent report of an autophagy-dependent effect of

spns1 knockdown in a mammalian cell culture [16] and our current

observations described above in the zebrafish model, we assumed

that inhibition of the early stages of autophagy by blocking the

class III phosphatidylinositol 3-kinase (PtdIns3K) complex con-

taining Vps34/Pik3c3 and Beclin 1 would reduce aggregated LC3

puncta in cells of spns1 mutants and ameliorate yolk opaque

abnormalities induced by the Spns1 deficiency. We therefore

designed a splice-block morpholino antisense oligonucleotide

(MO) targeting the zebrafish beclin 1 (becn1; zbeclin 1) gene at the

59 end of exon 4 (Figure 2A). RT-PCR and DNA sequencing

results showed this splice-block MO (beclin 1 MO) generated a loss

of exon 4 and a premature stop codon, resulting in a truncated

protein lacking the entire Bcl2 homology domain 3 (BH3 domain)

(Figure 2B). The phenotype induced by the knockdown of beclin 1

by the MO during early development was not particularly evident

at the gross morphology level apart from some minor develop-

mental retardation at 24 hpf, without any obvious abnormality

later on (Figure S3A). In contrast, the concurrent suppression of

both spns1 and beclin 1 by MO targeting strikingly diminished the

yolk opaqueness seen with the spns1 morphants and produced an

increased number of viable larvae that survive beyond 72 hpf

(Figure 2C–E). We also performed beclin 1 MO injections into

spns1-mutant embryos, and reproducibly confirmed the amelio-

rated yolk phenotype through 3 dpf (Figure S3B), but mutant

animals subsequently relapsed into deterioration, presumably due

to the persistent impact of the Spns1 mutation and/or transient

activity of the beclin 1 MO. These results indicate that suppression

of the early stage of autophagy by beclin 1 knockdown can offset the

deleterious effect of Spns1 deficiency that occurs at the late stage of

autophagy.

We next examined whether the enlarged aggregations of LC3 in

spns1 morphants and mutants can be restored by Beclin 1

knockdown. spns1 MO and/or beclin 1 MO were introduced into

Tg(CMV:EGFP-LC3) fish embryos and resultant specimens were

observed by confocal microscopy at the cellular level. The

appearance of punctate vesicle-like intracellular aggregates and

deposits observed in spns1 morphants was diminished by the beclin

1 knockdown (Figure 3A). LC3 has several functional homologs,

including gamma-aminobutyric acid A (GABA)-receptor associat-

ed protein (GABARAP) and GABARAPL2/GATE-16. It has

been reported that both LC3 and GABARAP are indispensable

for the autophagic process in mammalian cells [21]. The

restorative effect of beclin 1 knockdown was also demonstrated in

spns1-depleted Tg(CMV:EGFP-GABARAP;mCherry-LC3) fish. The

concomitant microinjection of spns1 MO and beclin 1 MO showed

consistently similar outcomes in terms of the obvious reduction of

both EGFP-GABARAP and mCherry-LC3 puncta (Figure 3B),
as observed with the EGFP-LC3 puncta (Figure 3A).

Another hallmark of spns1-mutant fish is the striking induction

of senescence-associated b-galactosidase (SA-b-gal), which is an

endogenous lysosomal b-D-galactosidase detectable at pH 6.0

[12,28]. Previously we demonstrated that an embryonic (or larval)

senescence phenotype caused by specific gene mutations (or MO-

mediated knockdowns) and also by stress is readily detectable via

SA-b-gal staining of zebrafish embryos and larvae [12]. Addition-

ally, we also tested another lysosomal hydrolase/glycosidase, a-L-
fucosidase (a-fuc) that has been reported in mammalian cells as a

novel sensitive biomarker, senescence-associated a-fuc (SA-a-fuc)
[29]. We found that higher activity of SA-a-fuc, as well as of SA-b-
gal, was detected in spns1-mutant fish, compared with wild-type

control fish, with SA-b-gal being the more sensitive assay

(Figure S3C; see also Text S1 and S2). We therefore examined

the effect of beclin 1 MO by staining with SA-b-gal in both spns1

morphants and mutants. Consistent with the restored yolk clarity

and reduced LC3 puncta observed with beclin 1 knockdown in

conditions of Spns1 deficiency, the beclin 1 MO markedly

decreased the intensity of SA-b-gal at 3.5 dpf (Figure 3C and
Figure S3B), whereas control injections (water and standard

control MO) did not significantly affect the SA-b-gal activity in

spns1 morphant and mutant animals (Figure 3C and Figure
S3B). These results suggest that the aberrant SA-b-gal activity in

spns1-defective animals coincides with autophagic initiation and its

progression, and is accompanied by an increase in autolysosomes

at the late autophagy stage.

While the excessive accumulation of autophagosomes and

autolysosomes was observed in spns1-deficient animals, we

anticipated that induction of apoptosis may be accompanied or

preceded by the autophagic abnormality. We found, however, that

such apoptotic induction was undetectable in spns1 mutants and

morphants (Figure S4 and Figure S5; see also Text S1 and
S2). Acridine orange (AO) staining, which can correspond to the

detection of acidified compartments [30,31] as well as of apoptotic

and necrotic cell death [32,33], showed positive signals co-stained

by LysoTracker in spns1 mutants (Figure S4). However, when we

performed a TUNEL assay for detecting DNA fragmentation

associated with apoptosis, we found no staining upon knockdown

of spns1 (Figure S5), while the positive control of ultraviolet light

(UV) irradiation produced a TUNEL-positive signal, as reported

previously [34]. The UV irradiation-mediated apoptosis was

slightly but not significantly inhibited by beclin 1 knockdown

(Figure S6a), which can fully suppress autophagy induced by UV

(Figure S6B), suggesting that Beclin 1 plays a critical role in

initiating autophagy, but is potentially dispensable for the

induction of UV-mediated apoptosis in zebrafish embryos.

Impact of the p53 status on Spns1 deficiency in zebrafish
It has been reported that cells deficient in Beclin 1 exhibit an

elevated DNA damage response [35], along with an increase in

reactive oxygen species (ROS) [36]. In addition, a reduction of p53

by proteasomal degradation has been documented under the

condition of beclin 1 knockdown [37]. The stress-responsive

function of p53 still remains poorly understood with regard to

how it is linked to autophagy impairment. In fact, although

activated nuclear p53 can induce autophagy [38], it has also been

reported that a removal of basal cytosolic p53 can stimulate

autophagy [20]. We wondered which state of p53, if either, is

involved in the Spns1 impairment. Moreover, since p53 activation

is ordinarily thought to induce cellular senescence, which is also

the case for zebrafish embryonic senescence [33], we suspected

that the suppression of senescence by Beclin 1 depletion might be

due to an intrinsic reduction in p53 [37]. We therefore

investigated the requirement of p53 in the Spns1 deficiency-

mediated senescence in zebrafish embryos under various exper-

imental conditions through the genetic manipulations described

below.

First, we examined the potential contribution of Spns1 and p53

separately in spns1 and p53 mutant fish backgrounds. We tested

spns1 MO and p53 MO in p53 mutants and spns1 mutants,

respectively (Figure S7). Unexpectedly, either p53 mutation or

knockdown enhanced, rather than suppressed, the senescence

phenotype under the Spns1-defective conditions. This increased

SA-b-gal activity that is induced by p53 suppression was further

demonstrated by coinjection of p53 MO and spns1 MO into

normal wild-type animals to rule out any background influence in

the mutants (Figure 4A, upper panels and B).
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Figure 4. p53 depletion does not suppress but rather exacerbates Spns1 deficiency. (A) Effect of p53 knockdown on embryonic
senescence and autolysosome formation in spns1 morphants. The impact of transient p53 knockdown on SA-b-gal (SABG) induction, as well as on
EGFP-LC3 and LysoTracker (LysoT) puncta, was determined in spns1 morphants at 84 hpf, followed by the MO (4 ng/embryo) injections. Inverse-
sequence p53MO (inv. p53MO) was used as a negative control for the original p53MO. Scale bar, 250 mm in the SABG images. Scale bar, 10 mm in the
fluorescence images. (B) Quantification of the SA-b-gal intensities in MO-injected animals, as shown for the SABG images in (A). Quantification of data
presented in the top row (SABG) in B (n = 12) is shown; the number (n) of animals is for each morphant. (C) Quantification of EGFP-LC3 and
LysoTracker puncta in MO-injected animals shown in (A) (n = 9); the number (n) of animals is for each morphant. Three independent areas (periderm
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Next, we performed coinjections of p53 and spns1 MOs into

Tg(CMV:EGFP-LC3) fish to concurrently monitor the autophagic

process with EGFP-positive LC3 aggregate formation, in addition

to subsequent senescence induction (Figure 4A, middle and
lower panels, and C). Upon transient knockdown, although the

total EGFP fluorescence became brighter, the number of EGFP-

LC3 puncta were only slightly increased by p53 MO, compared

with the control injected fish (Figure 4C, columns 1 and 2). On

the one hand, enhanced LC3 puncta induction was observed when

both MOs were coinjected, as similarly seen in the case of spns1

MO injection only (Figure 4C, columns 3 and 4), suggesting

that autophagy induction associated with Spns1 depletion does not

require p53. On the other hand, there were more cumulative

LysoTracker-positive aggregates (dysfunctional autolysosomes)

colocalized with LC3 by the double knockdown than spns1

knockdown alone, as EGFP-LC3 and LysoTracker double-positive

yellow puncta were obviously increased by the p53 suppression in

spns1morphants (Figure 4A, middle panels, and C, columns

11 and 12). Moreover, the enhancing effect of p53 knockdown on

senescence in spns1 morphants was obviously seen (Figure 4A,

upper panels, and Figure S7).

We further generated spns1-mutant fish harboring a p53

mutation (tp53zdf1/zdf1), spns1hi891/hi891;tp53zdf1/zdf1, and confirmed

that there was no requirement of normal p53 inheritance for the

induction of embryonic senescence resulting from Spns1 deficien-

cy, but instead there was an enhancement of SA-b-gal activity

caused by the constitutive loss of wild-type p53 (Figure 4D and
E). To further obtain robust hallmarks of senescence in zebrafish

embryos, we examined the expression of other markers and/or

mediators of senescence in spns1-defective animals. Quantitative

RT-PCR (qPCR) as well as semi-qPCR in individual embryos

demonstrated that the expression of p21waf1/cip1 and plasminogen

activator inhibitor-1 (pai-1), which are known downstream targets of

the p53 pathway [39], were upregulated in spns1 morphants and

mutants (Figure 4F, and Figure S13; see also Text S1 and S2).

Senescence marker protein-30 (smp-30) was downregulated in spns1-

deficient animals compared with the corresponding controls.

While the induction of p21waf1/cip1 as well as bax was apparently

regulated in a p53-dependent manner, both the pai-1 induction

and the smp-30 reduction in spns1 mutants were not influenced by

the p53 defect.

We extended the analysis by monitoring the conversion of LC3-

I into LC3-II among normal wild-type, tp53zdf1/zdf1, spns1hi891/hi89,

and spns1hi891/hi891;tp53zdf1/zdf1 fish through 4 dpf. Autophagy

was minimally induced in tp53zdf1/zdf1 fish based on detection of

LC3-II conversion by immunoblotting, while the total amount of

LC3 (LC3-I plus -II) was increased (Figure 4G and H). In

spns1hi891/hi891;tp53zdf1/zdf1 fish, the LC3-II conversion/accumulation

was similar to that seen in spns1-mutant fish (Figure 4G
and H). These results suggest that either decrease or loss of

basal p53 enhances the Spns1 impairment, potentially by

augmenting autophagy progression (but not initiation) and/or

lysosomal biogenesis (i.e., subsequent autolysosomal formation

and maturation).

We then proceeded to assess the epistasis among spns1, beclin 1

and p53. We first confirmed that Beclin 1 suppression had no

significant impact on p53 morphants or tp53zdf1/zdf1 fish

(Figure 4H and I, columns 1, 3, 5, and 7, and Figure

S8). Conversely, p53 depletion prevented the ability of beclin 1MO

to suppress the appearance of the yolk opaqueness and senescence

phenotypes of spns1 mutants (Figure 4H and I, and Figure S8).

Moreover, the beclin 1 knockdown significantly suppressed the SA-

b-gal activity in spns1hi891/hi891;tp53zdf1/zdf1 fish to a similar extent

as seen in standard control MO-injected spns1hi891/hi891;tp53+/+ fish

(Figure 4H and I, columns 2 and 8, and Figure S8).

However, the reduction of the SA-b-gal activity was more obvious

in beclin 1 MO-injected spns1hi891/hi891;tp53+/+ fish than in

spns1hi891/hi891;tp53zdf1/zdf1 fish (Figure 4H and I, columns 6
and 8, and Figure S8). Thus, basal p53 activity has a certain

protective role(s) in preventing the deleterious phenotypes caused

by genetic ablation of the spns1 gene, by competing with Beclin 1-

mediated autophagy progression.

Although basal p53 can contribute to attenuating the Spns1

deficiency conceivably through suppressing autophagic progres-

sion and lysosomal biogenesis, we also wondered whether

‘‘activated p53’’ in response to DNA damage (e.g., UV) has any

impact on the Spns1 deficiency, based on the result that the UV

irradiation activates and/or enhances autophagy in zebrafish

embryos (Figure S6B). As anticipated, apoptosis was similarly

induced in spns1 mutants, compared with wild-type animals after

UV treatment, whereas such apoptotic induction was almost

undetectable under the p53 mutant condition (Figure S9A; see

also Text S1 and S2). The UV exposure apparently augmented

both autophagic progress (i.e., GFP-LC3 puncta formation) and

lysosomal biogenesis (i.e., LysoTracker-stained puncta) in spns1

mutants only when functional p53 was present (Figure S9B and

C).

A DNA damage response can be visualized as persistent foci of

damaged nuclear DNA and its interacting proteins such as the

phosphorylated histone variant, cH2AX [40]. DNA damage

induced by UV treatment and the subsequent cell-cycle arrest in S

phase were demonstrated by an increase of cH2AX intensity and a

decrease of 5-bromo-2-deoxyuridine (BrdU) incorporation, re-

spectively (Figure S10; see also Text S1 and S2). spns1 mutants

had a negligible difference in cH2AX levels but had a significant

reduction of BrdU incorporation, irrespective of the p53 state

or basal epidermal cells above the eye) were selected from individual animals. (D) Effect of a p53mutation on embryonic SA-b-gal activity in the spns1
mutant. The heritable impact of p53 and Spns1 on SA-b-gal induction was tested in each single gene mutant [spns1hi891/hi891 (spns12/2) or tp53zdf1/zdf1

(p53m/m)] and double mutant spns1hi891/hi891;tp53zdf1/zdf1 (spns12/2;p53m/m) compared with wild-type (wt) animals at 84 hpf. Scale bar, 250 mm. (E)
Quantification of the SA-b-gal intensities in wt, tp53zdf1/zdf1, spns1hi891/hi891 and spns1hi891/hi891;tp53zdf1/zdf1 animals, shown in (D). Quantification of data
presented in panel D (n = 12) is shown; the number (n) of animals is for each genotype. (F) Quantitative RT-PCR analyses of senescence marker and/or
mediator expression as well as p53-downstream target genes in wt, tp53zdf1/zdf1, spns1hi891/hi891 and spns1hi891/hi891;tp53zdf1/zdf1 at 72 hpf. Data are
mean 6SD [n = 4 samples (3 embryos/sample) per genotype]. Asterisks denote significant changes compared to wt values. *p,0.05. (G) LC3
conversions in p53 and spns1-mutant animals. Protein detection for the conversion/accumulation of LC3-I to LC-II was performed in the described
mutant background animals in comparison with wt fish at 84 hpf. Western blot analysis using anti-LC3 antibody shows endogenous LC3 protein
levels, which can confirm an increase of the total amount of LC3 in the p53 mutant compared with wt fish. Increased LC3-II conversion/accumulation
was detected in p53 and spns1 double-mutants as well as in spns1 single-mutant fish. (H) The blotting band intensities of LC3-I, LC3-II and b-actin
were quantified (n = 6), and the relative ratios between LC3-II/actin and LC3-I/actin are shown in the bar graph; the number (n) of animals is for each
genotype. (I) wt, tp53zdf1/zdf1, spns1hi891/hi891 and spns1hi891/hi891;tp53zdf1/zdf1 embryos injected with beclin 1 MO or control MO (12 ng/embryo) were
assayed for SA-b-gal at 84 hpf. beclin 1 MO-mediated suppression of SA-b-gal in spns1hi891/hi891 animals was attenuated in the p53 mutant
background. Scale bar, 250 mm. (J) Quantification of the SA-b-gal intensities shown in (I). Quantification of data presented in H (n = 12) is shown; the
number (n) of animals is for each genotype with MO. Error bars represent the mean 6 S.D., *p,0.005; ns, not significant.
doi:10.1371/journal.pgen.1004409.g004
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Figure 5. Acidity-dependent lysosomal biogenesis is rate limiting in spns1-mutant zebrafish. (A) Effect of bafilomycin A1 (BafA) on the
yolk opaque phenotype (BF; bright field) and embryonic senescence (SABG; SA-b-gal) in the spns1 mutant in the presence or absence of p53 at
48 hpf. Normal wild-type (spns1+/+;p53+/+), tp53zdf1/zdf1 (p53m/m), spns1hi891/hi891 (spns12/2) and spns1hi891/hi891;tp53zdf1/zdf1 (spns12/2;p53m/m) embryos
at 36 hpf were incubated with BafA (200 nM) for 12 h, and stained with LysoTracker at 48 hpf, followed by SA-b-gal staining at 60 hpf. Scale bar,
250 mm. (B) Quantification of the SA-b-gal intensities shown in (A). Quantification of data presented in panel A (n = 12) is shown; the number (n) of
animals is for each genotype with DMSO or BafA. (C) Gross morphology, EGFP-LC3 and LysoTracker intensities in wild-type (wt) and spns1-mutant
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(Figure S10), which is indicative of a slowdown of cell

proliferation without apparent DNA damage. The immunostain-

ing of a mitotic marker, phosphorylated histone H3 (pH 3) also

showed a significant reduction in tp53+/+-spns1-mutant animals,

even without UV treatment. There was a similar tendency of pH 3

reduction in non-irradiated spns1;tp53-double mutants, but it was

not statistically significant (Figure S11). Embryonic SA-b-gal

activity was consistently increased by the UV stimulation in both

wild-type and spns1-mutant animals in the presence of p53

(Figure S12).

Finally, we extended our analysis to examine the expression

profiles of p21waf1/cip1, pai-1, and smp-30 as potential markers and/

or mediators of senescence in spns1-defective animals (Figure 4F

and Figure S13). beclin 1 morphants did not show any

significantly detectable changes in expression of these genes

(Figure S14A). Importantly, however, the suppression of beclin 1

significantly counteracted the impact of the spns1 depletion by

restoring expression of the pai-1 and smp-30 genes (Figure S14A).

As described above, even in the absence of p53, the altered

regulation of these two critical senescence markers was still

detectable in spns1-deficient animals (Figure S14B), indicating

that p53-independent regulation may be responsible for the

expression of these genes. In contrast, the induction of p21waf1/cip1,

bax, and mdm2 genes in the spns1-defective condition was

apparently p53 dependent and UV responsive, as confirmed by

the level of their expression in p53 mutants (Figure S14B). It is

also important to note that expression of ink4ab (the zebrafish

homolog of both p15ink4b and p16ink4a) was induced by UV

treatment but not by Spns1 loss (Figure S15). Taken together, the

upregulation of pai-1 and p21, and the downregulation of smp-30 in

spns1-defective fish embryos are consistent with the induction of

senescence characteristics in aging organisms [40,41,42,43,44,45].

Chemical modulation and monitoring of the
autolysosomal acidification in spns1-mutant fish
Chemical genetic approaches are emerging in the zebrafish

model system, and increasing numbers of chemical compounds are

currently available for examining autophagic regulation

[46,47,48]. We determined the effects of several chemical

compounds and selective modulators of autophagy on Spns1

deficiency to see if any chemical(s) ameliorates or exacerbates the

Spns1 phenotypes of zebrafish embryos. Of the chemicals tested,

bafilomycin A1 (BafA) and other proton pump inhibitors (PPIs)

such as the acid reducer omeprazole stood out due to their

apparent inhibitory effect on overall phenotypic deterioration in

spns1 animals (Figure 5A, B and Figure S16). BafA is a specific

inhibitor of vacuolar-type H+-ATPase (v-ATPase), and inhibits

lysosomal acidification, slowing or blocking degradation of LC3-II

within autolysosomes as well as inhibiting the fusion between

autophagosomes and lysosomes [49,50], and subsequently it also

enhances EGFP-LC3 puncta accumulation corresponding to

mammalian autophagosomes [27]. Consistently, we found that

BafA significantly increased the formation of cellular LC3 puncta

as well as their gross EGFP intensity in wild-type zebrafish

(Figure 5C–F). Intriguingly, both the progression of yolk opacity

and SA-b-gal activity in spns1 mutants during the time period of

36–60 hpf were entirely suppressed by BafA treatment (Figure 5A

and B). While EGFP-LC3 puncta signals in BafA-treated spns1

mutants did not appear significantly different compared with those

in untreated counterparts, LysoTracker-positive compartments in

cells were reduced by BafA treatment (Figure 5E and F), similar

to the result seen with whole animal staining (Figure 5C and D).

This is likely due to ‘prior’ alkalinization in lysosomes/autolyso-

somes and reduction of their biogenesis (Figure 5E and F).

Importantly, these effects of BafA on spns1-mutant animals were

essentially unaltered under the p53-depleted condition. Thus,

BafA-induced pre-alkalinization might compensate for vulnerabil-

ity of the spns1 mutants lacking basal p53 activity (Figure 5A).

BafA specifically binds to subunit c of the v-ATPase and thereby

inhibits its enzymatic and proton-pump activity, but it has been

shown that the concentration used and the duration of treatment

with this drug are fairly critical to observe this effect [49]. In

addition, BafA may have other off-target effects [51]. Therefore,

we specifically knocked down the v-ATPase subunit gene atp6v0c

by using a MO, whose effectiveness had already been demon-

strated [52]. We obtained comparably consistent outcomes for the

ameliorative effect of atp6v0c knockdown on the Spns1 deficiency

(Figure S17A and B). In addition, we found that three other PPIs

(omeprazole, lansoprazole, and pantoprazole), which can all

interfere with the v-ATPase [53,54], could also suppress the

senescence phenotype in spns1 mutants (Figure S17C).

We further utilized LysoSensor dye to monitor acidification

levels in lysosomes and autolysosomes, to verify that possible pre-

alkalinization by BafA treatment or direct atp6v0c knockdown can

efficiently suppress the spns1-mutant phenotypes. In contrast to the

LysoTracker probes, which exhibit fluorescence that is largely

independent of the pH level, the LysoSensor reagents can show a

pH-dependent increase in fluorescence intensity upon acidification

[55]. The neutral pH-sensitive LysoSensor 153 fluoresces

optimally at pH 7.5, while the acidic pH-sensitive LysoSensor

animals treated with BafA shown at 48 hpf (12 h treatment starting at 36 hpf). Scale bar, 250 mm. (D) Quantification of the EGFP-LC3 and LysoTracker
fluorescence intensities shown in (C). Quantification of data presented in the middle and bottom rows (green; EGFP, red; mCherry) in panel C (n = 12)
is shown; the number (n) of animals is for each genotype with DMSO or BafA. (E) Intracellular autolysosome formation and lysosomal biogenesis in
the BafA-treated spns1 mutant. The samples analyzed in (C) were observed by using confocal microscopy at high magnification (6600). Scale bar,
10 mm. (F) Quantification of the EGFP-LC3 and LysoTracker fluorescence intensities shown in (E). Quantification of data presented for EGFP (green)
and mCherry (red) signals in panel E (n = 6) is shown; the number (n) of animals is for each genotype with DMSO or BafA. Three independent areas
(periderm or basal epidermal cells above the eye) were selected from individual animals. (G) Insufficient intracellular acidity constituent in the spns1
mutants. Using two different acidic-sensitive probes, LysoSensor 189 and neutral-sensitive LysoSensor 153 (green), in combination with LysoTracker
(red), wt and spns1-mutant animals showed detectable signals when stained at 72 hpf. In spns1-mutant animals, autolysosomal and/or lysosomal
compartments were more prominently detectable by LysoSensor 153 than by LysoSensor 189, at the cellular level with enhanced signal intensity of
these enlarged compartments. In stark contrast, the cellular compartments in wt fish treated with pepstatin A and E-64-d (P/E) (12 h treatment from
60 hpf through 72 hpf) were more prominently detectable by LysoSensor 189 than by LysoSensor 153 under the identical LysoTracker staining
conditions. Of note, these autolysosomal and lysosomal compartments in spns1mutants, as well as in wt animals treated with pepstatin A and E-64-d,
may still retain some weak (higher pH) and strong (lower pH) acidity, respectively, as short-term BafA treatment (for 1 h between 71 and 72 hpf) can
abolish the acidic compartments stained by both LysoSensor and LysoTracker (Figure S17C and D). Scale bar, 10 mm. (H) Quantification of the
LysoSensor (189 and 153) and LysoTracker fluorescence intensities shown in (G). Quantification of data presented for LysoSensor (green) and
LysoTracker (red) signals in panel G (n = 6) is shown; the number (n) of animals is for each genotype with DMSO or pepstatin A and E-64-d (P/E). Three
independent areas (periderm or basal epidermal cells above the eye) were selected from individual animals. Error bars represent the mean 6 S.D.,
*p,0.005; ns, not significant.
doi:10.1371/journal.pgen.1004409.g005
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189 fluoresces optimally at pH 5.2. When these probes (green)

were used in combination with LysoTracker (red), we found a

much stronger signal with LysoSensor 153 than with LysoSensor

189 in spns1-mutant animals (Figure S18A and B), which was

also quite obvious at the cellular level (Figure 5G and H). By

contrast, treatment of wild-type animals with lysosomal protease

inhibitors, pepstatin A and E-64-d, which allows the retention of

intact autolysosomal/lysosomal acidity while preventing autolyso-

somal maturation and turnover, showed highly acidic vesicles

stained by LysoSensor 189, rather than by LysoSensor 153

(Figure 5G and H). Lysosomal compartments in spns1 mutants

may still retain some weak acidification allowing lysosomal

biogenesis and subsequent autophagosome-lysosome fusion, as

short-term treatment (for 1 h) with BafA can completely abolish

the acidic compartments stained by LysoSensor and significantly

reduce the LysoTracker-positive signals (Figure S18C and D).

Finally, we examined the colocalization of EGFP-LC3 puncta

and lysosomes in wild-type fish in the presence of BafA or

pepstatin A and E-64-d, compared to that in the spns1hi891/hi891 fish

(Figure S19A and B). In wild-type animals, BafA caused the

accumulation of EGFP-LC3 and colocalization of EGFP-LC3-

mCherry-LC3 signals (Figure S19C), but no accumulation of

LysoTracker, indicating a block in fusion of autophagosomes with

lysosomes (Figure S19B). Inhibition of lysosomal hydrolase

activity with pepstatin A and E-64-d resulted in accumulation of

lysosomes (red) and autolysosomes (yellow by overlapping

EGFP-LC3 and LysoTracker) (Figure S19B). In contrast, the

spns1hi891/hi891 fish (Figure S19A) and their cells (Figure S19B

and C) displayed both an accumulation of autolysosomes (yellow

by overlapping EGFP-LC3 and LysoTracker) and autophago-

somes (yellow by overlapping of EGFP-LC3 and mCherry-LC3)

without any inhibitors, again indicating defects in both fusion of

autophagosomes with lysosomes and autolysosomal maturation.

Collectively, these results demonstrate that the appearance of

deleterious changes in spns1 animals is due to aberrant autophagic

progression caused by impaired suboptimal acidification in

malformed autolysosomes, and that p53 may also be involved in

the process of both lysosomal and autolysosomal pathogenesis in

Spin1 deficiency.

Discussion

We demonstrated that loss of Spns1 leads to defects in

autophagic and lysosomal homeostasis in zebrafish, and the tumor

suppressors Beclin 1 and p53 are differentially involved in

autophagy and senescence pathways regulated by Spns1. A

reduction of Beclin 1 as an autophagy regulator can attenuate

the Spns1 defect, whereas a decrease/loss of basal p53 activity, as

well as activated p53 by DNA damage, augments it and

exacerbates the deleterious phenotype in zebrafish. If both Spns1

and p53 were abrogated, the Beclin 1 reduction was no longer

effective in suppressing the spns1-mutant phenotypes sufficiently,

whereas v-ATPase reduction was robust enough to suppress the

phenotypes regardless of p53 state.

Importantly, we have successfully generated valuable zebrafish

tools by crossing the fluorescent protein-tagged LC3- and

GABARAP-transgenic lines with the spns1-mutant line to monitor

real-time alterations of autophagic abnormalities in vivo. Verte-
brates have approximately seven Atg8 homologs [56], and the best

studied of these is LC3. GABARAP shows many similarities with

LC3, but its conjugation is only mildly affected by starvation, and

under certain conditions conjugation may be activated indepen-

dent of target of rapamycin (TOR) inactivation [57,58]. We have

found, however, an indistinguishable behavior between LC3 and

GABARAP in the transgenic animals harboring either spns1

mutation or depletion, although it has been suggested that LC3

and GABARAP differentially act in autophagosome biogenesis

[59].

The evolutionarily conserved autophagy gene beclin 1 (vps30/
atg6) is frequently inactivated at one locus in several cancers

[60,61]. Studies in mice have also demonstrated that beclin 1 is a

haploinsufficient tumor suppressor [17,62]. It has been demon-

strated that Spns1-loss-associated EGFP-LC3 puncta accumula-

tion in cells, which reflects autophagic progression by autophago-

some formation, is suppressed by the depletion of Beclin 1, Atg7,

or Ulk1, as well as by treatment with a PtdIns3K inhibitor, 3-

methyladenine [16]. Consistently, we also demonstrated that beclin

1 morphants were resistant to forming LC3 puncta induced by

Spns1 deficiency in zebrafish. However, once both spns1 and p53

were depleted, the beclin 1 knockdown was no longer effective

enough to suppress the punctate accumulation of LC3 as well as

the mutant hallmarks of both yolk opaqueness and embryonic

senescence characteristic of Spns1 deficiency in zebrafish.

p53 is one of the most commonly mutated tumor suppressor

genes found in many types of human cancers [63]. We found that

the loss of basal p53 compromises the ability to properly adjust

autolysosomal formation, and exacerbated the spns1 deficiency,

while beclin 1 knockdown can ameliorate it by suppressing the early

stage of autophagy. p53 has been linked to the regulation of

autophagy, but the exact nature of its role still remains

controversial. On the one hand, onocogenic and genotoxic stress

events result in p53 stabilization and activation, which can

stimulate autophagy through both transcription-independent

mechanisms (e.g., AMP-activated protein kinase; AMPK activa-

tion and TOR inhibition) and transcription-dependent mecha-

nisms (e.g., transcriptional upregulations of PTEN, tuberous

sclerosis complex 1/TSC1 and damage-regulated autophagy

modulator/DRAM1) [64]. On the other hand, it has been

Figure 6. Schematic model for Spns1 function under the control of the network module of autophagy-senescence signaling
cascades differentially regulated through Beclin 1 and p53. (A) Beclin 1 is essential for the early stage of autophagy and its depletion
suppresses the Spns1 defect by blocking the ‘autophagic process’ and its progression. BafA can decelerate ‘lysosomal biogenesis’, which
subsequently presumably prevents autophagosome-lysosome fusion, through the inhibition of the v-ATPase, and contributes to amelioration of the
Spns1 defect at least temporarily. Basal p53 activity may suppress the intersection between the ‘autophagic progress’ and ‘lysosomal biogenesis’
where the Beclin 1 depletion was not sufficient, but the v-ATPase inhibition was still effective enough, to compete with the p53 loss to suppress the
Spns1 deficiency. By switching the basal p53 state to the activated version with UV irradiation, p53 can promote autophagy. Spns1 might be a
gatekeeper of autolysosomal maturation followed by lysosomal biogenesis. It remains unknown how p53 can mechanistically be linked to the
lysosomal ‘efflux’ function of Spns1 as well as the lysosomal ‘influx’ function of v-ATPase, and further investigations will be required to explore this
connection. (B) Roles of Spns1, p53 and Beclin 1 in senescence equilibrium. Loss of Spns1 leads to an imbalance in homeostasis and increased
senescence. This effect can be ameliorated by concurrent knockdown of Beclin 1. p53 has a comparatively less dramatic impact on Spns1-loss-
induced embryonic senescence. When in the ‘‘basal’’ state, p53 helps retain equilibrium. When p53 is ‘‘activated’’ by UV irradiation, a modest increase
in senescence is observed. The higher level of senescence is seen during loss of Spns1 in the absence of basal p53 or in the presence of activated p53.
During loss/knockdown of all three genes (spns1, p53 and beclin 1), a state of moderate senescence is observed. An increase in senescence is
accompanied by a p53-dependent decrease in cellular proliferation.
doi:10.1371/journal.pgen.1004409.g006
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reported that genetic or chemical inhibition of basal cytoplasmic

p53, or proteasomal depletion of p53 during starvation and/or

endoplasmic reticulum stress, activates autophagy through tran-

scription-independent mechanisms involving AMPK activation

and TOR inhibition [20]. Loss of p53 may lead to homeostatic

imbalance in cells, such as induction of bioenergetic compromise,

increased ROS, and/or defective cell-cycle checkpoints, which can

lead to autophagy induction. Thus, p53 depletion may promote or

enhance autophagy indirectly as a result of imbalanced metabolic

stress conditions. This therefore suggests that p53 maintains

cellular homeostasis by adjusting the rate of autophagy in a

context-dependent manner, as circumstances require.

Intriguingly, Spns1-loss-induced embryonic senescence (SLIES)

represents an atypical senescence response that is distinct from

p53-induced senescence and can be suppressed by autophagy

inhibition mediated through beclin 1 knockdown (Figure 6). Since

the Beclin 1 suppression may lead to reduction in the level of p53

[37], and then might subsequently prevent SLIES, we intensively

examined the effect of p53 depletion on SLIES. To our initial

surprise, SLIES cannot be suppressed by the loss of p53 at all, but

is rather enhanced. This seems to contradict the conventional role

of p53 as an inducer of cellular senescence in various contexts

including the zebrafish model [33,65]. However, given recent

evidence of a certain anti-aging mechanism by p53 in mice and

p53-mediated suppression of senescence in cells [66,67], it might

not be surprising that p53 can also act both as a suppressor of

senescence and of autophagy in some contexts, although the

exact molecular mechanism remains elusive at this point. In

addition, there remains a p53-independent cellular senescence

mechanism that still depends on its authentic downstream target,

p21Waf1/Cip1/Cdkn1a, among others, such as Arf and p27Kip1/Cdkn1b

triggered by Skp2 inactivation [68]. Moreover, a recent report

indicated that p21Waf1/Cip1/Cdkn1a also has a tissue-selective and

context-dependent modulation of senescence in BubR1 progeroid

mice [69]. In addition, most recently, SA-b-gal-positive ‘‘develop-

mental senescence’’ observed in mice, which shares some, but not

all, regulatory pathways detectable in adults, was shown to involve

the activation of p21Waf1/Cip1/Cdkn1a in the absence of a DNA

damage response and any alteration in p53, p16Ink4a, or p19Arf

[70,71]. Interestingly, we found that in spns1-deficient fish

embryos, the upregulation of p21 and pai-1 expression and the

downregulation of smp-30 expression were detected without a

DNA damage response. Further investigation and elucidation of

their functional roles as senescence mediators or attenuators will

be required to determine how they are responsible for SLIES.

p53 is also well known for its pro-apoptotic cell death-inducing

activities, but it can conversely possess pro-survival effects,

particularly under mild stress conditions [72,73,74]. In zebrafish

embryos, however, we determined that SLIES occurs regardless of

p53-mediated impacts on apoptotic cell death and/or the cell-

cycle checkpoint response as well. Thus, spns1-mutant animals

show a new type of developmental senescence that can be

triggered by autophagic initiation followed by autolysosomal

fusion in the absence of the authentic senescence moderator

p53, while basal p53 and activated p53 can play contrasting roles;

attenuation in SLIES and mediation in apoptosis, respectively.

‘‘Activated p53’’ is not specifically involved in the spns1-ablated

condition but can generally induce and/or augment the delete-

rious condition caused by the DNA damage response and

apoptosis. In contrast, ‘‘basal p53’’ may have an antagonistic

effect on lysosomal biogenesis (or autolysosomal maturation)

rather than on the autophagic progress in the absence of Spns1.

Alternatively, the p53 status may rather influence endosomal-

lysosomal homeostasis where Spns1 is primarily involved. It should

be noted that p53 may be involved in lysosomal stabilization [75],

as well as in various metabolic changes and the regulation of

energy metabolism including aerobic glycolysis (the Warburg

effect) in which the lysosome is also engaged for degradation [38].

Our preliminary observation suggests that SLIES and the yolk

opaqueness hallmarks of spns1 embryos are only mildly affected by

chemical (e.g., rapamycin)-mediated autophagy induction. This

may be a reflection of the consistent outcome of already attenuated

TOR (re)activation due to impaired autophagic lysosome refor-

mation by Spns1 deficiency, as has been demonstrated in

mammalian cells and flies [16,76]. We are also wondering if basal

p53 depletion may have any effect on autophagy enhancing

activity independent of or different from the rapamycin-sensitive

TOR pathway.

Of note, rather than simple depletion of wild-type p53, the p53

mutant (tp53zdf1/zdf1) fish used here retain an accumulation of the

mutant p53 protein (p53M214K) [77], which corresponds to the

human p53M246K mutant protein whose function is completely

abolished [78]. A recent study suggests that this mutant p53

protein is degraded through chaperone-mediated autophagy

(CMA) in a lysosome-dependent fashion [79]. Thus, the regulation

of the stability of mutant p53 differs from that of wild-type p53.

There is a possibility of activating the CMA pathway by inhibiting

(macro)autophagy, to specifically promote the degradation of

mutant p53, under a nutrient-starved condition. Therefore, it is

also important to examine any involvement of the Spns1 function

in the protein stability of mutant p53, whether the Spns1 defect

selectively activates the CMA pathway for the removal of mutant

p53 or not.

Altogether, our present results support the notion that the

interruption of the intrinsic nutrient supply through autophagy,

supposedly from yolk in zebrafish embryos and larvae [80], may

lead to profound energetic exhaustion under the aberrant

autolysosomal condition resulting from Spns1 deficiency, and this

effect is dependent on the p53 state.

Since BafA can inhibit the import of H+ through the v-

ATPase into the lysosome lumen, while the Spns1 defect

presumably prohibits the symport of H+/sugar by loss of its

function, it was anticipated that BafA might at least temporarily

rescue the spns1-mutant animals, by restoring the balanced

acidity condition of autolysosomes and/or lysosomes, as well as

subsequent autophagosome-lysosome fusion. In fact, we found

that BafA effectively inhibited the progression of both yolk

opacity and embryonic senescence that appeared in spns1

mutants. Moreover, a direct depletion of the v-ATPase subunit

c (a direct target of BafA) by MO recapitulated the restorative

effect on the mutant animals. Importantly, the lysosomal pH of

spns1 mutants was found to be less acidic, suggesting that protons

may pass through the membrane via other H+-coupled

transporters and/or channels such as lysosomal amino acid

transporter 1 (LYAAT-1/SLC36A1) [81], chloride channel 7

(CLCN7) [82], and cystic fibrosis transmembrane conductance

regulator (CFTR) [83].

It should be noted that SA-b-gal is acid b-D-galactosidase, a

lysosomal glycoside hydrolase (glycosidase), which catalyses the

hydrolysis of b-galactosides into monosaccharides [28], and its

substrates also include various glycoproteins, gangliosides (glyco-

sphingolipids), lactose, and lactosylceramidases [84,85]. The

aberrant increase of the in situ SA-b-gal activity induced by Spns1

deficiency indicates that such a glycosidase product itself can be

preserved in autolysosomes and/or lysosomes, but may not

function properly in vivo without an essential permease(s) to

transport degradation products that need to be delivered into the

cytoplasm as energy sources.
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The extent to which our current observations of Spns1 functions

during early development pertain to actual aging and age-related

disease situations remains to be rigorously determined under both

physiological and pathological conditions in animals. However, an

increase in the abundance of the lysosomal hydrolases is

presumably linked to the increased lysosomal biogenesis observed

in senescent cells. Indeed, cumulative evidence suggests that an

increased number of lysosomes and elevated lysosomal activity

have been associated with replicative senescence [85]. Thus, the

current finding suggests that temporal suppression of autophagy

through Beclin 1 and/or v-ATPase by approved therapeutics (e.g.,

omeprazole) may be an effective therapeutic approach in the

prevention of autophagic impairments similar to the Spns1

deficiency (Figure 6). Similar intervention has been demonstrated

successfully in a mouse model of Pompe disease, a lysosomal

glycogen storage disorder [86].

Materials and Methods

Zebrafish maintenance and ethics
Zebrafish (AB and casper strains) were maintained under a 14:10 h

light/dark cycle and fed living brine shrimp twice daily. Brine

shrimp were presented using 1 mL pipettes (about 0.75 mL brine

shrimp per 20 fish). Flake food was also given every other day in

proportion to the number of fish in the tanks. A continuously cycling

aquarium system was used to maintain water quality (Aquatic

Habitats Inc.). Zebrafish embryos were collected from pairwise

matings of adults and raised at 28.5uC. The embryos to be used in

the experiments were then staged by hours post fertilization (hpf) at

28.5uC and also by morphological appearance for experiments [87].

All animal experiments were approved by and conducted in

accordance with the guidelines established by the Institutional

Animal Care and Use Committee (IACUC) at The Scripps

Research Institute, IACUC approval number 09-0009.

Confocal microscopy and imaging
Zebrafish embryos (in the case of the AB fish line) were

transferred into 0.003% (w/v) 1-phenyl-2-thiourea (PTU) prior to

24 hpf to prevent pigmentation. Embryos or larvae were then

mounted live in water containing 0.16 mg/ml tricaine (Sigma,

A5040) for imaging. Images were taken using the FluoView 1000

confocal laser scanning microscope system (Olympus) with a 606

objective lens). Since EGFP- or mCherry-LC3 and EGFP-

GABARAP showed both a uniform cytosolic signal and more

intense spots, threshold values were set to reduce the cytosolic signal

and identify the more intense dots. The same threshold value was

applied for all samples in the indicated experiments. The extent of

colocalization between LysoTracker and LysoSensor signals and

EGFP- or mCherry-LC3 and EGFP-GABARAP dots was quanti-

fied in three independent visual fields from three independent

embryos. All values are represented as mean 6 standard deviation

(S.D.). Mounted animals were photographed using each specific

fluorescent signal by confocal laser microscopy. Fluorescence

intensities were quantified using Adobe Photoshop over a color

range that was chosen according to 25 additive color selections of

regions that showed visually positive signals. For analyses of cells

within the zebrafish embryos, these regions were selected in each

actual embryo only and not in the yolk. Following pixel selection, a

fuzziness setting of 64 was used, and the chosen pixel number was

determined using the image histogram calculation.

Morpholino oligonucleotides
Morpholino oligonucleotides (MOs) were designed and synthe-

sized by Gene Tools, LLC (Philomath, OR). The sequence of the

beclin 1 MO is 59-CATCCTGCAAAACACAAATGGCTTA-39,

which overlaps the intron-exon boundary at the 59-splice junction

of exon 4 in the zebrafish beclin 1 gene. The sequence of the

standard control MO is 59-CCTCTTACCTCAGTTACAATT-

TATA-39. MOs were resuspended in sterile water at a

concentration of 1 mM as stock solutions. For microinjection into

embryos, the stock solutions (1 mM) were diluted to 125, 250, 500,

and 750 mM. A 10 nl volume of each MO solution was injected

into the yolk during the one-cell stage. All other MO sequences

have been reported previously [8,12,52,88], except Inverse-

sequence p53 MO (inv. p53 MO); 59-GTTAAGAACGTTTCGT-

TACCGCG39.

MitoTracker, LysoTracker, LysoSensor and DQ Red BSA
staining
The vital mitochondrial and lysosomal dyes MitoTracker Green

FM (Invitrogen; molecular probes, M7514), LysoTracker Red

DND-99 (Invitrogen; molecular probes, L7528), LysoSensor

Green DND-189 (Invitrogen; molecular probes, L7535) and

LysoSensor Green DND-153 (Invitrogen; molecular probes,

L7534) were diluted to final concentrations of 1 mM, 10 mM,

1 mM and 1 mM, respectively, in E3 medium (5 mM NaCl,

0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4), and pre-

warmed to 28.5uC. Each dye was then added to an equal volume

of fresh water on embryos and incubated at 28.5uC in the dark for

30 min to 1 h. Embryos were then rinsed four times in fresh E3

medium before imaging. DQ Red BSA (Invitrogen; molecular

probes, D12050) was diluted to a final concentration of 0.5 mg/ml

in E3 medium, directly injected into the yolk sac at 72–84 hpf, and

subjected animals were incubated for 4 h prior to observation by

microscopy.

Transmission electron microscopy
Zebrafish larvae were fixed in 4% paraformaldehyde, 2.5%

glutaraldehyde, 0.02% picric acid, 0.1 M Na cacodylate buffer,

washed and fixed in 1% osmium tetroxide in 0.1 M Na cacodylate

buffer. They were subsequently treated with 0.5% tannic acid

followed by 1% sodium sulfate. The pellets were treated with

propylene oxide and embedded in Epon/Araldite. Thin sections

(70 nm) of the pelleted samples were cut on a Reichert Ultracut E

(Leica, Deerfield, IL) using a diamond knife (Diatome, Electron

Microscopy Sciences, Hatfield, PA), mounted on parlodion-coated

copper slot grids and stained in uranyl acetate and lead citrate.

Sections were examined on a Philips CM100 transmission electron

microscope (FEI, Hillsbrough, OR). Images were documented and

measurements were taken using a Megaview III CCD camera

(Olympus Soft Imaging Solutions, Lakewood CO). Transverse

sections were obtained through the trunk muscle region, the yolk

and the eye region.

RNA isolation and RT-PCR analysis for zebrafish beclin 1
RT-PCR analysis of a single zebrafish embryo was performed to

determine the effects of the splice-block MO for the zebrafish beclin

1 gene. Total RNA was extracted from 24–48 hpf embryos

injected with control MO, beclin 1 MO, or beclin 1 plus spns1 MO,

using TRIzol reagent according to the manufacturer’s protocol

(Invitrogen). cDNA was synthesized using M-MLV reverse

transcriptase (Promega), followed by PCR with ExTaq (Takara).

For semi-quantitative analysis, the linear amplification ranges

were then determined for each of the primer sets. PCR primers

used to amplify the fragments of the zebrafish beclin 1 gene were

designed using a web-based primer design tool, PrimerQuest

(Integrated DNA Technology, Inc.) (zbeclin 1 EX3 forward primer;
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59-CAAACAAGATGGCGTGGCTCGAAA-39, zbeclin 1 EX4

forward primer; 59-GTGGAACTATGGAGAACTTGAGT-

CGCA-39, and zbeclin1 EX7 reverse primer; 59-TCCAACTC-

CAGCTGCTGTCTCTT-39). The amplified products were

validated by sequencing. As controls for these PCR analyses,

ef1a and b-actin were examined. The forward and reverse primers

used to amplify ef1a were 59-ACCACCGGCCATCTGATCTA-

CAAA-39 and 59-ACGGATGTCCTT GACAGACACGTT-39,

respectively, and for b-actin were 59-CCCAGACATCAGG-

GAGTGAT-39 and 59-CACCGATCCAGACGGAGTAT-39, re-

spectively. For amplification by PCR, the initial denaturing step at

94uC for 5 min was followed by 18–25 amplification cycles of

30 sec at 94uC; 30 sec at 60uC; 60 sec at 72uC, and a final

extension period of 10 min at 72uC. Amplified products were

separated on a 1.5% agarose gel stained with ethidium bromide

and the bands were visualized and recorded using a Multi Image

Light Cabinet (Cell Bioscience). Other PCR primers, parameters

and conditions are summarized in Supplemental Table S1
and S2.

SA-b-gal assay and quantification
Zebrafish embryos and larvae at 48–72 dpf were washed three

times in phosphate buffered saline (PBS) and fixed overnight in 4%

paraformaldehyde with PBS at 4uC. After fixation, the samples

were washed three times in PBS, pH 7.5, twice again in PBS,

pH 6.0 at 4uC, and then incubated at 37uC (in the absence of

CO2) for 12–16 h with SA-b-gal staining solution (5 mM

potassium ferricyanide, 5 mM potassium ferrocyanide, 2 mM

MgCl2 in PBS at pH 6.0). All animals were photographed under

the same conditions using reflected light with a macro microscope,

AZ100 (Nikon). SA-b-gal activity in each animal was quantified

using a selection tool in Adobe Photoshop software for a color

range that was chosen using 25 additive color selections of regions

that showed visual SA-b-gal staining. For analyses of embryos,

these regions were selected in each embryo proper only and not in

the yolk in order to exclude variability in the initial yolk volume

and yolk consumption levels over time. Since the yolk stains much

more intense for SA-b-gal at all stages of development than any

other embryonic tissues in general, it was desirable to eliminate

this as a source of variability. Following pixel selection, a fuzziness

setting of 14 was used, and the chosen pixel number was

determined using the image histogram calculation.

Immunoblotting
Embryos were dechorionated, deyolked and homogenized in

RIPA buffer. Protein concentrations of embryo lysates were

determined using the bicinchoninic acid (BCA) protein assay. The

lysates were mixed with equal volumes of 26SDS sample buffer,

heated at 95uC for 2 min, and resolved on 12.5% or 15% gels.

After transfer, the polyvinylidene difluoride membranes were

incubated with primary antibodies [anti-LC3A/B (Cell Signaling

Technology, Inc., #4108), anti-b-actin (Cell Signaling Technol-

ogy, #4967), or anti-GFP (Life Technologies, A11122) antibody],

diluted in TBST overnight at 4uC. After washing, the blot was

then incubated with a secondary anti-rabbit horseradish peroxi-

dase-conjugated antibody (Cell Signaling Technology, #7074) at

room temperature for 1 h and visualized using an ECL kit (Perkin

Elmer) in accordance with the manufacturer’s instructions.

Generating transgenic zebrafish
To generate transgenic zebrafish expressing mCherry-tagged

LC3, the corresponding expression construct pminiTol2-mCherry-

LC3 was generated using the QuikChange Site-Directed Mutagen-

esis Kit (Stratagene) in accordance with the manufacturer’s

instructions. pT3TS-Tol2 was linearized by XbaI and tran-

scribed with T3 RNA polymerase using the Ambion mMES-

SAGE mMACHINE kit (Ambion, AM1348) to produce Tol2

transposase mRNA. Approximately 5 nl of the mixture of

plasmid DNA (100 ng/ml) (pminiTol2-mCherry-LC3) and 50 pg

of Tol2 transposase mRNA (100 ng/ml) were coinjected into

newly fertilized embryos at the one-cell stage to produce

transgenic fish. Injected embryos were raised to adulthood and

out-crossed to wild-type fish to identify germline-transmitted

transgenic founders (F0) as described previously [22]. Positive

founders were determined by screening F1 embryos for visible

mCherry expression. The mCherry-positive offspring were then

allowed to grow to maturity for further experiments.

Chemical treatments
Bafilomycin A1 (BafA) (LC Laboratories, B-1080), omeprazole,

lansoprazole, and pantoprazole (Sigma, O104, L8533, and P0021,

respectively) treatment was performed from 36 through 48 hpf or

48 through 60 hpf in E3 medium at 28.5uC in 12- or 6-well plates.

The chemicals dissolved in DMSO were added to the embryo

water (E3 medium) at the final concentrations of 200 nM for BafA

and 25 mM for lansoprazole, omeprazole and pantoprazole.

Pepstatin A (Fisher BioReagent, BP26715) and E-64-d (Enzo Life

Sciences, BML-PI107) treatment was administrated from 60

through 72 hpf for 12 h in E3 medium at 28.5uC in 12- or 6-

well plates. These reagents were both dissolved in DMSO and

added to the embryo water (E3 medium) at the final concentration

of 5 mg/ml.

Quantitative analysis and statistics
Data processing and statistical analyses were performed using

Statistical Package for the Social Sciences (SPSS) version 14.0.

This software was used to generate each of the graphs shown in

the text to perform statistical tests where appropriate.

Supporting Information

Figure S1 Autophagic abnormalities and survival in spns1-

mutant fish and worms. (A) Representative transmission electron

microscopy images of normal wt or spns1-mutant fish larvae at

84 hpf. Compared with wild-type (wt) control (left), the spns1

mutant (spns12/2) (right) accumulates abnormal cytoplasmic

inclusions at the hypodermal regions adjacent to yolk sac (ys)

(upper two panels) or melanophores (me) (middle two panels), and

in the retinal pigment epithelium containing melanophores (me)

(lower two panels). Arrows indicate cytoplasmic membranous

inclusions. In the right-upper panel, the inset shows a magnified

image of the cytoplasmic inclusion surrounded with a dotted

square. Scale bar, 2 mm. (B) Modulation of autophagy activity by a

mutation in the spns1 homolog (spin-12/2; C13C4.5) in C. elegans.

Representative images of autophagosomes (EGFP::LGG-1 puncta)

in seam cells are shown for wild-type {wt, adIs2122 [lgg-

1p::GFP::lgg-1, rol-6(su1006)]} animals and for nematodes carrying

a homozygous spin-1 deletion allele {spin-1(ok2087); adIs2122 [lgg-

1p::GFP::lgg-1+rol-6(su1006)}. Arrows indicate autophagosomes

only in the spin-12/2 animals. Scale bar, 5 mm. (C) Quantification

of EGFP::LGG-1 puncta is shown for the indicated genetic

backgrounds and conditions. The count of puncta per seam cell

was 0.893660.0926 for wt and 1.989960.1396 for spin-1(ok2087)

L4 larva, respectively [values are the mean 6 standard error of

mean (S.E.M.) for 94 (wt) and 99 [spin-1(ok2087)] seam cells; more

than 20 animals were examined for each strain] (t-test: *p,

0.0001). (D) The starvation sensitivity in spin-1(ok2087) mutant

worms. Percent of worms surviving to adulthood on NGM plates
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with OP50 bacteria after incubation in M9 buffer in the absence of

food at the L1 larval stage for the indicated times. Error bars are

for standard errors of means estimated assuming a Poisson

distribution, and similar results were obtained in three indepen-

dent experiments. (E) Lifespan in spin-1(ok2087) mutant worms is

demonstrated by Kaplan-Meier survival analysis. spin-1(ok2087)

mutant worms are short lived compared with the wild-type N2

strain on HT115 bacteria. The median lifespan was 12 days for

N2 and 10 days for spin-1(ok2087) (log rank test: x2=8.834 on one

degree of freedom; p=0.003). Similar results were obtained in 2

experiments with 3 independent replicates each. (F) Shorter

lifespan in heterozygous spns12/+ adult fish is demonstrated by

Kaplan-Meier survival analysis (log rank test: x2=54.05 on one

degree of freedom; p,0.0001) and validated by Gompertz-

Makeham model.

(TIF)

Figure S2 Detection of lysosomal and mitochondrial biogenesis

in spns1-mutant animals. (A) Whole-mount double staining of live

embryos with LysoTracker (10 mM, DND-99; red) and Mito-

Tracker (1 mM, green) at 72 hpf. Intense LysoTracker staining was

detected only in spns1 mutants but not in wt animals. In contrast,

MitoTracker detected equivalent signals between wt and spns1-

mutant animals. Scale bar, 250 mm. (B) Whole-mount double

staining of live embryos with MitoSox (5 mM, red) and

MitoTracker (1 mM, green) at 72 hpf. Both of the probes detected

equivalent signals between wt and spns1-mutant animals. Scale bar

(black) in large image, 250 mm. Scale bar (white) in inset, 10 mm.

(C) Acidity-dependent quenching of EGFP-LC3 at the Lyso-

Tracker-positive compartments in the cells from pepstatin A

(5 mg/ml)- and E-64-d (5 mg/ml)-co-treated (P/E) zebrafish

embryos at 72 hpf. Scale bar, 10 mm. (D) Acidity-dependent

quenching of EGFP-LC3, but not mCherry-LC3, in cells from

pepstatin A (5 mg/ml)- and E-64-d (5 mg/ml)-co-treated (P/E)

zebrafish embryos at 72 hpf. Scale bar, 10 mm. (E) The

degradation capacity of autolysosomes and lysosomes was

examined by injection of a lysosomal substrate, DQ Red BSA

(DQ-BSA; red) at 60 hpf. The enzyme-catalyzed hydrolysis of the

intramolecular self-quenched DQ Red BSA by lysosomal

proteases relieves the self-quenching, yielding brightly fluorescent

reaction products. DQ Red BSA-injected wt control or spns1-

mutant fish expressing EGFP-LC3 were observed at the cellular

level by confocal microscopy. Scale bar, 10 mm. Quantification of

data presented in E (n= 6), is shown in the right graph; the

number (n) of animals is for each genotype. Three independent

areas (periderm or basal epidermal cells above the eye) were

selected from individual animals. Error bars represent the mean 6

standard deviation (S.D.), *p,0.005.

(TIF)

Figure S3 Impact of Beclin 1 depletion on the yolk opaque

phenotype and embryonic senescence in spns1-mutant zebrafish.

(A) Phenotype of beclin 1morphant (beclin 1MO, 12 ng/embryo) at

24, 48 and 72 hpf. Scale bar, 250 mm. (B) Effect of beclin 1

knockdown in the spns1 mutant on the phenotypes of yolk opacity

(BF; bright field) and on embryonic senescence (SABG; SA-b-gal)

in the spns1 mutant. Following injection of standard control

MO or beclin 1 MO (12 ng/embryo) into Tg(CMV:EGFP-LC3);

spns1hi891/hi891 embryos, SA-b-gal staining was performed to

determine whether the beclin 1 knockdown had any impact on

embryonic senescence caused by Spns1 depletion at 84 hpf. Scale

bar, 250 mm. Quantification of data presented in panel B (n= 12)

is shown in the right graph; the number (n) of animals is for each

morphant. (C) Parallel analyses of SA-b-gal and SA-a-fuc
demonstrate the significant inductions of both activities in

spns1-mutant animals at 84 hpf. As shown in the magnified

panels, the caudal venous plexus (CVP) was the most prominently

stained region. Staining for SA-b-gal was more intensive than for

SA-a-fuc. Scale bar, 250 mm. Quantification of data presented in

panel C (n = 12) is shown in the right graph; the number (n) of

animals is for each morphant. Error bars represent the mean 6

S.D., *p,0.005.

(TIF)

Figure S4 Effect of UV irradiation on spns1-mutant zebrafish.

(A) Acrdine orange (green) and Lysotracker (red) intensities, as

well as gross morphology, in wild-type (wt) and spns1-mutant

animals treated with UV. The UV (18 mj/cm2) treatment was

done at 36 hpf, and phenotypes were observed at 48 hpf. Scale

bar, 250 mm. Quantification of data presented in A (n = 9) is

shown in the right graphs; the number (n) of animals is for each

genotype with or without UV treatment. (B) Cellular character-
istics in the animals shown in (A) were observed by using confocal

microscopy at high magnification (6600). Scale bar, 10 mm.

Quantification of data presented in B (n = 6) is shown in the right

graphs; the number (n) of animals is for each genotype with or

without UV treatment. Three independent areas (periderm or

basal epidermal cells above the eye) were selected from individual

animals. Error bars represent the mean 6 S.D., *p,0.005; ns,

not significant.

(TIF)

Figure S5 Undetectable apoptosis in spns1 and/or beclin 1

morphants. (A) In spns1 and/or beclin 1 morphants stained with

acridine orange (green) and LysoTracker (red) cellular character-

istics were compared with UV-treated specimens by using confocal

microscopy at high magnification (6600). Scale bar, 10 mm.

Quantification of data presented in A (n= 6) is shown in the right

graphs; the number (n) of animals is for each morphant and

uninjected (Uninj.) animal with or without UV treatment. Three

independent areas (periderm or basal epidermal cells above the

eye) were selected from individual animals. (B) TUNEL assays

demonstrate apoptosis induction in UV-treated zebrafish embryos,

but not in spns1 and/or beclin 1 morphants. The UV (18 mj/cm2)

treatment was done at 36 hpf, and phenotypes were observed at

48 hpf. Scale bar, 10 mm. Quantification of the fluorescence

intensities is shown at the right-side graph. Quantification of data

presented in B (n= 6) is shown in the right graphs; the number (n)

of animals is for each morphant and uninjected (Uninj.) animal

with or without UV treatment. Three independent areas

(periderm or basal epidermal cells above the eye) were selected

from individual animals. Error bars represent the mean 6 S.D.,

*p,0.005.

(TIF)

Figure S6 Impact of the beclin 1 knockdown on UV-induced

apoptosis and autophagy. (A) Partial but significant suppression of

UV-induced apoptosis in beclin 1 morphants. The UV (18 mj/cm2)

treatment was done at 66 hpf, followed by the phenotype

observations at 72 hpf. Scale bar in the large image, 250 mm.

Scale bar in the inset, 10 mm. Quantification of data presented in

A (n = 9) is shown in the right graphs; the number (n) of animals is

for each morphant with or without UV treatment. Three

independent areas (periderm or basal epidermal cells in the

caudal fin) were selected from individual animals. (B) Sufficient
suppression of UV-induced autophagy in beclin 1 morphants. The

UV (18 mj/cm2) treatment was done at 69 hpf, followed by the

phenotype observations at 72 hpf. Scale bar, 10 mm. Quantifica-

tion of data presented in A (n = 9) is shown in the right graphs; the

number (n) of animals is for each morphant with or without UV

treatment. Three independent areas (periderm or basal epidermal

Spns1 Deficiency in Zebrafish

PLOS Genetics | www.plosgenetics.org 17 June 2014 | Volume 10 | Issue 6 | e1004409



cells above the eye) were selected from individual animals. Error

bars represent the mean 6 S.D., **p,0.005; *p,0.05 in (A), and

*p,0.005; ns, not significant in (B).

(TIF)

Figure S7 Effects of spns1 and p53 knockdowns on embryonic

SA-b-gal activity in p53 and spns1 mutants, respectively. (A) Effect
of spns1 knockdown on embryonic senescence in p53 mutants. The

impact of transient spns1 knockdown on SA-b-gal induction was

determined in spns1 MO-injected tp53zdf1/zdf1 animals at 72 hpf.

Standard control MO was used for control injections. Scale bar,

250 mm. (B) Effect of p53 knockdown on embryonic senescence in

spns1 mutants. The impact of transient p53 knockdown on SA-b-
gal induction was determined in p53 MO-injected spns1hi891/hi891

animals at 72 hpf, followed by the MO injections. Inverse p53MO

(inv. p53 MO) was used for control injections. Scale bar, 10 mm.

(C) Quantification of the SA-b-gal intensities shown in (A).

Quantification of data presented in panel A (n= 12) is shown in

the right graph; the number (n) of animals is for each genotype

with MO. (D) Quantification of the SA-b-gal intensities shown in

(B). Quantification of data presented in panel B (n = 12) is shown

in the right graph; the number (n) of animals is for each morphant

in genotype. Error bars represent the mean 6 S.D., *p,0.005; ns,

not significant.

(TIF)

Figure S8 Impact of Beclin 1 depletion on Spns1 deficiency in

the presence or absence of p53. (A) Yolk opaque phenotype of

control MO-injected or beclin 1 MO-injected wild-type (spns1+/+;
tp53+/+), tp53zdf1/zdf1 (tp53m/m), spns1hi891/hi891 (spns12/2), and

spns1hi891/hi891;tp53zdf1/zdf1 (spns12/2;tp53m/m) animals is compared

at 48 hpf. Opacity is greater in the p53 mutant background with

Spns1 deficiency. The attenuated suppressive effect of beclin 1 MO

(12 ng/embryo) yolk opacity in spns1hi891/hi891;tp53zdf1/zdf1 animals

is shown. Scale bar, 250 mm. (B) spns1hi891/hi891 animals coinjected

with beclin 1 MO and p53 MO or beclin 1 MO and inverse-

sequence p53 MO (inv. p53 MO; negative control) were assayed

for the SA-b-gal detection at 84 hpf. The beclin 1 MO-mediated

suppression of SA-b-gal in spns1hi891/hi891 animals was attenuated

by p53 MO injection. Scale bar, 250 mm. (C) Quantification of the

SA-b-gal intensities shown in (B). Quantification of data presented

in panel B (n= 10) is shown in the right graph; the number (n) of

animals is for each morphant. Error bars represent the mean 6

S.D., *p,0.005; ns, not significant.

(TIF)

Figure S9 Impact of UV-induced apoptosis and autophagy

on Spns1 deficiency in the presence or absence of p53. (A)
UV-induced apoptosis can be detectable in either spns1+/+ or

spns1hi891/hi891 animals in similar manners only under the normal

p53 condition. The UV (18 mj/cm2) treatment was done at

60 hpf, followed by the phenotype observations in periderm or

basal epidermal cells in the caudal eye at 72 hpf. Scale bar in

image in top row, 250 mm. Scale bar in image in lower rows,

10 mm. (B) UV-induced autophagy enhances autolysosomal

formation in spns1hi891/hi891 animals in the presence of p53. The

UV (18 mj/cm2) treatment was done at 69 hpf, followed by the

phenotype observations in periderm or basal epidermal cells in the

caudal fin at 72 hpf. Scale bar, 10 mm. (C) Quantification of the

EGFP-LC3 and LysoTracker fluorescence intensities shown in (B).

Quantification of data presented in panel B (n= 6) is shown in the

right graph; the number (n) of animals is for each genotype with

MO. Three independent areas (periderm or basal epidermal cells

in the caudal fin) were selected from individual animals. Error bars

represent the mean 6 S.D., *p,0.005; ns, not significant.

(TIF)

Figure S10 Detection of DNA damage response and DNA

synthesis in spns1 mutants in the presence or absence of p53. (A)
cH2AX- and BrdU detection in spns1 mutants in p53- and DNA

damage-dependent manners. As shown in the green fluorescent

panels, unaltered cH2AX intensities between spns1+/+ and

spns1hi891/hi891 (spns12/2) were apparent irrespective of p53 status

without UV irradiation. Increased cH2AX intensities in response

to UV irradiation were observed in the presence of p53 regardless

of Spns1 status. Of note, certain basal increases of cH2AX

intensities were detected in the p53 mutant background. As shown

in the red fluorescent panels, reduced BrdU incorporation in

spns1hi891/hi891 animals was detected in either normal or mutant

p53 condition in the absence of UV treatment. UV-induced

inhibition of DNA synthesis (reduction of BrdU signals) is

apparently seen only in the normal p53 situation. The UV

(18 mj/cm2) treatment was done at 68 hpf, followed by the

phenotype observations at 72 hpf. Scale bar in the large image,

250 mm. Scale bar in the small merged image and inset, 10 mm.

(B) Quantification of the cH2AX fluorescence intensities shown in

(A). Quantification of data presented in panel A (n = 12) is shown

in the right graph; the number (n) of animals is for each genotype.

Three independent areas (periderm or basal epidermal cells in the

trunk) were selected from individual animals. (C) Quantification of

the BrdU-positive cells [in 25.662.26104 mm areas; the trunk

region starting from the rostral start point of the yolk extension

(the distal end of the yolk) through the end of the caudal fin] shown

in (A). Error bars represent the mean 6 S.D., **p,0.005; *p,
0.05; ns, not significant.

(TIF)

Figure S11 Detection of mitotic cells in spns1 mutants in the

presence or absence of p53. (A) Phosphorylated histone H3 (pH 3)

staining in spns1-mutant animals with normal or mutant p53

backgrounds. The UV (18 mj/cm2) treatment was done at 68 hpf,

followed by the phenotype observations at 72 hpf. Scale bar,

250 mm. (B) Quantification of the pH 3-positive cells [in

27.263.26104 mm areas; the trunk region starting from the rostral

start point of the yolk extension (the distal end of yolk) through the

end of the caudal fin] shown in (A). Quantification of data presented

in panel A (n= 9) is shown in the right graph; the number (n) of

animals is for each genotype. Three independent areas (periderm or

basal epidermal cells in the trunk) were selected from individual

animals. Reduction of the pH 3 level was statistically significant in

spns1hi891/hi891 (spns12/2) animals in the presence of p53, and a

reduced tendency (with no statistical significance) was also observed

in spns1 mutants. Error bars represent the mean 6 S.D., **p,0.05;

*p,0.01; ns, not significant.

(TIF)

Figure S12 Impact of UV irradiation on embryonic SA-b-gal
activity in p53 and/or spns1 mutants. (A) Effect of UV treatment

on embryonic SA-b-gal activity was validated in spns1-mutant

animals with normal or mutant p53 backgrounds. The UV

(18 mj/cm2) treatment was done at 68 hpf, followed by the

phenotype observations at 72 hpf. Scale bar, 250 mm. (B)
Quantification of the SA-b-gal intensities shown in (A). Quanti-

fication of data presented in panel A (n= 12) is shown in the right

graph; the number (n) of animals is for each genotype. Error bars

represent the mean 6 S.D., **p,0.05; *p,0.01; ns, not

significant.

(TIF)

Figure S13 Semi-quantitative RT-PCR analyses of the expres-

sion of p21, pai-1, smp-30, and bax genes in spns1 and/or p53

mutants at 72 hpf. (A) A representative gel-loading pattern of each

gene expression. (B) Quantification of the gene expression shown
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in (A). Data are mean 6 SD [n= 6 samples (3 embryos/sample)

per genotype]. Asterisks denote significant changes compared to wt
values. *p,0.05.

(TIF)

Figure S14 Gene-expression profiles of potential markers and/

or mediators of senescence in spns1-defective zebrafish embryos.

(A) Semi-quantitative RT-PCR analyses of senescence markers

and/or mediators and of p53-downstream target genes in spns1
and/or beclin 1 morphants. The expression was detected at 72 hpf.

Data are mean 6 SD [n= 4 samples (3 embryos/sample) per

morphant]. Asterisks denote significant changes from standard

control MO injected values. *p,0.05. (B) Semi-quantitative RT-

PCR analyses of senescence marker and/or mediator expression

as well as p53-downstream target genes in spns1 and/or p53
mutants with or without UV treatment. The UV (18 mj/cm2)

treatment was done at 66 hpf, and the expression was detected at

72 hpf. Data are mean 6 SD [n= 6 samples (3 embryos/sample)

per genotype]. Asterisks denote significant changes between

values. *p,0.05.

(TIF)

Figure S15 Semi-quantitative RT-PCR analyses of ink4ab gene

expression in spns1 and/or p53 mutants with or without UV

treatment. The UV (18 mj/cm2) treatment was done at 66 hpf,

and the expression was detected at 72 hpf. Data are mean 6 SD

[n= 6 samples (3 embryos/sample) per genotype]. Asterisks denote

significant changes from p53+/+;spns1+/+ without UV treatment (-)

values. *p,0.05.

(TIF)

Figure S16 Suppression of spns1-mutant phenotypes by BafA

treatment in zebrafish embryos. Suppression of yolk opacity by

treatment with BafA (200 nM; 12 h treatment from 48 hpf

through 60 hpf) in pigmented (AB line) and unpigmented (casper

line) zebrafish embryos is shown. Scale bar, 250 mm.

(TIF)

Figure S17 Suppression of spns1-mutant phenotypes by knock-

down of the atp6v0c gene in zebrafish embryos. (A) Gross

morphology, EGFP-LC3 and LysoTracker intensities in wild-type

(wt) and spns1-mutant animals injected with atp6v0c MO (4 ng/

embryo) at 48 hpf. Suppression of yolk opacity and SA-b-gal
(SABG) by injection of atp6v0c MO in zebrafish embryos was

observed at 48 and 60 hpf, respectively. Scale bar, 250 mm. (B)
Quantification of the SA-b-gal intensities shown in (A). Quanti-

fication of data presented in panel A (n= 10) is shown in the right

graph; the number (n) of animals is for each genotype with MO.

(C) Effect of the PPIs (omeprazole; OPZ, lansoprazole; LPZ, and

pantoprazole; PPZ) on embryonic senescence (SABG; SA-b-gal) in
the spns1 mutant at 48 hpf. The drug treatments were done for

12 h from 36 hpf through 48 hpf. Scale bar, 250 mm. Error bars

represent the mean 6 S.D., *p,0.005; ns, not significant.

(TIF)

Figure S18 Validations of lysosomal biogenesis and acidity in

zebrafish embryos. (A) Whole-mount double staining with

LysoTracker (10 mM, DND-99; red) and LysoSensor 189

(1 mM, DND-189; green). Live animals at 72 hpf were counter-

stained with LysoTracker and acidic pH-sensitive LysoSensor

189, simultaneously. LysoSensor 189 weakly detects acidic

lysosomal signals in the spns1-mutant animals. Scale bar,

250 mm. Quantification of data presented for LysoSensor 189

(green) and LysoTracker (red) signals in panel A (n = 12) is shown

in the right graph; the number (n) of animals is for each genotype.

(B) Whole-mount double staining with LysoTracker (10 mM,

DND-99; red) and LysoSensor 153 (1 mM, DND-153; green).

Animals at 72 hpf were simultaneously counterstained by

LysoTracker and neutral pH-sensitive LysoSensor 153. LysoSen-

sor 153 can detect relatively neutral lysosomal signals in the spns1-

mutant animals. Scale bar, 250 mm. Quantification of data

presented for LysoSensor 153 (green) and LysoTracker (red)

signals in panel B (n = 12) is shown in the right graph; the number

(n) of animals is for each genotype. (C) Acidic pH-sensitive

LysoSensor 189 (1 mM, green) probe in combination with

LysoTracker (10 mM, red) was used in wt and spns1-mutant

animals, and detectable signals in cells were obtained at 72 hpf.

In wt fish treated with pepstatin A and E-64-d (P/E) (5 mg/ml

each for 12 h), autolysosomal and/or lysosomal compartments

were more prominently detected by LysoSensor 189 at the

cellular level with enhanced accumulation of enlarged compart-

ments under the identical LysoTracker staining condition. In

contrast, in spns1-mutant animals, the cellular compartments

were only weakly detectable by LysoSensor 189. Importantly, the

short-term BafA treatment (for 1 h) largely attenuated or

abolished staining of acidic compartments by both LysoSensor

and LysoTracker, indicating that these autolysosomal and

lysosomal compartments in wt animals treated with pepstatin A

and E-64-d may retain some strong (lower pH) acidity. Scale bar,

10 mm. Quantification of data presented for LysoSensor 189

(green) and LysoTracker (red) signals in panel C (n = 12) is shown;

the number (n) of animals is for each genotype with DMSO,

pepstatin A and E-64-d (P/E) and/or BafA (+BafA; 1 h

treatment). Three independent areas (periderm or basal epider-

mal cells above the eye) were selected from individual animals.

(D) Using neutral pH-sensitive LysoSensor 153 (green) probes in

combination with LysoTracker (red), wt and spns1-mutant

animals were examined for detectable signals in cells when

stained at 72 hpf. In spns1-mutant animals, autolysosomal and/or

lysosomal compartments were more prominently detected by

LysoSensor 153 at the cellular level with enhanced accumulation

of enlarged compartments. In stark contrast, the cellular

compartments in wt fish treated with pepstatin A and E-64-d

(P/E) (5 mg/ml each for 12 h) were less detectable by LysoSensor

153 under the same staining condition used with LysoTracker.

The short-term BafA treatment (for 1 h) still abolished the acidic

compartments stained by both LysoSensor and LysoTracker,

suggesting that the autolysosomal and lysosomal compartments

observed in spns1-mutants may still retain some weak (higher pH)

acidity. Scale bar, 10 mm. Quantification of data presented for

LysoSensor 153 (green) and LysoTracker (red) signals in panel D

(n = 12) is shown; the number (n) of animals is for each genotype

with DMSO, pepstatin A and E-64-d (P/E) and/or BafA (+BafA;

1 h treatment). Three independent areas (periderm or basal

epidermal cells above the eye) were selected from individual

animals. Error bars represent the mean 6 S.D., *p,0.005; ns,

not significant in (A), (B) and (D), and **p,0.005; *p,0.05; ns,

not significant in (C).

(TIF)

Figure S19 Validations of autolysosome formation and lysosomal

biogenesis in zebrafish embryos. (A) Gross morphologies of BafA

(100 nM)-treated or pepstatin A (5 mg/ml)- and E-64-d (5 mg/ml)-

co-treated (P/E) wt [Tg(CMV:EGFP-LC3)] and spns1-mutant

[Tg(CMV:EGFP-LC3); spns1hi891/hi891] animals. Embryos at 60 hpf

were incubated with BafA or P/E for 12 h, and stained with

LysoTracker at 72 hpf. Scale bar, 250 mm. Quantification of data

presented in the middle and bottom rows (green; EGFP, red;

mCherry) in panel A (n=12) is shown; the number (n) of animals is

for each genotype with DMSO, BafA or pepstatin A and E-64-d (P/

E). (B) Intracellular autolysosome formation and lysosomal biogen-

esis in vehicle (DMSO)-treated, BafA (100 nM)-treated or pepstatin
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A (5 mg/ml)- and E-64-d (5 mg/ml)-treated (P/E)wt [Tg(CMV:EGFP-

LC3)] and spns1-mutant [Tg(CMV:EGFP-LC3);spns1hi891/hi891]
animals. Numerous large EGFP-LC3 puncta are evident in the

BafA-treated embryos, with minimal LysoTracker staining. Some

increased EGFP-LC3 speckles and strong enhancement of enlarged

LysoTracker signals are evident in the cells from P/E-treated

embryos. The same samples analyzed in (A) were observed by using

confocal microscopy at a high magnification (6600). Scale bar,

10 mm. Quantification of data presented in the middle and bottom

rows (green; EGFP, red; mCherry) in panel A (n=6) is shown. The

number (n) of animals is for each genotype with DMSO, BafA or

pepstatin A and E-64-d (P/E). Three independent areas (periderm or

basal epidermal cells above the eye) were selected from individual

animals. (C) Impaired autolysosomal acidification in BafA-treated wt
or in spns1-mutant embryos, but not in pepstatin A- and E-64-d-

treated (P/E) wt embryos. EGFP-LC3 and mCherry-LC3 double-

transgenic wt [Tg(CMV:EGFP-LC3:mCherry-LC3)] and spns1-mutant

[Tg(CMV:EGFP-LC3:mCherry-LC3);spns1hi891/hi891] zebrafish were

used to monitor autolysosome formation. Embryos at 60 hpf were

incubated with BafA (100 nM) or P/E (5 mg/ml each) for 12 h, to be

observed later at 72 hpf. Quenching of EGFP-LC3 signals but not

mCherry-LC3 signals is seen in the P/E-treated embryos, whereas

unquenched EGFP-LC3 signals are evident in the BafA-treated as

well as the spns1MO-injected embryos. Whole-mount samples were

observed by using confocal microscopy at a high magnification

(6600). Scale bar, 10 mm. Quantification of data presented in the

middle and bottom rows (green; EGFP, red; mCherry) in panel A

(n=6) is shown; the number (n) of animals is for each genotype with

DMSO, BafA or pepstatin A and E-64-d (P/E). Three independent

areas (periderm or basal epidermal cells above the eye) were selected

from individual animals.

(TIF)
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