
UCSF
UC San Francisco Previously Published Works

Title
Aberrant neural function during emotion attribution in female subjects with fragile X 
syndrome.

Permalink
https://escholarship.org/uc/item/14j2d4w3

Journal
Journal of the American Academy of Child and Adolescent Psychiatry, 47(12)

ISSN
0890-8567

Authors
Hagan, Cindy C
Hoeft, Fumiko
Mackey, Allyson
et al.

Publication Date
2008-12-01

DOI
10.1097/chi.0b013e3181886e92
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14j2d4w3
https://escholarship.org/uc/item/14j2d4w3#author
https://escholarship.org
http://www.cdlib.org/


Aberrant Neural Function During Emotion Attribution in Female 

Subjects With Fragile X Syndrome

Cindy C. Hagan, B.A.,
University of York

Fumiko Hoeft, M.D., Ph.D.,
Center for Interdisciplinary Brain Sciences Research, Stanford University

Allyson Mackey, B.S.,
University of California, Berkeley

Dean Mobbs, Ph.D., and
MRC Cognition and Brain Sciences Unit

Allan L. Reiss, M.D.

Department of Psychiatry and Behavioral Sciences, Stanford University

Abstract

Objective—Fragile X (FraX) syndrome is caused by mutations of the FraX mental retardation–1 

gene—a gene responsible for producing FraX mental retardation protein. The neurocognitive 

phenotype associated with FraX in female subjects includes increased risk for emotional disorders 

including social anxiety, depression, and attention deficit. Here, the authors investigated the 

neurobiological systems underlying emotion attribution in female subjects with FraX syndrome.

Method—While undergoing functional magnetic resonance imaging, 10 high-functioning female 

subjects with FraX syndrome and 10 typically developing (TD) female subjects were presented 

with photographs of happy, sad, and neutral faces and instructed to determine the facial emotion.

Results—No significant group differences were found for the recognition of happy faces, 

although the FraX group showed a trend toward a significant difference for the recognition of sad 

faces and significantly poorer recognition of neutral faces. Controlling for between-group 

differences in IQ and performance accuracy, the TD group had greater activation than the FraX 

group in the anterior cingulate cortex (ACC) for neutral faces compared with scrambled faces and 

the caudate for sad faces compared with scrambled faces (but not for sad faces compared with 

neutral faces). In the FraX group, FraX mental retardation protein levels positively correlated with 

activation in the dorsal ACC for neutral, happy, and sad faces when independently compared with 

scrambled faces. Significantly greater negative correlation between IQ and insula activation for 

neutral faces relative to scrambled faces was observed in the FraX group compared with the TD 
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group. Significantly greater positive correlation between IQ and ACC activation for neutral faces 

relative to scrambled faces was observed in the TD group compared with the FraX group.

Conclusions—Although emotion recognition is generally spared in FraX syndrome, the 

emotion circuit (i.e., ACC, caudate, insula) that modulates emotional responses to facial stimuli 

may be disrupted.
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fMRI; fragile X; emotion; cingulate cortex; insula

Fragile X (FraX) syndrome is the most common inherited form of brain dysfunction 

currently known. Fragile X syndrome results from anomalous expression of the FraX mental 

retardation–1 (FMR1) gene and is characterized by a repeating expansion of CGG 

nucleotides on the long arm of the X chromosome. The excessive CGG nucleotide repeats, 

and consequential hypermethylation of cytosines, extinguishes transcription of the FMR1 

gene and resultant translation of FraX mental retardation protein (FMRP). Suboptimal 

FMRP production is associated with abnormal brain development and function in affected 

people and animal knockout (KO) models of the disorder.1–4 The severity of brain 

dysfunction and resulting cognitive and behavioral impairment varies across people with 

FraX and may partly be related to reduced FMRP production. The amount of FMRP 

produced and severity of cognitive and behavioral characteristics are more variable in 

females with the FraX full mutation than in males with the FraX full mutation.4,5 Females 

with FraX syndrome therefore present an ideal group for studying the effects of FMRP on 

cognition and behavior.

Social anxiety has been shown to negatively correlate with FMRP levels in female subjects 

with FraX,4 whereas behavioral problems positively correlate with levels of the stress 

hormone cortisol.6 The typical neuropsychological profile of female subjects with FraX 

includes mild to moderate learning disabilities, social dysfunction, and problems with 

emotion regulation. Cognitive deficits may include, but are not limited to, impairments in 

executive functioning, arithmetic processing, and visuospatial ability.4,7–10 With respect to 

socioemotional phenotype, female subjects with FraX typically exhibit greater levels of 

anxiety, social avoidance, and withdrawal in social situations.4,11,12 Female subjects with 

FraX syndrome may be more prone to develop depression,13 although it is unclear whether 

depression is a primary phenotypic feature of the disorder or a secondary feature resulting 

from social isolation or rejection by peers. Female subjects with FraX syndrome often reveal 

behaviors similar in quality to people with autism spectrum disorder, including difficulties 

with social relations and communication and diminished eye contact.5

A recent functional magnetic resonance imaging (MRI) study from our group showed 

adolescent female subjects with FraX to exhibit anomalous activity in the fusiform gyrus 

and superior temporal sulcus, two core face-processing regions14–16 associated with the 

“social brain,”17 during assessment of eye gaze.18 FMR1 KO mice show deficient amygdala 

functioning,19,20 whereas human imaging studies of FraX show morphological differences, 

presumably arising from abnormal dendritic branching and synaptic pruning,1–4 in the 

amygdala and other regions associated with emotion processing, including the caudate and 
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superior temporal gyrus.3,4,15,16,21–24 Yet behavioral studies suggest that emotion 

recognition deficits in FraX may be related to intellectual level and/or the presence of 

autistic behaviors, rather than a pathognomonic characteristic of FraX.11,25,26 However, two 

of these studies were limited to FraX male subjects25,26 who have significant cognitive 

disability—this may have hindered the ability to detect group-specific effects. The one study 

of female subjects with FraX found that full-scale IQ (FSIQ) predicted performance on 

complex, but not basic, emotion recognition.11

Given the presence of emotion regulation difficulties in female subjects with FraX and the 

interesting behavioral associations between FraX and autism spectrum disorder,27–29 we 

undertook the present study to elucidate the neural architecture underlying emotion 

attribution in FraX. Based on previous imaging and behavioral studies,1–4,11,21,25,28 we 

hypothesized that, compared with the typically developing (TD) group, female subjects with 

FraX would exhibit abnormal activity in the neural systems modulating cortical-subcortical 

regulation of emotion (e.g., anterior cingulate cortex [ACC], caudate), as well as subcortical 

regions associated with affect processing (e.g., amygdala). To examine these regions, we 

used facial emotion stimuli, including sad and happy faces.30 We also presented neutral face 

stimuli to examine whether female subjects with FraX would exhibit heightened activation 

of regions indicative of heightened arousal to facial stimuli independent of emotional 

expression. To further analyze the association of genetic “dose” and cognition with 

engagement of networks associated with affect regulation and perception, we examined 

whether brain activation correlated with FSIQ and FMRP level.

METHOD

Subjects

Ten female subjects with FraX and ten TD control subjects were recruited. We recruited 

only female subjects to remove intersubject variance attributable to sex and to maintain 

generally comparable IQs between groups.

All subjects were right-handed.31 The FraX group had a mean ± SD age of 16.4 ± 4.9 years 

(range 9.7–24.0 years). The TD controls were matched for age (15.6 ± 4.2, range 8.4–22.9 

years), with no significant differences found between groups (t18 = 0.3, p = .70). The FMR1 

full mutation was confirmed for all female subjects with FraX using standard DNA 

(Southern blot) analysis. The FraX FMRP levels were ascertained using immunostaining 

techniques to calculate the percentage of peripheral lymphocytes containing FMRP.32 

Written informed assent and/or consent were obtained from all of the subjects and/or 

parents. The human subjects review committee at Stanford University School of Medicine, 

Stanford, California, approved all protocols.

IQ was measured using the WISC III33 for subjects younger than 17 years and the WAIS 

III34 for subjects ages 17 years and older. The IQs of two TD subjects were assessed using 

the Wechsler Abbreviated Scale of Intelligence.35 The FSIQ scores showed a strong trend 

toward a significant difference between groups (FraX = 91 ± 16.2, range 75–124; TD = 

106.1 ± 15.7, range 79–128) (t18 = 2.1, p = .052).
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MRI Preparation

Before the scan, subjects were given behavioral preparation using a standardized MRI 

preparation protocol (http://spnl.stanford.edu/participating/mri_prep/intro.htm). 

Furthermore, research personnel worked with each FraX subject to ensure that she was 

capable of understanding and performing the task.

Experimental Stimuli

Color photographs of faces from 120 college-age models were taken against a common 

uniform background at a distance of approximately 2 m. Thirty photographs (15 half male) 

from each of four categories were used: happy, sad, neutral, and scrambled faces. Emotional 

and neutral faces were scrambled to create scrambled face stimuli, thereby maintaining 

consistent spatial frequency across conditions.

Experimental Paradigm

The event-related task used a jittered stimulus presentation, with a mean interstimulus 

interval of 1,572 milliseconds (SD 1,805 milliseconds) and a range of 0.25 to 4.25 seconds. 

Stimuli were presented using PsyScope software, (http://psyscope.psy.cmu.edu), which also 

triggered the initiation of the functional MRI (fMRI) scan by sending a transistor–transistor 

logic pulse to the scanning processor. Stimuli were projected onto a screen attached to the 

head coil. The subjects looked directly upward at a mirror to view the stimuli. Each stimulus 

was presented for 1,750 milliseconds, followed by a 500-millisecond duration fixation cross. 

Subjects were instructed to use their right index, middle, and ring fingers to press, using a 

button box, a left button if the person in the photograph appeared happy, a middle button if 

the person appeared sad, and a right button if a neutral or scrambled face appeared. 

Responses and reaction times (RTs) were recorded within a time window of 150 and 2,000 

milliseconds after the stimulus. Each subject performed two 60-trial (15 of each stimulus 

category) runs of the event-related task, with each run lasting 4 minutes 14.20 seconds (Fig. 

1A).

MRI Scanning and Imaging Data Analysis

Images were acquired on a 3-T scanner (Signa, General Electric) using a standard GE 

whole-head coil. The scanner runs on an LX platform, with gradients in “MiniCRM” 

configuration (35 mT/m, slew rate 190 mT · m−1 · second−1), and has a 3-T 80-cm magnet 

(Magnex Scientific, Varian Inc.). A custom-built head holder was used to minimize head 

movement. To maximize magnetic-field homogeneity, an automatic shim was applied. 

Twenty-eight axial slices (4-mm thick, 0.5-mm skip) parallel to the anterior-posterior 

commissure covering the whole brain were imaged with a temporal resolution of 2 seconds 

using a T2*-weighted gradient echo spiral pulse sequence (repetition time = 2,000 

milliseconds, echo time = 30 milliseconds, flip angle = 80°, and 1 interleave).36 The field of 

view was 200 × 200 mm2, and the matrix size was 64 × 64, which gave an in-plane spatial 

resolution of 3.125 mm.

Inverse Fourier transform was used to reconstruct images for each of the time points into 64 

× 64 × 18 image matrices (voxel size, 3.75 × 3.75 × 4.5 mm3). Statistical parametric 

mapping (SPM2, www.fil.ion.ucl.ac.uk) was used to preprocess all fMRI data, including 
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realignment, normalization to stereotaxic Montreal Neurological Institute coordinates, and 

4-mm smoothing. For each subject, a t-score image was generated for each contrast of 

interest. Individual contrast images were combined into a group image using a random-

effects model, which provides for stronger generalization to the population.37 Significant 

clusters of activation for each contrast and correlation were determined using the joint 

expected probability distribution,36 with height (p < .05) and extent (p < .05) thresholds 

corrected at the whole-brain level. Differences in FSIQ and performance accuracy were 

observed between groups and were therefore regressed out in a secondary analysis. Montreal 

Neurological Institute coordinates were converted to Talairach coordinates (http://

imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach). Activation foci were superimposed onto 

high-resolution T1-weighted images and localized with reference to the stereotaxic atlas of 

Talairach and Tournoux.38 Because the contrasts examined in this study were chosen a 

priori, activations from other contrasts are not reported.

Within the FraX group, we examined the relation between FMRP and brain activation to 

each contrast of interest. Using the between-groups contrast in which the TD group showed 

greater activation than the FraX group, we examined the relation between FSIQ and brain 

activation to each contrast of interest. Random-effects analysis was performed with FMRP 

or IQ as a covariate to determine brain regions that show FMRP- and IQ-related activation.

RESULTS

Behavioral Data

Collapsing the percent accuracy data across both runs and all conditions, both FraX (65.8% 

± 13.9%) and TD groups (81.8% ± 19.9%) performed the task above chance (Fig. 1B). 

Independent-samples t tests (two-tailed) were conducted, revealing a statistical difference in 

accuracy between groups (t18 = 2.2, p = .043). Examining the data during both runs for each 

expression, the FraX group was significantly less accurate at recognizing neutral faces 

(40.0% ± 30.1%) when compared with the TD group (71.0% ± 35.1%; t18 = 2.1, p = .048, 

Cohen d = 0.948). However, the FraX group was not statistically different from the TD 

group in the correct identification of happy faces (FraX: 83.0% ± 17.1%; TD: 81.7% 

± 20.7%; t18 = 0.2, p = .877, Cohen d = 0.068). Performance for sad faces was lower for the 

FraX group (55.3% ± 30.4%) when compared with the TD group (78.3% ± 22.4%), 

although this difference did not reach statistical significance (t18 = 1.9, p = .070, Cohen d = 

0.861), perhaps because of low power. Performance for scrambled faces was significantly 

lower for the FraX group (82.3% ± 15.8%) when compared with the TD group (96.3% 

± 5.5%; t18 = 2.6, p = .016, Cohen d = 1.183; Fig. 1C).

No differences in RT for correct responses were found between groups for neutral, happy, 

sad, and scrambled faces (p > .05). However, the TD group showed significant differences in 

RT for correct responses for happy faces compared with sad faces (t9 = −4.29, p = .002, 

Cohen d = −0.750) and for happy faces compared with neutral faces (t9 = −2.81, p = .020, 

Cohen d = −0.572), such that happy faces (750.03 ± 187.03 milliseconds) were identified 

more rapidly than were sad faces (895.28 ± 200.23 milliseconds) and neutral faces (886.66 

± 281.50 milliseconds). No other differences in RT for correct responses between conditions 

were observed within group, neither for the FraX group nor for the TD group (Fig. 1C). No 
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correlations between FSIQ, RT, and accuracy were found for either the TD group or the 

FraX group. Furthermore, the FraX group showed no correlation between FMRP levels and 

these behavioral indices (p > .05).

fMRI Data

Within-Group Analysis—Results of within-group analyses can be found in Supplemental 

Digital Content Tables A to C, at http://links.lww.com/A570, http://links.lww.com/A571, 

and http://links.lww.com/A572, respectively.

Between-Group Analysis

Sad faces minus neutral faces: When IQ and performance accuracy for sad faces were 

regressed out of the analysis (designated as nuisance variables), the FraX group did not show 

any regions with significantly greater activation compared with the TD group. However, 

three clusters of activation remained significant for the TD>FraX comparison. One 

circumscribed cluster peaked in the right cuneus. Another cluster peaked in the right 

precentral gyrus, with activation extending to the right postcentral gyrus and the insula. A 

final cluster peaked in the left inferior parietal lobe, with activation extending to the left 

insula and the left precentral gyrus (Table 1, Fig. 2A).

Happy faces minus neutral faces: The TD group did not show any regions with 

significantly greater activation for happy faces compared with the FraX group when IQ and 

performance accuracy were regressed out of the analysis. However, three clusters of 

activation remained significant for the FraX>TD comparison. One cluster peaked in the left 

lingual gyrus, with activation extending to the right precuneus and the left cuneus. Another 

cluster peaked in the right precentral gyrus, with activation extending to the right middle 

frontal gyrus and the right insula. The final cluster was observed peaking in the left 

precentral gyrus, with activation extending to the left postcentral gyrus (Table 2, Fig. 2B).

Neutral faces minus scrambled faces: The FraX group did not show any regions with 

significantly greater activation compared with the TD group when IQ and performance 

accuracy for neutral faces were regressed out of the analysis. However, three clusters of 

activation remained significant for the TD>FraX comparison. One cluster peaked in the right 

cingulate gyrus and extended to the right ACC. A more circumscribed cluster peaked in the 

precuneus. The final cluster was observed peaking bilaterally in the dorsal ACC (dACC; 

Table 3, Figs. 3A, B).

Sad faces minus scrambled faces: With IQ and performance accuracy regressed out of the 

analysis, the female subjects with FraX did not show any regions with greater activation than 

the TD group for sad faces. However, four clusters of activation remained significantly 

different for the TD>FraX comparison. One cluster was observed peaking bilaterally in the 

lentiform nucleus and extended to the left claustrum, putamen, and caudate (Figs. 3C, D). 

Another cluster observed peaked in the left superior frontal gyrus and extended to the left 

middle frontal gyrus. A third cluster was observed peaking in the left inferior parietal lobule. 

The final cluster was seen peaking bilaterally in the precuneus (Table 1).
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Happy faces minus scrambled faces: When IQ and task performance were regressed out of 

the analysis, no activation remained significantly different between groups, neither for the 

TD>FraX comparison nor for the FraX>TD comparison (Table 2).

Correlational Analyses

Fragile X mental retardation protein: To examine whether variation in FMRP was related 

to observed brain activation, a post hoc covariate analysis between FMRP and blood oxygen 

level–dependent (BOLD) signal intensity was performed for the FraX group. In all three 

contrasts, FMRP levels correlated positively with activation in the dACC (Supplemental 

Digital Content Table D, at http://links.lww.com/A573; Fig. 4). When IQ was covaried out 

of the analysis, a significant positive correlation was observed, with activation in the dACC 

for the happy minus scrambled contrast only. Other regions where BOLD activation 

significantly correlated with FMRP are reported in Supplemental Digital Content Tables D 

and E, at http://links.lww.com/A573 and http://links.lww.com/A574 and Figure 4.

IQ: To examine the association of IQ with neural activation in our research subjects, a post 

hoc covariate analysis between FSIQ and BOLD signal intensity was performed for both the 

TD and the FraX groups. For the TD>FraX comparison, a significantly greater positive 

correlation with IQ and activity in the right dACC was observed for neutral minus scrambled 

faces (Supplemental Digital Content Table F, at http://links.lww.com/A575). For the 

FraX>TD comparison, a significantly greater negative correlation with IQ and insula 

activation was observed for neutral minus scrambled faces (Supplemental Digital Content 

Table G, at http://links.lww.com/A576). Other regions where BOLD activation significantly 

correlated with IQ are reported in Supplemental Digital Content Tables F and G.

DISCUSSION

To our knowledge, these results are the first to identify the neural underpinnings of emotion 

attribution in FraX. Consistent with the behavioral literature, when compared with the TD 

group, the female subjects with FraX were generally comparable in their ability to correctly 

identify happy faces.11 Inconsistent with the behavioral literature,11 when compared with the 

TD group, the female subjects with FraX showed a trend toward a significant reduction in 

the correct identification of sad faces. The TD group took significantly longer to identify the 

sad faces within our stimulus set when compared with the happy faces. This suggests that 

the sad faces stimuli were not as readily identifiable as were the happy faces. We therefore 

interpret the findings to reflect that the female subjects with FraX may be poorer at 

recognizing emotional faces that are more ambiguous in expression. Consistent with this 

interpretation, the TD group took significantly longer to classify the neutral faces within our 

stimulus set when compared with the happy faces. Correspondingly, the FraX group was 

significantly more impaired in the identification of neutral faces when compared with the 

TD group. Although the paucity of research on neutral face identification precludes 

comparison with a full-mutation sex-matched group, these findings bear resemblance to one 

study of FraX premutation male subjects that found significantly poorer neutral face 

categorization relative to sex- and age-matched controls.39 In the present study, no 

significant correlations between IQ and behavioral performance were found for the TD 
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group, and no significant correlations were found between behavioral performance, IQ, and 

FMRP level for the FraX group. These results are not surprising, given the sample size and 

the putative effects of environmental factors on cognitive outcome in this condition.3,4,39,40

Once differences in task performance and IQ were regressed out of the initial analysis, our 

fMRI results showed prominent between-group differences in brain regions involved in 

social affective processing and anxiety when processing both emotional and neutral faces. 

Although the happy minus scrambled faces contrast revealed no differences in activation 

between groups, the FraX group showed increased activation in many regions, including the 

right insula, for the happy minus neutral faces contrast. The TD group showed significantly 

greater activation than the FraX group in the left caudate for sad faces relative to scrambled 

faces. Although activation differences in the left caudate were not present between groups 

for sad faces relative to neutral faces, the TD group showed greater activation than the FraX 

group in the left insula for sad faces relative to neutral faces. The TD group also showed 

significantly greater activation than the FraX group in the dACC for neutral faces relative to 

scrambled faces. Interestingly, the FraX group showed a significant positive correlation 

between BOLD activation and FMRP level for each of the three contrasts in the dACC. After 

controlling for differences in IQ, a positive correlation between BOLD activation and FMRP 

level remained for the contrast between happy and scrambled faces. The activation 

differences observed in the caudate and dACC are in line with our a priori hypotheses and 

may be a specific neurophenotypic characteristic of FraX. Therefore, the following 

discussion emphasizes these regions.

For neutral faces relative to scrambled faces, significantly greater activation was found 

bilaterally in the dACC for the TD group compared with the FraX group when controlling 

for IQ and task performance. Interestingly, a significantly greater positive correlation 

between IQ and right dACC activity was observed for neutral faces compared with 

scrambled faces for the TD group relative to the FraX group. Developmental studies have 

shown that neutral faces can be perceived as ambiguous, presumably not representing a 

signal of neutrality (see, for example, Reference 41). The dACC may be involved in 

contextually driven modulation of mental or physical bodily arousal states in both human 

and nonhuman primates.42–44 Human and comparative studies suggest that the ACC is 

involved in self-induced reductions in anxiety45 and the regulation of the hypothalamic–

pituitary–adrenal (HPA) axis—a major part of the neuroendocrine system that controls stress 

response.6,46,47 One study found a correlation between changes in baseline blood flow in the 

ACC and salivary cortisol while subjects performed a mental arithmetic task,48 suggesting 

that disruption of the ACC may impede top-down control of the HPA axis in typical 

populations. The HPA axis has been shown to be dysfunctional in FraX.6,49 FMR1 KO mice 

show disruption of long-term potentiation in the ACC20 and dysfunctional HPA function.50 

Significant positive correlations between FMRP and BOLD signal in the dACC were 

observed for all conditions; however, the positive correlation between FMRP and activity in 

the dACC remained only for the happy faces minus scrambled faces contrast after 

controlling for differences in IQ. These findings speak to the complex interplay between 

cognition and FMRP level and suggest that higher cognitive ability and FMRP level may be 

linked with developing and maintaining successful coping strategies or cognitive 

appraisals51 in putatively socially anxiogenic situations. Other work from our group shows 
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activation in the right ACC to be disrupted in female subjects with FraX,9 thus further 

supporting the premise that aberrant activation of the ACC may contribute to social anxiety 

in FraX. Our dACC findings suggest that, in comparison to the TD group, the FraX group 

may be less able to use top-down mechanisms to modulate emotional responses toward 

faces, independent of emotional expression.

Findings from our emotion contrasts support the premise that facial stimuli, and not facial 

expressions per se, may elicit heightened emotional responses for the FraX group compared 

with the TD group. A significant reduction in caudate activation was observed in the FraX 

group relative to the TD group for sad faces compared independently with scrambled faces 

but not for sad faces compared independently with neutral faces, once task performance and 

IQ were regressed out of the primary analyses. This finding suggests that BOLD activation 

differences were mainly attributable to faces and not to sad facial expressions. One 

explanation for this finding is that facial stimuli independent of emotional expression 

elicited the reductions in caudate activation observed in the FraX group. Dramatically 

increased caudate nucleus volumes have been observed in both male and female subjects 

with FraX and are associated with decreases in IQ—a trend opposite to the pattern observed 

in TD subjects.40 Reduced FMRP levels in FraX may inhibit group 1 metabotropic 

glutamate receptor–dependent protein synthesis and impair dendritic spine elimination, 

leading to volumetric increases in brain areas52 such as the caudate. The caudate is an 

integral component of the cortico-striato-thalamo-cortical loop. This network has been 

implicated in the regulation of mood and social behavior.53,54 As part of the cortico-striato-

thalamo-cortical loop, the caudate has been suggested to facilitate the regulation of prepotent 

emotional responses,55 with recent fMRI studies showing abnormal caudate function in 

social phobics.56 Other groups have suggested that striatal dysfunction may impair the 

natural fluidity of social motor functions, such as eye and mouth movements, which may 

lead to an inability to respond to new social situations.57 In addition, it has been proposed 

that striatal dysfunction may lead to biasing social events as negative.58 Our group has 

suggested that disruption to the caudate may disrupt anxiety and socioemotional behavior in 

FraX.4 Evidence from lesion studies have implicated the caudate in dyscontrol of emotion,59 

depression, inattention, high distractibility, and frequent expressions of fear60—all 

symptoms commonly occurring in people with FraX. Taken together, the FraX group may be 

less able to inhibit emotional responses, particularly toward faces.

Whereas caudate activation was not found to correlate with either FMRP or IQ, a 

significantly greater negative correlation between IQ and right insula activity was observed 

for neutral faces compared with scrambled faces for the FraX group compared with the TD 

group, suggesting that lower levels of IQ may be associated with increased affective 

response. One review suggests that the anterior insula plays a role in anxiety and is perhaps 

involved in exaggerating predictive cues of prospective bodily states of aversive arousal.61 

Anatomic projections to the hypothalamus are important in the regulation of cardiovascular 

and endocrinologic response to stressful situations (see, for example, Reference 62), whereas 

the afferent projections of the insula to the ACC enable modulation of attentional 

resources.61,63 Defective insula functioning is a commonly described feature of many 

emotional disorders, including simple phobia, and panic disorder.64–67 In both TD subjects 

and subjects with generalized social phobia, anticipation of emotionally aversive events has 
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been shown to activate the insula.66,68 The insula has also been activated during exposure to 

aversive stimuli68 and autonomic arousal.69 Collectively, these data correspond with the 

elevated state of arousal observed in people with FraX, which includes a physiological 

phenotype of elevated baseline, tonic and phasic electrodermal activity/response,49,70,71 

elevated heart activity,72 elevated cortisol levels,6 and lower levels of vagal tone.72 The 

significantly greater negative correlation observed between right insula activation and IQ in 

the FraX group as compared with the TD group may indicate that subjects with FraX with 

lower cognitive ability may be more aroused by facial stimuli than subjects with FraX with 

higher cognitive ability.

An emotion-specific effect was also observed in the insula whereby the FraX group elicited 

significantly greater activation than the TD group in the right insula for happy faces relative 

to neutral faces, whereas the TD group elicited significantly greater activation than the FraX 

group in the left insula for sad faces relative to neutral faces. Although these data are in need 

of replication before any firm conclusions can be drawn, findings could indicate that the 

FraX group is more aroused by happy faces when compared with the TD group. Happy faces 

possess an inherent positive reinforcement value, which could lead to increased arousal in 

the FraX group. By contrast, the greater activation in the left insula for the TD group relative 

to the FraX group for sad faces could indicate that the TD group is more aroused by sad 

faces than the FraX group, perhaps resulting from increased empathic responding by the TD 

group.

The amygdala and prefrontal cortex are two brain regions often suggested to modulate 

emotion. The functional relation between the amygdala and the prefrontal cortex has been 

suggested to play an important role in anxiety and affective processing style.73 The 

amygdala is suggested to respond selectively to socially relevant stimuli, especially negative 

emotive stimuli.17,74–81 In nonhuman primates, lesions to the amygdala lead to an 

interference in fear response conditioning62 and an inability to assign negative value to 

stimuli.82 In relation to the female subjects with FraX, a diffusion tensor imaging study from 

our group showed reduced frontostriatal fractional anisotropy,2 thus suggesting that cortical-

subcortical connections are disrupted in FraX. Our within- and between-group analyses of 

the TD group showed significantly greater activation of the right amygdala for sad faces 

compared with scrambled faces than the FraX group. However, this difference did not 

remain significant once IQ and performance were regressed out of the analysis, suggesting 

that the amygdala may be more susceptible to disruption under conditions of general 

cognitive impairment. These results highlight the importance of interrogating results to 

delineate functional activation differences resulting from group differences in performance 

or IQ from activation differences that represent pathognomonic characteristics of a disorder.

Three main limitations of our study should be considered. One limitation is that separate 

response buttons were not used for neutral and scrambled faces. We chose not to use 

separate buttons for these two conditions because our behavioral pilot testing revealed that 

the use of four response buttons was more confusing to all participants. We therefore chose 

to simplify the task to the use of three buttons across both groups of subjects so as not to 

confound the data with between-group task differences. Given that the neutral and scrambled 

faces were considered as baseline conditions for the behavioral task, we chose to consolidate 
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these button presses. Another limitation is that dysfunction in the ACC, the amygdala, and 

the caudate are not specific to anxiety disorders and may represent other cognitive processes 

(e.g., error processing, working memory). A final limitation is that the interstimulus interval 

we used was relatively short and may contribute to decreased power after covariate analyses 

to detect potential alterations in region of interests previously implicated in FraX syndrome 

and related disorders.

In conclusion, we provide support that female subjects with FraX perform behaviorally 

similar to sex- and age-matched TD controls when asked to identify happy facial emotions. 

However, emotionally ambiguous (neutral) and emotionally laden (i.e., sad, happy) faces 

may elicit heightened levels of emotion associated with social anxiety, irrespective of 

differences in correct emotion attribution. Our fMRI results support this conclusion, 

although additional imaging studies of emotion attribution in FraX are warranted. We further 

suggest that FMRP levels and IQ may directly or indirectly influence the emotion circuit in 

FraX, particularly in paralimbic structures like the ACC. Such disruption may lead to a 

reduced ability to regulate anxiety levels in social encounters and help to account for the 

elevated social anxiety and avoidance behaviors typically observed in FraX. More broadly, 

we have demonstrated that FraX syndrome, a single-gene disorder, may result in a cascade 

of neural effects that disrupt social behavior.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Paradigm illustration (A), behavioral results in average percent correct for each stimulus 

category and each group (B), and behavioral results in average response time for each 

stimulus category and each group (C). Error bars represent standard error of the mean.
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Fig. 2. 
Between-group comparisons against neutral baseline. A, Regions where the typically 

developing (TD) group showed greater activation than the fragile X (FraX) group for sad 

face minus neutral face contrast. B, Regions where the FraX group showed greater activation 

than the TD group for happy face minus neutral face contrast. Brain regions of interest are 

circled in green.
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Fig. 3. 
Between-group a priori regions of interest with greater activation. A, Greater activation was 

observed in the dorsal anterior cingulate cortex of the TD controls relative to the FraX group 

for neutral face minus scrambled face contrast (IQ and task performance covaried out). B, 

Differences observed between groups in peak coordinate (Talairach coordinates: 6, 11, 29) 

for neutral face minus scrambled face baseline and for neutral face minus fixation baseline. 

C, Greater activation was observed in the caudate of the TD controls relative to the FraX 

group for sad faces minus scrambled faces (IQ and task performance covaried out). D, 

Differences observed between groups in peak coordinate (Talairach coordinates: −26, 2, 4) 

for sad face minus scrambled face baseline and for sad face minus fixation baseline.
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Fig. 4. 
Correlations between fragile X mental retardation protein and facial emotion. Positive 

correlations with blood oxygen level–dependent signal in subjects with FraX are shown in 

orange, and negative correlations with blood oxygen level–dependent signal are shown in 

blue for all contrasts. A, Neutral faces minus scrambled faces. B, Happy faces minus 

scrambled faces. C, Sad faces minus scrambled faces. Numbers represent corresponding 

Talairach coordinates.
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