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Abstract

RNA binding proteins (RBPs) and microRNAs (miRNAs) are two of the most important post-transcriptional regulators

of gene expression, and their aberrant expression contributes to the development of human malignancies. Let-7,

one of the most well-known tumor suppressors, is frequently down-regulated in a variety of human cancers. The

RBP LIN28A/LIN28B, a direct target of the let-7 family of miRNAs, is an inhibitor of let-7 biogenesis and is frequently

up-regulated in cancers. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors is

reportedly involved in cancer development, contributing to cellular proliferation, cell death resistance, angiogenesis,

metastasis, metabolism reprogramming, tumor-associated inflammation, genome instability, acquiring immortality

and evading immune destruction. In this review, we summarized the mechanisms of LIN28A/LIN28B and let-7 loop

aberrant regulation in human cancer and discussed the roles and potential mechanisms of the LIN28A/LIN28B and

let-7 loop in regulating the hallmarks of cancer. The crosstalk between LIN28A/LIN28B and let-7 loop and certain

oncogenes (such as MYC, RAS, PI3K/AKT, NF-κB and β-catenin) in regulating hallmarks of cancer has also been discussed.
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A double-negative feedback loop between

LIN28A/LIN28B and let-7
MicroRNAs (miRNAs) are small non-coding RNAs that

bind the mRNA of target genes to inhibit their translation

and/or induce their decay. MicroRNAs thus play a crucial

role in many biological events, including tumorigenesis.

Briefly, most miRNAs are transcribed by RNA polymerase

II [1]. Primary miRNA transcripts (pri-miRNAs) are then

processed in the nucleus by the RNAseIII Drosha into

70-100-nt-long pre-miRNAs, which are then exported

to the cytoplasm and cleaved by the RNAse III Dicer to

form ~22-nt-long dsRNAs (miRNA). Finally, the RNA-

induced silencing complex (RISC) binds to one strand

of the dsRNA and guides it to target mRNA for subse-

quent silencing [2].

The miRNA let-7 was identified in the nematode Cae-

norhabditis elegans in 2001, seven years after let-4, the

first known miRNA, was identified in the same species

[3]. The let-7 family of miRNAs is the largest of all

miRNA families, and members of this family are highly

conserved in sequence and function from C. elegans to

humans [4, 5]. It’s now known that members of let-7

family play important roles in regulating cellular differ-

entiation, metabolism and the development of certain

diseases, including tumorigenesis [6].

The highly conserved RNA binding proteinLIN28

family includes two homologous members, LIN28A and

LIN28B, each having similar domain structure and func-

tion. Like let-4 and let-7, LIN28A was also first identified

in C.elegans [7], though it is also present in a wide var-

iety of mammals. Notably, LIN28A gene mutation in C.

elegans results in disturbance of its developmental

timing [8]. LIN28B was first identified in hepatocellular

carcinoma, where levels of the protein were high [9]. Re-

cent studies found that LIN28A/LIN28Band let-7 family
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miRNAs tend to have opposing roles in many cellular

processes, in particular those involved in cancer devel-

opment and progression [10]. Indeed, LIN28A/LIN28B

and let-7 are inversely expressed in normal and malig-

nant tissues [11, 12]. The presence of a double-negative

feedback loop between LIN28A/LIN28B and let-7 was

also reported [10].

LIN28A/LIN28B negatively regulates let-7family miR-

NAs via its RNA-binding domains (RBDs), which in-

clude a cold-shock domain (CSD) at the N-terminus and

two Cys-Cys-His-Cys (CCHC)-type zinc finger domains

at the C-terminus [13–16]. Both the CSD and CCHC

zinc fingers of LIN28A/LIN28B can interact with the

conserved residues ofpri-let-7 and pre-let-7. Briefly, the

CSD inserts into the apical point of the precursor loop,

while the CCHC zinc fingers dimerize on a GGAG motif

adjacent to the Dicer cleavage site [17, 18]. The binding

of LIN28A/LIN28B to either pri-let-7 or pre-let-7 in-

hibits let-7 precursor processing by Drosha and Dicer

[19]. Upon binding to pre-let-7, LIN28A/LIN28B re-

cruits TUT4/TUT7, which causes oligo-uridylation at

the 3′terminal of pre-let-7 [20–22]. Under normal con-

ditions, Dicer recognizes the two-nucleotides at the 3′

terminal via its PAZ domain; however, oligo-uridylation

elongates the 3′ terminal resulting in resistance to Dicer

cleavage. Oligo-uridylated pre-let-7 can also be degener-

ated by the 3′-5′ exonuclease Dis312 [23, 24]. Thus,

LIN28A/LIN28B not only inhibits the biogenesis of let-7

family miRNAs, but also induces their degradation. Con-

versely, let-7 miRNA may bind complementary sites on the

3′ UTR of both LIN28A and LIN28B mRNAs, thus inhi-

biting the expression and function of LIN28A/LIN28B

protein [9, 25]. This double-negative feedback loop

between LIN28A/LIN28B and let-7 is shown in Fig. 1.

The mechanisms of aberrant expression of
LIN28A/LIN28B and let-7 in cancer

LIN28A/LIN28B proteins are frequently up-regulated in

various malignancies originating from three germ layers

(Table 1). High levels of LIN28A/LIN28B proteins are

associated with many cancer biological behaviors and

poor prognosis.

LIN28A/LIN28B transactivation by various transcription

factors in malignancies has been extensively studied.

LIN28B may be up-regulated via direct promoter binding

by the transcription factor c-myc upon activation of the

MAPK signaling pathway [26] or by NF-κB during inflam-

mation [27]. LIN28B may also be up-regulated by STAT3

during inflammation-mediated epithelial-to-mesenchymal

transition (EMT) [28] or by β-catenin upon activation of

the Wnt signaling pathway [29]. The transcriptional factor

SOX2 reportedly up-regulates LIN28A by binding to a

proximal site on the promoter and facilitating promoter

acetylation via interaction with the histone acetyl-

transferase complex [30].

LIN28A/LIN28B is also regulated post-transcriptionally.

In addition to let-7, the miRNAs miR-26a, miR-181, miR-9,

miR-30, miR-125, miR-212 and miR-27 have also been

shown to directly bind the 3′UTR of LIN28A/LIN28B and

repress translation of the protein, and as these miRNAs are

frequently under-expressed in malignant tumors, higher

levels of LIN28 expression are seen [31–34]. Notably, a

potential regulatory loop reportedly exists between LIN28B

and miR-212 in androgen-independent prostate cancer

Fig. 1 A double-negative feedback loop between LIN28A/LIN28B and let-7
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[35]. A recent study revealed that LIN28A/LIN28B mRNA

contains an AU-rich element (ARE) within its 3′UTR, and

the tumor suppressor tristetraprolin (TTP), an ARE bind-

ing protein, enhances the degradation of LIN28A/LIN28B

mRNA; however, TTP is often repressed in human cancers,

which may also contribute to the elevation of LIN28A/

LIN28B in certain cancer types [36]. The ribonuclease

DIS3, one of the most frequently mutated genes in multiple

myeloma, is an inhibitor of LIN28B through binding and

degrading LIN28B mRNA [37]. More recent research

revealed that the expression of insulin-like growth factor 2

(IGF2) mRNA-binding protein 3 (IMP3), a protein which

regulates RNA localization, translation and stability, corre-

lates with that of LIN28B and cytoplasmic IMP3 granules

contain LIN28B mRNA. Further studies showed that IMP3

recruits LIN28B mRNA and prevents the binding of

argonaute 2 (Ago2) and let-7 to LIN28B, thus allowing the

increased expression of it and other let-7 target genes, like

HMGA2 [38]. Additionally, the protein level of LIN28B

has been revealed to be regulated via ubiquitin-mediated

proteasomal degradation. The human TRIM-NHL domain-

containing protein TRIM71, an ubiquitin ligase, was

reported to negatively regulate the stability of LIN28B

protein by catalyzing its polyubiquitination [39].

However, weather the regulation of LIN28B protein is

altered in malignancies is still waiting for further ex-

periments to reveal.

In contrast to the expression of LIN28A/LIN28B pro-

teins, the expression of let-7 family miRNAs is typical

decreased in cancers (Table 1). While let-7 miRNAs may

be regulated at multiple levels, most studies support the

significance of their post-transcriptional regulation. For

instance, during tumorigenesis, mature let-7 was found

to be absent, whereas pri-let-7 was present at high levels,

which suggests post-transcriptional regulation of mature

let-7 [40]. As previously mentioned, LIN28A/LIN28B is

a common post-transcriptional repressor of let-7 miR-

NAs. In addition to LIN28A/LIN28B proteins, the com-

plex of NF90 and NF45 proteins can inhibit pri-let-7a

processing into pre-let-7a by binding to pri-let-7a [41],

while Ago proteins can bind and stabilize mature

miRNAs and thereby increase let-7 levels [42]. Import-

antly, as the endonucleases Drosha and Dicer are essen-

tial for the processing of miRNA to maturation, factors

Table 1 Pathological associations of increased LIN28A/LIN28B and or of decreased let-7 expression in various cancer tissues

Origin Cancer type Ref. Pathological association

Endoderm Colon LIN28↑ [12, 74] Increased tumor progression and metastasis

Let-7↓ [113, 114] Poor prognosis

Lung LIN28↑ [12, 115] Increased proliferation

Let-7↓ [116] Poor prognosis; increased cellular proliferation

Hepatocellular carcinoma LIN28↑ [12, 117] Advanced-stage cancer

Let-7↓ [118] Metastatic cancer; increased proliferation and migration

Gastric adenocarcinoma LIN28↑ [119] Poor prognosis

Let-7↓ [76] Increased invasion and metastasis

Esophageal LIN28↑ [75] Increased proliferation and metastasis

Pancreatic Let-7↓ [120] Increased proliferation

Mesoderm Cervical LIN28↑ [12]

Ovarian LIN28↑ [12, 121] High-grade cancer

Let-7↓ [121, 122] High-grade cancer

Germ cell tumor LIN28↑ [123] Poor prognosis

Prostate LIN28↑ [124] Increased proliferation

Let-7↓ [125] Increased proliferation

Chronic myeloid leukemia LIN28↑ [12] Increased tumor progression

Burkitt lymphoma Let-7↓ [126, 127] Increased proliferation

Renal cell carcinoma Let-7↓ [128] Metastatic and high-grade cancer

Ectoderm Breast LIN28↑ [12, 55, 129] Increased tumor aggressiveness and proliferation

Let-7↓ [81] Lymph node metastasis

Oral squamous cell carcinoma LIN28↑ [90] Poor prognosis

Glioma LIN28↑ [130] Increased proliferation

Melanoma Let-7↓ [131] Increased invasion
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influencing the activity or expression of these endonu-

cleases impact the processing of miRNAs. For instance,

Fas and TRAIL-R2 were reported to reduce the levels of

mature let-7 miRNA by inhibiting the activities of Dicer

[43] and Drosha [44], respectively.

Regulation of let-7 expression also occurs at the tran-

scriptional level. Notably, the presence of a CpG island

in the promoter region of let-7a-3, located on chromo-

some 22q13.31, allows for epigenetic regulation via DNA

methyltransferases DNMT1 and DNMT3B [45, 46]. The

nuclear hormone receptor DAF-12, a transcriptional ac-

tivator or repressor depending on the presence or ab-

sence of a DA (dafachronic acid) ligand, can directly

modulate the transcription of certain let-7 miRNAs [47].

Conversely, let-7 miRNAs can repress DAF-12 expres-

sion by binding its 3′UTR, which suggests a complex

feedback loop between DAF-12 and let-7 miRNAs [48].

In addition to being repressed for their expression, the

antitumor functions of let-7 have also been attenuated in

malignant tumor cells. Competing endogenous RNA

(ceRNA) is a hypothesis driven by the reasoning that

mRNA, transcribed pseudogenes and long non-coding

RNA (lncRNA) compete for a limited pool of miRNAs

[49]. Even though the hypothesis of ceRNA is challenged

by some researchers recently [50], ceRNAs attenuating

let-7-mediatedantitumor activity has been extensively re-

ported. For example, the lncRNAH19 reportedly inhibits

the bioavailability of let-7 family miRNAs through a

molecular sponge mechanism [51]. A recent study also

found that high-mobility group A (HMGA2), a non-

canonical transcriptional factor, promoted lung cancer

progression independent of its protein-coding func-

tion. Indeed, HMGA2 functions as a ceRNA, compet-

ing with the transforming growth factor beta receptor

3(TGFBR3) for let-7, thus allowing for the heightened

expression of TGFBR3 and subsequent lung cancer

progression [52].

As discussed, the expression patterns and functions of

LIN28A/LIN28B and let-7 in malignancies are largely

opposing and appear to compose a double-negative feed-

back loop regulating cancer progression.

LIN28A/LIN28B and let-7 loop regulates the
hallmarks of cancer

Hanahan and Weinberg famously described ten biological

capabilities acquired by cancer during development [53].

These include: sustaining proliferative signaling, resisting

cell death, evading growth suppressors, inducing angiogen-

esis, enabling replicative immortality, activating invasion

and metastasis, accumulating genome instability, inducing

inflammation, reprogramming of energy metabolism and

evading immune destruction [53]. To date, the LIN28A/

LIN28B and let-7 loop has been demonstrated to regulate

almost all of these hallmarks.

LIN28A/LIN28B and let-7 loop regulates cancer cell

proliferation

One of the most fundamental characteristics of cancer

cells is their capacity for uncontrolled proliferation. Unlike

normal cells, whose proliferation is strictly controlled to

maintain homeostasis, cancer cells have developed the

ability to sustain proliferative signaling, therein becoming

masters of their own destinies [53]. Many studies of

multiple cancer types have shown that LIN28A/LIN28B

promotes the proliferation of cancer cells through five

different mechanisms: up-regulation of cell cycle regula-

tors, elevation of cellular proliferative signaling, activation

of proliferation-associated transcription factors, facilita-

tion of ribosomal protein synthesis and activation of cellu-

lar metabolism.

LIN28A/LIN28B has been demonstrated to up-regulate

cell-cycle regulators in two ways. First, LIN28A/LIN28B

directly binds and promotes the translation of numerous

mRNAs encoding cyclins (cyclinA, cyclinB and cyclinD),

cyclin-dependent kinases (CDK1, CDK2 and CDK4) and

cell division cycle proteins (CDC2 and CDC20) [54].

Secondly, through repressing let-7, LIN28A/LIN28B indir-

ectly up-regulates some cell-cycle regulators targeted by

let-7, such as cyclinD1/2, CDK6, CDC34, CDC25a and

Trim71 (a repressor of CDK inhibitor 1A).

LIN28A/LIN28B can elevate cellular proliferation sig-

nals in both let-7-dependent and -independent manners.

Through inhibiting let-7, LIN28A/LIN28B can activate a

variety of cellular proliferation signaling pathways. For

instance, let-7 targets the IGF1 receptor and AKT2 to

inhibit PI3K/AKT pathway activity and RAS to inhibit

MAPK pathway activity. Thus, inhibition of let-7 by

LIN28A/LIN28B would increase the activities of both

pathways and, subsequently, increase proliferation. As a

RNA binding protein, LIN28A/LIN28B also directly binds

to and promotes the translation of IGF2. Recently, it was

also found that LIN28A/LIN28B promotes the expression

of human epidermal growth factor receptor 2 (HER2) at

the post-transcriptional level in breast cancer cells [55].

Activation of transcriptional factors necessary for cel-

lular proliferation in a let-7-dependent manner is an-

other method by which LIN28A/LIN28B can increase

proliferation. For instance, hepatitis B virus x protein

(HBx) promotes cellular proliferation through down-

regulating let-7 expression, thus elevating levels of the

transcription factor signal transducer and activator of

transcription 3 (STAT3), another let-7 target, in HBV in-

fected cells [56]. Additionally, let-7 represses the prolif-

eration of cancer cells by directly targeting HMGA2, a

protein which is frequently over-expressed in and pro-

motes proliferation of many cancer types [52, 57, 58].

LIN28A can also increase cellular proliferation through

directly binding to and promoting the translation of nu-

merous mRNAs encoding ribosomal proteins, such as
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RPS13, EEF1G and EIF4A [59]. Additionally, through the

LIN28A/LIN28B-mediated inhibition of let-7, PI3K/AKT-

mTOR signaling may promote ribosomal biogenesis and

translation in mammary cells via activating S6, eIF4E and

eIF4B, as let-7 is known to target key components of this

pathway, such as AKT2 and Raptor [60, 61]. A detailed

discussion of the LIN28A/LIN28B-mediated activation of

cellular metabolism and subsequent promotion of cellular

proliferation is presented in the next section.

Of note, under certain conditions, LIN28A/LIN28B

may also inhibit cancer cell proliferation. Indeed, Song

et al. reported that over-expression of LIN28A/LIN28B

in gastric cancer cell line BGC-823 inhibited prolifera-

tion through some unknown mechanism [62]. However,

as the authors used only one cell line, whether LIN28A/

LIN28Btruly inhibits proliferation of gastric cancer cells

is still not clear. Moreover, since extensive elevation of

oncoproteins, such as RAS, MYC and RAF, can induce

cell senescence and/or apoptosis [53], the reported

inhibition may have been the result of cell senescence

triggered by extensive proliferative signals.

LIN28A/LIN28B and let-7 loop regulates cancer cell

metabolism

Metabolic shift is a basic property of cancer cells. In the

1920s, Otto Warburg discovered that glycolysis was main-

tained in cancer cells in conditions of high oxygen tension,

otherwise known as “aerobic glycolysis”. During enhanced

glucose uptake and elevated glycolysis, intermediates of the

glycolytic pathway become a major resource for anabolic

reactions in cancer cells. For example, dihydroxyacetone

phosphate is important for synthesis of triacylglycerides

and phospholipids, glucose 6-phosphate is necessary for

the synthesis of glycogen and ribose 5-phosphate, and

pyruvate is an important progenitor of amino acids and

may enter a truncated tricarboxylic acid (TCA) cycle and

generate acetyl-CoA, which is necessary for the synthesis

of fatty acids, cholesterol and isoprenoids. Thus, through

augmenting anabolic reactions, glycolysis is a promoter of

cancer cell growth and proliferation [63]. Both LIN28A

and LIN28B reportedly enhance aerobic glycolysis, while

let-7 suppresses this process at least in part through tar-

geting pyruvate dehydrogenase kinase 1(PDK1), which

negatively regulates pyruvate dehydrogenase (PDH), thus

preventing pyruvate entry into TCA under normoxic

conditions [64]. LIN28A/LIN28B also directly potenti-

ates cellular metabolism through binding and regulating

translation of glycolysis enzymes such as hexokinase 1

(HK1), pyruvate dehydrogenase alpha 1 (PDHA1) and

PDHB [59].

Insulin signaling is a master regulator of cellular ana-

bolic metabolism [65]. By activing the PI3K/AKT path-

way through binding insulin receptors, insulin not only

facilitates glucose uptake and promotes glycogenesis, but

also promotes protein synthesis and lipogenesis. Thus,

insulin-PI3K/AKT signaling is a key regulator coupling

cellular anabolic metabolism with cellular growth and

proliferation. Through let-7, LIN28A/LIN28B activates

insulin signaling by elevating components involved in in-

sulin signaling pathways, such as IGF1R, insulin receptor

(InsR), IRS2, AKT2 and Rictor (Fig. 2) [60]. LIN28A/

LIN28Balso directly activates insulin signaling through

binding and activating translation of components and

regulators of insulin signaling pathways, such asIGF2

and HMGA1. IGF2 is a ligand of InsR, and the inter-

action between IGF2 and InsR triggers the activation of

Fig. 2 Let-7 targets insulin signaling pathway and thus inhibits cancer cell metabolism
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insulin signaling. HMGA1 is a key regulator of the tran-

scription of InsR [66].

LIN28A/LIN28B and let-7 loop mediates cancer cell evasion

of immune destruction

The immune system is responsible for recognizing and

eliminating cancer cells; however, tumors typically evade

immune destruction through either avoiding detection

by the immune system or limiting the extent of im-

munological eradication [53]. Recent studies suggest that

the LIN28A/LIN28B and let-7 loop may also regulate

cancer cell immune evasion.

The transmembrane protein Fas (CD95) is a member

of the tumor necrosis factor (TNF) receptor superfamily.

Binding of either Fas ligand (Fas-L), a type II transmem-

brane protein expressed on cytotoxic T lymphocytes, or

TNFα, a cytokine secreted by activated macrophages

and other immune cells, induces trimerization of Fas in

the membrane of the target cell (including cancer cells)

and results in the activation of Fas. Fas activation then

leads to the activation of caspase 8, triggering extrinsic

apoptosis [67]. Let-7 expression has been shown to de-

crease during Fas-mediated apoptosis because Fas acti-

vation suppresses Dicer; however, exogenous expression

of let-7 inhibits cell sensitivity to Fas-mediated apop-

tosis via directly targeting Fas [43, 68], which suggests

that let-7 family miRNAs may suppress tumor innate

immune reactions.

Toll-like receptors (TLRs) are a class of transmem-

brane proteins expressed in macrophages, neutro-

phils, dendritic cells and other immune cells, and

play a key role in innate immune response via recog-

nizing inflammatory mediators, costimulatory mole-

cules and even conserved structures of microbes.

Peptides, lipopolysaccharides and nucleic acids may

each act as TLR ligands [69]. TLRs are universally

expressed in many cancer types and promote the de-

velopment of inflammation-associated malignances

through activating the inflammatory response. How-

ever, TLRs have also been shown to be sensors of

cell death, and stimulation of TLRs to activate the

innate immune system is a strategy currently under

development for cancer therapy [69]. A recent study

uncovered that extracellular let-7 interacts with and

then activates TLR7, an RNA-sensing neuronal TLR,

and induces neurodegeneration [70]. Interestingly, in

a metastatic gastric cancer cell line, let-7 family miR-

NAs could be selectively secreted into the extracellu-

lar environment via exosomes [71]. These results

suggest that the activation of TLR7 induced by

extracellular let-7 may also be involved in the regu-

lation of immune response or inflammation in can-

cer; however, this hypothesis has yet to be validated

experimentally.

LIN28A/LIN28B and let-7 loop mediates tumor-associated

inflammation

Inflammation is linked clinically and epidemiologically

to cancer. However, the molecular intersections between

inflammation and cancer progression have been unclear

for a long time. Recently, it was demonstrated that the

LIN28A/LIN28B and let-7 loop is a key switch linking

inflammation to cell transformation. Viswanathan et al.

were the first to evaluate the role of LIN28A in cell

transformation, over-expressing LIN28A in NIH/3 T3

cells [12]. They observed that LIN28A over-expression

promoted 3 T3 cells to form clones in vitro and form

solid tumors in nude mice with a concomitant down-

regulation of multiple mature let-7 family member miR-

NAs. Importantly, this effect could be attenuated by re-

introducing let-7. Recently, a consistent result was ob-

served by Madison et al. in intestinal epithelial cells.

They showed that targeted expression of LIN28B pro-

moted crypt transformation and fostered intestinal polyp

and adenocarcinoma formation in vivo in a let-7-

dependent manner [72]. In revisiting the molecular

intersection between inflammation and cancer progres-

sion, Dimitrios and colleagues revealed such an intersec-

tion between inflammation and cell transformation [27].

They showed that over-expression of LIN28B upon the

activation of NF-κB inhibited the generation of let-7

family member miRNAs and elevated the production of

IL-6, a target of let-7. In turn, IL-6 activated NF-κB and

STAT3 transcription factors through the RTK signaling

pathway. The activation of NF-κB and subsequent produc-

tion of IL-6 thus formed a positive feedback loop (Fig. 3),

while STAT3 activation is necessary for the transformation

of normal cells. Furthermore, they showed that STAT3

directly activated miR-181b and miR-21 at the transcrip-

tional level. MiR-181b and miR-21 target cylindromatosis

(CYLD) and phosphatase and tensin homolog (PTEN),

respectively, and down-regulation of CYLD and PTEN

leads to NF-κB activation, therefore also acting as a part of

the epigenetic switch linking inflammation to cancer [73]. As

previously mentioned, STAT3 also suppresses the expression

of let-7 through directly activating LIN28A/LIN28B expres-

sion during inflammation-stimulated EMT [28].

LIN28A/LIN28B and let-7 loop regulates metastasis

Local invasion and distant metastasis are marks of

higher pathological stages of malignant cancers. While

the invasion-metastasis cascade is known to consist of a

succession of processes, beginning with local invasion and

followed by intravasation (cancer cell invasion into blood

and lymphatic vessels) and extravasation (cancer cell escape

from vessels) to form micrometastases and finally grow into

macroscopic tumors, the mechanisms involved in this

multistep process are still being defined. Of all the steps,

however, local invasion is the most extensively studied.
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EMT is broadly believed to regulate invasion [53].

EMT is characterized as epithelial cells losing their cell

polarity and cell-cell adhesion with the loss of E-

cadherin expression usually driven by the elevated ex-

pression of a set of transcriptional factors, such as Snail,

Slug, Twist and Zeb1/2 [53]. Involvement of the

LIN28A/LIN28B and let-7 loop in the regulation of can-

cer cell invasion and metastasis is, naturally, intimately

associated with EMT. Many studies have shown that

LIN28A/LIN28B promotes and let-7 inhibits invasion

and metastasis in various cancer types, including colon

cancer, breast cancer, hepatocellular carcinoma, pancre-

atic cancer, gastric cancer, lung cancer and esophageal

cancer [57, 74–79]. In fact, the mechanism by which

let-7 inhibits invasion and metastasis is, actually, well-

studied. HMGA2 is the most frequently reported target

of let-7 in the process of inhibiting invasion and metas-

tasis [57, 77]. HMGA2 has been demonstrated to pro-

mote EMT by inducing the expression of Slug and Snail

and then inhibiting the expression of E-cadherin in

many cancer types [57, 80]. In addition to regulating

invasion and metastasis via a coding gene, HMGA2 also

functions as a ceRNA to facilitate cancer metastasis in

certain cancer types [52]. As previously mentioned, by

competing with TGFBR3 to bind let-7, HMGA2 re-

presses the inhibitory effect of let-7 on TGFBR3, thus

elevating TGFBR3protein and facilitating cancer inva-

sion and metastasis [52]. BesidesHMGA2, let-7 also was

reported to inhibit invasion, migration and metastasis

via targetingITGB3, MAP4K3 and MYH9 [76, 79]. A re-

cent study showed that let-7 inhibited the cancer cell

migration via direct targeting of four genes in the actin

cytoskeletal pathway, including RDX, DIAPH2, ITGB8

and PAK1 [81]. IL-6 was also a direct target of let-7 to

inhibit cancer cell invasion and migration. It was re-

ported that down-regulation oflet-7 in cancer-associated

mesenchymal stem cells (MSCs) results in the enhanced

secretion of IL-6, and IL-6 then promotes prostate cancer

cell metastasis [82]. LIN28A/LIN28B promotes invasion

and metastasis through the let-7/HMGA2/Slug or Snail/E-

cadherin axis [57, 77], but also in a let-7-independent man-

ner. LIN28A directly binds and promotes the translation

Fig. 3 A positive feedback between LIN28A/LIN28B and transcriptional factor NF-κB and STAT3 in the process of inflammation mediated

cancer progression
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of HMGA1, and like HMGA2, HMGA1 promotes EMT

by inducing the expression of Slug and Snail. Additionally,

LIN28A has been found to directly bind E-cadherin

mRNA and repress the translation of E-cadherin mRNA

in embryo stem cells [83]; however, the role of LIN28Ain

directly regulating E-cadherin expression in cancer cells is

still unclear.

LIN28A/LIN28B and let-7 loop regulates cancer cell death

The LIN28A/LIN28B and let-7 axis is known to regulate

cellular apoptosis and is involved in resistance/sensitiv-

ity to therapy. Many studies have shown that the over-

expression of let-7 or knockdown of LIN28A/LIN28B

increases the radiosensitivity or chemosensitivity of

cancer cells [84–87]. Let-7 reportedly induces cellular

apoptosis through targeting the anti-apoptotic protein

B-cell lymphoma-extra large (BCL-XL) in many cell

types [86–88] as well as the IL-6/STAT3 pro-survival

pathway [89]. While LIN28A/LIN28B represses apop-

tosis via let-7, it may also regulate the expression of

pro-apoptosis and/or anti-apoptosis genes through un-

identified mechanisms. For example, over-expression of

LIN28B in oral cancer cells promotes the expression of

Survivin, an apoptosis inhibitor [90].

Recently, the existence of a subclass of neoplastic cells,

termed cancer stem cells (CSCs), in many tumors is

thought to be the root cause of chemotherapeutic failure

and tumor recurrence because CSCs are resistant to

apoptosis [53]. While the LIN28A/LIN28B and let-7

loop is known to be involved in the development of che-

motherapeutic sensitivity of cancer cells to apoptosis, it

is also purportedly involved in the maintenance and/or

differentiation of CSCs. Firstly, in many cancer types,

high levels of LIN28A and other stem cell maintenance

factors, such as OCT4, are present in a sub-population

of cells with CSC properties [91–93]. Secondly, forced

expression of LIN28A promotes the expression of CSC

markers as well as the self-renewal capability of CSCs,

while knock-down has the opposite effect [74, 92].

Lastly, through the down-regulation of let-7, enhanced

expression of LIN28A induced the development of CSC

‘stemness’ coupled with resistance to chemotherapy-

induced apoptosis [94, 95].

Of note, let-7 may inhibit apoptosis under certain con-

ditions. For example, forced let-7a expression in A431

and HepG2 cells increased resistance to apoptosis in-

duced by doxorubicin and paclitaxel through the direct

targeting of caspase-3 [96]. Additionally, up-regulation

of let-7 family miRNA expression upon estrogen expos-

ure in endometrial adenocarcinoma enhanced cellular

survival through the direct targeting of the anti-apoptosis

gene BAX [97]. These results suggest that the let-7 family

miRNAs play a multifaceted role in the regulation of

cellular apoptosis.

LIN28A/LIN28B and let-7 loop regulates genome instability

In normal cells, the stability and integrity of the genome

is maintained by a functional DNA damage repair

system. However, in cancer cells, this system is often de-

fective resulting in genome instability and the acceler-

ated accumulation of mutations. While these effects are

typically necessary for and contribute to cancer progres-

sion, certain mutations may also be deadly for cancer

cells or increase their sensitivity to various therapeutic

modalities [53]. In radiation-treated cancer cells, LIN28A/

LIN28B over-expression reportedly inhibits the expression

of gamma-H2AX, which is an activate form of histone

H2AX and is necessary for repair of double strand breaks

(DSBs) [98], which suggests that LIN28A/LIN28B may in-

crease genome instability by inhibiting DSB repair [85].

However, a recent study found that the expression of let-7

was decreased in colon cancer cells following radiation

exposure [99]. Another study showed that p53 directly

bound to and inhibited the expression of let-7 during this

process [99]. Moreover, the exogenous expression of let-7

increased radiation-induced cytotoxicity, which suggests

that let-7 family miRNAs may also increase the genome-

instability of cancer cells.

LIN28A/LIN28B and let-7 loop may regulate other

hallmarks of cancer

Angiogenesis is required for tumors to survive as they

need a steady supply of nutrients and oxygen as well as

a means of evacuating metabolic waste. The most

thoroughly-studied inducer of angiogenesis is vascular

endothelial growth factor (VEGF). A recent study showed

that stable expression of LIN28B in oral cancer cells pro-

moted the expression of VEGF, suggesting that LIN28A/

LIN28B may be involved in the regulation of tumor

angiogenesis [90].

To generate macroscopic tumors, cancer cells also have

to acquire the capability of replicative immortality, partially

through conquering senescence, a barrier to proliferation

and characterized as irreversible entrance into a non-

proliferative but viable state [53]. Cellular senescence in-

volves transcriptional repression of proliferation-promoting

genes mediated by the retinoblastoma (RB1)/E2F tran-

scriptional repressor complex. Interestingly, let-7 report-

edly triggers human cell senescence through modifying

chromatin at the promoters of RB1/E2F target genes,

thus repressing their transcription, which suggests that

the LIN28A/LIN28B and let-7 loop may also be in-

volved in the regulation of cancer cellular replicative

immortality [100].

Crosstalk between LIN28/let-7 loop and oncogenes in

regulating hallmarks of cancer

Transcription factor myc is a well-established oncogene.

More than 70 % of all tumors have some form of c-MYC
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gene dysregulation [101]. It has been well-known that

myc controls the proliferation of cancer cells. Recently,

it has also been shown that myc regulates the metabol-

ism, cancer related inflammation, metastasis, angio-

genesis, and genome instability of malignancies. Thus, myc

is a master regulator to control the progression of malig-

nancies via mediating crosstalk of hallmarks of cancer.

The function of myc in regulating the proliferation of

cancer cells has been well-documented. Myc directly

transactivates most of the critical positive cell cycle reg-

ulators (such as Cdks and cyclins) but block the tran-

scription of cell cycle inhibitors (such as p21). Moreover,

myc directly promotes DNA replication by facilitating

the replication initiation and hyperactivatescyclin/Cdk

complexes via activation of Cdc25 phosphatases and

Cdk activating kinase (CAK) [102]. In addition to regu-

late proliferation, the myc oncogene was shown to en-

hance glycolysis and alter amino acid metabolism in

cancer cells [103]. Myc is known to directly activate the

expression of almost all genes encoding glycolytic en-

zymes, such as lactate dehydrogenase (LDH), hexokinase

2 and enolase 1. Also, myc enhances glucose uptake via

activating the expression of the glucose transporter

GLUT1 [103, 104]. Besides glucose, cancer cells also take

up and use glutamine to accumulate biomass. Glutamine

is converted into glutamate by glutaminase (GLS), and

glutamate drives the biogenesis of acetyl-CoA through a

reverse TCA cycle. Myc promotes glutaminolysis and

the generation of glutamate through activating the ex-

pression of GLS. As previously states, the activation of

tumor associated macrophage (M2 type macrophage)

showed pro-tumorigenic behavior. The data from Pello

et al. demonstrated that the activation of tumor-associated

macrophage requires the transcription factor c-MYC,

and c-MYC controls the induction of about 45 % of

genes associated with M2 macrophage activation, such

as SCARB1, ALOX15 and MRC1; whereas myc inhibition

prevents the activation of M2 macrophages and their pro-

tumorigenic behavior [105]. Myc also regulates metastasis

of malignancies [106]. It not only promotes EMT of can-

cer cells through activation of SNAIL and HMGA2, but

also facilitates the invasion and migration of cancer cells

via directly activating transcription of a bunch of invasion

or migration-promoting factors, such as LGALS1, OPN

and RhoA [106]. It has been demonstrated that myc is es-

sential for the vasculogenesis and angiogenesis during

tumor progression [107]. The mechanisms of myc mas-

terly regulating angiogenesis was associated with that myc

directly activates the expression of VEGF, a potent angio-

genesis inducer, but indirectly inhibits the expression of

angiogenesis inhibitors thrombospondin-1 through in-

duction of miR-17-92 cluster [108]. Additionally, myc

induced genome instability has been noticed recently

[101]. Myc was revealed to affect genome amplifications,

nucleus organization [101] and impair DNA damage

repairs [109, 110].

It has been revealed that c-myc can directly bind the

promoter of LIN28B and thus elevate the production of

LIN28B and consequently inhibit the generation of let-7

family of miRNAs upon activation of MAPK signaling

Fig. 4 The LIN28/let-7/MYC feedbacks loop and the crosstalk of hallmarks of cancer
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[26]. Interestingly, over-expression of LIN28 was shown

to elevate the expression of myc via down-regulation of

let-7, which targets the MYC gene. These results sug-

gested a complicated feedback loop consisting of

LIN28B, let-7 and MYC. Since myc is one of the target

genes of let-7, let-7-mediated inhibition of myc thus in-

hibits the crosstalk of hallmarks of cancers; LIN28A/

LIN28B, of course, has the opposite effect. The LIN28/

let-7/MYC feedbacks loop and the crosstalk of hallmarks

of cancer has been shown in Fig. 4.

The expression of LIN28/let-7/MYC feedbacks is regu-

lated by many signaling pathways and oncogenes. When

Wnt signals are absent, the cytoplasm β-catenin is

degraded by APC/GSK3β/Axin complex, while Wnt li-

gands bind to Frizzled receptor, cytoplasm β-catenin is

accumulated and translocates to the nucleus where β-

catenin promotes the transcription of myc gene [111].

This implies that β-catenin may also indirectly up-

regulate LIN28 expression via elevating myc level. Re-

cently, it has been reported that β-catenin can directly

promote the transcription of LIN28B [29]. Growth fac-

tors binding to their receptors result in the activation of

RAS, which either activates ERK (MAPK signaling) or

PI3K/AKT signaling. ERK directly activates the tran-

scription of myc, while AKT indirectly promotes the

expression of myc gene via activating β-catenin activity

[111], which suggests that RAS may regulate the expres-

sion of LIN28. Indeed, RAS has been found to inhibit

the generation of let-7 by upregulating the expression of

LIN28 via MAPK activated myc expression [26]. AKT

also activates the NF-κB signaling via activating IKK,

and NF-κB has been reported to directly promotes the

transcription of LIN28B and thus inhibits the generation

of let-7 s [27]. Interestingly, RAS and AKT are the direct

targets of let-7 s respectively [60, 112]. These results

suggested that there is a complicated crosstalk between

RAS, PI3K/AKT, NF-κB, LIN28A/LIN28B and let-7 loop.

The crosstalk between these oncogenes and LIN28A/

LIN28B and let-7 loop is summarized in Fig. 5.

Conclusion and perspective
In summary, in a variety of cancer types, let-7 is most

frequently down-regulated, while LIN28A/LIN28B is most

frequently up-regulated, and the aberrant expression of

one component of theLIN28A/LIN28B and let-7 loop due

to transcriptional and/or post-transcriptional level dysreg-

ulation in human malignant tumors would result in the al-

teration of the other one. High levels of LIN28A/LIN28B

and low levels of let-7 contribute to the development of

human malignances through promoting cellular prolifera-

tion, cell death resistance, angiogenesis, metastasis, me-

tabolism reprogramming, tumor-associated inflammation,

genome instability, acquiring immortality and evading im-

mune destruction of cancer cells. The many established

studies suggest that the LIN28A/LIN28B and let-7 loop is

a master regulator of cancer development and would be a

valuable target for future cancer therapeutic strategies.
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