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Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune 
disease, which mainly afflicts women in the reproductive years. A complex interaction of 
genetics, environmental factors and hormones result in the breakdown of immune tol-
erance to “self” leading to damage and destruction of multiple organs, such as the skin, 
joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically 
involved in the misguided immune response against self-antigens. Dendritic cells, 
neutrophils, and innate lymphoid cells are important in initiating antigen presentation 
and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies 
produced by B lymphocytes and immune complex deposition in vital organs contribute 
to tissue damage. T lymphocytes are increasingly being recognized as key contributors 
to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, 
inflammatory Th17 subsets promote inflammation, while defects in regulatory T  cells 
lead to unchecked immune responses. A better understanding of the molecular defects 
including signaling events and gene regulation underlying the dysfunctional T cells in SLE 
is necessary to pave the path for better management, therapy, and perhaps prevention 
of this complex disease. In this review, we focus on the aberrations in T cell signaling in 
SLE and highlight therapeutic advances in this field.
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iNTRODUCTiON

Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease involving multiple 
organs leading to tissue damage and diverse clinical manifestations. Although the etiology of SLE is 
still unclear, a number of recent studies have advanced our understanding of disease pathogenesis. 
Clinical heterogeneity of SLE suggests that there are number of players in the immune system that 
contribute to the pathogenesis of SLE. B  cells obviously are important in autoimmune diseases 
through the production of antibodies by plasma cells and presenting antigens to T cells. However, 
there is an increasing recognition and validation of the critical role of T cells in SLE pathogenesis 
(1–5). Historically, the T helper (Th)1/Th2 balance was considered to be important in the pathogen-
esis of SLE (6, 7). However, recent understanding of the detailed mechanisms of T cell differentiation 
and subsets have elucidated the more important and complicated role of T cells in the pathogenesis 
of this autoimmune disease. Many studies have shown abnormal cytokine production and aberrant 
cell signaling in SLE T cells, which dictate not only the abnormalities in T cell differentiation but also 
the excessive activation of B cells. It is expected that these abnormal signaling molecules can serve 
as therapeutic targets for the treatment of patients with SLE. In this review, we focus on signaling 
molecules and pathways in T cells from SLE patients and lupus-prone mice, and highlight those that 
can be exploited therapeutically (Figure 1).
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FigURe 1 | Aberrant signaling in systemic lupus erythematosus (SLE) T cells. SLE T cells are characterized by multiple aberrant signaling pathways, such as 
decreased CD3ζ, activated PI3K-Akt-mTORC1 pathway, Rho associated protein kinase (ROCK), calcium/calmodulin kinase IV (CaMKIV), and protein phosphatase 
2A (PP2A). These are associated with abnormalities in T cell differentiation and production of proinflammatory cytokines such as IL-17 and decreased production of 
vital cytokines such as IL-2. Molecules aberrantly increased or decreased in SLE are indicated in red and blue boxes, respectively, and molecules that are potential 
therapeutic targets are in green circles.
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T CeLL ReCePTOR (TCR)

The TCR is a heterodimer, consisting of the TCRα and TCRβ 
chains in most cells, which recognizes antigenic peptides 
presented by the major histocompatibility complex (MHC) on 
antigen presenting cells. The TCR is assembled with a complex 
of CD3 proteins (CD3δ, ε, γ, and ζ). CD3δ, ε, and γ are members 
of the immunoglobulin superfamily and  genetically related to 
each other, whereas CD3ζ subunit is genetically and structur-
ally unrelated to the other CD3 subunits (8–10). CD3ζ contains 
three immunoreceptor tyrosine-based activation motif (ITAM) 
domains, and the phosphorylation of ITAM residues is a key 
step in the complex process of TCR signaling. Following TCR 
recognition and engagement of the MHC—antigen complex, 
the Src kinase lymphocyte-specific protein tyrosine kinase 
(Lck) phosphorylates ITAMs of CD3ζ. Phosphorylated CD3 
ITAMs recruit the spleen tyrosine kinase (Syk) family kinase 

ζ-associated protein kinase 70 (ZAP-70) via Src-homology 2 
domain, and Lck phosphorylates the bound ZAP-70, resulting 
in the activation of ZAP-70 (11). Activated ZAP-70 phos-
phorylates tyrosine residues on the adaptor  proteins linker 
for activation of T  cells (LAT) and SLP-76, which bind and 
activate phospholipase Cγ (PLC-γ). Acti vated PLC-γ hydro-
lyzes phosphatidylinositol-4,5-bisphosphate (PIP2) to produce 
inositol 1,4,5-trisphosphate and diacylglycerol, resulting in the 
calcium flux and the activation of protein kinase C (PKC) and 
Ras-mitogen-activated protein kinase pathway through the 
recruitment of Ras guanine releasing protein 1 (12, 13).

The expression levels of CD3ζ chain are significantly decreased 
in T cells from SLE patients (14–16), and this defect coupled with a 
rewiring of the TCR complex, contributes to the aberrant signaling 
phenotype of SLE T cells. In association with the reduced levels of 
CD3ζ protein in SLE T cells, the TCR–CD3 complex bears a sub-
stitution by the homologous Fc receptor common gamma subunit 
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chain (FcRγ), which is not normally expressed in resting T cells. 
Although FcRγ was identified as a component of the high affinity 
IgE receptor (FcεRI), it is now recognized as a common subunit 
of other Fc receptors (17, 18). FcRγ is upregulated upon activation 
in effector T cells (19–22). CD3ζ and FcRγ are structurally and 
functionally homologous (23). FcRγ recruits Syk instead of ZAP-
70, which is normally recruited by CD3ζ. FcRγ–Syk interaction 
is significantly stronger than CD3ζ–ZAP-70 interaction, resulting 
in the higher calcium influx into T cells (14, 21). Reconstitution of 
CD3ζ in SLE T cells restores the aberrant signaling and calcium flux 
(24). Interestingly, CD3ζ-deficient mice spontaneously develop 
multi-organ tissue inflammation (25). Therefore, the reduced 
expression levels of CD3ζ are important in the aberrant T cell sign-
aling phenotype, and understanding the mechanisms leading to its 
downregulation would help target those factors to correct the T cell 
signaling defect. A number of mechanisms for the downregulation 
of CD3ζ mRNA and protein in T cells from SLE patients have been 
elucidated. In addition to abnormalities in transcription (14, 26),  
aberrant alternative splicing (27–29) and stability (30, 31) of CD3ζ 
mRNA contribute to the decreased expression levels of CD3ζ 
 protein in T cells from SLE patients. Serine/arginine-rich splic-
ing factor 1 (SRSF1), also known as splicing factor 2/alternative 
splicing factor controls the alternative splicing (32) and contributes 
to the transcriptional activation (33) of CD3ζ, to promote normal 
expression of CD3ζ protein. Decreased SRSF1 expression in 
T cells from SLE patients correlates with worse SLE disease activ-
ity (34), and with reduced CD3ζ levels. Recently, it was reported 
that hypermethylation marks are present within the CD3ζ gene 
promoter in SLE patients (35). These findings suggest that CD3ζ 
hypermethylation may contribute to the downregulation of CD3ζ 
in T cells from SLE patients.

The serine/threonine protein phosphatase 2A (PP2A) is a 
ubiquitous serine-threonine phosphatase and composed of three 
distinct subunits; the scaffold A subunit (PP2AA), the regulatory B 
subunit (PP2AB), and the catalytic C subunit (PP2AC) (36). PP2A 
controls the expression of CD3ζ and FcRγ at the transcription 
level through the dephosphorylation of Elf-1 (37). In T cells from 
SLE patients, increased PP2Ac activity results in aberrant TCR 
signaling leading to abnormal T cell function.

PROXiMAL TCR SigNALiNg

TCR-CD3 engagement with antigens induces the phosphoryla-
tion of ITAM residues by Lck, a member of the Src kinase family. 
The expression levels of Lck are decreased in T cells from SLE 
patients (38–41). A potential mechanism for the reduced Lck 
expression is its degradation due to increased ubiquitination. 
Lipid rafts, microdomains in the plasma membrane enriched 
in cholesterol, sphingomyelin, and glycosphingolipids, play 
important role in TCR signaling (42, 43). Lck localizes to lipid 
rafts, and accumulation of lipid rafts induces the increased 
phosphorylation and signal transduction (44, 45). Freshly 
isolated SLE T cells express higher levels of ganglioside M1 and 
cholesterol, a component of raft domain, and aggregated lipid 
rafts (46–48). Atorvastatin, which reduces cholesterol synthe-
sis, restores Lck expression and lipid raft-associated aberrant 
signaling in  vitro in T  cells from patients with SLE  (49). 

Atorvastatin also reduces the production of IL-10 and IL-6 by 
activated T cells (49).

Phosphorylation of ITAM residues of the TCR-CD3 complex 
molecules following antigen recognition by the TCR leads to the 
recruitment and activation of downstream signaling molecules 
such as adaptor proteins and enzymes. As described above, 
phosphorylated ITAMs of CD3ζ serve as a recruitment site for 
tyrosine kinase ZAP-70, a member of the Syk kinase family (50). 
It is unclear whether ZAP-70 expression levels T cells from SLE 
patients are comparable to those in T cells from healthy individu-
als (51) or decreased (52).

In addition to its role in T cell signaling, Syk is also an impor-
tant molecule downstream of the B cell receptor. Expression levels 
of Syk and phospho (p)-Syk in B cells from active SLE patients are 
increased compared with controls (53). Therefore, Syk inhibitors 
are promising therapeutics. Fostamatinib, also known as R788 
is a small molecule pro-drug of the biologically active R406  
(54, 55), which selectively inhibits Syk. Inhibition of Syk by fos-
tamatinib prevents disease development including skin and renal 
involvement in MRL/lpr and BAK/BAX lupus-prone mice, and 
the discontinuation of the treatment results in extended suppres-
sion of renal disease for at least 4 weeks (56). The administration 
of fostamatinib after the development of disease also improves 
kidney damage in New Zealand black/white (NZB/NZW) lupus-
prone mice (57). Further studies are required to assess the efficacy 
of Syk inhibitors in patients with SLE.

Enhanced early T cell signaling events and heightened calcium 
responses lead to increased activation of calcineurin. Calcineurin 
dephosphorylate inactive cytoplasmic nuclear factor of activated 
T cells (NFAT) and dephosphorylated NFAT translocates to the 
nucleus. Increased recruitment of NFATc2 is observed in the 
nuclei of activated T cells from SLE patients after CD3 stimulation 
compared with those from controls, and it binds and activates the 
promoters of CD154 (CD40L) and IL2 genes (58). CD40-CD40L 
signaling is also important for the differentiation of Th17  cells 
(59). Expression of NFATc1 is elevated in lupus-prone MRL/lpr 
mice (60). Dipyridamole, an inhibitor of the calcineurin-NFAT 
pathway, reduces CD154 expression and improves nephritis in 
MRL/lpr mice (60). Calcineurin inhibitors cyclosporine and 
tacrolimus are widely used for the treatment of SLE. They are 
known to be effective in the treatment of lupus nephritis as both 
remission induction and maintenance therapy (61).

CD44-ROCK-eRM AXiS

CD44 is a cell surface glycoprotein involved in T cell activation, 
adhesion, and migration (62). Recent genome wide association 
studies (GWAS) have identified CD44 as a gene associated with 
SLE on meta-analysis of two SLE GWAS datasets by OASIS, 
a  novel linkage disequilibrium clustering method (63). It was 
also reported that the expression levels of CD44 are increased 
in T cells from SLE patients (48, 64). The CD44 gene includes 
10 variable (v) exons and there are numerous splice variants of 
CD44. CD44v3 and CD44v6 are expressed on T cells following 
activation (65, 66). The expression levels of CD44v3 and CD44v6 
are increased and correlate with disease activity in patients with 
SLE (64).
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The ezrin/radixin/moesin (ERM) proteins are important in 
linking plasma membrane proteins with actin filaments, and the 
interaction between ERM proteins and the intracellular domain 
of CD44 is associated with cell adhesion and migration func-
tion (67). T cells predominantly express ezrin and moesin (68). 
Moesin-deficient mice, which exhibit significantly lower levels 
of pERM (69), develop systemic autoimmune phenotype includ-
ing glomerulonephritis (70), and exhibit reduced CD8+CD44+ 
CD122+Ly49+ regulatory T (Treg) cells and defects in the signal 
transducer and activator of transcription (STAT) 5 activation by 
IL-15, which is known to regulate the development of CD8 Treg 
cells. The levels of ERM phosphorylation are increased in SLE 
T  lymphocytes, and forced expression of constitutively active 
ezrin enhances the adhesion and migration in normal T  cells, 
suggesting that phosphorylated ERM is responsible for increased 
adhesion and migration of SLE T cells (48).

Rho associated protein kinase (ROCK) is a serine/threonine 
kinase that phosphorylates ERM. The ROCKs play important roles 
in migration, activation, and differentiation of T cells (71). ROCKs 
are a family of two serine-threonine kinases, ROCK1 and ROCK2, 
which exhibit a high degree of identity in their kinase domains 
(72). ROCKs regulate the activity of cytoskeletal components 
including ERM and cell migration. ROCK activity is important for 
chemokine-mediated polarization and transendothelial migration 
of T cells (73). Recently, it was reported that ROCK also regulates 
the interstitial T cell migration (74). In addition to its role in T cell 
migration, ROCK2 plays an important role in the differentiation 
of Th17 cells by activation of interferon regulatory factor 4 (IRF4) 
and controls the production of IL-17 and IL-21 (75, 76). ROCK2 
signaling is also required for the induction of T follicular helper 
cells (Tfh cells) (77). Peripheral blood mononuclear cells (PBMC) 
from patients with SLE express significantly higher levels of ROCK 
activity as compared with healthy controls (78, 79).

In accordance with these results, ROCK inhibitors are candi-
dates to be used for the treatment of patients with SLE. KD025 
is a selective ROCK2 inhibitor (80), whereas Y-27632 (81), and 
Simvastatin are broad non-isoform selective ROCK inhibitors 
(82). Oral administration of KD025 to healthy subjects in a 
randomized phase I clinical trial, decreased the production of 
IL-17 and IL-21 from human T cells (76). KD025 also reduced 
the number of Tfh cells and autoantibody production in MRL/
lpr mice (77). Y-27632 decreased serum levels of IL-6, IL-1β, 
and TNF-α and increased serum levels of IL-10 and Treg cell 
proportions in spleen cells from MRL/lpr mice, whereas the 
improvement of clinical manifestations was not shown in the 
paper (83). Rozo et al. demonstrated that each Y-27632, KD025 
or simvastatin inhibits the increased ROCK activity in Th17 cells 
from SLE patients. These agents also decreased the production of 
IL-17 and IL-21 from SLE T cells or Th17 cells (79).

Fasudil, a pan ROCK inhibitor, has been approved for clinical 
use in Japan and China for the improvement of cerebral vasos-
pasm after surgery for subarachnoid hemorrhage (71, 84). Fasudil 
decreases the production of IL-17 and IL-21 and improve disease 
including production of autoantibody and proteinuria in MRL/
lpr mice (75), and NZB/W F1 mice (85). These results indicate 
that ROCK signaling is a promising therapeutic target for patients 
with SLE.

PHOSPHOiNOSiTiDe-3 KiNASeS 
(Pi3Ks) AND PHOSPHATASe AND 
TeNSiN HOMOLOg DeLeTeD ON 
CHROMOSOMe 10 (PTeN)

Class I PI3Ks, family members of lipid kinases, are classified as 
class IA and IB by activation mode. Class IA PI3Ks are activated 
by receptor tyrosine kinases including the TCR and costimula-
tors, whereas Class IB PI3Ks are activated by G protein-coupled 
receptors such as chemokine receptors (86–88). Class I PI3Ks 
are composed of catalytic subunits p110 and regulatory subunits 
p85 or p87. There are three catalytic isoforms of Class IA PI3Ks 
(p110α, p110β, and p110δ), whereas only p110γ is a PI3K Class 
IB catalytic subunit. Compared with the ubiquitous expression 
of p110α and p110β, p110δ and p110γ are selectively expressed 
in lymphocytes (89). Class I PI3Ks phosphorylate PIP2 to form 
phosphatidylinositol-3,4,5-triphosphate (PIP3). Both Class IA 
and IB PI3Ks are expressed in leukocytes and play important 
roles in homeostasis, differentiation and function of T  cells 
(88, 90, 91). PIP3 recruits phosphoinositide-dependent kinase 1 
and activates Akt.

Phosphoinositide-3 kinase plays an important role in T  cell 
differentiation (92). Transgenic mice expressing an active form of 
PI3K in T cells, p65PI3K Tg mice, develop lupus-like autoimmune 
phenotypes including kidney disease (93). Cleaved CD95 (Fas) 
ligand (CD95L/FasL) is increased in serum from patients with SLE 
and promotes cell migration through a c-yes/Ca2+/PI3K signal 
(94). Class I PI3K signaling is activated in lymphocytes of MRL/lpr 
mice, and treatment with AS605240, a PI3Kγ selective inhibitor, 
reduces the severity of glomerulonephritis and prolongs lifespan 
in these lupus-prone mice, indicating an important role of PI3K 
signaling in SLE pathogenesis (95). Activation of PI3Kp110δ is 
enhanced in T cells from SLE patients, and the activation of PI3K 
pathway is associated with the defect of activation-induced cell 
death (AICD) in SLE T cells (96). PI3Kδ inhibition by GS-9289, a 
selective inhibitor of p110δ subunit, prolongs life span and reduces 
kidney damage in MRL/lpr mice (97), and general PI3K inhibition 
by Ly294002 rescues the AICD defect in T cells from SLE patients 
(96), suggesting that PI3K inhibitors may be potentially important 
drugs to treat patients with SLE.

Phosphatase and tensin homolog deleted on chromosome 
10 dephosphorylates PIP3 and regulates the PI3K/Akt pathway 
(98). PTEN was originally reported as a tumor suppressor gene 
in 1997 (99–101), and T-cell-specific PTEN deficient mice exhibit 
increases in thymic cells and develop T-cell-derived lymphomas 
(102, 103). Treg-specific PTEN deficient mice show autoimmune 
phenotypes by loss of Treg function and stability (104, 105). On 
the other hand, the role of PTEN in Th17 cell differentiation is 
controversial. Overexpression of PTEN inhibits STAT3 activa-
tion and Th17 differentiation, and ameliorates the development 
of collagen-induced arthritis (106). By contrast, Th17-specific 
PTEN deficient mice exhibit impaired in vitro Th17 cell differ-
entiation and mitigated symptoms of experimental autoimmune 
encephalomyelitis (107). PTEN deficiency increases the produc-
tion of IL-2 and phosphorylation of STAT5, but reduces STAT3 
phosphorylation, suggesting that further studies are required to 
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determine the exact role of PTEN in T cell differentiation and the 
activation of STAT signals.

There is limited evidence demonstrating how PTEN is associ-
ated with the pathogenesis of SLE. Overexpression of miR-
148a-3p, which is increased in the glomeruli of patients with 
lupus nephritis, induces mesangial cell proliferation in glomeruli 
and reduces the expression level of PTEN (108). Also, SLE B cells 
exhibit decreased expression levels of PTEN, which inversely 
correlates with disease activity (109), whereas there is no clear 
evidence available to elucidate the role of PTEN in SLE T cells.

MeCHANiSTiC TARgeT OF RAPAMYCiN 
(mTOR) PATHwAY

Mechanistic target of rapamycin, a ubiquitous serine-threonine 
kinase, integrates environmental cues from a variety of pathways 
to regulate various cellular processes including cellular survival, 
proliferation and differentiation, and cellular metabolism 
(110, 111). mTOR is a component of two distinct complexes, 
mTOR complex (C)1 and mTORC2. The components of mTORC1 
are mTOR, regulatory protein associated with mTOR (Raptor), 
mammalian lethal with Sec13 protein 8 (mLST8) and inhibitory 
subunits proline-rich Akt substrate of 40 kDa and DEP domain 
containing mTOR-interacting protein (DEPTOR). mTORC2 also 
contains mTOR, mLST8, DEPTOR, whereas it is composed of 
rapamycin insensitive companion of mTOR (Rictor), instead 
of Raptor, and inhibitory subunits mammalian stress-activated 
protein kinase interacting protein 1 and Protor (protein observed 
with Rictor) 1/2 (112). mTORC1 phosphorylates two key effec-
tors for protein synthesis; p70S6 kinase 1 (S6K1) and EIF4E 
binding protein, whereas mTORC2 phosphorylates serum- and 
glucocorticoid-induced kinase 1, Akt (Ser473), and PKC.

Mechanistic target of rapamycin plays an important role in 
cellular metabolism (113). mTORC1 increases the translation 
of the transcription factor hypoxia-inducible factor 1α, which 
induces glycolytic genes (114). Glycolysis is elevated in CD4+ 
T  cells from lupus-prone (B6.Sle1.Sle2.Sle3 mice and B6.lpr 
mice) and SLE patients (115, 116). mTORC1 also regulates 
both general autophagy and mitophagy, which are important 
in maintaining mitochondrial function (117). T cells from SLE 
patients exhibit increased mitochondrial mass and mitochondria 
dysfunction, characterized by elevated mitochondrial transmem-
brane potential (118, 119). Increased mitochondrial metabolism 
in SLE T cells can contribute to aberrant T cell function (111). 
Along these lines, normalization of CD4+ T cell metabolism by 
mitochondrial metabolism inhibitor metformin and the glucose 
metabolism inhibitor 2-Deoxy-d-glucose reduced IFNγ produc-
tion from CD4+ T cells in vitro and suppressed autoimmunity and 
nephritis in B6.Sle1.Sle2.Sle3 mice and NZB/W F1 mice (115).

Recent studies have proven the important role of mTOR in the 
polarization of T cells. Th1 and Th17 differentiation is selectively 
regulated by mTORC1 signaling (120), and the inhibition of 
mTOR in vivo reduces the proportion of Th1 cells and Th17 cells 
in the lamina propria and mesenteric lymph nodes (121). It is also 
reported that both mTORC1 and mTORC2 are essential for Tfh 
cell differentiation and germinal cell reaction under steady state 
and after antigen immunization and viral infection (122).

The role of mTOR in Treg differentiation is complicated. 
mTORC1 signaling is constitutively active in Treg cells and its 
disruption in Treg cells leads to profound loss of Treg suppressive 
activity, although mTORC1 does not directly impact the expres-
sion of Foxp3 (123). On the other hand, both mTORC1 and 
mTORC2 suppress induced-Treg generation in vitro (120, 124). 
PP2A activation induces the inhibition of the mTORC1 pathway 
but has no effect on the mTORC2 pathway, and Treg cell-specific 
ablation of the PP2A results in a severe systemic autoimmune 
disorder through Treg dysfunction (125).

Recently, it has been recognized that activation of the mTOR 
pathway plays an important role in the pathogenesis of autoim-
mune diseases including SLE (119). mTORC1 activity is increased 
in the livers of MRL/lpr mice (126). In SLE T  cells, mTORC1 
activity is increased while mTORC2 is reduced compared with 
T  cells from healthy donors (127). Tuberous sclerosis complex 
(TSC), an autosomal dominant disorder, affects multiple organ 
systems resulting from mutations in either of TSC 1 or TSC2 
genes, which negatively regulate mTORC1 activation (128). 
Singh et al. reported a fatal lupus patient complicated with TSC, 
suggesting that mTORC1 activation led to the development of 
unusually severe SLE (129). Therefore, mTOR has become a 
therapeutic target in SLE. Rapamycin, the best-known inhibitor of 
mTOR, has been approved by the FDA to preserve renal allografts 
(111). Recent studies have uncovered the effect of rapamycin on 
SLE T cells in vitro. Increased IL-17 expression in CD4+ T cells 
from SLE patients is suppressed and Treg cells are expanded by 
rapamycin (127, 130). SLE Treg cells exhibit increased mTORC1 
and mTORC2, and IL21 stimulates mTORC1 and mTORC2 and 
blocks the differentiation of Treg cells (131). Rapamycin reduces 
both the activation of STAT3 and the number of IL-17 producing 
cells in patients with SLE (132), and decreases the severity of lupus 
nephritis and prolongs survival in MRL/lpr mice (133). There are 
reports of studies with small numbers of patients with SLE show-
ing the efficacy of oral administration of rapamycin (22, 134). 
Importantly, the deficiency of the CD3ζ chain and upregulation 
of FcεRIγ chain and Syk in T cells from SLE patients in vitro are 
reversed by rapamycin treatment (22).

N-acetylcysteine (NAC), a precursor of glutathione, is another 
inhibitor of mTOR. A randomized double blind placebo-
controlled study to assess the efficacy and the safety of NAC in 
SLE patients (135), demonstrated that 2.4 and 4.8 g daily NAC 
reduced disease activity and mTOR activity, reversed the expan-
sion of CD3+ CD4-CD8- double negative (DN) T  cells, and 
stimulated Foxp3 expression in CD4+CD25+ T  cells. There are 
other reports showing the efficacy of NAC in SLE patients with 
lupus nephritis (136, 137).

Overall, mTOR inhibitors are accepted as a novel class of 
drugs that can target both cellular signaling and metabolism. 
To establish the efficacy of mTOR inhibitors in SLE patients and 
identify patients who respond to treatment, further studies with 
larger number of patients are necessary. Recently, results of a large 
prospective open-label, phase 1/2 trial of rapamycin (Sirolimus) 
in patients with active SLE were reported (138). During the 
course of 12 months of treatment, disease activity scores reduced 
in 16 (55%) of 29 patients treated with Sirolimus. Sirolimus treat-
ment expanded Tregs and CD8+ memory T cell populations and 
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inhibited IL-4 and IL-17 production by CD4+ and DN T cells. 
Although this study is a single-arm study and placebo-controlled 
clinical trials with increased number of patients are required, the 
trial suggests that mTOR blockade may be a promising therapeu-
tic target in the treatment of SLE.

CYTOKiNe SigNALiNg

Cytokines play critical roles in the proliferation, activation, differ-
entiation, and function of T cells. The Janus kinase (JAK)–STAT 
signaling pathway following cytokine-receptor activation is one 
of the most important pathways used by multiple cytokines. 
In humans, seven STAT family members have been identified 
(STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6) 
(139). Different cytokines can activate specific STATs, and STATs 
regulate transcription of various genes including master regula-
tors of differentiated T cell subsets. STAT1/STAT4 activate Tbet, 
the transcription factor which drives Th1  cell differentiation, 
STAT6 induces GATA3 in Th2 differentiation, STAT3 activates 
RORγt which activates IL-17 and Th17 differentiation, STAT3 
induces Bcl6 transcription factor of Tfh cells, and STAT5 activates 
Foxp3 which drives Treg differentiation (140). STAT proteins 
are, therefore, essential for the establishment of lineage-specific 
enhancer landscapes of differentiating T cells (141). A number 
of studies have shown that STAT signaling plays a critical role in 
autoimmune diseases including SLE (142).

STAT1 and interferons
A number of studies have revealed that IFNs play important 
roles in lupus pathogenesis (143, 144). The phosphorylation of 
STAT1, which is activated by all types of IFNs, is increased in 
MRL/lpr mice (145, 146). Consistent with these results, it was 
observed that the expression levels of STAT1 are increased in 
leukocytes from SLE patients (147–149). The expression levels 
of miR-145, a suppressor of STAT1, are decreased in T  cells 
from SLE patients, and increased levels of STAT1 in human SLE 
T cells are associated with lupus nephritis (150). Recently, it was 
reported that the levels of STAT1 protein were increased in CD4 
T cells from SLE patients and positively correlated with disease 
activity (151), and high STAT1 phosphorylation responses were 
observed in activated Tregs, which were decreased in peripheral 
blood from SLE patients. These results suggest that STAT1 can 
be a therapeutic target in SLE. However, the involvement of 
STAT1 in SLE is complex because STAT1 deficient lupus-prone 
mice exhibit interstitial kidney inflammation associated with 
Th17 cells, by shunting to STAT3/4 activation (152).

iL-23—STAT3—iL-17 Axis
Th17  cells produce the IL-17 cytokines IL-17A and IL-17F. 
Increased numbers of Th17  cells and increased levels of IL-17 
have been found in patients with SLE and in lupus-prone mice 
(153–155). IL-17-producing cells have been found in kidney biop-
sies of patients with lupus nephritis (156) and in kidneys and spleen 
of MRL/lpr lupus-prone mice (157), and levels of IL-17 correlate 
with SLE disease activity (153). DN T cells are a key source of IL-17 
in MRL/lpr mice (156, 157), and more importantly they are present 
in the kidney tissue of patients with lupus nephritis (156).

Recent studies have uncovered aberrant mechanisms associ-
ated with Th17 differentiation and IL-17 production in SLE 
T cells. IL-23, a member of the IL-12 family, is important for the 
maintenance of Th17 cells. Serum levels of IL-23 are increased in 
patients with SLE with high disease activity (158). IL-23 induces 
the activation of STAT3 (159–161). STAT3 directly binds the pro-
moters of IL-17A and IL-17F (162), and T cell-specific deletion of 
STAT3 reduces IL-17 expression and impairs RORγt expression 
(163). STAT3 is upregulated and activated in both lupus-prone 
mice (164, 165) and T cells from patients with SLE (166, 167).

In addition to its role in Th17 differentiation, STAT3 is also 
important for the development of follicular helper T cells (Tfh 
cells), which induce the differentiation of germinal center B cells 
into memory and antibody-secreting cells (168). Tfh cells are 
expanded in both patients with SLE and lupus-prone mice (169). 
STAT3 also plays a role in the production of other cytokines 
including IL-10, which promotes B-cell proliferation and antibody 
production, and is elevated in the serum and kidneys of patients 
with SLE (167, 170–172). STAT3 was shown to promote IL-10 
expression through trans-activation and chromatin remodeling 
of the IL-10 locus in T cells from patients with SLE (167).

Therefore, STAT3 inhibitors could be promising therapeutic 
candidates to treat patients with SLE. Indeed, administration 
of a STAT3 inhibitor to MRL/lpr mice delays the onset of lupus 
nephritis in Ref. (173).

Janus kinase inhibitors are also promising therapeutic agents. 
JAK2 inhibitor AG490 suppressed the production of anti-histone/
dsDNA antibodies in short-term culture (174). Tofacitinib is an 
oral JAK inhibitor, which inhibits JAK1, JAK3 (to a less extent), 
and JAK2, and has been approved for the treatment of rheuma-
toid arthritis. Tofacitinib improves disease activity of lupus-prone 
mice including nephritis, skin inflammation, and autoantibody 
production (175, 176). Baricitinib, another JAK inhibitor, is also 
under investigation for the treatment of SLE (177).

There are some reports indicating that IL-23 contributes to 
organ inflammation independent of its contribution to Th17 
differentiation. IL-23 is important in the development of T cell-
dependent colitis (178), yet IL-23-dependent colitis does not 
require IL-17 secretion by T cells, because CD4+ CD45RBhi T cells 
cannot induce colitis in Il23a−/− Rag1−/− recipients even though 
intestinal IL-17 is unaffected by the absence of IL-23 (179). 
Furthermore, although IL-23 is not essential for the expression 
of Foxp3, IL-23 can have an indirect effect on Treg cell generation. 
IL-23 receptor deficiency in lupus-prone mice results in decreased 
production of anti-dsDNA antibodies and proliferation of DN 
T cells (180, 181). Interestingly, IL-23 not only promotes IL-17 
production but also decreases the production of IL-2 by impair-
ing the Il2 gene enhancer NFκBp65 in mice (181). Also, IL-23 
stimulation expands DN T cells from SLE patients in vitro (182). 
A phase IIa trial of Ustekinumab, targeting the p40 subunit 
common to IL-12 and IL-23, is underway in patients with SLE ( 
(183). Inhibition of IL-23 signaling by an anti-IL-23p19 antibody 
ameliorates nephritis in MRL/lpr mice (184). Tildrakizumab 
(MK-3222), a monoclonal antibody targeting the p19 subunit, is 
under investigation for treatment of moderate-to-severe chronic 
plaque psoriasis (185, 186). Another monoclonal antibody tar-
geting the p19 subunit, MEDI2070 (also known as AMG 139), 
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improved clinical activity of Crohn’s disease in a phase IIa trial 
(187), although no data are available yet in patients with SLE.

There are other factors related to Th17 differentiation in SLE 
T cells. PP2A controls various signaling pathways, and CD4 T cells 
from transgenic mice that overexpress the catalytic subunit of PP2A 
in T cells produce increased amounts of IL-17 (188). The cAMP 
response element modulator (CREM) family of transcription fac-
tors also plays an important role in the differentiation of Th17 cells 
and IL-17 production. The suppressor isoform CREMα, which is 
increased in SLE T cells, reduces CpG-DNA methylation of the 
IL-17A locus, and controls IL-17A expression (189). Inducible 
cAMP early repressor (ICER), a transcriptional repressor isoform 
of CREM, is important for Th17 cell differentiation. ICER binds to 
the IL-17A promoter and enhances accumulation of the canoni-
cal IL-17 transcription factor RORγt (190). Calcium/calmodulin 
kinase IV (CaMKIV) is activated in T cells from SLE patients and 
MRL/lpr mice (191–193), and promotes the differentiation of 
Th17 cells and IL-17 production by activating the Akt/mTOR path-
way (130). In MRL/lpr mice, genetic deletion of CaMKIV prolongs 
survival, and CaMKIV inhibitor KN-93 leads the suppression of 
nephritis and skin disease (192, 193). Moreover, as described above, 
ROCK is also associated with Th17 differentiation and production 
of IL-17 through the activation of IRF4 (75, 76).

Secukinumab and Ixekizumab are monoclonal antibodies 
targeting IL-17A while Brodalumab targets the IL-17A recep-
tor, thus inhibiting the IL-17 signaling pathway. Although the 
evidence is clear for the efficacy and safety of these agents in the 
treatment of psoriasis and ankylosing spondylitis (194), there are 
no data  showing efficacy of inhibition of IL-17 in SLE patients so 
far. Despite the overwhelming evidence that IL-17 contributes to 
lupus pathology, IL-17A deficiency in lupus-prone MRL/lpr mice 
or IL-17A neutralization in NZB/NZW mice did not affect the 
course of nephritis (195). Further work is needed to dissect the role 
of this signaling pathway in lupus pathogenesis in order to target it 
effectively.

STAT5 and iL-2
IL-2 is a key cytokine important in the proliferation, activation, 
and differentiation of T  cells (196). Importantly, IL-2 plays 
a vital role in the homeostasis of Treg cells. Mice and humans 
deficient in IL-2, IL-2Rα (CD25), or IL-2Rβ (CD122) develop 
systemic autoimmunity due to impaired Treg cells (197–203). 
Also, IL-2 negatively regulates IL-17 production in  vivo and 
in vitro (204, 205). In addition, IL-2 inhibits the differentiation 
of Tfh cells through the activation of Akt-mTORC1 signaling, 
and instead promotes the differentiation of Th1 cells (206). IL-2 
also plays a critical role in the induction of AICD, a key process 
responsible for the deletion of autoreactive cells (207, 208).

It has been known for a long time that the insufficient produc-
tion of IL-2 from T cells is one of the most important  characteristic 
features of both SLE patients and lupus-prone mice (209–211). 
The molecular mechanisms of the decreased IL-2 production 
from SLE T cells have not completely been elucidated, whereas 
a number of studies have identified several mechanisms. Various 
transcription factors binding to the IL-2 promoter affect the 
expression of IL-2. NF-κB and activator protein 1 (c-fos/c-jun 
heterodimer) are downregulated in T  cells from SLE patients, 

and linked to decreased IL-2 transcription (212–214). PP2A, 
a ubiquitous phosphatase, is increased in SLE T  cells. PP2A 
dephosphorylates cyclic AMP-responsive element-binding pro-
tein 1, which can directly bind to the IL-2 promoter and reduce 
IL-2 production (215). CaMKIV plays a role in the shortage of 
IL-2 in SLE T cells as well. CaMKIV is increased in SLE T cells, 
and phosphorylates CREM to suppress IL-2 transcription (191). 
As described above, it was recently reported that PTEN deficiency 
increases the production of IL-2 and phosphorylation of STAT5 
(107), suggesting a novel mechanism of the IL-2 deficiency in 
SLE T  cells, whereas the role of PTEN in SLE T  cells remains 
unclear. SRSF1 is a multifunctional protein, which contributes to 
the transcriptional activation of IL-2. SRSF1 levels are decreased 
in T cells from SLE patients, and overexpression of SRSF1 into 
SLE T cells, rescues IL-2 production (34). It was demonstrated 
that increased expression of miR-200a-3p is associated with the 
decreased production of IL-2 through zinc finger E-box binding 
homeobox–C-terminal binding protein 2 in MRL/lpr mice (216).

Although the molecules that contribute to the decreased 
production of IL-2 can serve as therapeutic targets for the treat-
ment of patients with SLE, strategies to restore IL-2 levels have 
been exploited. Recently, the safety and efficacy of low-dose IL-2 
therapy for patients with graft-versus-host disease (217, 218), 
type 1 diabetes (219), and cryoglobulinemia associated with HCV 
infection have been reported (220). There are uncontrolled reports 
indicating the efficacy of low-dose IL-2 therapy in patients with 
SLE (221–223). Treatment of MRL/lpr lupus-prone mice with an 
IL-2-expressing recombinant adeno-associated virus resulted in 
reduced pathology, decreased DN cell numbers and increased 
Treg cell numbers (224). Subcutaneous injection of low-dose IL-2 
on five consecutive days in a small number of patients with SLE, 
achieved decreases in SLE Disease Activity Index (SLEDAI) and 
increased peripheral Treg cells (221, 225). An uncontrolled study 
of 37 consenting patients with SLE claims that subcutaneous 
administration of recombinant IL-2 every other day for 2 weeks 
decreased SLEDAI, Th17, Tfh, and DN T cells, and increased Treg 
cell numbers (222). Further studies are required to overcome the 
challenges of maintaining IL-2 levels due to a very short half-life 
of the cytokine. It is important to note that not only the produc-
tion of IL-2 by T  cells from patients with SLE impaired, but 
also the response to exogenous IL-2 is impaired in CD4 T cells 
compared with healthy controls (226). These results suggest that 
we should also consider strategies to restore IL-2 sensitivity of 
T cells during low-dose IL-2 therapy. Indeed, the engagement of 
SLAMF3 in T cells from normal subjects and patients with SLE 
increased their IL-2-initiated signaling strength (227).

Transforming growth Factor-β (TgF-β) 
Signaling
Transforming growth factor-β has three different isoforms  
(TGF-β1, 2, and 3), and regulates cell growth and differentiation. 
TGF-β signaling is essential for the differentiation of Treg cells. 
TGF-β signaling induces the expression of Foxp3 (228), and T cell-
specific loss of TGF-β results in the defect in the differentiation of 
thymic Treg cells in mice (229). In addition, TGF-β also acts as 
a direct regulator against autoreactive T cells in part through the 
regulation of GM-CSF production (230, 231). Moreover, TGF-β 
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Molecule SLe patients Mice Targeting studies in vitro/ex vivo Pre-clinical Clinical

CD3ζ Decreased CD3ζ ko mice  
develop multi-organ 
inflammatory disease

Overexpression in SLE  
T cells restores Ca2+ flux  
and p-Tyr and IL-2 production

Calcium/calmodulin  
kinase IV (CaMKIV)

Activated Higher activity in T cells  
from MRL/lpr mice

Inhibition in SLE T cells  
decreases IL-17 production

Genetic depletion and  
inhibition with KN-93 are 
effective in MRL/lpr mice

Spleen tyrosine  
kinase (Syk)

Increased Syk is expressed  
in the skin lesion  
of MRL/lpr mice

Inhibition with R406 in  
SLE T cells

Syk inhibitor is effective in  
MRL/lpr, New Zealand black/
white, and BAK/BAX mice

Ezrin/radixin/moesin 
(ERM)

Increased 
phosphorylation

Moesin-deficient mice  
develop autoimmune 
phenotypes

Forced expression of active  
ezrin enhanced the adhesion  
and migration in T cells

Rho associated  
protein kinase (ROCK)

Higher activity in 
peripheral blood 
mononuclear cells  
from SLE patients

Higher activity in T cells  
from MRL/lpr mice

Inhibition with ROCK  
inhibitor in SLE T cells

ROCK inhibitor reduces 
autoantibodies and 
proinflammatory cytokine 
production in MRL/lpr mice

Calcineurin-nuclear  
factor of activated  
T cells (NFAT)

Increased nuclear 
recruitment/activation  
of NFATc2

Elevated NFATc1 in  
MRL/lpr mice

Calcineurin 
inhibitors  
widely used

Phosphoinositide-3  
kinase (PI3K)

PI3Kp110δ is  
activated

Activated in T cells  
from MRL/lpr mice

PI3Kδ inhibitor restores activation-
induced cell death in SLE T cells

p110δ inhibitor is effective  
in MRL/lpr mice

Mechanistic target  
of rapamycin (mTOR)

mTORC1 activity is 
increased, and  
mTORC2 is decreased

mTORC1 is  
activated in the livers  
of MRL/lpr mice

Rapamycin is effective  
in MRL/lpr mice

Rapamycin is 
effective, and 
clinical trial is 
ongoing
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also contributes to the differentiation of Th17 cells (232), whereas 
Th17  cells also can be generated without TGF-β signaling but 
with IL-6, IL-1β, and IL-23 (233).

The role of TGF-β in SLE patients remains unclear. It was 
reported that serum levels of TGF-β are decreased in active SLE 
patients (234, 235). On the other hand, some reports demon-
strated that TGF-β1 production is increased from SLE PBMC 
(236). Impaired response of peripheral blood cells to TGF-β1 in 
patients with active SLE has been reported (237). CD4+CD25-

Lag3+ Treg cells expressing early growth response gene (Egr)2 
and Egr3 exhibit immune suppressive capacity by secreting 
TGF-β3, and mice with T  cell-specific deletion of Egr2/3 mice 
develop lupus-like disease (238, 239). Further studies are required 
to uncover the role of TGF-β in the pathogenesis of lupus.

CONCLUSiON

A great effort has been made to delineate specific abnormalities 
in immune cells from SLE patients, and a dramatic expansion 
has been achieved in our understanding of cellular and molecular 
phenotypes in the pathogenesis of SLE. Here, we have reviewed 
the important features of aberrant signaling pathways in SLE 
T cells. T cells have a vital role in the immune response, whereas 
other immune cells such as B cells, dendritic cells, macrophages, 
and neutrophils cannot be ignored in the development of auto-
immune diseases. Abnormal activation of the TCR and PI3K- 
Akt-mTOR signaling pathways and various molecules including 
PP2A, CaMKIV, CD44, ROCK, mTOR, and SRSF1 affect the 

function and the differentiation of T  cells. Moreover, aberrant 
cytokine production and the activation of JAK–STAT pathways are 
also involved in the differentiation of pathogenic effector T cells and 
impaired Treg cells. In addition to the aberrant pathways described 
above, alterations in metabolism of immune cells have been recently 
recognized in patients with autoimmune diseases (113, 117).

Clinical manifestations including symptoms, severities, and clin-
ical response are extremely variable in SLE patients, indicating that 
no single mediator or pathway can account for the complex patho-
genesis. For example, decreased expression levels of CD3ζ are found 
in many but not all SLE patients (240). The more we understand and 
elucidate cellular and molecular aberrations in SLE, the more we 
realize the complexities of the pathogenesis of SLE. However, each 
aberration has the possibility to be a promising therapeutic target 
(Table 1). In addition, the analysis of various molecular phenotypes 
may contribute to patient stratification leading the development of 
more personalized strategies in SLE treatment.
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