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Abstract

Background: Epidermal growth factor receptor (EGFR) controls a wide range of cellular

processes, and altered EGFR signaling contributes to human cancer. EGFR kinase domain mutants

found in non-small cell lung cancer (NSCLC) are constitutively active, a trait critical for cell

transformation through activation of downstream pathways. Endocytic trafficking of EGFR is a

major regulatory mechanism as ligand-induced lysosomal degradation results in termination of

signaling. While numerous studies have examined mutant EGFR signaling, the endocytic traffic of

mutant EGFR within the NSCLC milieu remains less clear.

Results: This study shows that mutant EGFRs in NSCLC cell lines are constitutively endocytosed

as shown by their colocalization with the early/recycling endosomal marker transferrin and the late

endosomal/lysosomal marker LAMP1. Notably, mutant EGFRs, but not the wild-type EGFR, show

a perinuclear accumulation and colocalization with recycling endosomal markers such as Rab11 and

EHD1 upon treatment of cells with endocytic recycling inhibitor monensin, suggesting that mutant

EGFRs preferentially traffic through the endocytic recycling compartments. Importantly, monensin

treatment enhanced the mutant EGFR association and colocalization with Src, indicating that

aberrant transit through the endocytic recycling compartment promotes mutant EGFR-Src

association.

Conclusion: The findings presented in this study show that mutant EGFRs undergo aberrant traffic

into the endocytic recycling compartment which allows mutant EGFRs to engage in a preferential

interaction with Src, a critical partner for EGFR-mediated oncogenesis.

Background
Epidermal growth factor receptor (EGFR) is a prototype of
receptor tyrosine kinases (RTKs) which control critical cel-

lular responses to extra-cellular growth factors during
development and tissue homeostasis [1,2]. Importantly,
overexpression of EGFR and/or its ligands is frequently
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observed in human cancers, and recent studies have iden-
tified activating mutations in EGFR as direct determinants
of oncogenic transformation in human cancers [3]. For
example, missense mutations or small in-frame deletions
within the kinase domain, which render EGFR constitu-
tively active, are observed in a subset of patients with non-
small cell lung cancer (NSCLC) [4-6]. As mutational acti-
vation of EGFR imparts a higher sensitivity to inhibition
by EGFR-selective tyrosine kinase inhibitors (TKIs), there
is considerable interest in understanding biological mech-
anisms whereby mutant EGFRs mediate aberrant onco-
genic signaling in cancer cells.

While the normal EGFR signaling cascade is initiated by
ligand-dependent dimerization and subsequent trans-
phosphorylation of tyrosine residues within the cytoplas-
mic tail of the receptor, constitutively active mutant
EGFRs associated with human cancer are thought to
engage downstream signaling pathways in a constitutive
fashion. Indeed, biochemical analyses have demonstrated
that NSCLC-associated EGFR mutants activate signaling
through the Erk, Akt, Src and STAT pathways [4,7,8]. A
notable finding from these studies has been that certain
signaling pathways may be preferentially altered by muta-
tionally-activated EGFRs. For example, phosphoinositide
3-kinase pathway activation by mutant EGFR was found
to be highly sensitive to gefitinib, an EGFR tyrosine kinase
inhibitor [4,8]. Other studies have indicated a relatively
selective activation of Src downstream of mutant EGFRs
[7-9].

In the context of Src, use of Src inhibitors [9,10] and muta-
tion of Src-dependent phosphorylation sites within EGFR
(Y845) [7,11] have demonstrated a critical role for Src
activity in linking mutant EGFRs to activation of several
signaling pathways, to cell survival and to mutant EGFR-
mediated oncogenic transformation. However, the rea-
sons why certain signaling pathways, such as Src activity-
dependent events, might be particularly activated by
oncogenic EGFR mutants have not been addressed.

A crucial determinant of events downstream of RTKs such
as EGFR is their endocytic traffic [12]. Ligand-dependent
internalization of EGFR with subsequent sorting of the
internalized receptors for lysosomal degradation has
emerged as a major mechanism for termination of signal-
ing. While EGFR endocytosis is a pre-requisite for lyso-
somal targeting, the latter is not an invariant fate. It has
become clear that endocytosed receptors undergo a sort-
ing process whereby internalized receptors can either pro-
ceed to the lysosome through a series of vesicular fusion/
maturation events or can be recycled back to the plasma
membrane [13].

Recent studies have demonstrated that activation-depend-
ent recruitment of the Cbl family of ubiquitin ligases is a
major determinant of lysosomal targeting of EGFR
[14,15]. Cbl-dependent mono-ubiquitinylation of the
cytoplasmic tail of EGFR serves as a signal for receptor
sorting to the inner vesicles of the multi-vesicular bodies,
a key step in lysosomal targeting of RTKs [16]. Indeed,
perturbation of Cbl protein expression or function alters
the lysosomal degradation of EGFR and impacts the mag-
nitude and/or duration of downstream signals [15,17].
Additional mechanisms that function either in concert
with Cbl-dependent ubiquitin modification, such as
sprouty2, Sts-1/Sts-2 and cortactin [18-20], or independ-
ently (e.g. Sorting nexins) [21] further contribute to EGFR
downregulation through lysosomal targeting.

In contrast to EGF-induced lysosomal targeting of EGFR,
TGFα binding appears to promote the recycling of EGFR
rather than its lysosomal degradation, correlating with a
more potent signaling response [22-24]. Notably, TGFα
stimulation is associated with a more transient EGFR-Cbl
association and EGFR ubiquitinylation [22]. EGFR het-
erodimerization with ErbB2, as is often observed in tumor
cells, has also been shown to impair lysosomal degrada-
tion of EGFR apparently due to increased recycling and/or
reduced internalization [25-27].

Given the importance of endocytic trafficking in dictating
the lifespan of active EGFR and possibly the quality of
downstream signaling events, it is of considerable interest
to explore how oncogenic EGFRs traffic. In addition, the
ability of mutant EGFRs to hyper-activate certain signaling
pathways may be related to altered endocytic trafficking.
Consistent with such a possibility, NSCLC-associated
EGFR mutants appear to be impaired in their interaction
with Cbl [28,29]. More recent studies suggest that specific
endocytic routes may dictate the type of biological
responses to EGFR stimulation. For example, clathrin-
dependent endocytosis appears to be critical for prolifera-
tive responses to EGF, whereas clathrin-independent
endocytosis appears to primarily promote EGFR degrada-
tion [30]. Furthermore, NSCLC-associated EGFR mutants
have been shown to undergo EGF-independent internali-
zation when expressed in a murine pro-B cell line [31].
Intracellularly distributed EGFR was also observed in
NSCLC cell lines [32]. Here, we examined the subcellular
localization of wild-type (wt) EGFR and oncogenic EGFR
mutants in normal bronchial epithelial cells and NSCLC
cell lines. Findings reported here demonstrate that mutant
EGFRs undergo enhanced endocytic recycling and sug-
gests a role of altered endocytic trafficking in mutant
EGFR interaction with Src.
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Results
NSCLC-associated oncogenic EGFR mutants are 

constitutively endocytosed

To examine the cell surface versus intracellular (endocytic
vesicular) localization of EGFR, we carried out confocal
immunofluorescence imaging analyses of a normal bron-
chial epithelial cell line HBE135 expressing wtEGFR and
NSCLC cell lines expressing wtEGFR (H1666) or mutant
EGFRs (H1650 and HCC827 expressing EGFR Δ746-750,
HCC4006 expressing EGFR Δ747-749/A750P, and H1975
expressing EGFR L858R/T790 M) [4,33]. As anticipated
for unstimulated wtEGFR [34], EGFR was essentially
exclusively localized at the cell periphery in growth factor-
deprived, unstimulated HBE135 and H1666 cell lines,
and EGFR was only observed in punctate intracellular ves-
icles after EGF stimulation of these cells (Figure 1A). In
contrast, all of the cell lines expressing mutant EGFRs

showed predominantly punctate EGFR staining with a
much lower level of peripheral cell surface staining when
examined without EGF stimulation; the intracellular
punctate staining increased further upon EGF stimulation
(Figure 1A). Mutant EGFRs ectopically expressed in HBEC
cell lines as EGFR-GFP chimeras showed similar results,
indicating that the constitutive intracellular localization
of mutant EGF receptors observed in Figure 1 was not due
to cell type specificity (Additional File 1A). Correlating
with the immunofluorescence results, mutant EGFRs dis-
played high levels of basal phosphorylation (with further
increase upon EGF stimulation) whereas the phosphor-
ylation of wtEGFR was observed only upon EGF stimula-
tion (Figure 1B and Additional File 1B), as expected from
previous biochemical analyses [4,35].

Constitutive intracellular vesicular localization and phosphorylation of mutant EGF receptors in NSCLC cell linesFigure 1
Constitutive intracellular vesicular localization and phosphorylation of mutant EGF receptors in NSCLC cell 
lines. (A) Cells were growth factor-deprived by culturing in D3 medium (HBE135) or 0.1% FBS-containing growth medium (all 
other cell lines) for 48 hr and then either left unstimulated (- EGF) or stimulated (+ EGF) with 100 ng/ml of EGF for 30 min. 
Cells were fixed, permeabilized, and immunostained with anti-EGFR antibody 528. Images were acquired under a confocal 
microscope at the medial plane. Bar represents 20 μm. (B) Cells were growth factor-deprived as in (A) for 48 hr and either left 
unstimulated (-) or stimulated (+) with 10 ng/ml EGF for 10 min. The indicated amounts of whole cell lysate protein were used 
for immunoblotting with antibodies against the indicated proteins.
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To determine the identity of intracellular vesicles in which
the mutant EGFRs reside, we loaded cells with fluores-
cently-labeled transferrin, an early and recycling endo-

somal marker, followed by immunostaining for EGFR and
LAMP1, the latter as a late endosomal/lysosomal marker
(Figure 2A-D). Labeled transferrin loading for 30 min

Constitutively endocytosed mutant EGF receptors colocalize with early/recycling endosomal marker transferrin and late endo-somal/lysosomal marker LAMP1Figure 2
Constitutively endocytosed mutant EGF receptors colocalize with early/recycling endosomal marker transfer-
rin and late endosomal/lysosomal marker LAMP1. NSCLC cell lines H1650 (A), HCC827 (B), HCC4006 (C) or H1975 
(D) were serum-starved for 48 hr and incubated with 10 μg/ml of AF546-transferrin (Tf) (red) for 30 min at 37°C. Cells were 
fixed, permeabilized and immunostained with anti-EGFR antibody 528 (green), followed by anti-LAMP1 antibody H4A3 (blue). 
Images were acquired under a confocal microscope at the medial plane. Arrows indicate EGFR and LAMP1 colocalization, and 
arrowheads indicate EGFR and labeled-transferrin colocalization. Bars represent 10 μm. (E) Colocalization coefficients for the 
green channel (EGFR) from (A), (B), (C), and (D) were obtained using LSM510 Image Examiner software, and depicted as per-
centages of EGFR colocalizing with Tf or LAMP1.
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allowed for an examination of both early and recycling
endosomes [13]. Mutant EGFRs in all of the cell lines
examined (H1650, HCC827, HCC4006 and H1975)
colocalized both with transferrin and LAMP1, albeit at dif-
ferent levels in the steady-state conditions (Figure 2E).
This data indicates that under steady-state conditions the
mutant EGFRs are located in multiple endosomal com-
partments within the cell.

Incubation of cells at 16°C allows for continued internal-
ization from the cell surface but blocks further progres-
sion of endocytosed receptors and cargo along the
endocytic pathway and into the endocytic recycling com-
partments, resulting in enhanced accumulation in sorting
endosomes [36]. Indeed, when NSCLC cell lines were
incubated at 16°C, mutant EGFRs showed enhanced colo-
calization with labeled transferrin (Additional File 2).
This result further suggests that mutant EGFRs transit
along a transferrin-positive sorting compartment.

Treatment with monensin results in the accumulation of 

mutant EGFR, but not wtEGFR, in a perinuclear endocytic 

compartment

While our colocalization analyses demonstrated that con-
stitutively endocytosed mutant EGFRs do transit to the
lysosome, recent reports indicate that mutant EGFRs show
reduced ligand-induced ubiquitinylation and degradation
[28,37] which could promote their entry into the endo-
cytic recycling pathway; colocalization of mutant EGFRs
with transferrin (Figure 2) is consistent with this idea. To
further test this possibility, we examined the localization
of mutant EGFRs after treating cells with monensin, an
agent that has been shown to inhibit exit of internalized
receptors and other endocytic cargo from sorting endo-
somes and the endocytic recycling compartment
[34,38,39]. To demonstrate the ability of monensin to
inhibit the cargo exit from the endocytic recycling com-
partment, we first assessed its effects on transferrin recy-
cling in the NSCLC cell line H1666. As expected, labeled
transferrin exit out of the perinuclear endocytic recycling
compartment was essentially complete within the 60 min
chase period; however, monensin treatment markedly
delayed this process (Additional File 3A).

To assess the impact of recycling inhibition on mutant
versus wild-type EGFR, we carried out concurrent EGF
stimulation and labeled transferrin chase in HBE135 and
NSCLC cell lines with or without pre-incubation in mon-
ensin (Figure 3). While the relatively low uptake of trans-
ferrin in the HBE135 cell line did not permit a clear
assessment of transferrin accumulation upon monensin
treatment, all of the NSCLC cell lines, including the
wtEGFR-expressing cell line H1666, showed a marked
increase in perinuclear labeled transferrin staining in the
presence of monensin, indicating an effective inhibition

of cargo exit from the endocytic recycling compartment.
Importantly, monensin treatment induced the perinu-
clear accumulation of EGFR in H1650, HCC827,
HCC4006 and H1975 cell lines bearing mutant EGFRs,
but not detectably in HBE135 and H1666 cell lines bear-
ing the wtEGFR, either in the presence or absence of EGF
stimulation. Similar perinuclear mutant EGFR accumula-
tion was observed upon monensin treatment of cells
grown in regular growth media without any growth factor
deprivation or EGF stimulation (Additional File 3B), and
also in HBEC cell lines stably expressing ectopic mutant
EGF receptors (Additional File 3C).

NSCLC-associated mutant EGFRs have been shown to
attain sensitivity to Hsp90 inhibitor 17-(allylamino)-17-
demethoxygeldanamycin (17-AAG) which targets the
related receptor ErbB2 to degradation by enhancing its
lysosomal targeting [37,40,41]. Notably, the presence of
monensin prevented the lysosomal targeting of mutant
EGFR and its degradation induced by 17-AAG (Additional
File 4). 17-AAG treatment resulted in a decrease in mutant
EGFR staining, indicating that mutant EGFR was targeted
for degradation in the lysosomes. The 17-AAG-induced
mutant EGFR downregulation was inhibited in mon-
ensin-treated cells and intracellular punctate staining of
EGFR could still be observed. This is consistent with the
concurrent effect of monensin to block traffic towards the
lysosome [42].

To rule out the possibility that the perinuclear accumula-
tion of mutant EGFRs may reflect an overall increase in
the level of EGFR, we compared the EGFR expression lev-
els in cells treated with DMSO versus monensin (Addi-
tional File 5A). Neither the overall EGFR levels nor the
overall level of EGFR phosphorylation, as determined
using anti-phosphotyrosine (PY) and anti-phospho-EGFR
antibodies specific to pY845 and pY1173, showed a gross
change upon monensin treatment (Additional File 5A).

Mutant EGFR colocalizes with markers of endocytic 

recycling compartment

Enhanced colocalization of mutant EGFRs with transfer-
rin at 16°C together with perinuclear accumulation upon
monensin treatment suggested that mutant EGFRs prefer-
entially transit through the endocytic recycling compart-
ment. Therefore, we carried out confocal imaging studies
to assess if the constitutively endocytosed mutant EGFRs
show colocalization with endocytic recycling compart-
ment markers. Rab proteins are known to regulate various
steps in endocytic traffic: Rab4 regulates fast/direct recy-
cling from the early endosomes to the plasma membrane,
while Rab11 regulates recycling from the deeper perinu-
clear recycling compartments [13,36]. The newly identi-
fied EHD protein family also controls endocytic recycling,
with EHD1 functioning in the endocytic recycling com-
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Monensin-treatment increases the accumulation of mutant EGF receptors in perinuclear endocytic vesiclesFigure 3
Monensin-treatment increases the accumulation of mutant EGF receptors in perinuclear endocytic vesicles. 
Cells were growth factor-deprived in D3 medium (HBE135) or 0.1% FBS-containing growth medium (all other cell lines) for 48 
hr and then preincubated with DMSO or 10 μM monensin for 3 hr. Cells were loaded with 10 μg/ml AF546-Tf (Tf) (red) for 45 
min at 37°C (with continuation of DMSO or monensin treatment). This was followed by incubation with (+ EGF) or without (- 
EGF) 10 ng/ml EGF for 30 min with continued DMSO or monensin treatment. Cells were fixed, permeabilized, and immunos-
tained with anti-EGFR antibody 528 (green). Images were acquired under a confocal microscope at the medial plane. Bars rep-
resent 20 μm.
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partment and EHD3 in the early endosomes [43,44]. The
mutant EGFR-expressing cell line HCC827 was transiently
transfected with expression vectors coding for GFP-tagged
Rab11, Rab4, EHD1 or EHD3; after 48 hr, the cells were
fixed and immunostained with an anti-EGFR antibody
(Figure 4A). Partial colocalization of mutant EGFR with
markers of early and recycling endosomes was observed
(Figure 4A), and notably, enlarged GFP-positive vesicles
were observed surrounding the EGFR-positive punctate
structures (arrows), especially in cells transfected with
Rab4-GFP. Monensin treatment further increased the
appearance of these enlarged vesicles for all of the early
and recycling endosomal markers as well as colocalization
between these markers and mutant EGFR (Figure 4B and
4C), consistent with the monensin-induced block of exit
from the endocytic recycling compartments. The confocal
colocalization studies therefore further support the con-
clusion that mutant EGFRs traffic through the endocytic
recycling compartments.

Src association with mutant EGF receptors in the 

endocytic recycling compartment

Constitutive localization of mutant EGFRs in the endo-
cytic recycling compartments (Figure 4) could allow pref-
erential interaction of mutant EGFRs with certain
signaling pathways. A particular EGFR-relevant signaling
partner in this regard is Src, which is known to localize on
endocytic vesicles including the endocytic recycling com-
partment [45,46]. Furthermore, mutant EGFRs show
increased constitutive association with Src, and Src-EGFR
interaction plays an important role in mutant EGFR-
induced oncogenic transformation [7,9,47]. Therefore, we
examined the relative subcellular localizations of EGFR
and Src in NSCLC cell lines that were serum-starved and
then left untreated or treated with EGF for 10 min (Figure
5A). As observed above (Figure 1A), EGF-deprived H1666
cells (wtEGFR) showed predominantly surface-localized
EGFR staining, whereas HCC827 cell line showed consti-
tutive localization of mutant EGFR in intracellular vesi-
cles. Anti-Src staining showed a predominantly
perinuclear vesicular staining, consistent with previous
reports [45,46]. While wtEGFR was internalized upon
EGF stimulation of H1666 cells as expected, we observed
very little, if any, colocalization between EGFR and Src
under these conditions. In contrast, constitutively inter-
nalized mutant EGFR in the HCC827 cell line exhibited
enhanced colocalization with Src when compared to
wtEGFR in the H1666 cell line (arrows, Figure 5A and
5C). Enhanced colocalization between phospho-EGFR
and phospho-Src was also observed in the HCC827 cell
line, indicating that constitutive active mutant EGFR inter-
acts with activated Src in endosomal compartments (Fig-
ure 5B and 5D). Similar results were seen with the H1650,
HCC4006 and H1975 cell lines (data not shown).

As monensin treatment increased the mutant EGFR accu-
mulation in the perinuclear endocytic vesicles (Figure 3),
we examined the extent of EGFR and Src colocalization in
cells treated with monensin. Treatments were carried out
as in Figure 3, and cells were then immunostained for
EGFR and Src (Figure 6A). Monensin treatment increased
the perinuclear accumulation of mutant but not wild-type
EGFR, similar to results in Figure 3. Notably, Src showed
an enhanced colocalization with mutant EGFRs that accu-
mulated in perinuclear vesicles; quantification of the rela-
tive colocalization (as a colocalization coefficient of Src)
confirmed the enhancement upon monensin treatment
(Figure 6B). Thus, mutant but not wild-type EGFR dis-
played enhanced colocalization with Src in endocytic ves-
icles, and such colocalization was further enhanced by
inhibiting the exit of EGFR from the endocytic recycling
compartment with monensin.

Monensin treatment enhances the mutant EGFR-Src 

association

In view of the increased colocalization of mutant EGFR
and Src in monensin-treated cells, and recent findings that
mutant EGFRs constitutively complex with Src [7,48], we
asked if monensin-induced block of EGFR exit from the
endocytic recycling compartment influences mutant
EGFRs and Src association. Cells processed essentially as
for confocal imaging in Figure 6 were used to carry out co-
immunoprecipitation analyses to assess EGFR and Src
association (Figure 7). In parallel with the increased
mutant EGFR and Src colocalization seen in Figure 6, the
amounts of Src that co-immunoprecipitated with mutant
EGFRs, but not with wtEGFR, were enhanced in the pres-
ence of monensin. Similar results were seen when cells
were grown and treated with monensin in regular growth
media (data not shown).

Discussion
The outcome of RTK signaling involves a balance between
various stimulatory and inhibitory mechanisms which in
turn determine both the strength and duration of signals
that are transmitted through networks of signaling cas-
cades [49]. In this respect, endosomal sorting plays a key
role in the regulation of EGFR signaling [12].

NSCLC-associated kinase domain mutations in EGFR pro-
mote its constitutive activation, and a number of studies
have focused on delineating the signaling pathways
whose activation contributes to oncogenesis [3]. The out-
come of EGFR signaling is intimately linked to its endo-
cytic traffic, which is normally triggered by ligand-induced
dimerization [50] and phosphorylation-dependent as
well as phosphorylation-independent recruitment of
endocytic machinery components [51,52]. The nature of
endocytic trafficking of NSCLC-associated EGFR mutants
and any relationship of altered traffic with oncogenic sig-
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Mutant EGF receptor colocalization with endocytic recycling compartment markersFigure 4
Mutant EGF receptor colocalization with endocytic recycling compartment markers. HCC827 NSCLC cell line 
was transiently transfected with Rab11-GFP, Rab4-GFP, EHD1-GFP or EHD3-GFP constructs. After 48 hr, cells were either 
left untreated (A) or treated with 10 μM monensin for 2 hr (B). Cells were fixed, permeabilized, and immunostained with anti-
EGFR antibody (528) (red). Images were acquired under a confocal microscope at the medial plane. Arrows indicate mutant 
EGFR colocalization with GFP-tagged proteins (green). Bars represent 20 μm. (C) Colocalization coefficients for the green 
channel (GFP) were obtained using LSM510 Image Examiner software and normalized to the colocalization coefficient from 
Rab11-GFP without any treatment (none).
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naling remain poorly understood. Here, we have used
NSCLC cell lines to demonstrate that oncogenic mutant
EGFRs, but not wtEGFR, are constitutively endocytosed
(Figure 1). Mutant EGFRs were found to localize in early
and recycling endosomes based on colocalization with
labeled transferrin (Figure 2) and GFP-tagged Rab4,
Rab11, EHD1 and EHD3 proteins (Figure 4). Notably,
blocking the exit of endocytosed receptors from endocytic
recycling compartments with monensin led to a marked
accumulation of mutant EGFR in a perinuclear endocytic
compartment (Figure 3) and increased its colocalization
with markers of sorting and endocytic recycling compart-
ments (Figure 4B). Thus, these findings strongly suggest
that mutant EGFRs transit through the endocytic recycling
compartment.

Importantly, enhanced EGFR-Src as well as activated
EGFR/phospho-Src colocalization was observed in endo-
cytic vesicles of a mutant EGFR-expressing cell line (Figure
5). Furthermore, monensin treatment increased the colo-
calization of mutant EGFRs with Src in the perinuclear
endosomal compartment (Figure 6) and enhanced the

biochemical association between mutant EGFRs and Src
(Figure 7). Given the emerging evidence for a critical role
of the constitutive engagement of Src-mediated signaling
pathways in mutant EGFR-dependent oncogenesis
[7,9,10], our results suggest a potentially important role
of altered endocytic trafficking in the oncogenic behavior
of mutant EGFRs.

In view of the critical role of ligand-induced internaliza-
tion and lysosomal targeting in limiting EGFR signaling,
the constitutive activation of downstream signaling path-
ways by NSCLC-associated mutant EGFRs has generated
interest into potential alterations of endocytic trafficking.
For example, given the critical role for the Cbl-family of
ubiquitin ligases in orchestrating EGFR ubiquitinylation
and subsequent lysosomal sorting, it is notable that a
recent analysis of NSCLC-associated mutant EGFRs
showed reduced Cbl-dependent lysosomal downregula-
tion [28,29,53]. However, another study in an NSCLC cell
line reported that mutant EGFR traffics into lysosomes
upon EGF stimulation [54]. The present study extends
beyond these observations by demonstrating that mutant

Mutant EGF receptors colocalize with Src in NSCLCcell linesFigure 5
Mutant EGF receptors colocalize with Src in NSCLCcell lines. Cells were growth factor-deprived in 0.1% FBS-con-
taining growth medium for 48 hr and then either left unstimulated (- EGF) or stimulated (+ EGF) with 100 ng/ml of EGF for 10 
min. Cells were fixed, permeabilized, and immunostained with (A) anti-EGFR antibody 528 (green) followed by anti-Src anti-
body SRC2 (red) staining or (B) anti-phospho-EGFR antibody (red) followed by anti-phospho-Src antibody (green). Images 
were acquired under a confocal microscope at the medial plane. Arrows indicate EGFR and Src colocalization. Bars represent 
20 μm. (C) Colocalization coefficients for the green channel (EGFR) from (A), and (D) colocalization coefficients for the red 
channel (pEGFR) from (B) were obtained using LSM510 Image Examiner software and normalized to the colocalization coeffi-
cient from unstimulated (- EGF) H1666 cells.
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EGFRs traffic through the endocytic recycling compart-
ment. Our observations, that mutant EGFRs localize to
the lysosomes (Figure 2) and block of their endocytic tran-
sit by low temperature incubation (Additional File 2) or
monensin treatment led to reduced degradation (Addi-
tional File 4), are consistent with the idea of mutant
EGFRs trafficking into lysosomes. However, our observa-
tions do not contradict the defective ubiquitin-dependent
trafficking of mutant EGFRs reported by Shtiegman et al.,
and others [28,29,37], as our studies did not address this
issue.

Whether the increased transit through the endocytic recy-
cling compartment is an intrinsic property of mutant
EGFRs or is a secondary consequence of their reportedly
reduced interaction with Cbl and ubiquitin-mediated lys-
osomal sorting machinery are important questions that
will need to be addressed through appropriate manipula-
tions in NSCLC cells as well as the use of ectopic gene
expression approaches. In this regard, it is noteworthy
that conditions that prevent EGFR interaction with Cbl or
its Cbl-dependent ubiquitinylation lead to a more pro-
longed stay of EGFR in early/recycling endosomal com-

Monensin treatment enhances mutant EGFR-Src colocalization in endocytic vesiclesFigure 6
Monensin treatment enhances mutant EGFR-Src colocalization in endocytic vesicles. (A) Cells were either growth 
factor-deprived or left in regular growth medium for 48 hr and incubated with DMSO or 10 μM monensin for 3 hr. Cells were 
fixed, permeabilized, and immunostained with anti-EGFR antibody 528 (green) followed by anti-Src antibody SRC2 (red) stain-
ing. Images were acquired under a confocal microscope at the medial plane. Bars represent 20 μm. (B) Colocalization coeffi-
cients for the red channel (anti-Src staining) were obtained using LSM510 Image Examiner software and normalized to the 
colocalization coefficient from DMSO controls.
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partments [15,55,56]. Physiologically, ligands such as
TGFα that promote EGFR recycling rather than lysosomal
degradation appear to engage the Cbl and ubiquitin
machinery more transiently [22,57]. In addition to altered
ubiquitinylation of mutant EGFRs, other defects in their
signaling or protein-protein interactions could contribute
to their propensity to enter the endocytic recycling com-
partment. For example, deubiquitinylating enzymes
[58,59] as well as other factors (e.g. secretory membrane
carrier protein SCAMP3) can regulate EGFR recycling ver-
sus lysosomal degradation [13,60]. Future studies to elu-
cidate whether or not mutant EGFRs might aberrantly
interact with such proteins will therefore be of considera-
ble interest.

NSCLC-associated mutant EGFRs (both gefitinib-sensitive
deletion mutants and gefitinib-resistant L858R/T790 M
mutant) are constitutively active and constitutively endo-
cytosed (Figure 1 and Additional File 1). Recent studies
have demonstrated that NSCLC-associated kinase domain
mutations promote constitutive dimerization of EGFR
[61]. As dimerization is critical to EGFR endocytosis and
may promote internalization in a kinase-dependent [2] or

kinase-independent [50,62] manner, constitutive dimeri-
zation may play an important role in the transit of mutant
EGFRs into the endocytic recycling compartment. In this
context, our observations using kinase inhibitors indicate
that the kinase activity of EGFR is not essential for the con-
stitutive endocytic localization of mutant EGFR (Addi-
tional File 6A). The intracellular localization of mutant
EGFR was also unaffected by Src inhibitor PP2, indicating
that there may be another determinant of constitutive
endosomal localization of mutant EGFRs.

Transit of the constitutively-active mutant EGFR through
the endocytic recycling compartment is likely to be bio-
logically relevant. Analyses of EGFR as well as other RTKs
have demonstrated that endocytic recycling, in addition
to returning the internalized receptors for additional
rounds of ligand-binding and signaling, can directly par-
ticipate in signaling events [12]. For example, inhibition
of EGFR internalization reduced the level of activation of
Akt and MAPK downstream of the receptor [30,63]. Nota-
bly, initiation of EGFR activation directly at the level of
endosomes has been shown to be sufficient to activate Erk
and Akt, as well as promote cell survival and proliferation
[34,64]. However, monensin treatment did not enhance
Erk, Akt and STAT3 phosphorylation levels (Additional
File 5B). The lack of monensin effect on downstream sig-
naling is likely to reflect its ability to affect multiple endo-
cytic compartments and/or its effects on other cellular
processes [38,42,65]. Nevertheless, our observations of
EGFR and Src colocalization and association are consist-
ent with a role of signaling at the level of the endocytic
recycling compartment in the biology of mutant EGFR.

Our analyses of mutant EGFR recycling in the context of
Src were based on prior evidence that Src-dependent sign-
aling is critical for EGFR-mediated oncogenesis; this has
been established in vitro using Src inhibitors as well as
mutational approaches [7], and Src is overexpressed or
hyperactive in NSCLC as well as other cancers where EGFR
mutations or overexpression have been implicated in
oncogenesis [9,10]. Importantly, Src has been shown to
localize to endosomes [46], and recent studies have
shown that Src specifically localizes on recycling endo-
somes [45,66]. Thus, it appears plausible that mutant
EGFRs, by virtue of their transit through the endocytic
recycling compartment, may gain enhanced access to Src,
providing a potential explanation for the higher level of
constitutive Src-mutant EGFR association [7,48]. Confo-
cal image analyses indeed support this possibility, as Src
and mutant EGFRs show a detectable colocalization (ver-
sus essentially little detectable colocalization of Src with
wtEGFR) (Figure 5); moreover, this colocalization was
further increased by inhibiting the exit of EGFR from the
endocytic recycling compartment using monensin (Figure
6). Also, a predominant pool of activated EGFR colocal-

Monensin treatment enhances the mutant EGFR-Src associa-tionFigure 7
Monensin treatment enhances the mutant EGFR-Src 
association. Cells were growth factor-deprived for 48 hr 
and incubated with DMSO (D) or 10 μM monensin (M) for 3 
hr. 1 mg aliquots of cell lysate proteins were immunoprecipi-
tated with anti-EGFR antibody 528 and resolved together 
with 50 μg aliquots of whole cell lysates followed by immuno-
blotting with antibodies against the indicated proteins. The 
levels of EGFR and Src bands on blots were quantified using 
densitometry and immunoprecipitated Src relative to immu-
noprecipitated EGFR levels (Src/EGFR) were determined 
using the ImageJ software. Src/EGFR ratios in monensin-
treated cells versus DMSO-treated cells are noted.
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ized with activated Src (Figure 5), and Src inhibitor
slightly decreased the mutant EGFR-Src association (addi-
tional File 6), which suggest that Src activity might be
important for colocalization and association with mutant
EGFR. In a different study, a Src inhibitor did not inhibit
mutant EGFR-Src association [48]. The difference between
the two studies may be due to different types of inhibitor
and/or cell lines tested.

Rather interestingly, monensin treatment led to a higher
level of biochemically detectable EGFR-Src complexes
(Figure 7). This, together with higher constitutive Src-
mutant EGFR association, suggests the likelihood that Src-
mutant EGFR complexes are either formed or more stable
in the endocytic recycling compartment. As Src-dependent
signaling is critical for mutant EGFR-mediated oncogenic
transformation [7], these findings suggest that altered traf-
ficking of mutant EGFRs into the endocytic recycling com-
partment may contribute to their oncogenic behavior.
Further studies to perturb the endocytic recycling of onco-
genic EGFR mutants should help address the biological
role of the altered endocytic trafficking identified here.

It has been reported that a gefitinib-resistant version of
H1650 NSCLC cell line showed increased internalization
of EGFR upon ligand stimulation when compared to the
parental gefitinib-sensitive cell line [67]. Notably, the
wtEGFR in the gefitinib-resistant cell line did not undergo
ligand-induced lysosomal sorting, even though the recep-
tor was found in endocytic vesicles [54]. In our analyses,
we observed a comparable pattern of subcellular localiza-
tion and endocytic trafficking of gefitinib-sensitive (dele-
tion) and gefitinib-resistant (L858R/T790 M) EGFR
mutants (Figures 1, 2, 3 and Additional Files 2 and 3).
Similarly, both gefitinib-resistant H1975 and gefitinib-
sensitive H1650 cell lines showed delayed internalization
of labeled EGF in comparison to the wtEGFR-expressing
cell line H358 [28]. However, there were subtle differ-
ences among different cell lines harboring mutant EGFRs
in the perinuclear accumulation of the mutant EGFR
induced by monensin in the regular growth condition
(Additional File 3B); the perinuclear accumulation of
EGFR was dramatic in HCC827 and HCC4006, interme-
diate in H1650, and not readily apparent in H1975. Sim-
ilarly, quantitative assessments of EGFR localization
under steady-state conditions (Figure 2E) suggested differ-
ences between different NSCLC lines: the mutant EGFR is
evenly divided between Tf-positive and LAMP1-positive
vesicles in H1650, HCC827 and HCC4006 showed much
more mutant EGFR in LAMP1-positive than in Tf-positive
vesicles; and gefitinib-resistant mutant EGFR in H1975
colocalized more with Tf than with LAMP1. In addition,
H1650 cell line displayed more sensitivity to EGF than
other mutant EGFR-expressing cell lines (Figure 1 and
Additional File 5A). Whether EGFR expression levels, the

nature of EGFR mutations, and/or activities of EGFR regu-
latory factors such as Src, Cbl or PTEN, which has been
shown to be absent in the H1650 cell line [68], might con-
tribute to the differences in the localization of mutant
EGFR and their endocytic trafficking remain open ques-
tions. While it is possible that altered endocytic trafficking
of EGFR relates to gefitinib resistance, extensive future
studies are needed to determine if this is the case.

Conclusion
In summary, the results presented here show that mutant
EGFRs in NSCLC cell lines constitutively transit through
the sorting and endocytic recycling compartments.
Impairment of EGFR exit from the endocytic recycling
compartment enhances the mutant EGFR colocalization
with Src in the endocytic recycling compartments and
increases the Src-mutant EGFR association. Given the crit-
ical role of Src-mediated signaling in mutant EGFR-medi-
ated oncogenic transformation, our findings suggest a
potentially important role for altered endocytic trafficking
in the biology of NSCLC-associated EGFR mutants.

Methods
Constructs

The EHD1-GFP and EHD3-GFP expression constructs in
the pcDNA-DEST47 vector were described previously
[43]. The Rab4-GFP and Rab11-GFP expression constructs
in the EGFPN1 vector [69] were provided by Dr. Victor
Hsu (Brigham and Women's Hospital, Harvard Medical
School, Boston, MA). The lentiviral expression vectors
pLenti6-V5-UbC GFP, wtEGFR-GFP, EGFR L858R-GFP,
and EGFR Δ746-750-GFP were generated using the Gate-
way cloning technology (Invitrogen, Carlsbad, CA). EGFR
was PCR amplified from pcDNA 3.1 EGFR using primers
CACCATGCGACCCTCCGGGACGG and TGCTC-
CAATAAATTCACTGCTTTG, and the amplified fragment
was inserted into pENTR/SD/D-TOPO vector using the
pENTR/SD/D-TOPO cloning kit (Invitrogen). LR recom-
bination reaction was performed to insert EGFR into the
pDEST47 vector to generate an EGFR-GFP chimera. EGFR-
GFP was PCR amplified using primers CACCATGCGAC-
CCTCCGGGACGG and TTATTTGTAGAGCTCATCCAT-
GCC, inserted into the pENTR vector, and finally into the
pLenti6-V5-UbC vector. PLenti6-V5-UbC EGFR L858R-
GFP, and EGFR Δ746-750-GFP were generated using the
QuikChange II XL Site-Directed Mutagenesis Kit (Strate-
gene, La Jolla, CA) as previously described [7]. All PCR
reactions were performed using the QuikChange II XL
Site-Directed Mutagenesis Kit following the manufac-
turer's instructions.

Human bronchial epithelial cell line immortalization and 

lentiviral transfection

Primary normal bronchial epithelial cells (HBEC)
obtained from a bronchoscopic biopsy sample were pro-
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vided by Dr. Ravi Salgia (University of Chicago). Cells
were transduced with retroviral supernatants of human
papilloma virus (HPV) E6 and E7 and selected for several
weeks to generate an immortalized human bronchial epi-
thelial cell (HBEC) cell line. Lentiviral supernatants gener-
ated as per Gateway cloning technology protocol were
used to make the HBEC cell line stably expressing pLenti6-
V5-UbC vector, GFP, wtEGFR-GFP, EGFR L858R-GFP, or
EGFR Δ746-750-GFP.

Cell culture and transient transfection

Immortalized bronchial epithelial cell line HBE135
(ATCC, Manassas, VA) and HBEC were grown in the
DFCI-1 medium described in Band et al. [70]. NSCLC
tumor cell lines H1666, H1650, HCC827, HCC4006 and
H1975 (ATCC) were grown in RPMI-1640 medium (Inv-
itrogen, Carlsbad, CA) containing 5% fetal bovine serum
(FBS, Hyclone Inc., Logan, UT), 20 mM HEPES (pH 7.35),
1 mM sodium pyruvate, 1 mM each of nonessential
amino acids, 100 units/ml penicillin, 100 μg/ml strepto-
mycin, 2 mM L-Glutamine and 55 μM 2-Mercaptoethanol
(all supplements were from Invitrogen) at 37°C in 5%
CO2. Cells were transiently transfected with the indicated
plasmids using the FuGene6 Transfection Reagent (Roche,
Indianapolis, IN) following the manufacturer's protocol.

Antibodies and other reagents

The following antibodies were obtained from commercial
sources: rabbit polyclonal (pAb) anti-EGFR (1005), pAb
anti-phospho-AKT (pAKT1/2/3) (Ser 473), pAb anti-
phospho-Erk 1/2 (Thr 202/Tyr 204), pAb anti-Erk1 (K-
23), and pAb anti-Src (SRC 2) were from Santa Cruz Bio-
technology (Santa Cruz, CA); mouse monoclonal (mAb)
anti-phospho-EGFR (activated form) was from BD Bio-
sciences (San Jose, CA); pAb anti-phospho-Src (Tyr416),
pAb anti-phospho-EGFR (Tyr1173), pAb anti-STAT3,
Rabbit monoclonal anti-phospho-STAT3 (Tyr705), and
pAb anti-phospho-EGFR (Tyr845) were from Cell Signal-
ing Technology (Danvers, MA); mAb anti-β actin (Clone
AC-15) was from Sigma-Aldrich (St Louis, MO); mAb
anti-LAMP1 (H4A3) was from Developmental Studies
Hybridoma Bank (Iowa City, IA); mAb anti-EGFR (clone
528; ATCC) was Protein G purified from hybridoma
supernatants. Purified anti-phosphotyrosine mAb 4G10
[71] was provided by Dr. Brian Druker (Oregon Health
Science University, Portland, OR). Purified mouse EGF,
human holo-Transferrin, and monensin were from
Sigma-Aldrich. EGFR inhibitor, Erlotinib (Tarceva), was
obtained from the Hospital Pharmacy. Src inhibitor PP2
was from Calbiochem (San Diego, CA). Hsp90 inhibitor
17-AAG was from Biomol International (Plymouth, PA,
U.S.A.).

Preparation of cell lysates, SDS-PAGE and immunoblotting

Cells at 50-60% confluence were incubated in normal
growth medium, growth factor-deprived D3 medium
(HBE135) [72] or 0.1% FBS-containing medium (H1666,
H1650, HCC827, HCC4006 and H1975) for 48 hr. For
EGF stimulation, cells preincubated in growth factor-defi-
cient medium were either left as such or EGF was added at
10 ng/ml 10 min before cell lysis. Cell lysates were pre-
pared in cold Triton X-100-based lysis buffer [7], and SDS-
PAGE and immunoblotting were performed as previously
described [7].

Immunoprecipitation

Cells were grown, EGF stimulation performed, and cell
lysates prepared as above with the exception that the lysis
buffer contained 0.25% NP-40 (instead of 0.5% Triton X-
100), 50 mM Tris (pH 8.0), and 100 mM sodium chlo-
ride. Cell lysate aliquots were incubated with anti-EGFR
(528) antibody, and immune complexes were captured
using Protein A-Sepharose beads (GE Healthcare, Piscata-
way, NJ). Subsequent SDS-PAGE and immunoblotting
were performed as described above.

Immunofluorescence microscopy

Cells were plated on glass coverslips (VWR, Batavia, IL) at
50-60% confluence and incubated in normal growth
medium or growth factor-deficient medium for 48 hr.
Cells were either left unstimulated or stimulated with EGF
(10 ng/ml) for 30 min, washed in phosphate buffered
saline (PBS, Cellgro, Manassas, VA), fixed in 3.7% formal-
dehyde (Sigma) in PBS for 20 min at RT, blocked in 2%
FBS/PBS/0.02% sodium azide at 4°C for 24 hr, and per-
meabilized in immunostaining buffer with 0.05%
Saponin (Sigma) and 0.2% BSA (Sigma) in PBS for 15
min. Cells were stained with primary antibodies diluted
in immunostaining buffer for 1 hr and with Alexa 488- or
Alexa 647-conjugated goat anti-mouse or goat anti-rabbit
secondary antibodies (Invitrogen) for 1 hr. Coverslips
were mounted on microscope slides with VECTASHIELD®

Hard Set™ Mounting Medium with DAPI (Vector Labora-
tories, Burlingame, CA). Confocal fluorescence images
were obtained with a LSM510 fluorescence confocal
microscope (Carl Zeiss, Thornwood, NY) under a 63× oil
immersion lens. Colocalization coefficients for each chan-
nel were calculated using the LSM510 Image Examiner
software. Colocalization parameters were either set auto-
matically by the software or thresholds were set using the
scattergrams. Colocalization coefficients from at least
three images were obtained, and averages were either rep-
resented as percentages or normalized and plotted with
standard deviation as error bars.

Monensin Treatment

For analyses involving immunoblotting or immunopre-
cipitation, cells were starved in D3 or 0.1% FBS-contain-
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ing media and preincubated in DMSO (0.1%) or 10 μM
monensin for 4 hr. Cells were then continued as such or
EGF (10 ng/ml) was added for 30 min followed by cell
lysis. For immunofluorescence analyses, starved cells were
preincubated in DMSO or monensin as above and loaded
with 10 ug/ml of Alexa Fluor 546-conjugated transferrin
(Invitrogen) for 45 min. Cells were then washed twice in
PBS and either left unstimulated or stimulated with EGF
(10 ng/ml) for 30 min. Cells were immunostained as
described above.

Abbreviations
EGF: Epidermal growth factor; EGFR: Epidermal growth
factor receptor; LAMP1: Lysosomal-associated membrane
protein 1; NSCLC: Non small cell lung cancer; RTK:
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kinase inhibitor; WT: Wild-type.
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Additional material

Additional file 1

Constitutive intracellular vesicular localization of mutant EGF recep-

tors stably expressed in HBEC cell line. (A) Cells were growth factor-

deprived by culturing in D3 medium for 48 hr and then treated with 100 

ng/ml EGF for indicated time periods. Cells were fixed, and GFP images 

were acquired under a confocal microscope at the medial plane. Bar rep-

resents 20 μm. (B) Cells were growth factor-deprived as in (A) for 48 hr 

and either left unstimulated (-) or stimulated (+) with 100 ng/ml EGF 

for 10 min. The indicated amounts of whole cell lysate protein were used 

for immunoblotting with antibodies against the indicated proteins. Exog-

enous EGFR-GFPs (EGFR-GFP) and endogenous EGFR (endogenous 

EGFR) are indicated with arrows.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2121-10-84-S1.TIFF]

Additional file 2

Enhanced colocalization of mutant EGF receptors with labeled trans-

ferrin upon incubation of cells at 16°C. Cells were growth factor-

deprived in 0.1% FBS-containing growth medium for 48 hr and preincu-

bated at 37 or 16°C for 2 hr. Cells were loaded with 10 μg/ml AF546-Tf 

(Tf) (red) for 45 min. This was followed by incubation in growth factor-

deprived medium with (+ EGF) or without (- EGF) 10 ng/ml EGF for 30 

min. Cells were fixed, permeabilized, and immunostained with anti-

EGFR antibody 528 (green). Images were acquired under a confocal 

microscope at the medial plane. Bars represent 10 μm.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2121-10-84-S2.TIFF]

Additional file 3

Monensin treatment inhibits the exit of labeled transferrin and 

mutant EGFR from the perinuclear endocytic recycling compartment. 

(A) H1666 cells were growth factor deprived for 48 hr and preincubated 

with DMSO or 10 μM monensin for 3 hr. Cells were loaded with 10 μg/

ml AF546-Tf (Tf) (red) for 30 min at 37°C and then chased in the pres-

ence of 2 mg/ml holo-transferrin for 0, 30 or 60 min in the continued 

presence of DMSO or 10 μM monensin. Cells were fixed, permeabilized 

and immunostained with anti-LAMP1 antibody (green). Images were 

acquired under a confocal microscope at the medial plane. (B) Cells were 

grown in regular growth medium and preincubated with DMSO or 10 

μM monensin for 3 hr. Cells were loaded with 10 ug/ml AF546-Tf (Tf) 

(red) for 45 min at 37°C (with continuation of DMSO or monensin 

treatment). This was followed by incubation with regular growth medium 

for 30 min with continued DMSO or monensin treatment. Cells were 

fixed, permeabilized, and immunostained with anti-EGFR antibody 528 

(green). Images were acquired under a confocal microscope at the medial 

plane. (C) HBEC cells stably expressing mutant EGF receptors were 

growth factor-deprived in D3 medium for 48 hr and then preincubated 

with DMSO or 10 μM monensin for 3 hr. Cells were incubated with 

(+EGF) or without (-EGF) 10 ng/ml EGF for 30 min with continued 

DMSO or monensin treatment. Cells were fixed, and GFP images were 

acquired under a confocal microscope at the medial plane. Bars represent 

20 μm.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2121-10-84-S3.TIFF]

Additional file 4

Monensin treatment prevents lysosomal targeting and degradation of 

mutant EGFR by 17-AAG. H1650 cells were grown in regular growth 

medium and preincubated with DMSO or 10 μM monensin for 4 hr. 

Cells were either left untreated or treated with 1 μM 17-AAG for 3 hr. 

Cells were fixed, permeabilized, and immunostained with anti-EGFR 

antibody 528 (green) followed by anti-LAMP1 antibody (red). Images 

were acquired under a confocal microscope at the medial plane. Bars rep-

resent 20 μm.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2121-10-84-S4.TIFF]
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Additional file 5

Monensin treatment does not alter the overall levels of phosphoryla-

tion or expression of EGFR and its downstream factors. Cells were 

growth factor-deprived in D3 medium (HBE135) or 0.1% FBS-contain-

ing growth medium (all other cell lines) for 48 hr and preincubated with 

DMSO or 10 μM monensin for 3 hr. Cells were then either left unstimu-

lated (-) or stimulated (+) with 10 ng/ml EGF for 30 min. 50 μg aliquots 

of WCL were used for immunoblotting with antibodies against the indi-

cated proteins.

Click here for file
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Additional file 6

Src inhibitor does not alter intracellular localization of mutant EGFR 

but reduces mutant EGFR-Src association. (A) HCC827 cells were 

growth factor deprived for 48 hr and preincubated with DMSO, 1 μM 

Erlotinib (ER) or 3 μM PP2 for 3 hr. Cells were fixed, permeabilized, and 

immunostained with anti-EGFR antibody 528 (green). Images were 

acquired under a confocal microscope at the medial plane. Bars represent 

20 μm. (B) HCC827 cells were grown in regular growth medium and 

preincubated with DMSO, 1 μM Erlotinib (ER) or 3 μM PP2 for 3 hr. 1 

mg aliquots of cell lysate proteins were immunoprecipitated with anti-

EGFR antibody 528 (EGFR IP) and resolved together with 50 μg aliquots 

of whole cell lysates (WCL) followed by immunoblotting with antibodies 

against the indicated proteins.

Click here for file
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