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ABSTRACT

The first—- and third—-order properties of simple tilted and
decentered optical systems were analyzed. The‘basic optical systems
chosen were the usual components of symmetric optical systems, namely
the plane-parallel plate, the thin refractive prism, the uwirror
(including aspherics), and the thin lens. |

The emphasis was placed on the development of insights enabling
the designer to use these components as parts of larger tilted and
decentered systems.

Aberrations of a thin lens were analyzed using an approach of a
centered system with eccentric pupil, rather than the tilted and
decentered system approach.

Since a vector form of the wave aberration expansion was used,
the tilts and decenters of the components were not restricted to be
coplanar.

A few interesting special cases involving combinatioms of the
components were discussed. Some of these special cases were evaluated
with an exact ray trace using a computer design program and found to be

in good agreement with the theoretical third-order predictions.

xi



CHAPTER 1
INTRODUCTION

An aberration theory of perturbed optical systems has been
developed by K. Thompson (1980) from earlier work by R. Shack. This
theory has made it possible to develop an understanding of all of the
aberration terms through fifth order in tilted and decentered systems.
The emphasis was on studying each term in the wave aberration expansion
without specifying the system.

The purpose of this work is to study the aberrations through
third order of simple tilted and decentered optical systems. The
systems to be examined here are the plane—parallel plate, the thin
refragtive prism, the mirror, and the thin lens.

Some work in this area has been previously published. Prasad et
al. (1975) dealt with an arbitrary number of tilted plane surfaces
geparated by media of different refractive indices. Based on an exact
ray-trace scheme, he developed the expressions for coma andlastigmatism,
but his treatment assumed only coplanar tilt of the surfaces, and the
rays were traced in the same plane.

Shearer (1950) used the parabasal astigmatism formulas, known as
the Coddington equations, to show that the reference axis astigmatism of
one concave spherical mirror can be eliminated by cross-tilting it with a

second concave spherical mirror.



Other related work was dome by R. Buchroeder (1970, 1976),
although his approach did not provide the description of aberrations over
the entire image field. He developed the means to correct third-order
aberrations along the reference axis and could describe the aberrations
in the meridional plane.

King (1974) and Gelles (1974, 1975) applied the technique
described by R. Buchroeder to design tilted and decentered mirror
systems with the third-order aberrations corrected at the center of the
image field.

In this work we present the description of the first—order
properties and the third-order aberrations of tilted components of an
optical system over the entire field. The results of this work will
provide an optical designer with useful insights enabling him or her to
use simple systems as components of a design. The designer can lay out
the system and balance third—-order aberrations of the tilted components
in the system. Then computer programs can be.used for optimization once
the system has been laid out.

Since we use paraxial equations, the component tilts are assumed to
be small. For large tilt angles, the solutions obtained using this
approach will not be exact, but sufficiently close for use as a starting
point of optimization with computer design programs.

This thesis is structured as follows. Since this work is based
Iargely on the theory developed earlier (Thompson 1980), Chapter 2

reviews the first- and third-order properties of general perturbed



optical systems. To develop gradually an understanding of the behavior
of each component, we start with the simplest ome. In Chapter 3 we
examine the behavior of the tilted plane~parallel plate. Chapters 4, 5,
and 6 deal with the thin refractive prism, the mirror (including
aspherics), and the thin lens. Each chapter establishes the first- and
third-order properties and treats some interesting special cases, which
provide understanding in using these components as part of an optical
system design.

In Chapter 7 we examine a few of these special cases with a
computer optical design program (Super 0slo) to confirm the theory
developed in the previous chapters.

Finally, Chapter 8 summarizes the results and indicates where

this work may be continued.



CHAPTER 2

REVIEW OF FIRST ORDER PROPERTIES
AND THIRD ORDER ABERRATION FIELDS
IN TILTED AND DECENTERED OPTICAL SYSTEMS
Before the discussion of the components, it would be appropriate
to review briefly the first- and third-order behavior of tilted and
decentered general optical systems. The development of the first- and
third-order theory of perturbed optical systems was dome by K. Thompson
in his dissertation, “Aberration fields in tilted and decentered optical
systems.” In this chapter we simply summarize the contents of two

chapters of his dissertation.

First-Order Theory

The properties of interest are image displacement, pupil
displacement, Gaussian image plane (GIP) tilt, optical axis ray trace, and
aberration field decentration, calculated surface by surface.

The reference axis (RA) of a perturbed system is the axis about
which all of the elements are rotationally symmetric in‘t:he aligned
system. This is the axis from which the surface tilts and decenters,
object, image, and pupil decenters and Gaussian image plane tilt are
measured.

The local axis (LA) of a surface is defined as the line

containing the vertex and the center of curvature of a surface. The



tilt of a surface is given by the angle between the LA and the reference
axis of the system.

A spherical surface does not have a unique axis. Any line through
the center of curvature intersecting the surface may be taken to be the
local axis of that surface. Therefore we define the local axis for a
spherical surface as the line containing the center of curvature and the
center of the object field. The properties of a surface im a perturbed
system are uniquely determined by the displacement of the center of
curvature from t:he‘ reference axis.

The equivalent tilt paramter, E,, is related to the displacement
of the center of curvature :shc, and to the conventional tilt and decenter
parameters % and Sv by

B, = 8 + cév = cic 2.1
as shown in Fig. 2.l.

For a plane surface, the local axis can be defined as the normal
to the surface passing through the center of the object. The tilt of a
plane surface is given by the angle between the local axis of this
surface and the reference axis as shown in Fig. 2.2.

In an optical system, any surface (denoted by j) has associated
with it an object/image, and entrance/exit pupil, either or both of which
may be real or virtual. The image and exit pupil for the j—th surface

become the object and entrance pupil for the (j + 1l)-th surface.
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For the spherical surface the relative image displacement, EQ',
(image displacement rormalized by the image height in the centered

system) is given by
$qo' = 3q + 15“—‘(:’—’159 . (2.2)

Here 3Q is the relative object displacement for the surface, y is the
marginal ray height at the surface in the centered system, 4(n) = a' - n,
the difference between image space index of refraction and the object
space index, and X = nuy - nuy is the Lagrange invariant (u is the
marginal ray angle preceding the surface, u is the chief ray angle
preceding the surface, y is the chief ray height at the surface in the
centered system).

The notation here is slightly different from that in the original
work by ‘K. Thompson. Here EQ and §Q' are already normalized quantities
(compare with (EQ/;I) and (EQ/-y-I)' in the original). Also, here all the
equations are presented in vector form, since it was shown in the
original work that the development need not be restricted to the
meridional plane. The tilts and decenters can be nonmeridional and
noncoplanar.

For a plane surface the expression 2.2 becomes

> - 2_’.-» A(n)u-o
§Q' nsq + “5E—8ps (2.3)

where Ep is the distance from the reference axis to the intersection of

the local axis with the surface as shown in Fig. 2.2.



Similarly, the entrance and exit pupils throughout the system

can be found using the expression

tE' = 3 - L@ | (2.4)

Here SE and 8E' are relative entrance and exit pupil
displacements (normalized by the entrance and exit pupil radii).

The optical axis ray (OAR) by definition passes through the
centers of the object/image planes and the pupils for all surfaces of
the system. This ray is the paraxial equivalent to a zero field, zero
aperture ray in a real ray trace.

The intersection of this ray with the image plane of the
unperturbed system gives the image displécement: and the location of the
center of the Gaussian image plane. Given the centers of the object, the
image, and the pupils, the paraxial height ?* at a surface, and the

-
paraxial ray angle u* preceeding the surface for the 0AR are given by

= - -
u* = g §Q + uéE (2.5)
:i'* =y §q + yoE, (2.6)

where both quantities are measured with respect to the reference axis.
The wave aberrations are measured with respect to the Gaussian
image plane, therefore it is important to f£ind the tilt of the Gaussian
image plane. The tilt of this plame with respect to the RA for any
surface is
u's’ = ud + §A(u), : (2.7)

where A(u) = u' - u, and % and §'a are the tilts of object and Gaussian



image planes with respect to the RA. For a spherical surface

g a -8., - cEv, as before, and for a plane surface 8 is the tilt of the
local axis. The tilt of the Gaussian image planme for a spherical surface
is shown in Fig. 2.3.

The center of the aberration field contribution for any surface
in the system lies along the line that connects its center of curvature,
located by E,, and the center of the pupil, located by the OAR. For a
plane surface, since the center of curvature is at infinity, it is along

the normal to the surface which passes through the center of the pupil.

Referring to Fig. 2.4, the displacement, measured from the OAR, is given

by
-+ x> -
as= -i*/i (208)
Here
1= -l:\- - ;C, (2.9)
= = = -
i* = (a* + y*c) - 8, (2.10)

2 is the relative (normalized by the image height) displacement of the
aberration field contribution due to a surface measured in the Gaussian
image plane, ?* is the angle of incidence of the 0OAR on the surface, and
1 is the angle of incidence of the chief ray on the surface in the
centered system.

For a plane surface

1= -, (2.11)
When an aspheric is added to a surface, it provides an additional

coantribution to the aberration field in the image plane. The center of
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" the aberration contribution due to the aspheric is along the line

connecting the vertex of the aspheric cap with the center of the pupil
3 = (Bvp - 7O/ - (2.12)

Here ;A is the relative displacement of the aberration field

contribution due to the aspheric, EVA is the displacement of the vertex

of the aspheric cap from the RA. This displacement is independent of

the tilt of the surface that contains the aspheric.

Third-Order Aberration Fields

In a centered system, the aberration contribution for each
surface is centered on axis. In a perturbed system, the aberration
contributions from each surface will not change to the first
approximation, but will be displaced from the reference axis. There are
no new types of aberrations, instead the field dependence is changed.

The wave aberration expansion to third order including tilts and

decenters is given by
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W= Al Ged) + al,(He3) + 3 Wpags (BB R
h|

+ g - 39365 + $ s - 2p3]
. i

¥ :)_-w,,,,j[(ﬁ - 3t - 33)](3'3) (2.13)
]

+ 3 Wy [(ﬁ -3 - B~ %)] [(ﬁ -3y '5] ,
p .

where H is the field vector in the aligned system, 3 is the exit pupil
vector in the aligned system, and vector Ej locates the center of each
surface contribution to the aberration field in the image plane.

The spherical aberration term

W= zwosoj(;';)z (2.14)
3

is independent of the field and independent of Ej. This means that the
(non-oblique) spherical aberration is unaffected by tilt and decenter
perturbations.

The next term is coma,

W Sl - 393] G5 = wal@ - BB[E D), @us)
3

where



13

31:1 = % (2.16)
and
.‘Axu = Zwluj;j . (2.17)
3

The effect of tilts and decentrations is to displace the total coma
field for the centered system to the point located by the image plane
vector E",. The magnitude of coma is anfﬁ - 3“,| and the orientation
is along the vector - Eul. A special case for coma occurs when
Wisa = 0, {.e., the system is corrected for coma. Then

W= =iy 9)G3) . (2.18)
This is constant coma, i.e., the magnitude and orientation of coma are
independent of the field point. The magnitude of coma is -IZ",I and
coma is oriented along the vector 7&,,,.

Field curvature and astigmatism are given by

W aie(Go3) + 3 W [ - BpeE - 3]G

* é)_wmj[(ﬁ - Ej)z-?] . (2.19)
i
Here

WazoM = Wazo + % Wazz (2.20)
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The medial focal surface can be described as

=8Wzq = WazoM [(.ﬁ - ;zznu)'(ﬂ - 5,““) + bqu] , (2.21)
where
i,
- M
Az20M = w—z:E-b; (2.22)
Ly = zwzzouj;j : (2.23)
h|
BaaopM
baaeM = W:::u = ;zzuu ';zzou (2.24)
and
Bazoym = zwzzouj(;j‘;j) . (2.25)
h|

The focal surface is still quadratic with the field, but now the vertex
is located transversely from the OAR in the Gaussian image plane by the
vector Ezz,u. In addition, a longitudinal shift occurs along the optical
axis from the scalar term b,,op WisoMe In linear units this shift is

8Z330M = ~8(f-number)*W3qMbazeM - (2.26)
When the system has a flat medial focal surface (W3 = 0), it can be
described by

~AWgy = ~2feAp00M + Bazoyo (2.27)
In general, the flat medial surface is tilted and defocused relative to

the Gaussian image plane.
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Astigmatism with respect to the medial surface is given by

W= '%Wuz[(ﬁ - 3g20)? + Egzz]';z, (2.28)
where
B2z = faaz (2.29)
222
B2 -
f22 = ﬁ:‘ - aja (2.30)
Agzg = z_wzzzj;j (2.31)
b
and
B2 = D Wanjay? . (2.32)
b

This is binodal asigmatism, i.e., astigmatism with respect to the
medial surface is zero at two points in the image plane. These two
points are located by the vectors 3222 + iﬁ,zz and '5,,, - iﬁ,,z. For a more
detailed description of binodal astigmatism, see K. Thomspon (1980).
Figure 2.5 illustrates the location of the nodes of binodal astigmatism.
In a system with binodal astigmatism, two focal surfaces touch at the
points where astigmatims is zero. They do not cross.

When the aligned system is corrected for astigmatism (Wi, = 0)

the astigmatism of the perturbed system will be linear;

W= -%-[—2‘152,,, + Eg,z]-Zz, (2.33)



Figs 2.5.

Location of the nodes of binodal astigmatism.

®, and Nz are the node vectors.
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and if 4,;, = 0, it becomes comstant

W= ‘%‘ E%zz';z . (203“)

The magnitude of binodal astigmatism is given by the product of
the distances from the field point of interast to each of the ncdes.
The orientation of the line foci on one of the focal surfaces are along
the line bisecting the angle between the node vectors. The line foci on
the other focal surface are at right angles to these. -

The last term is distortion. This aberration results only in
image displacement and therefore it is bettar treated and incerpreted in
terms of - the properties of the transverse aberracion. The expression

for distortion in a tilted and deceantared system is given by

-+
(n'u")e = w:u[(uiu + Eiu)ﬁ‘s'u] + Wagbuig (2.35)
where

Esu -8~ Esu (2.36)
Hyg = 8 = dug (2.37)
- K!H )

aau"ﬁ": (2.38)
hd w111 - ‘Z o*

314 * m (Cyay = dInafyy) (2.39)
Wiig = oWy + 2Wygbayy (2.40)

Bsu < -
Doy = T 3m"3m (2.41)
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T2 §§u *2
by = m=— = 3 (2.42)
m

[

- 11 > - >

Cay = “é'; = (a43;°35,)3y,, (2.43)

<>

Ay = zwsuj;j (2.44)
b

By = @ Wanj(35°3y) (2.45)
3

B3, = Zwsujsj (2.46)
b

oy = zwsuj(;j"j);j (2.47)
3

and the asterisk denotes the conjugate vector.

The vector ;an locates the first-order node. The third-order
nodes are located by the vec:ofs '5," + iE,u and ;,u - i.];,u. An
additional node is located at the point specified by ;," due to
multiplication by ﬁ*;u.

When the system is corrected for distortion, we should use the
expression

W= =2(He Ry )(Ee ) - HoDEnp) + 2By, D)

+ B2,,,-(fp) - Cyyvp (2.48)
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which can be written in scalar form:
W = =2H2A,;,p cos(8 - €) cos(s = §) - H2Ay,,p cos(e =~ §)
+ 2331159 cos(g - ¢) + B§,,Hp Cpstza - (o + ¢)]

- C,"p COS(B - ¢) (2049)

Here each of the vectors is associated with its angle as shown in Table

2.1.
Table 2.1. The vectors and the angles associated with them.
-> > -> - -
Vector H p Agpy By Ceyy
Angle 8 L € a 8

Now by taking the derivative of the wavefront aberration function and
decomposing the transverse ray aberration into two components, radial
(in the direction of H) and tangential (perpendicular to ﬁ), we obtain the
expression for the radial component (¢ = 8).

Dr = =2H%A,,;; cos(8 = ¢) = H2Aqy;c08(8 = ¢) + 2By,H

+ B§;H cos2(8 = a) = Cyy; cos(e ~ 8) (2.49)

and the tangential component (¢ = 8 + 90°)

Dy = H2Ay, sin(e - ¢) - B%),H sin2(e ~ a)

+ Cyy, sin(e - 8). (2.50)
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The term in the radial component 2B,,,H represents a change. of
the magnification with the field.

Two terms, C,y, cos (8 - 8) and C,y, sin(é - B), represent the
shift of the entire field in the direction of the vector Cyy,.

The terms B},,H cos2(é@ - a) and ~B%,H sin2(e - a) show the
anamorphism present when the magnification differs in two orthogonal
directions. They do not result in a departure from collinearity, i.e., a
square object will be imaged as a rectangle with the long side along
the x or y axis depending om the sign of the wave aberration coefficient.

The two last terms are -3H%A,,, cos(8 = ¢) and HA,,, sin(8 ~ ¢).
The magnitude of these terms varies quadratically with the field, and
the magnitude of the tangential component is one~third of the radial ome
for the same zome in the field. A straight line here will no longer be

imaged as a straight line.



CHAPTER 3

THE PLANE-PARALLEL REFRACTIVE PLATE

The plane-parallel plate has no power and, as an image—~forming
system by itself, is anot very interesting. Since it is usually used as a
component in a system, we will examine it in this context.

Since a plane-parallel plate has its centers of curvature at
infinity, it can only be tilted with respect to the reference axis. A
convenient reference axis in this case is the optical axis of the system
containing the plate.

If the plane-~parallel plate is located in a space where the
object or image is at infinity, it does not introduce aberrations. In a
telecentric space (pupil at infinity), a plane-parallel plate does
introduce aberrations, but they are constant over the field. Here we
consider the tilted plane-parallel plate in a space where both the image

and the pupil are at finite distances.

First-Order Properties

First let us locate the centers of the object, image, and pupils
for the plane-~parallel plate itself. Since the plate has surfaces
parallel to each other, the tilt of the plate is the common tilt of both

surfaces.

21



22

Both object and image centers are located on the local axis of
the surface. Since the surfaces of the platé are parallel, a single
local axis applies to both surfaces.

Applying Eq. 2.3 to both surfaces we can obtain an expression

for the relative image displacement for a plane-parallel plate
-+ A(n)n -
So' = 5q + W@ 5 @3.1)
as shown in Fig. 3.l.
Here t is the thickness of the plate, B is the cilt angle,
A(n) = n' - n, the difference between the refractive indices of the plane

parallel plate n' and the medium n (in the case of air n = 1).

The same argument applies to the pupils

SE' = 3E - % Bt . (3.2)
Given the centers of the object, image, and pupils, the paraxial ray
height '}:7:* at the surface and the paraxial ray angle -:1:* preceding the
surface for the OAR can be determined using Eqs. 2.5 and 2.6.
Applying Eq. 2.7 to both surfaces of the plate, we find that
u'8’ = ub . : (3.3)
We can say that for the plane-parallel plate, the tilt of the object
plane defines the tilt of the image plane, i.e., the tilted plate does
not change the tilt of the Gaussian image plane.
Next we find the center of the aberration field coantribution for

each surface in the tilted plate. As seen in Fig. 3.2, the displacement



Fig. 3.1l.

——
P
.

—

Displaca=ant of the image for a plane-parallel plate.

Fig. 3.2.

Displacement of the center of the aberration field of a
plane-parallel plate.
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of the center of che aberration field is the same for each surface of
the plate and can be determined by either Eq. 2.8 or 2.1l. This
displacement depends only on the tilt of the plate and the distance
between the pupil and the image in the spacs where the plate is located.
For a single plane-parallel plate, the only case where this
displacement is zero is when the center of the object and the center of
the pupil are located on the normal to the plate (%* = 0).

The first-order properties of the tilted plane-parallel plate
described above are well known, except the concept of the displacement
of the center of the aberratiom field.

We can summarize these properties. We know that the plane~-
parallel plate placed in 2 system with no aberrations and squared on the
axis introduces aberraticus. They are spherical aberration, coma,
astigmatism, and distortion. There is no Peczval term. The plate also
produces equal longitudinal displacement of the image and pupil planes.

If we tilt the plate, the center of the image and the pupil will
be displaced. In addition, the center of the aberration fields will also
be displaced. The displacement:. of the aberration center will be in the
same direction, and the magnitude of this displacement can be determined
by

(ayp = sé (3.4)
as shown in Fig. 3.3. Here S is the distance from the entrance pupil to

-

the object. Equation 3.4 is esseatially the same as 2.1l with T* = 0.
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If we place a second plate in the system, it will introduce an
additional displacement of the image and the center of the aberratioas.
The net displacement of the image field can be found by adding the
component displacements vectorially. The centers of the aberration
fields for each plate are displaced from the net center of the field as

shown in Fig. 3.4.

Third-Order Aberration Fields of a Tilted Plane~Parallel Plate

Since the displacement of the center of the aberration field
contribution for each surface is the same, the effect of the tilt is to
displace the center of symmetry of all third-order aberrations due to
the plane-parallel plate to the point in the image field located by the
vector a. All third-order aberrations will have a commom center (the
node). If we change the tilt angle, the aberration center will move to
a new point, as will the center of the field. The magnitude of the
aberrations with respect to the new center will not change (since it
depends only on the first-order properties of the system and the
thickness of the plate), but the magnitude of the aberrations on the RA
will change.

In the treatment above we assumed that the plane-parallel plate
was placed in a system not having aberrations of its own. Once we know
what aberrations are introduced by a tilted plane~parallel plate, we can

determine the effect of placing a plate in a system with aberrations.
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Fig. 3.3, Displacement of the image, the pupil, and the center of
the aberrations in a single tilted plane~parallel plate.

CENTER OF THE ABERRATIONS
DUE TO THE FIRST PLATE

CENTER OF THE ABERRATIONS
S/ - DUE TO THE SECOND PLATE

CENTER OF THE FIELD

Fig. 3.4. The centers of the aberratcions of two tilted plane-
parallel plates.
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If the plate is not tilted, we know that the centers of the
aberrations due to the system and due to the plate are in register at
the center of the field. If we tilt the plate, the center of the image
field will be displaced together with the center of the aberrations due
to the system. The center of the aberrations due to the plate will be
displaced from that point.

The resulting aberration fizlds in general will then be as
follows. The coma field will be the ordinary linmear coma shifted in the
image plane. Astigmatism will be binodal, and distortion will have three
third-order nodes. The magnitude and location of the nodes of these
resulting aberration fields will depend on the magnitudes of the
component fields and the tilt angle of the plate. By varying the tilt
of the plate, we can vary the magnitude of the aberrations at the center

of the field. A few interesting special cases follow.

Case I.

The.system and the plane-parallel plate are corrected togecher‘
with the plate untilted. If we tilt the plate, the centers of the
aberration fields will separate as shown in Fig. 3.5. We know that
spherical aberration is not affected by the tilt, therefore it will be
Zero.

Since the aberrations of the system and the plane-parallel plate
are equal and opposite in sign, the resulting coma field will be

constant. This is easily seen in Fig. 3.5. Indeed, at point P (the
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center of aberrations for the plate) we have coma due to the system
whose magnitude is |Wm§|. Take the case where the direction of this
coma is opposite to the vector 3. Then at point S (aberration -center for
the system) the magnitude and the orientation of coma due to the plate
will be the same as at point P, because the system and the plate have
aberrations that are equal and opposite in sign.

The same result can be obtained using Eq. 2.18

W= ~(Wis 3*P)(p*P) (3.5)

with K,u = W,u;. Wiy is the wave aberration coefficient of the plate.
The resulting astigmatism will be linear, since the quadratic terms
cancel. It is not difficult to see that the node of the astigmatic field
will be midway between the two centers of the component fields since at
that point they have equal magnitude and the corresponding line foci are
normal to each other.

Using Eq. 2.33 with K,,, 2 Wpesd and Bl = Wygpa?, we obtain the

expression for astigmatism with respect to the medial surface

W= 'é- szz[-zsﬁ + ;2] o E . (306)
Using Eq. 2.27 with Kzqu = szgM; and BzzoM = szoM I;Iz, we

obtain the expression for the medial focal surface

-8Wae = Waay [ -2H-a + |3]2]. (3.7)

It is a flat surface and is tilted and defocused. Linear

astigmatism is illustrated in cross—section in Fig. 3.6. Two astigmatic
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P
NODE OF THE g
LINEAR ASTIGMATISM
sb- CENTER OF THE FIELD
]
sg'Q o
Fig. 3.5. Case I.
M
‘ GIP
)
Y 0AR
\
\
\

Fig. 3.6. Linear astigmatism of Case I.
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focal surfaces are cones. The medial flat focal surface bisects the
cross—sectional angle between them.

Distortion will not be treated in detail here because not only is
it significantly more complex, but it is also usually less important in
optical systems. However, enough information has been included so that

details can be worked out if desired.

Case II,

Two plane~parallel plates are placed in a system with no
aberrations and tilted in ‘opposite directions by the same angle. They
have the same thickness and are made of the same glass. The first plate
moves the center of the image field and the center of the aberrations in
one direction. The second plate moves them the same amount in the
opposite direction. The center of the image field will not be displaced
from the reference axis, but the centers of the aberrations due to each
plate are displaced by equal amounts in opposite directions as shown in
Fig. 3.7. The aberrations due to each plate in this case have equal
magnitude and the same sign.

We can find the node for the resulting coma field if we notice
that at the point midway between the aberration centers the coma
contributions are of the same magnitude and opposite directions. The
magnitude of the resul;ing coma field will be twice the magnitude of

either one.
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To find a node for astigmatism, we must find a point in the
field where the corresponding line foci of the component fields are
normal to each other and have the same magnitude. In this case, we can
find two such points. Therefore, the astigmatism is binodal with the
nodes located on the line normal to the line connecting two aberration
centers and passing through the center of the field (Fig. 3.7).

The expression for astigmatism with respect to the medial focal
surface can be obtained using Eq. 2.28.

In this case, as; = 0 and b3, = 3% and Eq. 2.28 becomes

W 2 W+ 3052 (3.8)
where Wa; is the wave aberration coefficient of the system.

The medial focal surface is a quadratic surface centered om the
OAR but defocused from the GIP as can be seen from the following
expression:

~8Wg = Waoy HeH + |3|2, (3.9)

which was obtained from Eq. 2.21 with Emu =0, Bzzou = I;[z, and Wazom =

1
Waze + 'Z‘szz-

Case IIl.
The system is the same as in Case II, only now the plates are
cross—-tilted. In this case, the ceanters of the aberration and the image
fields will be displaced from the reference axis orthogonally as shown

in Fig. 3.8.



COMA NODE

ASTIGMATIC NODES

Fig. 3.7. Binodal astigmatism of Case II.

C, and C, are the aberration centers of the plates.
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ASTIGMATIC
NODES
Fig. 3.8. Coma and binodal astigmatism of Case IIIL.

C, and C, are the aberration centers of the plates.
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The coma field will have a node midway between the centers of

the component fields and can be described by

-> >
a, + a -
W= Wy, [ﬁ - —‘—-2—-5] « 3l (BD) (3.10),

where Wy, is the wave aberration coefficient of the system. As can be
seen from Eq. 3.10, the coma fields no longer cancel at the center of
the field.

Astigmatism will again be binodal with one of the nodes at the
center of the fields The nodes can be located as in Case II. The

astigmatism with respect to the medial surface will be

2
b d > > L d
a1+ a (a1 =~ a2)?
W= %szz [-. - ! 7 3] + : A 2 .'52 (3-11)

where Wy, is the wave aberration coefficient of the system. The medial
focal surface is centered at the point ia (;, + 32)/2 and defocused from

the GIP by the amount Wiy |a|2/2 where |a| is the magnitude of either

displacement vector.

Case V.

Next we consider the system with two plane-parallel plates of
the same thickness where the aberrations are zero with untilted plates.
If we tilt the plates by the same angle in opposite directions, this case
is similar to Case II. The difference is that in this case we have the
aberrations due to the system of magnitude, twice the magnitude of

either plate and opposite in sign. The center of the image field will be
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on the reference axis, as will be the center of the aberrations due to
the system (Fig. 3.9).

We know from Case II that the resulting coma field due to two
plates will have a node midway between their aberration centers, at the
center of the field. Since they have equal magnitudes and opposite sign,
they cancel each other. Therefore coma will be zero across the entire
field.

From Case II, we also know that astigmatism due to two tilted
plates will be binodal with the nodes located as shown in Fig. 3.7. Now
the regular quadratic astigmatism of opposite sign and centered at the
center of the image field will be added to it. The resultant
astigmatism will be constant. It can be seen as follows. If we take
the point at the center of the image field we know that the only
astigmatism there is the binodal astigmatism of the two plates. Setting

% = 0 in Eq. 3.8, we obtain the expression
1 -
W= .Z.(szz'aZ)opz, (3-12)

where W, is the wave aberration coefficient of the two plates.

If we take one of the nodes of binodal astigmatism due to the
plates, we can see that the only astigmatism there is the astigmatism
due to the system, which will have the same magnitude as at the center

of the image field. The orientation of the line foeci at this point is
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the same as for the center of the image field. The same argument can
be applied to the second nodal point. Therefore we have constant
astigmatism.

The same result can be obtained using Eq. 2.33. In this case 4,
= 0, Bgzz = szziz. The medial focal surface is a flat surface defocused
from the Gaussain image plane by |3|2. Using Eq. 2.27, the equation for
the medial focal surface is obtained:

~aW,, = E1ER (3.13)

Case V.

The last case is the same as above, but the plates are cross-
tilted. As before, we can see that this case is similar to Case III with
the aberrations due to the system added. The center of the image field
is displaced from the reference axis as in Case III. From Case III, we
know that the resulting coma field due to the plates has its node at
point P as shown in Fig. 3.10. At this pc;im:, the only coma will be that

due to the system which is

3 +3
m 2 (3.14)

where W, ,, is the wave aberration coefficient of the system. At point C,
(the node for the coma field of the system), the only coma is due to the
resultant field of the plates, which is of the same magnitude and
opposite sign of coma due to the system. Since this coma has the

opposite sign, the direction will be the same as at point P. Therefore
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Fig. 3.9. Case IV.

C, and C, are the aberrations centers of the first and
the second plates.
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Fig. 3.10. Case V.

C, and C, are the aberration centers of the plates; C, is
the aberration center of the system.
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we have here a constant coma field with direct:'ion of =45° to the y-axis
in the image field. Eq. 3.14 can be obtained using Eq. 2.18.

Since the system was corrected for astigmatism before the
plates were tilted, we should expect the astigmatism to be either linear
or constant (see Eq. 2.33). But we can see immediately that at point C,
the astigmatism will be zero, since at this point are located the node
of the binodal astigmatism due to the plates and the center of the
quadratic astigmatism of the system. The other node of binodal
astigmatism will have astigmatism due to the system. Therefore the
total astigmatic field must be linear with the node located at point C,.

The magnitude of this linear astigmatism with respect to the
medial focal surface can be found using Eq. 2.33 with Xuz = Wuz('.:fil + Ez),
where W,,, is the wave aberration coefficient of one of the plates and
Bgzz = 0, since Exz = -'522. The expression for the resultant astigmatism
with respect to the medial focal surface is

W= =W, 03 +3) (3.15)

and the orientation of sagittal line foci are along the vector
. 1/2
@, 508 .
The expression for the medial focal surface can be obtained
using Eq. 2.27 with Xy = W, M (3, + ) and ByoM = 20,0 |&|2 where
W,,oM is the wave aberration coefficient of one of the plates.

The expression for the medial focal surface becomes
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AW,y = 2W,,0M [—H * 3 +3) +|'5|21 . (3.16)
This is a flat tilted surface that is defocused from the GIP by

2W 20 |3| %



CHAPTER 4
THE WEDGE

When the angle between the faces of a thin refractive prism is
small, it is customary to call it a wedge.

We can counsider the wedge being derived from a plame=parallel
plate by having the surfaces tilted by the amount f&/2, where ¢ is the
vertex angle of the wedge. The vedge will have a plane of symmetry
that is the plane bisecting the vertex angle of the wedge as shown in
Fig. 4.l. Therefore when we refer to a tilted wedge, the tilt will be
the tilt of this plane with respect to the reference axise.

As was for the plane-~parallel plate, the wedge will be assumed
to be located in a system space where the image and pupil are at a
finite distance. Again, the reference axis will be the optical axis of

the system.

Firgst-Order Properties

If we place a wedge in the system and tilt it, the surfaces of
the wedge will be tilted with respect to the reference axis by the
angles § + a/2 as shown in Fig. 4.l.

Applying Eq. 2.3 to both surfaces, we can obtain the relative

image displacement by the tilted wedge

39
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20t = g - Alm)un An)u », _ Mm% 3
sQ' 'gQ rurTa Be + e 32 T o 3C (4.1)
Here E is the tilt of the wedge, a is the vertex angle, t is the

thickness of the wedge along the reference axis, and 2 is the distance
from the plane bisecting the vertex angle of the wedge to the object
plane as shown in Fig. 4.l.

Comparing this expression with Eq. 3.1 for the plane-parallel
plate, we see that here we have two additional terms contributed by the
wedge, such that if we set 2 = 0, the expression reduces to the
expression for the plane-parallel plate. For the wedge, the relative
image displacement depends on the position of the wedge in the systen,
i.e., if we move the wedge, the center of the image field will also
move.

The same argument applies to the pupils. The relative exit

pupil displacement is given by

2oy o A(n)un * A(n)u » M) 3
SE' SE + o Bt - === el + T (‘z-)t (4.2)

Here & is the distance from the plane bisecting the vertex angle of the

wedge to the pupil,

-
The paraxlal ray height ¥* at the surface and the paraxial ray
-po
angle u* preceding the surface for the OAR can be found using Eqs. 2.5

and 2.6.

Applying Eq. 2.7 for both surfaces of the wedge, we can obtain

the expression for the Gaussian image plane tilt
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' =8 + ";—‘;S,Q , (4.3)
where § is the tilt angle of the object plane as shown in Fig. 4.2. As
we can see from Eq. 4.3, the tilt of the Gaussian image plane does not
depend on the tilt of the wedge; it depends only on the vertex angle of
the wedge and its refractive index.

Since the wedge surfaces are not parallel, the wedge does not
have a single local axis. Each surface will have the center of
aberration contribution displaced from the reference axis at a different
point in the image plane. The aberration displacement vector for each
surface can be found using Eqs. 2.8 or 2.l1.

A unique property of the wedge is that the separation of the
aberration centers for the wedge surfaces is constant and given by,

3, -3 = (3)/(mw) , (44)
which is independent of tilt. When we change the tilt of the wedge, the
aberration centers move as a pair with constant separation. Also, we
can see that there is a particular tilt of the wedge such that the
aberration centers are displaced symmetrically about the center of the
image field. In that case, the 0AR goes symmetrically through the

wedge, il.e., the angle of incidence of the OAR on the surface bisecting

the vertex angle of the wedge is zero. This is shown in Fig. 4.3.



Fig. 4.l.

Image field displacement by a tilted wedge.

Figo 4.2,

Tilt of the Gaussian image plane by a wedge.
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Fig. 4.3. Aberration centers of the wedge.

C, and C, are the centers of aberration fields for the
first and the second surface.
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)

Third=Order Aberration Fields

Since the aberration center displacement vectors for the
surfaces of the wedge are not equal to each other, the aberration fields
of the wedge placed in the system can be described by the equations
given in Chapter 2. The coma field will be linear and shifted in the »
image plane, astigmatism will be binodal with a quadratic medial focal
surface shifted and defocused from the Gaussian image plane and
distortion will have three third-order nodes.

If we look at the expressions for the perturbation vectors for
each type of aberration, we can see that‘ for the wedge,

Ay = EzinM = B2z = A s (4.5)
and

ggzz = Egu ’ (4.6)
i.e., the coma node, the center of symmetry of the astigmatism, and the
central distortion node all lie at the same point in the field. The
nodes of binodal astigmatism and the two other nodes of distortion will
also coincide.

Since the aberrations for each surface of the wedge are not
equal and opposite in sign, the center of symmetry for each type of
aberration will lie on the line connecting two aberration field centers
but will not be between them as shown in Fig. 4.4.

Consider two special orientations for the single wedge.

1. The center of symmetry of the aberrations (including the
node for coma) is at the center of the image field. The condition for

that is
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Aberration fields of the wedge.

* denotes the center of the coma field, the center of
symmetry for astigmatism and one of the distortion
nodes. x denotes the astigmatic and two other distortion
nodes, and o denotes the aberration center for each

surface of the wedge.
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21:1 = Ezzz =0, (4.7)
which is obtained when

2
2. ;'—’ , (4.8)
2, 1

where y;, and y, are marginal ray heights on the surfaces of the wedge.
From this condition, we can obtain the expression for the tilt
angle of the wedge which will place the center of symmetry for all

aberrations in the center of the image field:

- - 2 1 > :
g = -m:[l + n(-E + 5):[ + % + u*, (4.9)

Here n is the refractive index of the wedge (the wedge is assumed to be
in the air).
2. One of the nodes of the binodal astigmatism (and distortiom)
is at the center of the image field. The condition for that is:
®,=0. (4.10)

The condition for the aberration displacement vectors is

->
a2
a_ % (4.11)
'ag n'’
and the tilt angles of the wedge are
3 2z - > }— —1. _—t_—- + £
B nzt"(t: * 2{1 + n(2+e/2) ~ 1+ n29.+c725]
-+ >
+ 92_ + ;* . (4-12)

Equations 4.9 and 4.12 indicate an interesting property of the wedge. If
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we move the wedge in such a way that the racio t/2% stays comstant, the

node of the coma field (or the astigmatic field) will stay at the center
of the image field (8 does not change), as well as the distance between
the nodes, but the magnitude of all aberrations will change, since this

motion of the wedge will change its thickness.

It can be seen from Fig. 4.5 that if we connect the vertex of
the wedge A with the center of the object for the wedge Q and move it in
such a way that the dihedral line of the wedge slides along the line AQ,
the ratio t£/f will be constant. We should point out here that with the
wedge, the designer has more variables with which to coatrol the
aberrations than in the case with the tilted plane—-parallel plate.

For example, we can vary the separation of the nodes by moving
the wedge along the reference axis keeping the thickness and tilt angle
fixed. The magnitude of the total aberrations will not change, since the
thickness does not change. On the other hand, we can move the wedge
transversely keeping the tilt and distance to the object the same,
thereby varying the aberrations of the wedge as well as the node
separations.

Another very useful way to look at the wedge is as a plane-
parallel plate with two thin (t = 0) wedges added to it (ome in front,
the other in back) as shown in Fig. 4.l. The vertex angles of these thin
wedges are +a/2 and the aberration displacement vectors for the surfaces
will be,

a, = 3p - ay,
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- - > (4.13)
a, = a.p + aw,z .
-> >
- - > -
h > a + wm* e = u¥,
where a a a =
Wyl 2“1 » ‘w,2 Zuz .

Once we know the effect of the tilted plane-parallel plate on
the aberrations, we can simply add the effect of these two wedges. The
effect of adding them is to move the center of the image field to a new
point in the field and split the center of the aberrations due to the
plane=parallel plate on two surface centers for the wedges -Ew’l and
Ew’z. This is illustrated in Fig. 4.6 where the tilt of the wedge is not
coplanar with the wedge angle 3o

Using this approach, it is easy to find the centers of the
aberration fields for the wedge surfaces in this noan-coplanar case.
Also, we should point out here that when we tilt the wedge, we change
the plate contribution while the wedge contribution remains the same.
If we rotate the wedge keeping [ constant, the tips of the vectors
:zw,h, and EQ& will describe circles around the centers of the image
field and aberration fields due to the plane-parallel plate.

As for the plate, there are a few interesting special cases

involving wedges.

Case I
The wedge is placed in the system where the aberrations of that
system and the plane-parallel plate of the same thickness (the thickness

of the wedge along the reference axis) are corrected. We can tilt (or
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Fig. 4.5. The line AQ along which the motion of the dihedral edge
will keep the nodes of the aberration fields stationmary.

5o
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EQ' gQw' -
P a
P
e
RA
Fig. 4.6. Image and aberration field displacements from a plane-

parallel plate with thin wedges added to it.
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move) the wedge to find a position where the center of symmetry of all
aberration fields falls at the center of the image field. Then, since
the center of the system aberrations is at the center of the image
field, and also since the aberrations of the system and the equivalent
plane-parallel plate are equ‘;il and opposite in sign, the coma fields
will cancel each other and coma will be zero across the entire field.
The behavior of astigmatism is similar to Case IV of Chapter 3.
The binodal astigmatism due to the wedge is added to the conventional
quadratic astigmatism of the .system. In this case, the total
astigmatism is constant. The astigmatism with respect to the medial

focal surface is given by
W= %(wzazsgzz)';z (4.14)
where W,,, is the aberration coefficient of the equivalent plane-parallel

plate.

Waaa ) ;f + Waa,z 3%
f1, - 2 %2 (4.15)

wzzz

The subscript following the comma indicates the surface number. The
orientation of the line foci is governed by the vector Bg,,.
The medial focal surface is a flat surface defocused from the

GIP., The amount of defocus can be found as described in Chapter 2.

Case II
Two wedges are placed in an otherwise corrected system. The

wedges are identical and tilted in the same plane as shown in Fig. 4.7,
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We know that we can tilt the first wedge and find an angle such that the
coma node will be at the center of the image field with the astigmatic
nodes located symmetrically with respect to it. For the second wedge,
we can find the location of the wedge where t,/2, = t,/%, (see Fig. 4.7),
where t, and t, in this case are the thicknesses of the wedges along the
OAR (not the reference axis as was before).

Then we can tilt the second wedge to superimpose its nodes on
the nodes of the first wedge as shown in Fig. 4.8. This angle will be
the same angle as the first wedge with respect to the OAR. Since the
ratio of the wedge thickness to the distance from the wedge to the
object along the reference axis is the same for both wedges, the
distances between the astigmatic nodes of both wedges will be equal.

The Gaussian image plane is not tilted with respect to the
reference axis because the vertex angles of both wedges are equal in
magnitude and opposite in sign. The center of the image field is
displaced from the reference axis. The resulting coma field will be
linear with the node at the center of the image field. 1Its magnitude
will be the sum of the magnitudes of the component fields. The
expression for coma is given by

W= (Wi, + Wag D(E5XGE0) , (4216)
where the subscript following the comma identifies the wedge.

The astigmatism will be binodal with the nodes located at the
node points of the compoment fields and symmetrical with respect to the

coma node and the center of the image field. The astigmatism with
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respect to the medial surface is given by

W= % (Waza s + Wazz 2) [ﬁz - ngz]‘;z ’ (4.17)
where the subscript following the comma identifies the wedge as above
and b%,, is the perturbation vector for either of the wedges.

We can tilt the wedges by another pair of angles (see Eq. 4.12)
and place one of the astigmatic nodes for both wedges at the center of
the image field as shown in Fig. 4.9.

The resulting astigmatic field would then be a normal quadratic
field if the magnitudes of the component fields were the same. If the
wedges are placed in the system close to each other so that the
magnitudes of the component fields differ by a small amount, the
resulting astigmatism will be binodal with ome of the nodes at the
center of the image field and the other node being close to it.

The coma will not be zero at the center of the image field due
to the difference in magnitudes of the component fields, but againm, it
will be small at the center of the image field since the node will be

very close to it, assuming that the wedges are placed close to each

other.

Case III
Two wedges are placed in a system with no aberrations. The
wedges are identical and cross—tilted as shown in Fig. 4.10. Here we
will keep the ratio of the wedge thickness to the distance from it to

the object the same for both wedges. The center of the image field will
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Fig. 4.9. Wedges are tilted in the same plane. One of the

agtigmatic nodes of both wedges is at the center of the
image field.

Fig. 4.10. Cross-tilted wedges of Case IIT.
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be also displaced in this case. The Gaussian image plane will be tilted
with respect to the reference axig, because now the vertex angles of the
wedges are not coplanar.

If we locate the coma nodes of both wedges at the center of the
image field and the astigmatic nodes symmetrical with respect to it as
shown in Fig. 4.11, then due to the symmetry of the coma, the resulting
coma field will be the same as in Case II (ordinary linear coma with the
aode at the center of the field). This is given by Eq. 4.l6.

The astigmatism will be binodal again due to the difference in
magnitudes of each component fleld. If two wedges are placad close to
each other so that the difference in magnitudes of the astigmatic
component fields is small, then the distance between che nodes of the
resulting binodal astigmatism is very small, and they almost degenerate
into one node at the ceanter of the image field.

The expression for the binodal astigmatism with respect to the
medial surface can be obtained using equations from Chapter 2 and
calculating the perturbation vectors for the syscam surface by surface.

This expression is

1 - - Waza,i = Wiz 2| »
W= =(W + W H? = b3,, se——teemmimasil .2 (4.18)
7 \N223,1 uz,z)[ 222 Wuz,x > wm,z

Here the subscript after the comma idencifies the wedges, and b3, is the
perturbation vector for the aszimgacism of either of the wedges.

The nodes will be located at



56

. (4.19)

If we locate one of the astigmatic nodes for each wedge at the center of
the image field by tilting the wedge by the angle give:n by Ege 4.12 as
shown in Fig. 4.12, the resulting astigmatic field will be binodal with
one of the nodes at the center of the image field and the other in the
vicinity of point P if the wedges are close to each other.

The resulting coma field is linear with the node located on the
liné connecting the two component field nodes and almost half way
between them because the magnitudes of the component fields differ by
small amount.

The expression for the resulting aberration fields are easily
obtained using the equations of Chapter 2.

‘Now it is easy to see the effect of placing two wedges in a
system where the aberrations would balance the aberrations of two

equivalent plane=-parallel plates squared on the axis of the system.

Case IV
The wedges are tilted in the same plane. At first we tilt the
wedges to place the coma nodes at the center of the image field. We
now must add to the aberration fields of Case II the aberrations of the
system, which are alse centered in the image field.
It is easy to see that coma will be zero across the entire

field, since the aberrations of the system are equal to the sum of the
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aberrations of the equivalent plates and opposite in sign. Astigmatism

will be constant in magnitude and orientation across the field and is

given by

W= [— % (Waza s + Wazz,2) Sg,,]-;* , (4.20)
as obtained from Eq. 4.17.

If the arrangement of the wedges is as shown in Fig. 4.9, then
the astigmatism will be linear with the node at the center of the imagé
field and the magnitude being small if the difference between the
magnitudes of the component fields is small.

Coma will be constant across the field with a small magnitude if

we place the wedges close to each other.

Case V
The wedges are cross—tilted. In the first case, we have coma
equal to zero across the field for the same reason as before.

Astigmatism again is constant and given by

W= [—-é-(w,,,,l - Waaa ) Sg,,]-zz . (4.21)
Here we will have small constant astigmatism if we place the wedges
close to each other. Therefore we can say that if we have a system
with a plane—parallel plate where the total aberrations are corrected,
we can split that plate into two pieces, make wedges out of them, and

then tilt and place the wedges iIn the manner described above, the

aberrations will stay practically corrected.



39

If the arrangements of the wedges is as shown in Fig. 4.12, coma
is constant across the field and astigmatism is linear with the node at

the center of the image field.



CHAPTER 5

THE MIRROR

A curved mirror has power and therefore can be treated as a
system by itself.

A spherical mirror does not have an axis; any line passing
through the center of curvature can be treated as an axis. For a single
spherical mirror acting as an image-forming system, we can describe the
first- and third-order properties with respect to any line taken as a

reference axis.

The first-order properties of a spherical refracting surface

were investigated in detail in Chapter 2. For the spherical mirror, the
same equations can be used if we let n' = -n.
If we consider the mirror in air (n = 1), the expression for the
relative image displacement (Eq. 2.2) becomes
-+ 2
5q' = 8q -~ %4, , (5.1)

and the expression for relative pupil displacement (Eq. 2.4) becomes

3E' = 3E + %ﬁ, . (5.2)
The tilt of the Gaussian image plane for the spherical mirror can be
found as described in Chapter 2.
As we already know, the center of aberrations for a spherical

surface is along the line connecting the center of the pupil with its

center of curvature as shown in Fig. 2.4. As we can see from this

60
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figure, the location of the aberration center for a surface depends on
the position of the pupil. .

For a spherical surface, we should consider a special case,
when the pupil is at the center of curvature (I = 0). -

In a centered system, the only aberratiom introduced by this
surface will be spherical aberration. If the pupil center is displaced
from the center of curvature of the surface, as shown in Fig. 5.1, other
aberrations, uniform over the field, will be generated.

The relative displacement of the center of curvature from the
pupil center is given by

-
*a - GC-§E
b4 1

’ (5.3)
where yg is the pupil radius. In this case, the aberration center for
this surface lies at infinity and the aberration contribution due to this
surface is
W= Wwol® = 2)G - DG ~2G =~ 2]

= Wono(89)(B D) =~ Woao (8 25 *D)

+ blong(BER + Zoao(3DIG+5) 5.4)

= 2Wae (3°2)(3 <3) + oao(2°2) .

The first term is just the ordinary spherical aberration term.

Considering the aperture dependence of the following terms, we can see
that the second, third, fourth, and fifth terms descri'be constant coma,

astigmatism, field curvature, and distortion respectively. The last term

is piston error.
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Third-Order Aberration Fields

For a single spherical mirror, aberrations can be described as
ordinary aBerrations always centered on the line passing through the
pupil center and the center of curvature. Since a single spherical
mirror can be part of a larger system with a defined reference axis, we
can describe its aberrations with respect to the reference axis as
follows.

If a is the aberration displacement vector in the image plane,
coma, astigmatism, and distortion intreduced by this mirror do not
change, instead they are simply shifted in the image plame to the point
located by the vector 3. The medial focal surface is a quadratic
surface, the vertex of which is displaced in the Gaussian image plane by
the vector 2. There is no longitudinal shift. The effect of a stop
shift in a tilted and decentered spherical mirror is to change the
magnitude and direction of the aberration displacement vector. We
should point out here that the magnitude of the aberrations (except
spherical aberration) will also change.

Once we know what the aberrations are for a single tilted and
decentered spherical miiror, we can determine the aberrations of two-
tilted and decentered spherical mirrors.

The system of two-tilted and decenterad spherical mirrors can be

treated as a system centered on the line passing through both centers of

curvature with a decentered pupil or as a system perturbed with respect
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to a reference axis.

In the latter case, generally, the center of the resulting image
field will be displaced from the reference axis. The centers of the
aberration fields for each mirror will be displaced from the center of
the image field.

The resulting spherical aberration will not change, since, as we
know, spherical aberration is not affected By tilts and decenters.

The coma field will be a linear coma field shifted in the image
plane; astimgatism will be binodal, and distortion will have three third-
order nodes. The location of the nodes will depend on the magnitude and

sign of the component fields, but in general, there will not be any

symmetry.

Special Cases

I. The pupil is centered on the line connecting the centers of

curvature of the two mirrors. In this case, .the system is simply a

centered system, and the resulting aberrations are ordinary aberration

fields centered on this line.

II. Two spherical mirrors are crogs—tilted. Here we will

examine the case of two cross—tilted spherical mirrors arranged as shown
in Fig. 5.2. The system is obtained as follows. Consider two concave
spherical mirrors with common center of curvature at point Q'. Let the
line 0,,0, passing through point Q' be the reference axis. We can tilt

the first mirror about point O, by an angle '51. The second mirror is
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Fig. S.l. Special case when the pupil is laterally displaced from

the center of curvature of the spherical surface.

Fig. 5.2. Two spherical mirrors are cross-—tilted.
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tilted about point 0, by an angle Ez in the orthogonal direction. The
object plane for the first mirror is chosen to be the plane containing
both centers of curvature and perpendicular co.Oﬂk. If we choose the
center of the object field for the first mirror to be at point Q, so that
its image lies at point Q' (which is the object for the second mirror),
then third-order spherical aberration and coma of each mirror will be
Zero.

The center of the astigmatic field for each mirror will be
displaced from the. center of the image fields The amount of this
displacement can be found as follows:

EI;I!' = §, oo

2y, = By (5.5)
where E, and Ez are the tilt angles of the mirrors, r, and r, are their
radil of curvature, ;Il' = 3-,"1-2 is the image radius from the first mirror
and object radius for the second one.

As can be seen from Fig. 5.2, the location of the pupil does not
change the aberration center displacement vectors, it changes only the
magnitude of distortion due to each mirror.

The resulting aberrations will be as follows: spherical
aberration and coma will be zero, and astigmatism will be binodal as
shown in Fig. 5.3.

The condition for one of the nodes to be at the center of the

image fields is given by

-> ->
Wazz 12y + Wpp2 23, = 0, (5.6)
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Fig. 5.3, Binodal astigmatism of two cross—tilted spherical

mirrorse.

C, and C, are the astigmatic field centers of the first
and second amirrors.
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where W;j, ; and Wiz 2 are the wave aberration coefficients of each mirror

and are given by
Wazy = ‘;T uc2dq, and 1 = 1,2, (5.7)

Here ¢ is the power of the mirror. Combining Eqs. 5.5, 5.6, and

5.7, we obtain

Ex d2
— o oems 5.8)
'§ 9, ¢

2

Using Eq. 5.8, it is easy to find the tilt of the second mirror -
(if the tilt of the first mirror is given) to correct astigmatism on

zxis.

An Aspheric Mirror.

When an aspheric is added to a surface, all first-order
properties of the surface remain unchanged, since aspherizing the surface
affects only fourth and higher degree terms. There is also no change in
the Petzval term. We know that if the aperture stop is centered on the
aspheric surface the only effect of the aspherizing is to change
spherical aberration. If the aspherized surface is not at or conjugate
to the aperture stop the aspherizing will also introduce coma,
astigmatism, and distortion.

From Chapter 2, we already know that the aberration center of
the aspheric contribution will be displaced from the center of the image

field and in general from the aberration center of the base sphere. We
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also know that the center of the aberration contribution due to the
aspheric is along the line connecting the vertex of the aspheric cap with
the center of the pupil as shown in Fig. 5.4.

The relative displacement of the aberration field due to the
aspheric in the image plane is given by Eq. 2.12. For an aspheric
mirror, the effect of tilt and decentration is the displacement of the
aépheric cap vertex EVA and the center of curvature of the surface Ec‘

A special case for the aspheric surface is when the pupil is at
the surface (; = (). In this case the center of the aberration field due
to the aspheric is at infinity. In the centered system this aspheric
will generate only spherical aberration. If the vertex of the aspheric
cap is displaced from the center of the pupil, aberrations uniform over
the field will be generated.

The aberrations generated by this surface can be obtained using
Eq. 5.4, Qhere instead of vector a we should substitute EA which can be

found as

-> ->
a =
A YE

. (5.9)

Often when the aperture stop is at the aspheric surface (for
example, in a reflecting telescope) and this surface is tilted and
decentered, the aspheric cap still remains centered relative to the
aperture stop. Therefore the only effect of tilt and decenter in this
case is to shift the aberration center due to the base sphere in the

image plane to the point located by the vector a (as in the case of a
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single spherical mirror).

There is a special case when the agpheric cap is intentionally
decentered with respect to the aperture stop, namely the case of an off-
axis aspheric, such as an off-axds parabola.

In this case we can find ZA using Eq. 5.9 where either EA or EE
will be zero, depending on the choice of reference axis. This case is
illustrated in Fig. 5.5 where.the reference axis is the line passing
through the center of curvature of a surface and the vertex of the
aspheric cap. The center of the aberration field due to the base sphere
is along the line connecting the pupil center E with the center of
curvature. The aberration center due to the aspheric is at infinity and,
in addition to the base sphere, the aspheric will generate other
aberrations uniform over the field as given by Eq. S5.4.

In the general case where the stop is not at or conjugate to the
aspheric surface, the resulting aberration fields can be found using
equations given in Chapter 2.

The aspheric surface can be treated as a system with two
surfaces, each surface producing its own displacement of the aberration
field center in the image plane.

We should point out here that in the general case, the resulting
aberration fields will be as follows. Coma will be the usual linear
coma field displaced from the center of the image field. Astigmatism

will be binodal and distortion will have three third-order nodes.
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Fig. 5.5. Off-axis aspheric.
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Once we know the aberrations at a tilted and decentered single
aspheric surface, we can examine a few interesting special cases of

systems containing two mirrors.

Special Cases

I. The classical Cassegrain telescope. In this system, both

nirros are aspherics and the stop is at the primary mirror.

The effect of misalignment in such a telescope is the
introduction of coma and astigmatism on axis. We can show that by
tilting the secondary mirror, coma can be removed on axis, but it does
not mean that the telescope has been aligned since binodal aétigmatism
may still be present in the system. If both mirrors in the telescope -
are tilted and decentered, it is convenient to choose as a reference axis
the axis of the primary mirror (that is the line passing through the
center of curvature of the mirror and the vertex of the aspheric). The
stop will be centered on this axis. The only tilts and decenters with
respect to this axis will be tilt and decenter of the secondary mirror.

| If we assume the object center to be along the reference axis,
then the center of the image will be displaced with respect to the
reference axis. The center of the aberration field due to the primary
mirror will not be displaced from the center of the image field. For
the secondary mirror, the center of the aberration fields due to the
base sphere and the aspheric czp will be displaced from the center of

the image field and cam be found as described before (Eqs. 2.8 and 2.12).
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Third-order spherical aberration in a classical Cassegrain design
is corrected and it will not be affected by misalignment. Coma will be
ordinary linear coma shifted in the image plane. Astimgatism will be
binodal, and distortion will have three third-order nodes.

By tilting and decentering the secondary mirror, we can make coma
zero at the center of the field. The condition for this is that Kl,, = 0,

from which it follows that

->
W
a__ "Mna
> Er el (5.10)
A
and
-
:_c = = (WA 'i',)/(wm}',c,) = constant (5.11)
&Va

where W,,;p and W,,, are the wave aberration coefficients for the aspheric
and the base sphere of the secondary mirror respectively.

Equation 5.11 implies that there is a pivot point for the
secondary mirror about which we can rotate the secondary mirror and
coma will remain zero at the center of the field. The pivot point can
be found as the intersection point of a line connecting the center of
curvature to the vertex of the aspheric, and the reference axis as shown
in Fig. 5.6.

In general, astigmatism of the system will be binodal, and not
symmetrical with respect to the center of the field. The condition for

one of the astimgatic nodes to be at the center of the field is
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different from the condition for zero coma. It is Euz =0 and

+, W
i (5.12)
azA 222

where W,;,4 and W,,, are the wave aberration coefficients for the aspheric
and the base sphere of the secondary mirror. This means that,
generally, we cannot have both coma and astigmatism zero at the center
of the field of a misaligned system, unless both Eqs. 5.10 and 5.12 are
gatisfied.

The tilt of the image plane with respect to the reference axis
in a misaligned classical Cassegrain telescope can be found using Eq.
2.7.

The system is aligned only if both coma and astigmatism are zero
at the center of the field and astigmatism is the usual centered type,
which is qua;iratic with the field.

The distortion field of the misaligned system will be non—
symmetric with three third—-order nodes.

II. The Ritchey-Chretien telescope. The difference between the

Ritchey-Chretien and the classical Cassegrain design is that for the
former, with different aspherics on the mirrors, spherical aberration and
coma are both corrected.

Since coma is corrected in the aligned system, the effect of
misalignment is the introduction of coma which is comstant in both

magnitude and orientation across the field.
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Again we can tilt the secondary mirror -to make coma zero across
the field and we can also find the pivot point about which we can rotate
the secondary mirror, keeping coma zero across the field. For this
system, the pivot point will be at a slightly different location on the
axis, since the wave aberration.coefficients of the secoundary mirror are
different from those of a classical Cassegrain design.

Since coma will be zero at every point in the field, we can
choose the center of the image field to be at one of the nodes of the
binodal astigmatism.

To align the system, it is not enough just to make coma zero
across the field. If the system is not aligned, astigmatism will be
binodal, and the image plane tilted. Therefore during the alignment, it
is advisable to examine either the astigmatism of the system or the
image plane tilt.

111, Unobscured aperture telescope. Using the insights

developed earlier, we can demonstrate the approach to the design of an
unobscured aperture telescope.

The system will be based on the classical Cassegrain design. We
choose the reference axis to be the axis of the system before the
mirrors are tilted and decentered and tilt both mirrors as shown in Fig.
5.7.

Since the stop is at the primary mirror, the aspheric of the

primary does not generate any field aberratioans.
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POINT
c 5 ! \
2
N \ \ 3v,
cy Vi RA
Q’ =
> = A
N i sV
Fig. S5.6. The pivot point for classical Cassegrain or Ritchey-
Chretien design telescopes.
Fig. 5.7. Unobscured telescopic system based on classical

Cassegrain or Ritchey-Chretien design.
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The aberration fields due to the base sphere of the primary will
be displaced in the image plame by the vector E‘.

Both the base sphere and aspheric of the secondary mirror will
contribute to aberrations. Their aberration fields will be also be
displaced in the image field by the vectors 32 and EzA due to the base
sphere of the secondary mirror and its aspheric cap respectively.

If we want both coma and astigmatism to be zero at the center
of the image field, we should satisfy the conditions,

Wux,x; + wxu,z;z + Wlsx,zAzzA =0 (5.13)
Wiz, 13 + Waza 35,2 + Waaz 24324% = 0 , (5.14)
where subscripts following commas identify the mirrors.

Here we have two equations with three unknowns. However, we
can eliminate one of the unknowns by expressing it as a function of the
other two by using the first equation and substituting this expression
into the second equation.

The solution for the ratio of the two aberration displacement

vectors due to the tilted mirrors is given by

a -Wux,xwux,zAszz,z

W 2 -+ 2
3 222,2Wia1,1 + Wisy oW2ez2 2

(5.15)

. Wux,z[‘(wfu,zszzz,zwzzz, x"'wfn,anz,zwzzz, :A*’wfu,zwzzz, xwzzz,zA) ] 1/2

7 7
Waz2 aWiay, 1t Wisy 2Wa2a 3

If we define



77

= Wux, Waisy, szzz, 2

A= (5.16
Waaz Wis 2 + Wisy Waaz 2 )
and
Wia, A-(W f:l, :szzz, zwzzz, x"'wfu, W22z Waza) &"'w%u, :wzzz, 1wzz:, a)] V2
B = 2 2
Waza Misy *Wisy, M 2221
(5.17)
then we can rewrite Eq. S.15 as
->
2,
:_ = A : B . (5118)
a4
Using Eqs. 2.8 and 2.12 we can write
>
;z = "Tz*Ez ’ (5.19)
-
;zA = (V= 5V (5.20)
and
a, = (B/u, . (5.21)
From Fig. 5.7 we can see that
= =z
y2* = ug*t (5.22)
and
= = -
iz* = uz* -y, (5.23)

where t is the distance between the primary and secondary mirrors and ;
is the tilt angle of the secondary mirror with respect to the reference
axis about the point of intersection of the OAR with the secondary

mirror.

From Fig. 5.7 we can see that for this configuration,
-

-l;z* =2 E" ’ (5.24)
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where E,, is the tilt angle of the primary mirror with respect to the
reference axis as shown in Fig. 5.7,

Combining Eqse. 5.18 through 5.24 we obtain

8,8 = Boyvo/(A%BY, + 2Bt . (5.25)

The design procedure may be as follows. We can choose the tilt
of the primary mirror 3", such that the secondary mirror will not
obscure the light coming to the primary mirror. Then using Eq. 5.25 we
can find the decenter EV,A for the secondary mirror (Eq. 5.25 provides
two solutions). To find the tilt of the secondary mirror, we have to
solve Eq. 5.13 for ;.

The solution is

¥ = -[C(SV,A - 280, 0)1,/7, + D‘éu‘f,/E,] + 2841, (5.26)
where

w
C = 131,24 (5_27)

Wist,2

and

Wiay,1
D= m . (5.28)

For the Ritchey-Chretien design, Eq. 5.13 will indicate the
condition for coma being zero across the entire field. Then we can
simply choose one of the nodes of binodal astigmatism to be the center

of the image field.



CHAPTER 6
THIN LENS

We know that a single spherical surface does not have an axis,
but a system of two spherical surfaces together do have an axis which is
the line passing through the centers of curvature, unless, of course, the
centers coincide.

In the case of a non-trivial thin lens, where the surfaces are in
contact, the centers do not coincide and the thin lens must necessarily
have an axis. In addition the thin lens has a vertex which is the
intersection of the axis with the lens itseilf.

Also, a thin lens can be treated as a system by itself, rather
than only as a component.

First we will examine a thin lens which is tilted and decentered
with respect to a reference axis.

Using the equations of Chapter 2 for each surface of the less,

we obtain the expression for the relative displacement of the image

field

- _ = o 1 - > —

Q' =3Q + Ldv =3q + (5 - LAV/Y . (6.1)
Here ¢ is the power of the lens, y is the marginal ray height on the

lens, »C 1is the Lagrange invariant, m is the magnification of the lens,

and 8V is the vertex displacement as shown in Fig. 6.1.
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As can be seen from this expression, the relative displacement
of the center of the image field does not depend on the tilt of a thin
lens. It follows directly from the fact that the nodal points of the
lens coincide at the lens.

The Gaussian image plane tilt of a thin lens with respect to the
reference axds can be found using Eq. 2.7. Here we should point out that
it depends only on the lens tilt, not on the lens decenter.

In a thin lens each surface will produce a displacement of its
aberration center in the image field and we already know how to find
this displacement for a spherical (or aspheric) surface.

For a thin lens these displacements are shown in Fig. 6.2. The
resulting third-order aberration fields are as follows. Spherical
aberration is unchanged. Coma is the usual linear coma shifted from the
center of the image field, astigmatism is binodal, and distortion has
three third-order nodes.

Both tilt and decenter of a lens will affect the location of the
nodes with respect to the center of the image field.

For a thin lemns, as for the mirror described above, the
magnitude of the aberration displacement vectors and therefore the
location of the nodes depends om the location of the stop.

We will consider two special cases.

I. The center of the stop is on the axis of the thin lens. Then
the aberration centers for both surfaces will also be on this axis and

the aberration fields become the usual fields centered on the local axis



Fig. 6.l. Displacement of the image in tilted and decentered thin
lens.
;- - 1
<y 21 %
3y -
e RA
1 E\/“
€2 - =, L
LA alyI
Fig. 6.2.

Aberration center displacement vectors for each surface
of the thin lens.

E' and Q' are the images of E and Q after the first
surface of the lens.
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of the lens. In fact, we cannot really say that the lens is tilted and
decentered. We can simply say that the center of the image field just
has been shifted.

II. The stop is at or conjugate with the plane containing the
center of curvature of one of the lens surfaces and displaced from it.

The aberration center of this surface is then at infinity and the
aberrations generated by this surface will be constant with the field as
described in Chapter 5. |

The resulting aberration fields will be the usual aberration
fields shifted in the image plane to the point located by the aberration
center displacement vector of the other surface.

There is another way to describe the aberrations of a tilted and
decentered thin lens.

Since the lens has an axis, it can be considered as a centered
system for which aberration coefficients can be easily calculated. The
the effect of the tilt and decentration for a thin lens is the
displacement of the pupil with respect to the lens axis, which is the
reference axis of the system.

Aberrations of a system with eccentric pupil are described in
the Appendix.

We know that aberratiomns of a thin lens depend on the lens shape
factor. Treating the thin lens as a centered system with eccentric
pupil we can examine the dependence of the lens aberrations on the shape

factor.
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Coma of a tilted and decentered thin lens is given by (Eq. A.4)

W= wux[(ﬁ - Esx) . ;](3 * 3) (6.2)
where
4w
-ﬁux = (‘w_uﬂ)?: ’ (6.3)
191

Wose» Wyy; are the wave aberration coefficients of the thin lenms,
and ¢ is displacement vector of the center of the pupil.
The wave aberration coefficients of a thin lens can be expressed

as follows

Wono = 3-2'}”4'301 N (644)
Wiay = %3“ y*#*(opg + So1) , (6.5)
Wazz = ‘21' »p(oqy + 2Soqp + Sop) , (6.6)

where y is the marginal ray height at the principle planes, ¢ is the lens
power, S is the stop shift factor, and g7, oy, and o1y are the
structural aberration coefficients. For a thin lens (stop at the leas)

they are given by

07 = AX® - BXY + CY2 + D (6.7)
o = EX - FY (6.8)
am = 1 (609)

Here X is the shape factor and Y is the magnification factor. They can

be expressed as

(6.10)
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= l+tm
R (6.11)
and
n+ 2
A m , (6.12)
o 4n + 1)
B =D (6.13)
c= 82, (6.16)
n?
D= e (6.15)
- D+l
E eI (6.16)
Faftl, : (6.17)

where ¢ and ¢, are the curvatures of the first and second surfaces of
the lens, m is the lens magnification, and n is its index of refraction.

Using Eqs. 6.3, 6.4, and 6.5, we obtain

- g
kyyy = '2% ;%E (6.18)

with S = 0 (stop at the lens).

Astigmatism with respect to the medial surface is given by

(Eq. A.13)
W= %wzzz[(ﬁ - T‘gzz)z - Eizz] . 8t (6.19)
where
- W,
e = z=c (6.20)
222
>, W31 ~ 8WosoWaza o

2320 = ( . @, (6.21)
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and W5, is the wave aberration coefficient of the thin lens.

Combining Eqs. 6.4, 6.5, 6.5, 6.20, and 6.21, we obtain (stop at

the lens)
Yozg = o
22 2 I (6-22)
- 52
2322 = 4R;Cz(0nz - 207) (6.23)

In Egs. 6.18, 6.22, and 6.23, only the structural aberration
coefficients depend on the lens shape factor. This dependence is
illustrated in Fig. 6.3 where magnification factor Y was chosen to be
zero for simplicity.

From this figure we can see that if X = 0, the coma node is at
infinity, i.e., coma is constant. Astigmatism is binodal with the nodes
located symmetrically with respect to the center of the image field.

Also it can be seen from Fig. 6.3 that if X = *a? (intersection
points for the line and two branches of the hyperbola), them o7 = on‘.
In this case Kis; = keaz and |En,| = ﬁgnl, i.e., the node for coma lies
at the center of symmetry of binodal astigmatism as shown in Fig. 6.4.
Since the magnitude of the vector Eizz is negative, the nodes of binodal
astigmatism lie on the line orthogonal to the pupil displacement vector
.

We know that the structural aberration coefficients for coma and
astigmatism of a thin lens depend on the longitudinal stop shift (that
is, a shift along the reference axis), we can move the stop to the

location at which coma for the thin lens with pupil centered on the lens
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Fig. 6.3.

Dependence of perturbation vectors for coma and
astigmatism on the lens shape factor (stop at the lens).



Fig. 6.4,

~ COMA NODE
1222

‘-i'
cil222

- >
k131°ka22

\/ max

ASTIGMATIC NODES

The nodes for coma and astigmatism of a thin lens with
shape factor X = #n? (stop at the lens).
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axis will be zero and examine a few special cases.
Case I. For a thin lens with a centered pupil, coma is corrected.

From Eq. 6.5, we can find the location of the stop for zero coma. It is

given by
g = - oL (6.24)
91
and
2011
$s = - Sm-o1’ . (6.25)

where s is the distance of the entrance pupil from the front principle
plane.
Then the structural aberration coefficients (after the stop

shift) become

or' =93
O‘n' =0
GHZ
o' =1 - T (6.26)

Coma is constant across the field and can be obtained using Eq.

AJ4 as
W= (Kt 26 0B, (6:27)
where
Koy = bimoc = %y%”crl . (6.28)
Astigmatism is binodal and given by (A.13)

W= %szz(ﬁl -32,) ¢ 32 (6.29)
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where Ezzz = 0 and

_ch»czz - v*o3+, 9T

Waaz 2w oy

E%zza

1 (6.30)

Figure 6.5 illustrates the dependence of astigmatism, the stop
shift parameter, and the perturbation vectors of a thin lems or its
shape factor. As can be seen from this figure ofyy = 0 at two points,
when X = i?, and the nodes of binodal astigmatism will move to infinity,
resulting in constant astigmatism.

Case II. For a thin lens with the centered pupil coma and
astigmatism are corrected (as above).

In this case &7 = ofyy = 0 when X = @m% Coma is constant as
before and given by Eq. 6.27. Astigmatism also becomes constant and can

be obtained using Eq. A.l3 as

Wa i, 02, (6.31)
where

£2,. 2 40,02 = Sy e2 6.32

222 ane® gy ecioy (6.32)

As we can see from Eqs. 6.28 and 6.32, the magnitude of constant
coma and astigmatism depend on the magnitude of spherical aberration.

In this case,

- n"flt1_.+ll)2 (6.33)
and

2(a2 - 1)
(n2 = 1) F (n+ 1)*n

4 = - (6.34)



Fig. 6.5.

Special case.

Stop is shifted to correct coma.
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CHAPTER 7
COMPARISON OF EXAMPLES WITH REAL RAY TRACES

In this chapter, we present several examples showing the use of
the theory developed above. A few special cases from the previous
chapters were taken, the systems were designed, and then checked with a
real ray trace program.

The program used for these examples was Super—Oslo, run on an
HP9816 computer. An unusual representation of a vector was chosen for
these examples. As in most design programs, an absolute coordinate
system with its y—-axis (vertical) in the meridianal plane of the aligned
system was chosen. In this coordinate system a vector was represented
as a = ael®., This is illustrated in Fig. 7.1.

Example I. The system chosen as a first example consisted of
two plane—paréllel plates placed in a system that had the following
specifications: u = -0.125, u = 0.1, and f-number = F/4. The thickness
of the plates was 20 mm and their glass BK7. The plates were tilted in
the same plane in opposite directions by an angle of 10°. Also, the
aberrations of the system and the plates were balanced before the
plates were tilted.

From Chapter 3 we know that spherical aberration is not affected

by tilt. Coma should be zero across the entire field and astigmatism

should be constant.
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Fig. 7.1. Vector representation in the examples.
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We calculated the aberration center displacement vector for each
plate: 32, = (8)/u = 1.7633ei0° and i, = (Bp/u = 1.763e1180°,
Astigmatism with respect to the medial surface is given by (see Eq. 2.34)

W 285050, (7.1)
where
ggzz = (wzzz,x + Wuz,ﬂsz (7.2)
and 3,2 = 3,2 = 32,
The wave aberration coefficient for each plane-parallel plate is

glven by

- 2 -
w::: = —%uz uz n—n!'-];t . (7.3)

We calculated the magnitude of astigmatism with respect to the
medial surface using Eqs. 7.1, 7.2, and 7.3. We found it to be l.81 um
(p = 1). Then the transverse ray aberration at the Gaussian image plane
(where o = 1) should be 58 m.

Tc; check the theory, we set the system up in the computer. The
system is shown in Fig. 7.2 and the specifications of this system are
given in Table 7.l. As can be seen from Fig. 7.2, when plates are not
tilted, we have a perfect image.

Fig. 7.3 shows the ray fans and spot diagrams of the system with
two tilted plane—-parallel plates. As can be seen from this figure,
astigmatism is constant with the magnitude about 60 um. There is no

coma.



SCALE: 1

Fig. 7.2,

Example I.

Two plates are tilted in the same plane.
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Table 7.l. Specifications of the system used in Example I.

95

*RTG
PLATES_EXAMPLE
SRF RADIUS THICKNESS GLASS
1 - 128. 185658 AIR
2 e =20.000000 BK7
3 - =31.81434%6 AIR
4 e =20.000000 BK7
S - =70.000000 AIR
-] - 1.00000E-07 BK7
7 — 70.000000 AIR
8 - 20.000000 BK7
? -— 31.814346 AIR
10 - 20.000000 BK7
11 - 71.81434& AIR
12 -— - AIR
*SPECIAL DATA
SRF TYPE VALUE
8 oT 1.000000
8 TLA =10.000000
9 DT 1.000000
? bCY 2.526540
1o DT 1.000000
10 DCY S.609728
10 TLA 20. 000000
11 DT 1.000000
11 DCY -3.526540
12 07 1.000000
12 TLA -10.000000
*GENERAL DATA

EPR aBY THO

235. 000001 20.000000 =200,000008
UNITS oBX cva
1.000000 - -

*PARAXIAL CONSTANTS

EFL FNB GIH
-1.12590E+18 4.000000 20. 000000

NOTE

SPECIAL
SPECIAL

SPECIAL
SPECIAL

SPECIAL

FMODE IMAGE DESIGNER

FOC 12 ™
AMODE ASTOP REVCODE
UNC s HP1&6BUAZ1
PIV PTZRAD TMAG
=2.500000 -— 1.000000




, A & ‘=
a]wauo 0. 165923
RAY-INTERCEPT CLURVES
(214 1.6808830 FEX -
2. & T
.llm 9.163583
~INTERCIPT CURVES
sy 0.789839 FEX o
e B S
a;m/ ..llm
RAY-INTERCEPT QURVES
BY - rex -~
Fig. 7.3. Ray fans and spot diagrams for the system of Exanmple I.
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Example II. In the second example, the same system was used,
but the plates were cross—tilted with tilt angles of 10°. The
aberration center displacement vectors in this case were ;, =
1.7633eilsoo and 52 = 1.7633e-190°. Again, spherical aberration is not
affected. Coma should be constant and astigmatism should be linear with

the node at the center of the field. Coma is given by (see Eq. 2.18)

W= L3]G (7.4)
where
Xux = Wux,xs + Wux,zzz
=1.405¢71135% m, (7.5)

The wave aberration coefficient for each plate is given by

- 2
W= -% uu’(la-,l)c . (7.6)

Using Egs. 7.4, 7.5, and 7.6, we calculated the magnitude and
direction of coma. With p = 1, the magnitude of coma was 1.405 um, and
its direction was -135°. The transverse ray aberration for coma at
p = 1 should be 33.72 ym. The linear astigmatism with respect to the

medial focal surface is.given by (see 2.33)

W= %[‘Zﬁzzz]‘;z , _ 7.7)
where

K'..'zz = szz(sx + z‘}) . (7.8)
Using EqSe 7.8, 7.7, and 7.3, we calculated the magnitude of astigmatism

with respect to the medial focal surface at H =1 and p = 1. It was
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1.45 ym. Then the transverse ray aberration in the Gaussian image plane
should be 23.24 ym. Table 7.2 shows the specification of the systenm
with two cross-tilted plates. The ray fans and spot diagrams for the
system with two cross—tilted piat:es are shown in Fig. 7.4.

As we can see from this figure, on axis we have pure coma
oriented -135° from the y~axis. For points off-axis, the magnitude and
orientation of coma is the same but the amount of astigmatism increases
as we move farther from the center of the field. The effect of limear
astigmatism added to coma can be well seen in the spot diagrams.

The magnitude of coma as it is taken from the ray fans is about
32 ym and astigmatism at full field is about 20 ym (after defocus has
been subtracted).

Figure 7.5 shows the field curves of the linear astigmatism. We
can see that indeed the node is located at the center of the field.

Example III. In this example, we examined Case IV of Chapter 4,
which is the case of the system with two wedges. Here we used the
system of the first two examples. The wedges had the same vertex angle
which was 2° and they were tilted in the same plane in opposite
directions.

We chose the distance from the object point to the plane
bisecting the first wedge to be %, = 120 mm and thickness of the first
wedge along the OAR t, = 20 mm. We set %, = 75 mm. Then to have the
ratio t/% for the second wedge equal to that of the first onme, we

.calcula:ed the thickness of the sccond wedge along the OAR t, = 12.5 am.

st s &

17 Y & s &

P



Table 7.2. Specifications of the system used in Example IT.
*C18
PLATES_EXAMPLE
SRF CURVATURE THICKNESS  GLASS NOTE
1 - 128.18%46%8 AIR
2 - -20.000000 BK7
3 -— -31.814335 AIR
4 - -20.000000 BK7
5 -— -70.000000 AIR
& - 1.00000E~07 BK7
7 -— 70.000000 AIR
8 - -— BK7 SPECIAL
9 -— 20.1323686 BK7 SPECIAL
10 -— -— AIR SPECIAL
1t -— 31.814345 AIR SPECIAL
12 -— -— BK?7 SPECIAL
13 - 20. 132366 BK?7 SPECIAL
14 -— -_— AIR SPECIAL
15 —_ 71.880000 AIR SPECIAL
16 -_ -— AIR
*SPECIAL DATA
SRF TYPE VALUE
8 D»T 1.000000
8 TLA -10.000000
9 DT 1.000000
? TLA 6573820
10 oT 1.000000
10 TLA -6.573820
11 DT 1.000000
11 TLA 10. 000000
12 oT £.000000
12 TLB 10. 000000
13 DT 1.000000
12 TLB ~5.573820
14 DT 1.000000
14 TLB 6.573820
1S oT 1.000000
1S TLB  -10.000000
*GENERAL DATA

oBY THO FMODE IMAGE DESIGNER
2%, 000001 20.000000 =-200.000008 Foc 16 TED

UNITS aBX cve AMODE  ASTOP REVCODE

1.000000 -- -— uNC & HP1&BUAZ1
*PORAXIAL CONSTANTS

EFL FNB BIH PIV PTZRAD TMAG

-1.12590E+18 4.000000 20. 000000 -2.500000 -— 1.000000
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Fig. 7.4. Ray fans and spot diagrams for the system of Example II.
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FIELD CURVES

Fig. 7.5.

Field curves of the system with two cross-tilted plates.
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= - o
Using Eq. 4.9, with u% = 0, we calculated B, = 0.487eio « For the

o
1180 , therefore §, = 0.505¢'18%,  1¢ we eilt

second wedge f’g = 0.01805e
the wedges by these angles coma should be zero across the entire field.

Astigmatism with respect to the medial surface is given by
Eq. 4.20. The aberration center displacement vectors 51 and 52 for each
wedge surface are equal in magnitude and opposite in sign. Squared
vectors E,‘ and 2,? are equal.

Using Eq. 2.11 and Eq. 4.4, we calculated 3,‘= 22.02tamo and
al= 27.27eio°. Then, using Eq. 4.15 we calculated bi,; = -24.505¢10° and
the magnitude of astigmatism with respect to the medial focal surface
should be 13 ym at p = 1. The transverse ray aberration in the Gaussian
image plane should be 420 ym.

Figures 7.6, Table 7.3, and Fig. 7.7 show the system, the system
specifications, and the ray fans with corresponding spot diagrams for the
system having two tilted wedges. As can be seen from the ray fans, the
.ast:igmat:ism is nearly constant across the field. Small linear
astigmatism is present due to the error arising from the fact that the
wedges were tilted by large angles (about 26°) to correct the system for
coma. Coma is practically zero.

Example IV. As the last example, we examined the case of a
misaligned Ritchey=Chretien telescopé as described in Chapter 5. The
telescope was 2~-m aperture and 0.64° full field of view. The f-number

of the system was F/9.



SCALE:

1

Fig. 7.6.

Example III.

Two wedges are tilted in the same plane.
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Table 7.3. Specifications of the system used in Example III.
*RTG
WEDGES_EXAMPLE
SRF RADIUS THICKNESS  GLASS NOTE
L - 126.991035 AIR
2 -— ~12.500000 BK7
s -_ ~35.%564344 AIR
4 - ~20.000000 BK?
s - -70.000000 AIR
6 - 1.00000E-07 BK7
7 - 70.000000  AIR
8 - -— BK? SPECIAL
9 - 22.243106 BK7 SPECIAL
10 - - AIR SPECIAL
1 - 33.321238 AIR SPECIAL
12 - - BK7 SPECIAL
z - 14.027319 BK7 SPECIAL
14 - - AIR SPECIAL
15 - 71.566229 AIR SPECIAL
16 - - AIR
*SPECIAL DATA
SRF TYPE VaLUE
g oT 1.000000
8 TLA 24,9%72790
$ DT 1.000000
9  TLA  =-24,932790
10 DT 1.000000
10 TLA 26, 952790
14 DT 1.000000
11 TLA  =26.952790
12 DT 1. 000000
12 TLA  ~25,986698
13 DT 1.000000
13 TLA 25, 986498
t4 DT 1.000000
14 TLA -27.986698
15 DT 1.000000
15 TLA 27.982049
*GENERAL DATA
EPR 0BY THO FMODE
25. 000000 20.000000 =~200. 000000 Faoc
UNITS 0BX cvo AMODE
1.000000 -— - uNc

*PARAX IAL CONSTANTS
AFOCAL SYSTEM
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Figure 7.8, Table 7.4, and Fig. 7.9 show the system
configuration, specifications, and the ray fans with corresponding spot
diagrams of the system before misalignment.

We found a pivot point for the secondary mirror such that up.on

rotating the mirror about this point, coma should stay zero across the

field.

Using Eq. 5.11 we found that 8c/3VA = =2.5139. In Fig. 7.10 this
point corresponds to point P. The distance from the secondary mirror to

the pivot point was 1384.454 mm.

With the secondary mirror tilted about point P by an angle of 10

i0° io°

are min (a = 0.16667e™" ), we calculated &c = -10.124le™’ mm and

- -3
§Vy = 4.0272eio mm. Knowing the location of the image formed by the

primary mirror and the displacement of the center of curvature for the

Q
secondary mirror, we obtained § = 3.122 x10~ ’eio .

Using Eq. 2.7 we calculated the tilt of the Gaussian image plane
- -]
with respect  to the reference axis 8' = 1.249 xlO"’eio

110°

, then

and & = 5.062¢!° am. Using Eqs. 2.8 and 2.12

o
we calculated a = 0.19715e1180

8y = § - B = 9.365x10"
o

and ;A = 0.16556e10". After that we

<
calculated the perturbation vectors Eiu = 0.23052¢° and

- (-]
B2, = -5.7908 x10~%° . The location of the astigmatic nodes should be

<>

ac d = Euz %t b,y,e As we calculated, ome of the nodes is at
- o o
f, = 0.47116e'% and the other is at #, = -0.010123¢'%".
Table 7.5 shows the specifications of the Ritchey=Chretien

telescope with the secondary mirror tilted by an angle of 10 arc min



SCALE: .02

Fig. 7.8.

Example IV.

Ritchey-Chretien telescope.
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Ritchey-Chretien telescope specifications.

*RTG
RTCH_CHRETIEN
SRF RADIUS THICKNESS
1 —— -——
2 ~1.20000E+04 ~-4378.378300
3 ~4864.864800 4864,865700
4 -— -—
*ASPHERIC DATA
SRF TYPE VALLUE
2 ccC ~1.08220%
3 cc -5.027778
*GENERAL, DATA
EPR aBy
1000.9000000 -5,SSSSSE+17 1
UNITS aBx
1.000000 —
#PARAXIAL CONSTANTS
EFL FNB
1.80C0QE~+Q4 F.000001
*PARAXIAL TRACE
SRF PY PU
1 1000,000000 1.00000E=17
2 1000, 000000 0.166667
3 270.270283 =0, 055556
4 - -0, 055558
*SEIDEL ABERRATIONS
SRF SA3 M3
1 ——— ——
2 0, 098260 0.077160
3 =0.09%260 =-0.077140

SM -9.18874E~08 -9.7I8735E-09

DESIGNER
TED
REVCODE
HP16BUAZ1

PTZRAD TMAG

-5.5T89535 -4090.90899% ~1.80000E=14&

GLASS NOTE
AIR
REFLECT ASPHERIC
REFLECT ASPHERIC
AIR
THQ FMODE IMAGE
« Q0000QE+20 Fac 4
cvo AMODE ASTOP
- UNC 1
GIH PIV
100.000000
Pl PYC
1.00000E-L7 ——
=-0,083TT3 -—
0.1111114 24.324321
-0, 053556 100. 000000
ARSI PI3
-0.005144 0.0035144
-0.000429 -0.012689
-0.008573 -0.007543

PUC PIC
0.005556 0.005556
=0.005556 0. 005556
0.015556 ~0.010554
0.015556 0.0135556

DSZ PAZ

0.000548 =3Z,47222E~-06

0.000548 ~3.47222E~06




<t o N
e -
s 9. 0mmcy noa -
9.3008200 5.802309 )
- [-~\\\;\N\§\ —————— |} e
RAV-INTERCEPT CRVEE 1t reeme
FBy [ FBx —
S.rames
Suesce El =
a.z20888a 8.200003
RAV-INTERCEPT CURVES
FBY 9.7202008 FBX | 2 —
g2=r_ Bk =
©.801000 0.c21290 [,
RAV-INVERCEPT CURVES
FBY — Fex —

Fig. 7.9.

Ray fans and spot diagrams of Ritchey-Chretien telescope
before misalignment.
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Table 7.5. System specifications of wmisaligned Ritchey-Chretien
telescope.
*RTG
RTCH_CHRETIEN
SRF RADIUS THICKNESS  GLASS NOTE
1 - - AIR
2  -1.20000E+04 -4378.378300 REFLECT ASPHERIC
T -4864.864800 - REFLECT  SPECIAL ASPHERIC
3 - -— AIR SPECIAL
S -— 4864.865700 AIR SPECIAL
6 - -— AIR SPECIAL
*ASPHERIC DATA
SRF TYPE VALUE
2 cc ~1.08230S
T cc -5,027778
*SPECIAL DATA
SRF TYPE VALUE
s DT 1.000000
z  Dpey 4,02722%
I TLA 0. 166667
4 DT 1.000000
4 TLA -0. 166667
5 DT 1.000000
S DCY 1.034842
5 TLA 0.1788%4
6 DT 1.000000
6 TLA 0.536546
+GENERAL DATA
EPR oBY THO FMODE IMABE  DESIGNER
1000.000000 -5, SESSITE+17 1, 00000E+20 Fac a TED
UNITS 0BX cve AMODE  ASTOP REVCODE
1.000000 - - UNC L HP14BUAZ1
*PARAXIAL CONSTANTS
EFL FNB BIH PIV PTZRAD TMAG
1.80000E+04 9.000001  100. 000000 -5.555555 -4090,908999 -1.800006-16
#PARAXIAL TRACE
SRF PY PU PI PYC PUC PIC
1 1000.000000 1,00000E-17 1.00000E=17 -— 0.005556 0. 0055564
2 1000.000000 0. 146667 ~0.083333 - -0. 005556 0. 005554
] 270.270283 ~0.0555%6 0.111111 24.324321 0.015556 -0.0108%&
270.27028% -0. 055556 -0.085556 24,324321 0.015556 0.015556
5 270.27028% -0. 055558 -0, 085556 24,324321 0.015556 0. 015556
6 - -0. 083556 -0.085356 100, 000000 0.015556 0.015556
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about point P (see Fig. 7.10). The ray fans and corresponding spot
diagrama are shown in Fige. 7.11. Fig. 7.12 shows the upper part. of the
field curves of the misaligned system. The ray fans and spot diagrams

were taken at the nodes and half way between them. As can be seen from
Fig. 7.11 and 7.12, the nodes are indeed at the locations which were
calculated using the theoretical approach. Also, ome can clearly see
that there is agtigmatism half way between the nodes.

We should point out here again that in the case of binodal

astigmatism the focal surfaces do not cross each other, they only touch
at the node points. Therefore in Fig. 7.12, the solid line and the

dashed line should be interchanged in the region between the nodes.



[
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Fig. 7.10.

Misaligned Ritchey-Chretien telescope.
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Fig. 7.11.

Ray fans and spot diagrams of misaligned Ritchey-Chretien
telescope. '
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FIELD CURVES

5 .8080000

Fig. 7.12.

Field curves for misaligned Ritchey-Chretien telescope.
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CHAPTER 8
CONCLUSIONS

We have applied the theory of perturbed optical systems to each
of the basic components of any optical system and established the
felations between the aberrations of each component and its parameters.
The emphasis has been on developing insights into the behavior of
aberrations of a system having tilted and decentered components.

Insights on how to use plane-parallel plates in the system were
developed. We established that with one or two tilted plane—parallel
plates we cannot have both axial coma and astigmatism zero in the
gystem (it will require a minimum of three plates),

We established that the aberrations of the wedge depend not only
on the tilt and thickness of the wedge (along the reference axig), but
also on the position of the wedge in the system, therefore with the
wedge the designer has more parameters influencing the aberrations than
with the plane-parallel plate.

We also showed that a combination of two wedges, properly tilted
and placed in the system, practically does not change the system
aberrations. Therefore we can say that by using wedged beamsplitters
rather than plane-parallel plates, fewer elements are required to have

the system aberrations unaltered.
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We also discussed the problem of a misaligned telescope and
showed that in order to align the system it is not enough just to
;aliminate axial coma and astigmatism, but it 1s necessary to examine
either the astigmatic field or the image plane tilt.

In a system with tilted and decentered components, such as
unobscured aperture telescopes, the designer should be able to predict
systematically what the aberrations for a proposed system would be.

We showed that the compoments with an axis (a thin lens or a
system of two spherical mirrors) when tilted and decentered, can be
treated as centered systems with a decentered pupil. In the case of a
thin lens, we found this approach to be simpler than a tilted and
decentered system approach.

By comparing a few examples with corresponding real ray traces,
we showed that the theory developed here is accurate enough to provide
the designer with a system which can be used as a starting point in an
optimization process.

One area which may be pursued further is the aberration fields
in eccentric aperture systems from a design perspective. The systen
aberration dependence on the transverse stop shift of eccentric pupil
systems may be investigated. The problem in this (' case is simpler
because the behavior of the design is independent of the surface
contributions and depends only on the aberration totals.

In this analysis, we considered only monochromatic aberrations;

it can be extended to cover chromatic aberration as well.



APPENDIX

THIRD-ORDER ABERRATIONS
OF A SYSTEM WITH DECENTERED PUPIL

Here we will examine the third-order aberration fields in
eccentric aperture systems. In these systems, the pupil dependence in
the wave aberration expansion is expanded rather than the field
dependence.

The wave aberration expansion up to the third order for the
rotationally symmetric system in vector form is given by

W= Wopolp * 92+ Wl * 2)3 ¢ 2)

+ Waag(® ¢ BIH « B) + Wppo(E « G - D)

+ W« WA« 7)), (A.1)
where Wggm are the wave aberration coefficients of the system. If the
relative (normalized by the aperture radius) displacement of the system
aperture stop from the axis is given by ?‘., then Eq. A.l can be modified

as follows
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W= Wol(e =) » (5 = DI

>

+ Wyl * (0 =-DIUG =¢)* (3 -]

-+

+Wfi e G -DIMHE - (G -7

+ wzzo(ﬁ ﬁ)[(s -3 (-

+ Wyl BIE - G -3, (a.2)
All of the above terms will generate aberration terms with lower power
field dependence than the generating aberrations.

After expanding each term above and collecting the terms with

the same pupil dependence in each type, we will obtain

Spherical aberration:
. Wm(E * 3)(3 * ;)
éoma:
Wiga(H © BXB * B) = 42 * 3XB * B)
Astigmatism:
Waga(H © 3D = 2W150(C + B) (H  B) + 4Woyo(E « 322
Field Curvature:
Wago(H © B * 0) = Wygy(H © TUE * 8) + 2Wo(E * ONB * B)

Distortion:

©
~r

Woga(H * B) (A © 3) = 2Wppo(H * HNE * 3) = 2Wyp, e O H* 5

+ Wiy (@0 OXH * B) + 2y (H » E * B) = 2Wpo(@ * DNE * D)
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Constant term (piston error):
WgaolC * ©)F = Wypy(H » T)E ¢ Q)
+ Wga(H * 202 + Wy A M@ ¢ ) = Wy, (H - WH- D) (A.3)

First let us examine coma.

W= [W"‘(ﬁ © D) = AWl 3)] )

= W“l[('ﬁ - Eu;) * ;(; * 3) ’ (A.4)
where
> 4W,,.°T:
Kysp = Waos (A.5)

This is the usual linear coma shifted in the image plame to the point
located by the vector ‘Em.

Eq. A.4 is essentially the same as Eq. 2.15. The difference is
only in the expressions for perturbation vectors.
Astigmatism and field curvature are given by

W AWge(p * B) + Wop(H © 0)2 = 2Wq, (T ¢ BICH * B) + 4My(C * 7)?

Hlgge(H + BB * B) = Wygy(H * G * B

#2Woo(C * DG * B) . (4.6)
Here to retain the same pupil dependence we should apply the vector

identity (Thompson 1980)

2 DA O =E DB +X2FC, (A7)
so that
Wy, (T ¢ 0)HE © ) = Wiy (T BB D) - Wy, HE B2, (4.8)

We will consider the properties of the medial focal surface first.
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We know that )
Wage(H © B)(5 + 0) + Wape(H « 322
= Wagou(l * WP * 5) + -;-wm(ﬁ « 2. (A.9)
Therefore the medial focal surface is given by

=AWy = szm(ﬁ < H) - ZW,,,(E < #) + ZWW,(E * Q)

’szou[(ﬁ - Ezznt'l) . (# - EzzoM) + lzzoM] ’ (A.10)
where
» W,.,;E
KazeM = Wazon (A.ll)
and
zwnso -
La20M = [m - Wf"/(wgzoM] e, (A.12)

The medial focal surface varies quadratically with the field. The
vertex is located transversely from the center of the image field by the
vector Euou. There is a longitudinal shift along the optical axis due to

the term W,;oM2220Me

Astigmaﬁism with respect to the medial surface is given by
L

W= szzzﬁz .« 5% - Wia G © B2 + 4W,,,C2 © 32
C .
= szzz[(i = Ezzz)z - Eizz] ° %, (A.13)
where
W
Ezzz = % IS (A.14)

and
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»> wf!l 8wﬂi0
12, = [_,_w - . (A.15)
222 222

This 1is binodal astigmatism with the nodes located by the vectors
Kasz + 222 and Ky = Laaze
Distortion is given by
W= Wy, (H o B)HE  B) - 2Wy(  BXE ¢ D)

~2Wype(E * O(H *B) + Wy (T ¢ OCE * )

# iy (B 2 TUE * D) = WeeC * AE * D) (A.16)
The transverse ray aberration for distortion will be

(a'u")e = Wyp,(H * B ~ 2W,p,(H « OF + Wy, (3 *+ O)F

~2W,pe(H ¢ T)C + 20y, (B * B)C = 2W,0 (E » ¥ . (Ae17)
This is a third-degree equation and will have three roots. The easiest
way to find the roots of this equation is to use the approximation
methods such as one would use to find the roots of a scalar polynomial.
) From Egs. A.4, A.13, and A.17 we can see that there are no new
types of aberrations, i.e., they are the same as those described in
Chapter 2.

Here we described the aberrations of the rotationally symmetric
system with the decentered pupil. In general, the system does not have
to be rotationally symmetric, it can have tilted and decentered surfaces
or components. In this case the wave aberration expansion will have to
include the perturbations of the system as well as the transverse shift

of the pupil.



LIST OF REFERENCES

Buchroeder, R. A., "Tilted component telescopes. Part I: Theory,” Appl.
Optics, 9, 9, 2169 (1970).

Buchroeder, R. A., "Tilted component optical systems,” PhD dissertation,
Optical Sciences Center, University of Arizomna (1976).

Gelles, Rubin, "Unobscured aperture stigmatic telescope,” Opt. Eng. 13, 6,
534 (Nov./Dec. 1974),

Gelles, Rubin, "Unobscured aperture two mirror systems,” J. Opt. Soc. Am.
65, 10 1141 (Oct. 1975).

King, W. B., "Unobscured laser—~beam-expander pointing system with tilted
spherical mirrors,"” Appl. Opt. (L), 13, 1, 21 (1974).

Kingslake, R., Lens Design Fundamentals, Academic Press, New York (1978).

Prasad, J., Go Mitra, and P. K. Jain, "Aberrations of a system of
arbitrarily inclined planar surfaces placed in non-collimated
light beam,” Nouv. Rev. Optique 6, 6, 345 (1975).

Shearer, J., "Geometrical optics of concave mirrors and of combinations
of mirrors,” Australian J. Seci. Res. A. 3, 532 (1950).

Smith, W. J., Modern Optical Engineering; the Design of Optical Systems,
McGraw-Hill, New York (1966).

Thompson, K. P., "Aberration fields in tilted and decentered optical

systems,” PhD dissertation, Optical Sciences Center, University of
Arizona (1980).

Welford, W. T., Aberrations of the Symmetrical Optical System, Academic
Press, New York (1974).

122



